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Abstract

Twig queries represent the building blocks of declara-
tive query languages over XML data. A twig query de-
scribes a complex traversal of the document graph and gen-
erates a set of element tuples based on the intertwined eval-
uation (i.e., join) of multiple path expressions. Estimating
the result cardinality of twig queries or, equivalently, the
number of tuples in such a structural (path-based) join, is
a fundamental problem that arises in the optimization of
declarative queries over XML. It is crucial, therefore, to de-
velop concise synopsis structures that summarize the docu-
ment graph and enable such selectivity estimates within the
time and space constraints of the optimizer. In this paper,
we propose novel summarization and estimation techniques
for estimating the selectivity of twig queries with complex
XPath expressions over tree-structured data. Our approach
is based on the XSKETCH model, augmented with new types
of distribution information for capturing complex correla-
tion patterns across structural joins. Briefly, the key idea
is to represent joins as points in a multidimensional space
of path counts that capture aggregate information on the
contents of the resulting element tuples. We develop a sys-
tematic framework that combines distribution information
with appropriate statistical assumptions in order to pro-
vide selectivity estimates for twig queries over concise XS-
KETCH synopses and we describe an efficient algorithm for
constructing an accurate summary for a given space bud-
get. Implementation results with both synthetic and real-
life data sets verify the effectiveness of our approach and
demonstrate its benefits over earlier techniques.

1. Introduction

XML is gaining wide acceptance as the standard for
data exchange and integration over the Internet. The sim-
ple self-describing nature of XML data enables a broad
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class of new applications that allow users to query effec-
tively the vast amount of information available on the In-
ternet. As a result, XML support is becoming increasingly
ubiquitous in commercial database systems, while nu-
merous research projects, like Niagara [10] and Xyleme
(http://www.xyleme.com), look into the develop-
ment of native XML database systems.

The successful deployment of XML query processors
hinges upon the existence of high-level languages that allow
users to formulate declarative queries over semi-structured
data. Examples include XQuery [2] and XSLT [4], the pro-
posed standards by W3C, and a variety of other languages
that cover a wide range of querying models and program-
ming styles. A common characteristic in all proposals is the
use of pattern specification expressions, built around a path
expression language, for selecting subsets of elements that
satisfy certain structural relationships (i.e., they are con-
nected with specific paths in the document graph). These
expressions, commonly called twig queries, describe a com-
plex traversal of the document graph and retrieve document
elements through an intertwined (i.e., joint) evaluation of
multiple path expressions. As a concrete example, consider
the following query in the XQuery language over a docu-
ment that contains movie data:

for $
���

in //movie[/type=X],
$
���

in $
���
/actor,

$
���

in $
� �
/producer

return $
� �
, $

���
The for clause corresponds to a twig query with three path
expressions. The first path expression retrieves all movies of
a specific type X, while the second and third expressions re-
trieve the actors and producers, respectively, of each quali-
fying movie. Conceptually, the result of the for clause is an
unnested representation of this joint evaluation, i.e., a set of
3-tuples, where each tuple pairs a movie element with one
possible combination of an actor and a producer that it con-
tains. A qualifying movie, for example, with 10 actors and
3 producers will generate 30 tuples. The final result of the
query, which is specified by the return clause, is formed
by projecting the actor and producer elements from the set
of 3-tuples. Overall, twig queries represent the equivalent
of the SQL FROM clause in the XML world: they model the



generation of element tuples which will eventually be pro-
cessed to compute the final result of the XML query.

Given the importance of twig queries as a basic element
selection mechanism, their optimized execution is crucial
for the efficient implementation of declarative query lan-
guages. Similar to the case of relational joins, an important
problem in the optimization of these path-join expressions
is estimating their selectivity, i.e., the number of matching
element tuples that they will generate. This, in turn, hints at
the existence of concise summary structures that can pro-
vide, at query compile time, effective selectivity estimates
within the time and memory constraints of a query opti-
mizer.

In order to provide accurate estimates for twig queries,
a synopsis has to approximate reasonably the joint distribu-
tion of path result counts for different document elements.
The problem, however, is particularly challenging due to the
complicated correlation patterns that can arise in the under-
lying path distribution. If we consider the previous query,
for example, we expect to retrieve more actors and produc-
ers (and hence produce more tuples) per movie if the type X
is “Action” than if it is “Documentary”. Similarly, the num-
ber of actors and producers can be affected by the paths
that reach the qualifying movie elements, or even by paths
that exist in the neighborhood of the elements. In general,
selectivity estimation for twig queries is equivalent to es-
timating the result cardinality of relational tree joins with
selection predicates, which is already known to be a diffi-
cult problem [7]. The problem becomes even harder when
path expressions are predicated on the existence of specific
paths (branching predicates) since these predicates would
correspond to additional semi-join operations in a relational
context. Overall, an effective synopsis needs to capture the
complex dependencies that arise between and across the
path structure and element values in order to provide ac-
curate selectivity estimates for twig queries.
Related Work1 A large body of earlier work has focused
on the case of single path expressions [1, 8, 11, 12, 17],
i.e., estimating the number of elements reached by a single
path. The proposed summarization techniques can be used
for twig queries that are equivalent to single path expres-
sions, but it is not clear how they can be extended to han-
dle the estimation problem in its most general form, where
the query contains multiple correlated paths.

There are two recent proposals for estimating the selec-
tivity of twig queries over tree-structured data, namely, Cor-
related Suffix Trees (CSTs) [3] and StatiX [6]. The CST
method uses a pruned trie to summarize the path structure
of the input data, while StatiX captures the underlying path
distribution with one-dimensional histograms on element-

1 Due to space constraints, a detailed overview of related work can be
found in the full version of the paper [13]

ids. In both cases, the proposed estimation framework com-
bines the stored statistics with statistical (independence and
uniformity) assumptions, which compensate for the lack of
detailed distribution information. The corresponding con-
struction algorithms, however, do not take into account the
estimation assumptions and it is thus not clear if those as-
sumptions remain valid in the constructed synopses. In ad-
dition, the two techniqeus allocate the space budget equally
among all parts of the generated synopses, regardless of the
skew that might exist in certain regions of the data.

The problem of building statistical synopses has received
a significant amount of attention in the relational literature
as well. The focus, however, has been on approximating
value distributions [7, 9, 15, 16], while the problem of sum-
marizing hierarchical XML data is certainly more complex.
Our Contributions In this paper, we propose a novel sum-
marization method for estimating the selectivity of twig
queries over large XML data graphs. Our approach is based
on our earlier XSKETCH synopsis model, augmented with
a new type of distribution information for approximating
the cardinality of structural joins among multiple complex
path expressions. More specifically, our contributions can
be summarized as follows:	 Selectivity Estimation for Structural Joins. We propose
a novel summarization method for estimating the cardinal-
ity of a structural join among multiple path expressions.
Our method maps a structural join to a collection of points
in a multidimensional space of edge counts and thus cap-
tures aggregate information on the structure of matching
tuples. The resulting multidimensional distribution of inte-
ger counts can then be approximated very effectively us-
ing standard summarization techniques, like, histograms or
wavelets.	 Extended XSKETCH Synopses. Based on our method for
approximating join cardinalities, we propose an extended
XSKETCH synopsis model that records localized distribu-
tion information on structural joins. We develop a system-
atic framework that combines the stored information with
appropriate statistical assumptions in order to compute se-
lectivity estimates for twig queries with complex XPath ex-
pressions (i.e., paths with branching and value predicates).
Based on the specifics of the estimation framework, we de-
scribe a construction algorithm that uses appropriate refine-
ment operations in order to build an accurate summary from
an initial coarse synopsis. Compared to previously proposed
schemes, our construction algorithm takes directly into ac-
count the statistical characteristics of the data with respect
to the estimation assumptions. This results in a constructed
synopsis that is more refined in skewed regions, where data
is highly correlated, and less refined in uniform regions,
where the estimation assumptions are relatively valid.	 Experimental Validation. We present an experimental
evaluation of our proposed framework on synthetic and real-



life data sets and a variety of query workloads. Our re-
sults demonstrate that concise XSKETCHes are effective
synopses for estimating the selectivity of twig queries with
complex XPath expressions, and offer improved estima-
tion accuracy when compared to previous summarization
schemes.

2. Preliminaries

XML Data Model Following common practice, we model
an XML document as a tree 
���
������ , where each node����� 
 corresponds to an element, attribute or value and
an edge � ��� � ��� � � � represents the containment of ��� un-
der ��� . Figure 1 shows a sample XML data tree that con-
tains bibliographical data. The document contains author
elements which point to a name and several papers and
books. Each paper contains a title, a year of publi-
cation and one or more keywords, whereas a book points
to its title. We assume that leaf elements contain values
but we only show the numerical values for the year of pub-
lication in order to avoid clutter in the graph. Note that el-
ement nodes in the graph are named with the first letter of
the element’s tag plus a unique identifier.
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Figure 1. Example XML Document

Twig Queries We define a twig query 
:9 as a node-labeled
tree 
 9 ��
 9 ��� 9 � , where each node ; �<� 
 9 is labeled with
a path expression = � (we will use the notation ; �?> = � to re-
fer to a twig node and its path expression together). At an
abstract level, each node ; � corresponds to a subset of el-
ements, while path = � describes the structural relationship
that must be satisfied between elements in ; � and elements
in its parent node. In our work, we focus on XPath expres-
sions of the form @BA7C D�A7EGFIH@GA$C HD�A EKJ5L?MKM$M�LN@PO�C7D�O�EQFIH@NO�C HDRO�E$J ,
where @ � denotes a label, D � is a value predicate that re-
stricts element values at point S , and F1H@ � C HD � E$J is a (possibly
empty) complex XPath expression that serves as a branch-
ing predicate, i.e., it requires the existence of at least one
such branch at point S of the expression. Figure 2(b) shows
an example twig query, which corresponds to the XQuery
for clause of Figure 2(a). The result of a twig query is a set

of binding tuples, which describe the assignment of docu-
ment elements to query variables according to the structural
constraints of the corresponding path expressions. More for-
mally, a binding tuple H;<TUC V A ��V W6�$XKX$XY��V Z�E assigns element
V � to query variable ; � > = �:[]\ S \_^ , so that, for any edge
�`; � ��; � � � 
a9 , element V � is in the result set of = � when it is
evaluated from V � . The selectivity bQ�5
a9�� of query 
a9 is de-
fined as the number of binding tuples that it generates.

for $
���

in //a,
$
� �

in $
� �
/n,

$
���

in $
� �
/p[y c 2000],

$
��d

in $
� �
/t,

$
��e

in $
� �
/k,
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Figure 2. (a) XQuery for clause, (b) Corre-
sponding twig query

Example 2.1: Consider the twig query of Figure 2(b). The
query starts with all author elements ( ;�l ) and then re-
trieves their name ( ; A ) and the contained paper elements
that have a year child with value greater than m6nPnNn ( ; W ).
Finally, the title ( ;�o ) and keyword ( ;�p ) elements of the
paper are included in the result. We can verify that the
query generates three binding tuples H;qTrF ; l �s;�A ��; W ��;�o6�s;�pKJ
over the document of Figure 1:

;�l ; A ;�W ; o ; p
H;�A : tBu v�w xBy zRu�{ |Ru�}
H; W : tBu v�w xBy zRu�{ |Ru�~
H;�o : tQ� v�{ xB} zB��u |B���

Depending on the context, we will represent a twig query
as a tree or as the equivalent for clause in the XQuery lan-
guage. More specifically, let ; l ��;�A ��; W �KX$XKX$�s; Z be the se-
quence of tree nodes that are generated from a depth-first
traversal of 
 9 . Query 
 9 is then equivalent to the XQuery
clause for

� �
in � � , � �

in &N!$� � ( 0B� � ��� / � � , ����� ,���
in &N!K�+� ( 0�� ��� � / � � , where xRtP���6vBz��`; � � is the par-

ent node of ; � in 
 9 .

3. Synopsis Model

3.1. Overview of XSKETCHes

The XSKETCH synopsis mechanism [11, 12] relies on a
generic graph-summary model that captures the basic path
structure of the input XML tree. Formally, given a data tree



� T���
��j������� , a graph synopsis ��� � ��T���
��������a� is a di-
rected node-labeled graph, where (1) each node � � 
�� cor-
responds to a subset of element (or attribute) nodes in 
 �
(termed the extent of � – �P�GzB�NvBzR�5�G� ) that have the same
label, and (2) an edge in � � ���G� � � � is represented in
� � as an edge between the nodes whose extents contain
the two endpoints � and � . Each synopsis node � stores a
tag z�tP��� � � for the common tag of its elements and a count
field � � � for the size of its extent (in what follows we use �
and �N�Gz��NvBzR� � � interchangeably). Figure 3(a) shows a graph
synopsis for the document of Figure 1, where elements are
partitioned according to their tag (synopsis nodes are named
with the first letter of their tag in upper case).
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Figure 3. (a) Graph Synopsis, (b) XSKETCH
Synopsis

XSKETCH synopses [11, 12], which target selectivity es-
timation for single XPath expressions, are specific instan-
tiations of this generic graph-synopsis model. In order to
cover key properties of the path distribution, the basic syn-
opsis is augmented with edge-labels that capture localized
backward- and forward-stability conditions across synopsis
nodes. An edge �«ª � is Backward (resp., Forward) sta-
ble, if all elements in the extent of � (resp., � ) have at least
one parent (resp., child) element in the extent of � (resp., � ).
As an example, Figure 3(b) shows the XSKETCH summary
for the graph synopsis of Figure 3(a). We observe that edge
A ª P is both backward and forward stable since all papers
have an author parent, and all authors have at least one
paper child. As a result, � ¬:�­T¯® is an accurate selectiv-
ity estimate for path expression A/P, while � °:��T²± is an
accurate estimate for A[/P]. In our earlier work [11], we
have developed an estimation framework that uses this sta-
bility information in order to approximate the selectivity of
single XPath expressions with branching predicates.

In a follow-up study [12], the XSKETCH synop-
sis model is extended with localized, per-node distribution
information that summarizes the value-content of the doc-
ument. More specifically, for each node � that represents

elements with values, the synopsis stores a (multidimen-
sional) value summary ³´�5�G� that approximates the joint
frequency distribution of values under � and/or other syn-
opsis nodes. In our example, the Y node is associated
with a histogram ³´�5µB� that contains distribution informa-
tion on year values, potentially with respect to values
along paths that contain year elements. Given the path ex-
pression A/P/Y[ ¶ 2000], the estimation framework
computes an estimate by combining (1) edge stability in-
formation on the structural part A/P/Y, and (2) value
distribution information, from ³´�`µ�� , on the value pred-
icate [ ¶ 2000]. As we have demonstrated in our earlier
work, the combination of edge stabilities and value dis-
tribution information captures effectively the complex
correlations that exist between and across path struc-
ture and element values in the document graph.

3.2. XSKETCH Synopses for Twig Queries

Our proposed summarization model for twig queries is
based on the general XSKETCH paradigm, i.e., a generic
graph synopsis augmented with appropriate distribution in-
formation. Compared to XSKETCHes for single path ex-
pressions, however, the new synopses need to store infor-
mation at a much finer level of detail, since the selectivity
of twig queries depends on more complex correlation pat-
terns than that of single-path expressions. We illustrate this
point with a simple example below.

�
����
�

��
66

6!· �5���
��		
	 · �5�
��

!
· �5�

��

· �5���
��

55
5

,¹¸ ,º¸

�
����
�

��
66

6!· �5���
��		
	 · �5���
��

!
· �5�

��

· �5�
��

55
5

,»¸ ,»¸

¼ ��� �¦�§�¨
��� �5¡ �¦�§�¨
��

¦�§s¨
%%K

KKK

 
��� ��½ �¿¾ ���7��½ �

(a) (b) (c)

Figure 4. (a) and (b) XML documents, (c)
Structural XSKETCH.

Consider the two example XML documents shown in
Figure 4(a,b). Both documents have similar path-structure
and differ only in the count of b and c children under
each a element (child counts are shown along the cor-
responding edges). It is straightforward to show that any
XPath expression has the same selectivity over the two doc-
uments, and thus they both map to the same zero-error XS-
KETCH summary of Figure 4(c) (the estimation error is zero
since all edges are backward and forward stable). On the
other hand, the selectivity of twig queries can vary signifi-
cantly between the two documents. For instance, the twig
query 
:9 , for ;�l in A, ; A in ;�l /B, ;�W in ;�l /C
(which pairs together b and c elements with the same par-
ent), generates 2000 binding tuples on the first document



vs 10100 tuples on the second document. As our example
shows, therefore, two documents that have the same zero-
error XSKETCH summary, can have very different selectiv-
ities on twig queries. In effect, the existing single-path XS-
KETCH model does not store detailed enough information
to capture the correlation patterns that affect the selectiv-
ity of twig queries with multiple path expressions.

The previous example indicates that an XSKETCH syn-
opsis needs to capture distribution information at a finer
level of detail in order to provide effective selectivity esti-
mates for twig queries. Consider again the synopsis of Fig-
ure 4(c) and assume that node A records a two-dimensional
distribution À6Ák��Â ��ÃK� for the fraction of elements in ° that
have Â children in B and Ã children in C. For the docu-
ment in Figure 4(a), this information would be the follow-
ing: À+Ák� [ n�� [ nNnQ�ÄTÅn�XÇÆ , À+Ák� [ nNnR� [ nQ�ÄTÅn�XÇÆ . If we con-
sider the previously mentioned query 
 9 , we observe that
any element of A in the fraction À Á �ÈÂ ��Ã$� will produce Â�M Ã
binding tuples and thus the selectivity of the query will
be ÉËÊsÌ ÍÎ� °:� M$À Á ��Â+��ÃK�­M7Â�M7Ã . Alternatively, we can compute
the same selectivity through a distribution centered around
nodeC. Thus, if À6Ïj��ÂY� is the fraction of elements in Cwhose
(sole) ancestor in A has Â children in B, then the selectiv-
ity is computed as É ÊÐ� Ña� M7À+Ï���ÂK�ÐM7Â . At an abstract level,
both approaches compute the selectivity by capturing con-
tent information on the result tuples themselves: ÀPÁ records
how many result tuples have the same A element, while À Ï
records how many result tuples have the same C element.
In other words, they record information on the result of the
join, rather than on the operands of the join, which are the
actual elements in nodes A, B and C.

The key idea of our solution, therefore, is to record
distribution information for the elements of a synop-
sis node with respect to outgoing paths (distribution ÀPÁ )
or paths that emanate from ancestor elements (distribu-
tion À Ï ). In general, let v � be a synopsis node, v�Ò�Ó be
a child of v � and vRÔ�Ó be an ancestor. An edge distribu-
tion À � ��Õ A �$XKX$XK��Õ?Z���Õ?ZkÖ A �KXKX$XY��Õk×6� is a multi-dimensional
fraction distribution over the elements of v � , where: (a)
each dimension Õ � , ØÚÙÜÛÝÙßÞ , corresponds to a syn-
opsis edge v ��ª v Ò Ó and is called a forward count (e.g.,
counts Â and Ã of distribution À Á ), and (b) each dimen-
sion Õ � , ÞáàâÛ¯Ùäã , corresponds to a synopsis edge
v Ô Ó ª v�å�Ó and is called a backward count (e.g., count Â
of À+Ï ). We will use æQçNèNxR���ÈÀ$é7� to denote the set of edges
CKv �:ª v Ò ÓN� [ê\ìëí\_^ E:î�CKv Ô Ó ª v�å�ÓN� ^ßïìëí\_ð E . A spe-
cific point À � �5Ã A �KX$XKXK��ÃK×+� of the distribution is equal to
the fraction of elements V from v � that satisfy the follow-
ing properties: (a) for each forward count Õ � � []\ñëq\¿^ � ,
V has exactly Ã � children to v�Ò�Ó , and (b) for each back-
ward count Õ � � ^òïñëí\«ð � , the ancestor V ó � vRÔ�Ó of V has
exactly Ã � children to v å Ó .
Example 3.1 : Consider node P of the synopsis

in Figure 3(b) and consider the edge-distribution
À7ô6��Õkõ���Õ?ö���Õ?÷k��Õ?ø]� , where Õkõ is a forward count
for ¬ ª µ , Õ ö is a forward count for ¬ ªúù , Õ ÷ is a back-
ward count for ° ª ¬ and Õ ø is a backward count for
° ªúû . The point À ô ��ÃYüG��Ã$×Q��Ã�ý���Ã O � records the frac-
tion of elements in P that have ÃKü children in Y, Ã$× chil-
dren in K and whose ancestor in A has Ã�ý children in P
and ÃKO children in N. The following table shows the con-
tents of À ô6��Õ?öþ��Õkõ���Õ?÷k��Õ?ø]� and the paper elements
that correspond to each fraction:ÿ�� ÿ�� ÿ�� ÿ�� ���

Elements
2 1 2 1 0.25 & '
1 1 2 1 0.25 &+3
1 1 1 1 0.50 &+4�	È& -

If we consider the twig query for ;sl in A, ; A
in ;�l /N, ;�W in ;�l /P/K (which contains paths
from æQçNèNxR���ÈÀ7ô$� only) then each element in the frac-
tion À ôN�5Ã ü ��Ã × ��Ã ý ��ÃYO�� will generate Ã × M�ÃYO binding tu-
ples (these two counts correspond to the leaves of the query
tree). As a result, the selectivity of the query can be calcu-
lated as ÉÍ�
7Ì Í
�7Ì Í�� Ì Í
� � ¬a�+M7À7ôN��Ã × ��Ã ü ��Ã ý ��ÃYO��ÐM7Ã × M$ÃYO .

Intuitively, an edge-distribution À � enables selectivity es-
timates for twig queries that contain elements of v � in their
binding tuples and traverse the edges covered by the for-
ward and backward counts. Given a synopsis node v � , how-
ever, different subsets of its elements have different sets of
outgoing paths and are associated with different paths from
ancestor nodes. Keeping separate distribution information is
clearly impractical since there are exponentially many com-
binations and the problem simply becomes unmanageable.
As a result, we limit the focus to forward and backward
counts along paths that provably exist for all elements in a
synopsis node. This set of common paths is captured natu-
rally by the twig stable neighborhood ��� û �`v � � , which is de-
fined as the set of all nodes in the synopsis that either (a)
reach v � through a B-stable path (including v � itself), or (b)
are reached from any of the nodes found in (a) through an
F-stable path of length 1. It is straightforward to show that
each element in v � is contained in a document twig that cov-
ers elements from all nodes in ��� û �8v � � , and we will hence-
forth limit distribution À � to edge counts between nodes in��� û �8v � � . We note that the twig stable neighborhood is a sub-
set of the stable neighborhood of a node, which serves a
similar functionality, with respect to element values, within
the single-path XSKETCH model [12].

Using this model, the most complete distribution infor-
mation amounts to keeping, for each synopsis node v � , an
edge distribution that covers all possible backward and for-
ward counts within the corresponding twig stable neighbor-
hood. In practice, however, we limit the amount of informa-
tion recorded in the synopsis in two ways: (a) only a sub-
set of paths in ��� û �`v � � is accounted for in the corresponding



edge-distribution, and (b) the synopsis contains compressed
distribution information in the form of an edge-histogram
³ � ��Õ A �KXKX$XK��Õ?×N� , which is an approximation of the edge dis-
tribution À � �ÈÕ A �$XKXKXK��Õk×6� . We note that an edge-distribution
can be summarized very efficiently using multidimensional
methods such as histograms and wavelets, since it is essen-
tially defined over a space of integer edge counts. Our twig
synopsis model can thus be defined as follows:
Definition 3.1 A Twig XSKETCH is a graph summary that
records (a) edge stabilities and, (b) a multidimensional
edge-histogram ³ � �ÈÕkA6�KX$XKX$��Õ × � for each node v � , where
counts ÕjA6�KX$XKXY��Õ × correspond to a set of edges æGçNèNx����8v � �
that are contained entirely in ��� û �8v � � .
As noted, histogram ³ � covers only a subset of all possi-
ble paths in ��� û �8v � � . If a twig query references a path that
is not included in ³ � , then our estimation framework makes
an independence assumption for the missing path under the
premise that it does not exhibit high correlation with the dis-
tribution of structural join cardinalities at v � . Based on this,
the construction algorithm includes in ³ � the most highly
correlated path counts in order to increase the validity of
the estimation assumption and thus the accuracy of esti-
mates. Of course, as more space is assigned to the synop-
sis, more dimensions can be included in order to improve
the accuracy of the approximation.

Up to this point, we have focused solely on the structural
part of the problem, ignoring the effect of element values on
the distribution of structural join cardinality. It is straight-
forward to extend our definitions to cover value distribu-
tions and thus capture the possible correlations that exist be-
tween path structure and element values. More specifically,
we introduce extended multi-dimensional value histograms
³��� ��
 A �$XKXKXK��
�����Õ A �KXKX$XY��Õk×6� , which approximate the joint
distribution of elements in v � with respect to values (dimen-
sions 
 A �KX$XKXY��
�� ) and edge counts (dimensions Õ A �KX$XKXK��Õk× )
that are contained entirely within ��� û �8v � � . Due to lack of
space, we do not discuss these summaries further; a de-
tailed presentation can be found in the full version of this
paper [13].

3.3. Discussion

Our extended XSKETCH model is based on a new type
of distribution information that enables selectivity estimates
for the cardinality of structural joins. The key novelty of
our approach is that it approximates the cardinality of a join
through the joint distribution of result counts, rather than
through the distribution of the input join values. As a sim-
plified example, consider the problem of estimating the car-
dinality of ����� between two relations �þ���G� and �j�ÈÂY� .
Traditional methods build summaries ³´���B� and ³´��ÂY� for
the value distributions of ��X � and ��X � and then estimate
the cardinality by multiplying approximate frequencies of

joined values. Our technique, on the other hand, builds a
single summary ³! j��ÃK� for the fraction of tuples in � that
join with Ã tuples in � and estimates the result cardinal-
ity as É Í � �í� M$³  �5Ã$�­M$Ã . Estimation, therefore, is decou-
pled from the actual value distributions and is based on a set
of counts that capture aggregate information on the joined
tuples (in this example, the number of � tuples that join
with a single � tuple). The key benefit is that we can use
existing summarization techniques, such as histograms or
wavelets, to summarize very effectively the resulting dis-
tribution of integer counts and thus provide accurate selec-
tivity estimates for the cardinality of the join, even if the
value distribution of the join attributes cannot be approxi-
mated reasonably well with such techniques (e.g., attributes
with categorical values).

4. Estimation

In this section, we present an estimation framework for
approximating the selectivity of twig queries over concise
Twig XSKETCH synopses. Our framework is based on the
concept of a maximal twig query, which represents an ex-
panded match of a twig query over a specific synopsis. A
twig query 
 9 is called maximal if for every twig node
; � > = � � 
 9 , path = � is a single-step expression of the
form @ � C7D � EGF H@ � J , i.e., it consists of a single navigational step
across tag @ � with a value predicate C7D � E and a branch-
ing predicate F1H@ � J (either of which might be empty). Given
an arbitrary twig query 
:9 , our framework generates the
set of maximal forms as follows: the ’//’ operator is ex-
panded with a valid document path (using the structural in-
formation contained in the synopsis), and each node ; � >
@ A F = A J`L?X$XKX�LP@PZ�F =ÎZ�J is substituted with the chain of twig
nodes ; ��" A > @ A F = A J ª ; ��" W > @PWNF =ÎWYJ ª X$XKX ª ; � > @NZ�F =ÐZ�J .
As an example, if we consider the synopsis of Figure 3(b),
then the twig query of Figure 5(a) will be mapped to the set
of maximal twig queries shown in Figure 5(b). It is straight-
forward to show that the selectivity of a twig query on tree-
structured data is equal to the sum of selectivities of its max-
imal twig queries. As a result, for the remainder of this pa-
per, we focus on selectivity estimation for maximal twig
queries only.

An embedding 
$# of query 
 9 represents a match of the
query over specific synopsis paths. We compute an embed-
ding of 
 9 by substituting each path @ � C D � EQFIH@ � J with a syn-
opsis path v � F % � J , where zBtP���8v � �jT�@ � and % � matches path
expression H@ � . A twig embedding essentially describes the
evaluation of the twig query on the elements of specific syn-
opsis nodes and in effect represents a subset of the bindings
of the query. The selectivity, therefore, of a twig query 
 9
can be estimated as the sum of selectivities for all of its
unique twig embeddings and the estimation problem is fur-
ther reduced to estimating the selectivity of a single twig
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Figure 5. (a) Twig Query, (b) Maximal Twig
Queries

embedding.
We now proceed to describe our estimation frame-

work for maximal twig embeddings. Due to space con-
straints, we will focus on embeddings that contain sim-
ple paths only; the extension of our framework to em-
beddings with branching and value predicates can be
found in the full paper [13]. We will base our presenta-
tion on the example twig embedding 
 shown in Figure 6,
which is defined over the synopsis of Figure 3(b). Fig-
ure 6(b) shows the two edge histograms that are recorded in
our synopsis for the specific example (for simplicity, ( de-
notes the path count for an edge that points to synopsis
node X). As shown, histogram ³íÁk��=k�*)Ä� contains two for-
ward counts = and ) , corresponding to edges ° ª ¬ and
° ªúû , while histogram ³ ÷ ��+ �',���= � records two for-
ward counts + and , , for edges ¬ ªúù and ¬ ªúù , and one
backward count = for edge ° ª ¬ . Note that count = cor-
responds to the same edge in both histograms, but it rep-
resents a forward count in ³ Á and a backward count in
³�÷ . In general, let À.-6�0/GA �KX$XKX$�1/ × � be an edge distribu-
tion with forward counts /GA+�KXKX$XK�*/ × to nodes µRA �$XKX$XY�sµ × .
We will use É32 -6��/QA �$XKX$XK�1/ × ��T É À4-6��/QA �$XKX$XK�1/ × �­M456/ �
to denote the average number of binding tuples, for each el-
ement of 7 , along edges 7 ª µ�A �$XKXKX$�17 ª µ × . We ex-
tend this notation to 298 �0/GA+�$XKXKXK�1/ × �;:�A6�KX$XKXY�*: � � T
À.8���/ A �$XKXKX$�1/P× �<: A �$XKXKX$�1:=�5�íM 5 / � , when the probabil-
ity distribution À>8 is conditioned on backward counts: A �KX$XKXK�*:=� . As we will discuss later, such a conditional dis-
tribution essentially correlates edge distribution informa-
tion between a node of a twig embedding and its ancestor
nodes.

Based on the definition of twig queries, the selectiv-
ity of 
 is equal to the cardinality of the set of binding tuples? TUCQ��V Ô ��V ý ��V Ê ��V7O���V × ��V O�� �7V Ô ª V ý , V Ô ª V Ê , V Ô ª V O ,
V ý ª V × , V ý ª V × E , where V4@ denotes an element of syn-
opsis node 7 and V @ ª V ü a document edge. Our approach
for estimating bQ�`
�� is based on the following concep-
tual method for computing set

?
: at step (1), form the set? AìTäC7V Ô ��V Ô �BA E ; at step (2), iterate over each ele-

ment of
? A and compute set

? W�T CG�5V+ÔP��VKýB��V Ê ��V O ���6V+Ô �? A ��V+Ô ª VKýG��V+Ô ª V Ê ��V+Ô ª V O E ; finally, at step (3), it-
erate over each 4-tuple of

? W and compute the set? o T CG�5V Ô ��V ý ��V Ê ��V O���V × ��V ü ���B��V Ô ��V ý ��V Ê ��V OB� � ? W ��V ý ª
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Figure 6. (a) Twig Embedding, (b) Edge His-
tograms

V+×Q��VKý ª V üPE . Obviously,
? o T ?

and the selectiv-
ity of the embedding is equal to bQ�5
��úT � ? o � . Our
estimation methodology essentially models the genera-
tion of sets

? � and computes an estimate for bQ�5
�� by
approximating the cardinality of the final set. More specifi-
cally, the proposed technique works as follows. We observe
that set

? A , which corresponds to the first step of the pro-
cess, will contain exactly � °:� elements. Based on our dis-
cussion on edge-distributions, each element V � ? A Tß°
will generate É 2ÎÁ �KJÎ��Â �*L � binding tuples to nodes ¬��D%a� û ,
and the size of set

? W can thus be computed as fol-
lows:M N � MPOQM N � MSRUTVXW Y�W Z$[ G � E 	]\P	 F � OQM ^_MSRUTVPW Y�W Z � G � E 	
\P	 F � R E R \ R F
Let us consider a 4-tuple ÂYW]Tº�5V+ÔQ��VYýB��V Ê ��V O � in

? W . Note
that Â W corresponds to a count assignment �KJ ��Â �1L � which is
interpreted as follows: V ý is one of the J children of V Ô in ¬ ,
V Ê is one of the Â children of V Ô in % , and V O is one of the L
children of V6Ô in û . At step (3) of the evaluation algorithm,
Â W will be combined with every possible pair ��V × ��V ü � of V ý ’s
children to nodes ù and µ , resulting in a set of 6-tuples. We
observe that the distribution of ð and / edge counts in the
4-tuples of

? W is described by À ÷ � ð �*/þ�DJ ��Â �1L � , and we can
thus compute the average number of 6-tuples per 4-tuple as
É × Ì ü 2 ÷j� ð �1/ �*J ��Â �1L � . This observation leads to the fol-
lowing expression for the cardinality of set

? o (and thus the
selectivity of the embedding):

` �ba � OcM N d M4OcM ^dMeRfTVXW YDW Z
gh
[ G � E 	�\S	 F � RiT j W k<[ � � ã 	 I M E 	
\S	 F �
lm

Overall, the final expression will compute the selectiv-
ity of 
 with zero error if the synopsis records full infor-
mation on distributions À Á �nJ ��Â+�1L � and À+÷j� ð �1/q�1J ��Â �1L � . In
our example, however, the synopsis only records histograms
³þÁ?�nJ �*L � and ³ ÷ � ð �*/���J�� , which approximate the distribu-
tions À+Á and À ÷ on subsets of the needed edge counts. To
compensate for the lack of detailed distribution information,
our framework makes specific statistical assumptions that
enable the approximation of the needed terms with the in-
formation recorded in the synopsis. Returning to our exam-



ple, we initially apply the following independence assump-
tion:

Forward Independence Assumption. Let v � be a synopsis
node with edge histogram ³ � . The distribution of elements
in v � with respect to forward counts that are not covered
in æQçNèNxR����³ � � is independent of other edge counts. More
specifically, if Õ are the counts covered in æGçNèNx��R�5³ � � ,o T C o � E are the forward counts for edges v � ª v � that are
not included in æGçNè6xR�R�5³ � � , and Õêó is a set of edge counts.
then the following holds:

[fp ��q�r ÿ M ÿ<s �ut [Up � ÿ M ÿ<s � Rwvx Óey x [fp ��q�z �
Using Forward Independence, we can approximate term2 Á as 2 Áj�KJÎ��Â �*L �|{ 2 Áj�KJÎ�1L �?M 2 Áj��ÂY� . In order to handle

the needed 2 ÷ term, our framework applies the following
independence assumption:

Correlation Scope Independence Assumption. Let v � be
a synopsis node with edge histogram ³ � . The distribution
of elements in v � is independent of edge counts that are not
covered in æGçNèNxR���5³ � � . More specifically, if Õ is the set of
edge counts that corresponds to æGçNè6xR�R�5³ � � and Õ ó is a set
of arbitrary edge counts, then the following holds:

[fp � ÿ~} ÿ s M ÿ s �ut [fp � ÿ~} ÿ s M ÿ���ÿ s �t © p ��� ÿ�} ÿ s � r � ÿ���ÿ s ���
© p � ÿ��þÿ s �

Note that the terms of the fraction in the second in-
dependence assumption are appropriate marginals on
histogram ³ � . Returning to our example, the applica-
tion of Correlation Independence yields the approximation2 ÷j� ð �1/ñ�.J ��Â �1L ��{ 2 ÷�� ð �1/ñ�.J��!{ß³þ÷�� ð �*/���J���L+³þ÷k�KJ�� .
Overall, the estimation expression is rewritten as fol-
lows:` �ba ��t M � MPRiT Y�[ G � \ � R�Tj W kPW VPW Z�[ G � E 	 F � R [ � � ã 	 I M E �
We observe that the summation term involving term 2 Ák�ÈÂY�
essentially computes the average number of children in

?
per element in A . Since the synopsis does not record de-
tailed distribution information on 2­Á �ÈÂY� , we approximate
the needed selectivity with the following uniformity as-
sumption:

Forward Uniformity Assumption.Let v � a synopsis node,
v � be a child node that is not covered by any forward count
(i.e., v � ª v � L� æGçNèNxR���5³ � � ), and � v � ª v � � be the esti-
mated number of elements in v � that have a parent in v � .
On the average, each element in v � reaches the same num-
ber of elements in v � , which can be approximated as fol-
lows: Tb�

Ó [�� ����z � O M ( pf� ( z MM ( p M

procedure TREEPARSE( aU� )
Input: A twig embedding a�� with nodes h ��� 	 ����� 	 � � i
Output: Count sets � p , q p , � p for each

� p�� a �begin
1. �*�P�>�i�P�i� := �
2. for each twig node � � p f ( p � in depth-first order do
3. if (

M ¸e���X� � �+� ( � � p � MPO�O�� ) continue // Skip leaf nodes
4. Let

© p be the edge-histogram at ( p5. q p := h forward counts not covered in � ¸X� &6� � © p � i6. � p := � ¸X� &+� � © p � � �'�S�>�e�P�i�7. � p := � ¸X� &6� � © p � } �*�P�>�i�P�e�8. �'�S�>�i�X�i� := �'�S�>�i�X�i�<r � p9. done
10. return à � � p 	 q p 	 � p � cend

Figure 7. Algorithm TREEPARSE

The application of this last assumption yields the approx-
imation É Ê 2ÎÁ ��ÂK��{ä� ° ª % � L�� °:� and results in the final
form of the expression:` �ba � O M � MSR M � �  

MM � M R Tj W kPW VXW Z [ G � E 	 F � R [ � � ã 	 I M E �O M � �  
MSR�Tj W kPW VPW Z�[ G � E 	 F � R [ � � ã 	 I M E �

Note that � ° ª %:� is estimated using the single-path XS-
KETCH estimation framework and is equal to � % � if the edge
is backward stable. Overall, the end result is quite intuitive.
Term � ° ª %:� is the number of binding tuples for the sub-
embedding that contains nodes A and B, while the summa-
tion term represents the average number of binding tuples,
per element in A, for the sub-embedding that does not con-
tain node B. By multiplying the two, we compute the to-
tal number of bindings for 
 , the union of the two sub-
embeddings. According to the contents of histograms ³ Á
and ³þ÷ (Figure 6(b)), there are two value combinations forL���J and two value combinations for /�� ð which results in
the expansion of the sum to m;  m]T«® terms:` �ba�¡ � O�¢_£ � © G � ¢ 	 Ø � R © � � ¢ 	 Ø Me¢ � RS¢¤R Ø Ri¢=R Øe¥© G � ¢ 	 Ø � R © � � Ø 	 Ø Me¢ � R Ø R Ø R Ø R Øe¥©HG � Ø 	 Ø � R © � � ¢ 	 Ø M Ø � R Ø R Ø Ri¢=R Øe¥©HG � Ø 	 Ø � R © � � Ø 	 Ø M Ø � R Ø R Ø R Ø R Ø � O Ø � gS¦

Overall, the selectivity expression is based on a top-
down traversal of the embedding that combines and cor-
relates information from different edge distribution his-
tograms. In the general case, let 
 be a twig embedding,
where each node ; � is labeled with the corresponding syn-
opsis node v � . Figure 7 shows Algorithm TREEPARSE for
processing an arbitrary twig embedding and producing the
components of the selectivity expression. The algorithm
performs a depth-first traversal of the embedding and uses
histogram ³ � of the current node ; � in order to determine
an expansion set � � , an uncovered set

o � , and a correlation



set § � . Set � �©¨ æGç6èNxR�B�`v � � contains forward counts from
³ � that compute the distribution of binding tuples to child
nodes of ; � ; set

o � contains forward counts to children of v �
that are not covered in ³ � ; and set § � ¨ �5��l�î MKM$MYîq� ��ª A �
contains backward counts from ³ � that correlate the expan-
sion from ; � to the previous traversal steps ( § l T¬« ). Given
this information, the final selectivity expression is written
as follows:

` �ba�� � O M ( � MPR gh v�'­ p ­ �
v® y x4¯ T ® [Up � ÿ �]lm

R°T±�² W & & & W ±´³ [ � � � � M � � � ����� [ � � � � M � � �

where terms É 2 � �ÈÕ]� are computed using the Forward
Uniformity assumption, while terms 2 � ��� � ��§ � � are com-
puted using the information available in histogram ³ � .

As we mentioned at the beginning of this section, our es-
timation framework extends naturally to the general case of
twig embeddings with branching and value predicates. In
the interest of space, we defer the complete details to the
full version of this paper [13].

5. Construction

We now turn our attention to the difficult problem of
constructing an effective Twig XSKETCH for a given space
budget. The build process of an XSKETCH synopsis can be
abstracted to three interrelated steps: (a) determine a parti-
tioning of document elements in synopsis nodes, (b) deter-
mine the dimensions of value and edge histograms at each
synopsis node, and (c) allocate buckets to the histograms
of step (b). The goal, of course, is to perform these three
steps so that the estimation error is minimized and the stor-
age budget is not exceeded. As we have shown in our ear-
lier work, however, constructing an optimal (in terms of es-
timation error) XSKETCH for a given space budget is µ·¶ -
hard even for the case of single-path structural XSKETCHes
where steps (b) and (c) are not relevant. Based on this hard-
ness result, we describe a heuristic construction algorithm
that is effective in building accurate XSKETCH synopses.

Our approach is based on an adaptation of the construc-
tion algorithm for single-path XSKETCH synopses. More
specifically, we define a set of refinement operations that
perform localized transformations on the synopsis and re-
sult in a larger summary that fits better the assumptions of
the estimation framework in the transformed region. The re-
finement operations used by the algorithm can be catego-
rized into three types:
- Structural Refinements: This group includes two opera-
tions, namely b-stabilize and f-stabilize, which
refine the path structure of the XSKETCH. In short, both re-
finements split a node into two new nodes, in order to create

an additional backward or forward stable edge in the synop-
sis.
- Value Refinements: This group includes two operations:
value-refine, which allocates more memory to a value
distribution summary, and value-expand, which insets
an additional dimension to a value histogram in order to
capture the correlation to another value distribution.
- Edge Refinements: This group includes two refinements:
edge-refine, which allocates more storage to a specific
edge histogram, and edge-expand which augments the
scope of a histogram with an additional edge and thus lifts
the need for an independence assumption across the inserted
edge.
Structural and value refinements are essentially similar to
the corresponding operations defined in the single-path XS-
KETCH framework, while edge refinements are unique to
Twig XSKETCHes. In the interest of space, we do not dis-
cuss further the specifics of these operations. The complete
details, including the pseudo-code for each operation, can
be found in the full version of this paper [13]

procedure XBUILD(
�

,
?

)
Input: A document graph

�
; space budget

?
.

Output: An Twig XSKETCH ¸�� of size at most
?

.
begin
1. ¸�� := �:lG� � � // Coarse synopsis
2. while (size( ¸�� ) \ ?

) do
3. � := gen refinements( ¸�� ,

?
)

4. Generate a sample workload ¹
5. foreach º � � do
6. Let ¸þ�<» be the synopsis after applying º
7. ¼P» :=error( ¸��½» , ¹ ); bX» :=size( ¸þ�½» )
8. done
9. ¼ :=error( ¸�� , ¹ ); b :=size( ¸�� )
10. Apply º that maximizes ¾ ª ¾
¿À ¿ ª À11. done
12. return ¸��
end

Figure 8. Algorithm XBUILD.

The construction algorithm, termed XBUILD, starts
from a coarse synopsis and, using the refinement op-
erations, adds incrementally more complexity until the
available space-budget is exhausted. The pseudo-code
for XBUILD is shown in Figure 8. The initial synop-
sis �:lG� � � partitions document elements into nodes based
solely on their tag, and includes single-dimensional
edge-histograms that cover path counts to forward-stable
children only. At each step of the build process, the algo-
rithm generates a set of candidate refinements on a sample
of synopsis nodes (line 3), where the probability of sam-



pling a node is proportional to its element count and the
number of incoming or outgoing unstable edges. To se-
lect a refinement from the pool of candidates, the al-
gorithm uses a marginal gains criterion: it scores each
refinement based on the accuracy of the resulting sum-
mary, which is measured as the relative estimation er-
ror against a carefully chosen workload ¹ , and it applies
the refinement that results in the largest increase of ac-
curacy per unit of extra space required. Workload ¹ is
generated by sampling twig embeddings around the re-
gions transformed by the candidate operations, so that
the estimation error on ¹ essentially reflects the ef-
fects of each refinement. The true selectivities of queries in¹ , which are needed for the estimation error, are approxi-
mated with low error through a large enough reference sum-
mary, thus avoiding costly accesses to the database. In
the interest of space, we do not discuss further the de-
tails of the XBUILD algorithm; a complete description can
be found in the full paper [13].

6. Experimental Study

In this Section, we present the results from an experi-
mental study that we have conducted with our novel syn-
opses. We have evaluated the efficiency of our summariza-
tion methods on synthetic and real-life XML datasets with
different workloads. The results show that our synopses can
be effective in providing accurate selectivity estimates for
twig queries with complex path expressions and demon-
strate the benefits of our approach over previously proposed
techniques.

6.1. Methodology

Techniques. We have performed experiments with two
summarization techniques.
XSketches. We have implemented a prototype of the XS-
KETCH framework that we propose in this paper. Our proto-
type can handle twig queries that contain complex path ex-
pressions with branching predicates and value predicates.
The implementation is constrained in two ways: first, it
uses multi-dimensional edge histograms that capture the
distribution of edges from a node to its forward-stable chil-
dren only and do not include any backward counts; second,
value-histograms are single-dimensional and only cover the
distribution of values under a specific synopsis node. As
a result, our framework needs to apply independence as-
sumptions at each step of the estimation methodology. We
have found that, although the underlying assumptions are
not valid in general, they gives satisfactory results for the
datasets that we have tested. We will be extending our pro-
totype to add support for backward counts to ancestor nodes
and multi-dimensional value-histograms.

Correlated Suffix Trees. Correlated Suffix Trees (CSTs)
have been proposed by Chen et al. [3] for estimating the se-
lectivity of twig queries over tree-structured data. Recall
that CSTs support twig queries with simple path ex-
pressions and suffix value predicates on string values,
while our technique supports twig queries with branch-
ing path expressions and range predicates on integer
values. Due to this difference, we compare the two tech-
niques on a workload of twig queries with simple path ex-
pressions and no value predicates. Accordingly, we have
modified the CST construction algorithm to ignore ele-
ment values and build a trie on the path structure of the
document only. Among the estimation techniques pro-
posed by the authors, we have used P-MOSH since it
produced the most accurate results.

XMark IMDB SProt
Element Count 103,136 102,755 69,599
Text Size (MB) 5.40 2.90 4.50
Coarsest Synopsis (KB) 12.20 8.10 9.70

Table 1. Data Sets

Data Sets. We have used three XML data sets in our exper-
iments: XMark, a synthetic data set that models an auction-
site, IMDB, a real-life data set with movie data, and Swis-
sProt, a real-life data set that contains annotations on pro-
teins. The key characteristics of the three data sets are sum-
marized in Table 1. For each data set, we report its text size,
which is the size of the corresponding disk file, and the size
of the coarsest XSKETCH synopsis.

XMark IMDB SProt
P P+V P P+V P

Avg. Result 2,436 1,423 3,477 961 24,034
Avg. Fanout 1.99 1.60 1.66 1.53 1.97

Table 2. Workload Characteristics

Workload. We evaluate the generated summaries against
a workload of “positive” twig queries, i.e., queries with
non-zero selectivity. Table 2 summarizes the characteris-
tics of the workloads used in terms of the average cardi-
nality and the average fanout of internal twig nodes. Unless
otherwise noted, each workload contains 1000 queries and
the total number of twig nodes per query is distributed uni-
formly between 4 and 8. Depending on the experiment, we
either use a P (Path) workload, where twig queries do not
contain value predicates, or a P+V (Path+Value) workload,
where 500 of queries contain one or two value predicates
that cover a random 10% range of the corresponding value
domain. We have also experimented with “negative” work-
loads (selectivity equal to zero) and we have found that our



synopses consistently give close to zero estimates for this
type of queries.
Evaluation Metric. We evaluate the accuracy of a sum-
mary by measuring the average absolute relative error with
respect to the workload of queries. Given a twig query 
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that has Ã binding tuples, the absolute relative error of an es-
timate º is defined as � º�Á ÃN� L ^ �Â(Ð��bP��ÃK� , where b is a sanity
bound. We use b in order to avoid the artificially high per-
centages of low count twig queries, and also in order to de-
fine the metric for negative queries, where Ã Tún . In our
experiments, we set b to the 10-th percentile of true query
counts, i.e., 90% of the queries have a true count greater
than b .

6.2. Results

Twig Queries with Complex Paths In this experiment, we
evaluate the performance of our proposed synopses against
a workload of twig queries that contain path expressions
with branching predicates (P workload).

Figure 9(a) shows the error for the XMark and IMDB
data sets. In all the plots that we show, the point at the low-
est storage corresponds to the label split graph, the coars-
est summary in our model. The results indicate that XS-
KETCHes constitute effective synopses for evaluating the se-
lectivity of twig queries with complex branching path ex-
pressions. In the IMDB data set, we observe that the coars-
est summary starts with a high estimation error of 124%
which is reduced to 20% as more space is allocated to the
synopsis. More notably, this low estimation error comes for
a modest space budget of 50KB that represents a small frac-
tion (1%) of the space required for the compact representa-
tion of the IMDB document (Table 1). The XMark data set
exhibits a low estimation error for all storage sizes (even
for the coarsest summary), since it is generated from uni-
form distributions and is thus more regular in structure than
IMDB.

In the IMDB data set, we observe that the estimation er-
ror is reduced faster during the first stages of the build pro-
cess and follows a more gradual improvement afterward.
This indicates that the construction algorithm refines the
summary with respect to the most important correlations
first and then allocates the remaining space to regions that
correspond to less dominant dependencies. In the XMark
data set, on the other hand, the error remains constantly low
due to the regular structure of the document. The minor fluc-
tuations that we observe are attributed to the sampling meth-
ods of the construction algorithm, which might lead to the
application of a sub-optimal refinement.

We have also performed a limited set of experiments
that compare the performance of Twig XSKETCHes against
Structural XSKETCHes [11] on workloads of single XPath
expressions. Our results have shown that Twig XSKETCHes

compute low-error estimates of path selectivities, but, as ex-
pected, Structural XSKETCHes enable more accurate ap-
proximations since they target specifically the problem of
selectivity estimation for single paths.
Twig Queries with Value Predicates In this experiment,
we evaluate the performance of our XSKETCH synopses
against a workload of twig queries that contain path expres-
sions with branching and value predicates (P+V workload).

Figure 9(b) shows the estimation error of XSKETCHes
for the XMark and IMDB data sets. We observe that the
high estimation error of the coarsest summary is signifi-
cantly reduced for larger synopsis sizes, but we notice an
increase in the overall error compared to the previous ex-
periment, where the workload contains branching predi-
cates only. Recall, however, that the estimation problem
in this context is equivalent to estimating the result size
of tree-formed relational joins (twig queries with simple
paths) coupled with selection predicates (value predicates)
and semi-joins (branching predicates). This is a hard prob-
lem and it is not uncommon to observe estimation errors of
even a 100% [7]. The increased error is also attributed to the
limitations of our prototype, which uses single-dimensional
histograms on values and edge-histograms with no back-
ward counts. Still, the overall results show a significant de-
crease in error and they are a strong indication that XS-
KETCHes can be effective in estimating the selectivity of
twig queries with branching and value predicates.
Twig Queries with Simple Paths In this experiment, we
compare our XSKETCH synopses against the Correlated
Suffix Trees of Chen et. al [3]. For each data set, we use
a workload of 500 twig queries with simple path expres-
sions and we compare the performance of the two tech-
niques using the ratio �N�G� ÏÄÃÂÅ LN�P�Q�Â8 , where �P�G� ÏÄÃÂÅ and
�P�Q�´8 is the average relative estimation error for CSTs and
XSKETCHes respectively. We note that CSTs exhibited ex-
tremely large estimation errors (more than 1000%) on cer-
tain queries of the initial workloads for IMDB and XMark.
We have decided, however, to exclude these “outliers” from
the results that we present next, in order to keep the error ra-
tio within reasonable bounds.

Figure 9(c) shows the ratio of CST error vs. XSKETCH
error for the three data sets. Overall, we observe that XS-
KETCHes perform better than CSTs and yield estimates
with significantly lower estimation error. More specifically,
for 50KB of storage space, the two techniques seem to
be equally accurate on the more regular SwissProt dataset
(both have an error of 14% ), but the estimation error of
CSTs is significantly worse for the other two data sets: 44%
for IMDB (vs. 8% for XSKETCHes), and 26% for XMark
(vs. 3% for XSKETCHes). The results also indicate that XS-
KETCHes make better use of the alloted space budget and
manage to reduce the error faster, as evidenced by the in-
creasing trend for the error ratio. This is due to the effec-
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Figure 9. (a) Branching Predicates: IMDB and XMark, (b) Branching and Value Predicates: IMDB and
XMark, (c) Simple Paths: CSTs vs. XSKETCHes

tiveness of the XSKETCH construction algorithm, which
takes directly into account the assumptions of the estima-
tion framework and thus allocates more space to the more
correlated regions of the summary. CST construction, on the
other hand, is based on the greedy pruning of low-frequency
nodes and is not flexible in handling skewed regions of the
data graph.

7. Conclusions

In this paper, we have proposed novel summarization and
estimation methods for twig queries with complex XPath
expressions. Our synopsis model is based on the XSKETCH
model, augmented with a new type of distribution informa-
tion that captures aggregate information on the cardinality
of structural joins and thus enables selectivity estimates for
twig queries. We have developed a systematic framework
that matches a twig query over a concise XSKETCH and
uses appropriate statistical assumptions in order to combine
information from matching parts and compute a selectivity
estimate. In order to construct an accurate XSKETCH syn-
opsis for a given space budget (which is an µ·¶ -hard op-
timization problem), we have described an efficient algo-
rithm that starts with a coarse summary and gradually re-
fines it by applying a set of transformation operations that
we have introduced. Experimental results on synthetic and
real-life data sets have verified the effectiveness of our ap-
proach and have demonstrated its benefits over previously
proposed schemes.

References

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. “Esti-
mating the Selectivity of XML Path Expressions for Internet
Scale Applications”. In Proc. VLDB, 2001.

[2] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon,
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