
A Visualization and Animation Tool for NS-2 Wireless
Simulations: iNSpect∗

Stuart Kurkowski, Tracy Camp, and Michael Colagrosso
Dept. of Mathematical and Computer Sciences

Colorado School of Mines
1500 Illinois Street
Golden, CO 80401

{skurkows,tcamp,mcolagro}@mines.edu
Corresponding Author: Stuart Kurkowski
Phone: 303-648-9004 Fax: 303-663-1757

June 16, 2004

Abstract

The Network Simulator 2 (NS-2) is a popular and powerful simulation environment, and
the number of NS-2 users has increased greatly in recent years. Although it was originally de-
signed for wired networks, NS-2 has been extended to work with wirelessnetworks, including
wireless LANs, mobile ad hoc networks, and sensor networks. The Network Animator (NAM)
for NS-2 has not been extended for wireless visualization, however. In this paper, we discuss
a new visualization and animation tool for use with NS-2 wireless simulations. Visual analy-
sis of a wireless environment is important for three areas of NS-2 based simulation research:
(1) validating the accuracy of a mobility model’s output and/or the node topology files used
to drive the simulation; (2) validation of new versions of the NS-2 simulator itself; and (3)
analysis of the resulting NS-2 trace files. Our iNSpect program can handle all three of these
areas quickly and accurately. We’ve made our iNSpect program available for other researchers
in order to improve the accuracy of their simulations. Seehttp://toilers.mines.edu
for information on obtaining iNSpect.

I. INTRODUCTION

The number of wireless network devices will soon surpass thenumber of wired devices [7], and
research in the area of wireless networking is increasing ata similar rate. There are many wireless

∗This work supported in part by NSF Grant ANI-0208352. Research Group’s URL ishttp://toilers.mines.edu.

1



network simulators and the Network Simulator-2 (NS-2) [22]with the Monarch project wireless
extension [21] is popular among wireless researchers. NS-2was initially a wired simulator devel-
oped from the REAL network simulator [22]; the NS-2 effort is supported by the VINT Group and
NSF.

A visualization tool is needed to understand the large amount of data produced during network
simulations, and NAM (Network Animator) is the default NS-2animator. The human visual system
is unrivaled in pattern recognition and offers the ability to process large amounts of data quickly
and clearly [1]. Visualizations add to the understanding gained via statistical analysis. For these
reasons, NAM was designed to provide a graphical user interface for the creation of wired network
topologies [15]. It has an extensive environment for wired network development as well as trace
file playback. Playback for the wired environment includes the display of links and packet flows.

NAM has not been extended under the Monarch effort to visualize wireless networking. There
was an effort in the late 1990s to develop Ad-hockey [20] as a visualization tool for NS-2 wireless,
but that has not continued. Currently, NAM displays only the node positions and movement in
the network through the simulation window. With the increased demand for NS-2 simulations for
wireless networks, a robust visualization tool is needed for wireless networks. There have been
more than a half-dozen emails on the NS-users mailing list inrecent months asking for video or
animation support for wireless networks in NS-2 (see [13] and [6], for example). The increasing
complexity of node and protocol behavior is driving the needfor a visualization tool.

A visualization tool aids at least three specific areas of wireless simulation based research.
First, the display of the node topology is necessary to understand the results of the simulation.
To validate the simulation inputs, e.g., the mobility modelor a manually developed topology, a
visualization tool is needed. A visualization tool makes itpossible to see the new generation of
more realistic mobility models and their complex node behaviors. Second, new versions of NS-2
appear regularly and researchers are responsible for verifying their simulations are valid with the
model implemented in NS-2 [22]. Third, after developing newprotocols and techniques the results
of the NS-2 simulation (in the form of trace files) must be analyzed both statistically and visually
to ensure they match the research hypothesis and analysis.

We introduce ourinteractive NS-2 protocol and environment confirmation tool(iNSpect). The
iNSpect program allows the visualization and animation of NS-2 based wireless simulations. Be-
cause it can animate a mobile ad hoc network without running NS-2 itself (by reading the mobility
file, which is an input to NS-2) and because it can post-process successful NS-2 simulations (by
reading the trace file, which is an output from NS-2), iNSpectis an agile tool that can be utilized
with minimal overhead.

In this paper, we first provide background information on NAM’s capabilities and then discuss
our iNSpect tool. We address topology validation, model validation, and simulation results analysis
using iNSpect. We then discuss a few additional areas of use for iNSpect, e.g., generating graphics
for presenting simulation results and dynamic display of statistics. Information on obtaining our
iNSpect program is available athttp://toilers.mines.edu. To see iNSpect in action, go
to http://toilers.mines.edu/iNSpect.

2



II. NAM AND iNSpect FEATURES

A. NAM

The Network Animator (NAM) is a visual tool that allows usersto create Tcl based NS-2 scripts
through a graphical user interface [15]. NS-2 wired simulation scripts have five basic elements:
nodes, links, queues, packets, and agents. Nodes are the network devices that send and receive
packets. Links are connections between nodes (explicitly defined for wired networks). Queues are
the send and receive buffers on each node. Packets are the messages being sent between nodes via
the queues and links. Finally, the agent is the protocol running on the node that determines the
nodes’ behavior for packet sending and receiving. These fiveelements are the building blocks for
NAM wired animations. NAM visually depicts the nodes by trace file defined shapes. NAM repre-
sents wired links as lines between the connected nodes. NAM represents wired packets as blocks
moving along the link corresponding to the route. During playback, packet and agent information
is displayed in NAM monitor windows. The packet monitor shows the size, identification number,
and time the packet was sent during the transmission period.Once a packet reaches its destination,
it is removed from the monitor [18]. The agent monitor displays the name of the agent and the
values of any trace variables that are set.

For node topologies, NAM supports three layout methods. Two(link orientation and automatic
graph layout) are for wired networks where links are known, oriented, and permanent. The nodes
can be placed based on the orientation of the links that pair nodes, or they can be automatically
generated and allowed to converge over time [18]. The third method is for wireless networks, and it
is an (x,y) coordinate layout method. This method is designed to animate a wireless node located
anywhere in the Cartesian world. The addition of this third method is the only wireless unique
functionality in NAM [18].

By adding Cartesian support to NAM, it can playback NS-2 generated trace files for wireless
simulations. However, playback in the animation screen is limited to node movements and nodes
emit a circular pattern to represent their transmission signal. The concepts of links and queues are
not supported in the NAM wireless animations, because linksand queues represent a permanent
relationship between two nodes which do not exist in mobile wireless networks. In other words,
NAM does not show the wireless links. Packet and agent monitors in wireless networks provide
the same information as in the wired networks.

In summary, NAM is not a visualization tool designed for wireless analysis and validation.
NAM was originally built for wired networks. While NAM can be used to show nodes moving,
NAM does not show wireless links [15]. In other words, there is no visualization of transmission
and routes generated when using NAM for NS-2 wireless scenarios.

B. iNSpect

The interactive NS-2 protocol and environment confirmationtool (iNSpect) is a C++ OpenGL-
based [25] visualization tool that allows animation of wireless networks simulated in NS-2. The
iNSpect program reads in NS-2 mobility files and the plays back simulation results. The iNSpect
program produces a visual display of the nodes in a wireless scenario based on Cartesian (x,y)

3



Source

Destination

Transmit
from node #1
to node #20

node #48

node #1

Figure 1: iNSpect showing
the first hop of node 1 trans-
mitting to node 48.

Source

Destination

Intermediate
nodes

Forwarding 
hops from

and node #27
node #20

node #48

node #1

Figure 2: iNSpect showing
the forwarding of the packet
from node 20 through nodes
27 and 21 to node 18.

Source

Destination
node #48

Final forwarding
hop from node
#18 to node #48

node #1

Figure 3: iNSpect showing
the final hop of the route from
node 1 to destination node 48.

Note: 50 nodes, 300 m x 600 m simulation area with 100 m transmission range.

coordinates used by NS-2. The iNSpect program has an event builder that reads a mobility file
directly and schedules the movements and pauses of each individual node. The event builder
functionality allows iNSpect to be used directly with mobility files generated by external mobility
models. There is no requirement to generate a trace file from NS-2. Mobility file analysis outside
of NS-2 makes iNSpect a must for mobility file validation, eliminating the overhead of additional
lengthy executions of NS-2.

If and when a trace file has been generated, iNSpect uses the same event builder to read the
trace file and schedule the packet transmissions with the node movements. Unlike NAM, iNSpect
shows the wireless routes and the success or failure of a packet transmission. The transmissions
are displayed with route lines and color coded nodes. When a node is transmitting to another
node, a line is drawn between the two nodes. The line represents the attempt to transmit between
the two nodes, similar to the link object in the NAM wired scenarios. The initiating node of
a transmission attempt turns blue to indicate it is sending.The receiving node turns red until the
packet is successfully received, then it turns green or blue. If the receiving node is the packet’s final

4



destination it turns green. If the receiving node is not the final destination, it turns blue to show the
next forwarding transmission attempt, and the route line isextended to show the forwarding of the
packet. Figures 1-3 illustrate the three stages of a packet transmission from node 1 through nodes
20, 27, 21, and 18, to node 48. The persistence of the lines andnode status allows for individual
route analysis.

In Figure 1, node 1 initiates its packet send to node 48, by attempting to send the packet to
node 20. In iNSpect the transmission is depicted as a line between node 1 and node 20. Node 1
turns blue and node 20 turns red until it successfully receives the packet. When node 20 receives
the packet it turns blue because it successfully received the packet, but is not the final destination.
Node 20 forwards the packet to node 27, which forwards the packet to node 18 (Figure 2). The
iNSpect program continues to display the lines and node colors as the packet progresses to the
destination. Node 18 then forwards the packet on its last hopto node 48 (Figure 3). Figure 3
shows the path from node 1 to node 48; node 48 turns green because it is the destination for the
packet. The blue nodes along a path leading to a green node indicate a successful transmission
to a destination, while blue nodes along a path leading to a red node shows failure of the packet
to reach the destination and at which hop the packet failed. The graphical representation of the
network activity gives the researcher more clues about individual success and failures of packets
than the overall delivery ratio printed at the end of a scenario.

In iNSpect, the interaction between the node events and the display is one of stepping through
the simulation time while calling for each node to update itslocation and activities. Because the
playback is schedule-driven, iNSpect offers a variable playback speed as well as a variable start
time for the simulation. That is, a researcher can jump to a particular point in a lengthy simulation
trace file for detailed analysis.

The iNSpect program allows a user to display overlay objectssuch as circles, rectangles,
and the current (x,y) location of each node. The geometric overlays may identify regions of in-
terest. For example, Figure 4 illustrates a circular overlay at the center of the simulation area
(150 m, 300 m) with a radius of 30 m. We use this circular overlay with a new mobility model that
implements congestive movement for nodes in a given area of the simulation. In this new mobility
model, a node moves according to the Random Waypoint MobilityModel [11, 3]. (The nodes are
initialized in the steady state distribution of the Random Waypoint Mobility Model [17, 16].) Then
as a node moves into the area of congestion, the node slows down. We use this circular overlay in
iNSpect to represent the congested area, validating that the nodes slow in that area. This area can
represent a food court at a mall or a large intersection in a city. The location and size of the circle
is configurable within iNSpect.

A rectangular overlay is also provided in iNSpect. We use therectangular overlays in evalu-
ating Geocast routing protocols. In Geocast routing, packets are forwarded to nodes in a specific
geographical area of the simulation [10]. For example, a city dispatcher may need to send emer-
gency information to a certain area of a town to alert citizens of an evacuation. Figure 5 depicts a
rectangular area of interest with corners at (150 m, 400 m) and (300 m, 600 m). The explicit repre-
sentation of the rectangle on the iNSpect display allows visual analysis of a packet’s route to the
area.

The geometric overlays of iNSpect can be used to represent obstacles as well. As stated in

5



Circular overlay for
use with a particular
area of interest

Figure 4: iNSpect display of
a 30 m radius circle overlay
in the center of the simulation
area.

Rectangle overlay for
use with a particular
area of interest.

Figure 5: iNSpect display of a
100 m x 200 m rectangle over-
lay in corner of the simulation
area.

Location info:
node #43 is at
x=14, y=421

Figure 6: iNSpect display of
the (x,y) coordinates for each
node’s location.

Note: 50 nodes, 300 m x 600 m simulation area.

[12] obstacles make mobility models more realistic. The obstacles affect both transmission and
movement of nodes. The iNSpect program can be used to observethe affects of the obstacles on
the movement of nodes and the transmission of packets.

The coordinate overlay, Figure 6, displays node position (x,y) coordinates. The location infor-
mation can be used to evaluate accuracy of node location and movement against the researcher’s
plan for a node. Location information can also be used to evaluate location-based routing protocols.
In location-based protocols, a node’s knowledge of a destination’s location is used to determine a
route to the destination [14]. Using persistent routes and the node locations on the iNSpect display,
a researcher can evaluate a protocol’s performance on individual routes. This gives the researcher
detailed information not available in summarizing statistics.

Our iNSpect program is driven by a configuration file, which minimizes the command line ar-
guments and the need to recompile while enabling the user to control several aspects of the display.
Activity persistence, and the position and size of overlay objects, are all part of the configuration
file. The iNSpect program can display and animate the resultsof a single stand-alone mobility file,

6



it can animate an NS-2 trace file for movement, and it can animate a mobility file and an iNSpect
unique trace file to show link activity. The iNSpect trace fileis used to identify the wireless links
not present in the NAM trace files.

III. iNSpect USES AND RESULTS

A. Topology analysis and validation

NS-2 uses node locations and speeds as an input to the simulator. This node information can be
placed directly into the Tcl script or provided in an external file. A researcher needs to under-
stand what node behavior NS-2 is calculating based on the location and movement information.
For simple node arrangements, for example, one with only a few nodes and no movement, a di-
agram can be drawn by hand to depict the scenario. However, aswe seek more realistic models
to depict real-world movement [3], manual diagrams are (almost) impossible to generate. Many
researchers currently base node location and movement on the mobility model generated mobility
files [2, 23, 26]. These mobility models use mathematical algorithms and statistics to randomly
or selectively position nodes and assign speeds throughoutthe simulation area. As the number of
nodes in a simulation increases, and the number of variablessuch as location, speed, and pause time
continue to increase, it is impossible to know what these mobility models are producing without a
visualization.

Currently, the statistical way to validate a topology or mobility file for NS-2 is to analyze the
individual lines in the mobility file, searching for certaincharacteristics such as node locations,
etc. However, if the nodes have movement, this analysis is limited. Since NS-2 calculates the
node movements during the simulation, the mobility file onlycontains initial node locations and
direction or speed changes. Where the nodes are between theseentries is calculated by NS-2 during
the simulation and are not in the file. In other words, the complete analysis of a mobility file can
only be done by running a simulation.

Until the development of iNSpect, the only way to visually validate a topology or mobility
file was to generate the mobility file, run it through NS-2 to produce a NAM trace file, and then
use NAM to analyze the mobility file for errors. This process can take several minutes or more,
depending on the NS-2 simulator and the machine running the simulation. Additionally, the NAM
trace file can grow to be on the order of hundreds of megabytes.These steps are tedious and
wasteful for a developer of a mobility model, especially if there are many iterations.

Unlike NAM, iNSpect can process an NS-2 based mobility file directly. The iNSpect engine
calculates the node movements from the mobility file just as NS-2 does in a simulation. Each
update of the iNSpect display updates the node movements based on the playback speed. This
capability streamlines the development of individual topologies or mobility files generated from
an automated script or mobility model, because the nodes canbe displayed and animated outside
of NS-2. Not burdened with the many other things NS-2 does in asimulation, iNSpect can produce
visual validation instantly for a given mobility file. Thus,quicker results for the model developer
are obtained, and no trace files are written to disk. The direct processing of the mobility file allows
a mobility model developer to complete many iterations quickly.

7



Figure 7: iNSpect displaying an RPGM
model example with loosened travel from
reference point.

Figure 8: iNSpect displaying an RPGM
model example with restricted travel from
reference point.

Note: Simulation area is 600 m x 600 m with 3 groups of 8 nodes each

As an example of the animation process for iNSpect, considerthe Reference Point Group
Mobility (RPGM) Model [19, 3]. The RPGM model is used by researchers to represent rescue
or search parties that move loosely as a group around certainreference points. To generate a
mobility file from the RPGM model, the user must determine numerous parameters ranging from
the simulation area’s (x,y) dimensions, to speed and pause time, to the number of groups and
number of nodes per group. The model also has two parameters that deal with the reference point
separation distances and individual node wanderings from the reference point [3]. Figures 7 and
8 illustrate how a user can analyze these last two parametersin iNSpect. Figures 7 and 8 show
two mobility files with the same dimensions, speed, pause time, number of nodes, and number
of groups. The only difference is the looseness of the nodes’distances from the reference point.
Immediately, the effect of the change is seen. The iNSpect program is the only way to see the affect
of these parameters on the simulation from a mobility file directly. Without iNSpect, a user would
first need to run the full simulation scenario in NS-2 to visualize the mobility model parameters in
NAM. The iNSpect program can also be used to explain these parameter value differences. The
contrast shown in Figures 7 and 8 is a clear way to explain the impact of these parameters to others.

The iNSpect program can do more than test parameters of existing models, because iNSpect
allows the immediate validation of the files produced by a mobility model. That is, iNSpect can
be used to develop new models. For example, we used iNSpect during the development of a new

8



congestion based mobility model. In this new mobility modela node will slow down if its number
of neighbors exceeds a threshold. We used iNSpect in two ways. First, iNSpect gave us an instant
look at the model results and allowed us to visually see the nodes slow down in congested areas.
Second, iNSpect enabled us to discover a problem with the model. Specifically, we generated
2000 second scenarios with 50 nodes and no pause time. When we used iNSpect to animate the
model’s output, we saw the nodes slowing in congested areas as expected. However, near the end
of the 2000 seconds, a few nodes stopped moving. With iNSpect, our implementation problem
was debugged and fixed quickly.

B. Simulation model analysis and validation

As stated at the beginning of the NS-2 documentation [22]“users of NS-2 are responsible for
verifying for themselves that their simulations are not invalidated by bugs.”The question is how
does one ensure a simulation is correct? While there is no way to guarantee correctness, iNSpect
can help.

As an example, we recently installed the new 2.27 version of NS-2 and, similar to several
accounts on the NS-mailing list (e.g., [4]), we noticed a significant drop in the performance of our
simulations (i.e., delivery ratio, end-to-end delay, and overhead). Using iNSpect, we discovered
an error in the simulator. Specifically, NS-2.27 does not update the position of a node unless there
is an event for that node. (The error was concurrently located by the author of [24].) The NS-2.27
error is shown in Figures 9 and 10. In Figure 9, the simulationarea is 300 m x 600 m and in Figure
10, the simulation area is 600 m x 600 m. Each node’s transmission range is 100 m in both figures.
As shown, there are several nodes that successfully transmit a packet outside the 100 m range, e.g.,
(node 9 to node 34 in Figure 9), (node 16 to node 8 in Figure 9), and (node 0 to node 26 in Figure
10). For example, in Figure 10, the distance between node 0 and node 26 is 453.4757 meters,
which is well over the 100 m transmission range. Figure 11 shows NS-2.27’s incorrect view of
node 0’s location and why the transmission was successful inthe trace file.

In summary, iNSpect quickly illustrated the inconsistencies of the simulation output under the
new version of NS-2.27. We also note that NAM could not have shown this problem for two
reasons. First, NAM’s output is based on the NS-2 model, therefore the nodes shown in NAM
would be in the locations seen by NS-2 (i.e., Figure 11). Second, NAM does not show the links
and packet flows. Thus, even if the nodes were in a different location, an analyst would not have
seen the extreme transmission distance.

C. Simulation results analysis

An entire simulation (using both the mobility file and iNSpect trace file) can be animated with
iNSpect. NAM animates simulations for wired networks in NS-2, but is unable to animate net-
work traffic for wireless networks. The iNSpect display shows each transmission, with lines be-
tween nodes for transmission attempts and color codes for the sending nodes, nodes that receive a
transmission successfully, and nodes that do not receive a transmission successfully. The iNSpect
display shows the virtual link in a transmission, instead ofthe transmission ring shown in NAM.
The ring, although representative of an omni-directional wireless signal without obstacles, does

9



Erroneous send over
100 m range from
node #16 to node #8

Erroneous send
over 100 m range
from node #9 to
node #34

Figure 9: iNSpect show-
ing an NS-2.27 model er-
ror. Two transmissions exceed
the 100 m node transmission
range. The simulation area is
300 m x 600 m.

Erroneous send
over 100 m range
from node #0 to
node #26

Figure 10: iNSpect showing an NS-2.27 model error.
The node 0 transmission exceeds the 100 m transmis-
sion range. The simulation area is 600 m x 600 m.

not help a researcher trace the route of a packet. The iNSpectanimation allows quick analysis of
packet routes, as well as animation of issues. An animation of the results aids understanding of
summary performance statistics such as delivery ratio, end-to-end-delay, and overhead.

By knowing the path a packet takes from source to destination,we can learn more about the
behavior of a protocol. Figure 12 shows a snapshot of a Location Aided Routing (LAR) simulation
[14]. LAR routing uses knowledge of the destination node’s location to build routes for a packet
transmission. We can use iNSpect to evaluate the number of hops a given successful transmission
takes, and whether a protocol can be improved to reduce the number of hops. For example, in
Figure 12 we see a successful transmission from node 5 to node44. The path from node 5 goes
through nodes 84, 22, 4, 101, 82, 45, 57, 11, 93, 64, 24, 77, and44 (a total of thirteen hops). From
the iNSpect program we have the time this event occurs and we see other more direct paths such
as the one from node 101 to nodes 112 or 97, to 24. With this knowledge we can look at which
routes were in the cache for node 5 and see why it did not discover this shorter route. Individual
analysis like this would be impossible with just performance statistics and no iNSpect animation.

10



for node #0 leading to

a successful transmission

NS−2.27 incorrect location

Figure 11: iNSpect showing NS-2’s incorrect view of node 0’slocation at the same time as Figure
10. This incorrect view places node 0 in range of node 26, explaining the successful transmission.

We developed improvements to LAR that utilize the location information disseminated to find
more direct routes [5]. Using ourprojection method, a node,A, sets its assessment delay (the time
it waits before rebroadcasting a route request packet) proportional to the length of the projection of
the vector from the sending node,S, to A (

−→

SA) onto the vector from the source to the destination
node,D (

−→

SD). The longer the projection, the more direct the route is, and the shorterA will
set its assessment delay. Figure 13 illustrates the resultsof our route optimization: A route with
eight fewer hops for the same transmission (from node 5 to 76,19, 92, 77, to 44) compared to the
route shown in Figure 12. Visualizing our LAR projection method is a valuable step in designing,
analyzing, and communicating our improvements to the protocol.

We did a similar analysis with iNSpect in an effort to implement the Zone Routing Protocol
(ZRP) [9] in NS-2. In ZRP each node maintains detailed information about nodes within its zone.
A node’s zone size is defined by the number of hops from the node. For example, if a node had a
zone size of three, it would keep track of all nodes within 3 hops. By keeping track of nodes inside
a zone, a node has an immediate route to those nodes. If a node needs a route to a node outside its
zone, it uses a reactive protocol known as the Inter-zone Routing Protocol (IERP) [8]. The IERP is

11



Source
node #5

Intermediate nodes

Intermediate
nodes

Destination
node #44

Figure 12: iNSpect showing a Location Aided Routing route selection for a transmission from
node 5 to node 44 in a 600 m x 600 m simulation area with a 100 m transmission range.

used to request a route for this destination node. This is a costly request. Thus, when an Inter-zone
route is returned, the nodes cache that information for possible future use.

By visualizing the ZRP results from NS-2 in iNSpect, we noticedthat several of the nodes
would only send packets a few hops beyond their zone and then the transmissions would fail. This
was reflected by a low delivery ratio for each simulation, butthere was no way to know the cause.
Since we saw a trend of unsuccessful transmissions outside anode’s zone, we adjusted the IERP
cache timeout and ran the simulation again; the delivery ratio and the transmissions improved. In
summary, iNSpect showed us that the routes outside the zone were bad, which led us to discover
the IERP caches were maintaining stale routes. The iNSpect program gave us information that
summary statistics could not.

12



Source

Intermediate
nodes

Destination

node #5

node #44

Figure 13: iNSpect showing ourprojection method[5] of Location Aided Routing route selec-
tion for a transmission from node 5 to node 44 in a 600 m x 600 m simulation area with a 100 m
transmission range.

D. Additional uses

Finally, iNSpect can also be used to validate transmission or protocol behavior. For example,
suppose nodes are placed at varying distances around a test node. The test node then attempts
to transmit to each node. The resulting trace file and iNSpectcan verify the communication suc-
cesses of nodes within the transmission range and communication failures of nodes outside the
transmission range.

The iNSpect program utilizes the OpenGL [25] libraries for rendering the animations. These
libraries are the same libraries used in popular graphical games. The popularity has made many
tools available for OpenGL based applications. The tools range from screen capture software
to high quality movie making software. The iNSpect program is an excellent tool for making
presentations of simulation results. The quick and clear animations of iNSpect make clean movies
for displaying results. There are several tools for making animated GIF and full MPEG based
movies of OpenGL applications.

13



Furthermore, because iNSpect is C++ and OpenGL code, it is easy to write front end processing
units for it. The straightforward code can easily be extended to process different types of trace
files, mobility files and events. The overlay patterns present in the current code can be extended to
include other OpenGL-based rendering functions.

IV. FUTURE WORK

We are looking at expanding iNSpect in several areas. The first is the incorporation of more of the
additional uses listed in section III D. For example, we planto include the movie making capability
directly into iNSpect for use with presentations. Also, we plan to make iNSpect work correctly
with other NS-2 trace file formats and other simulator’s trace files. Another area is including visual
statistics in iNSpect. Visual statistics allow the different types of analysis to compliment each
other in one tool. One idea to have iNSpect provide histograms and other charts about the node’s
positions. For example, a histogram of the volume of nodes ateach x-coordinate and y-coordinate
allows comparison with what the steady state model [17, 16] predicts for node position.

V. CONCLUSIONS

With the increase in wireless network research, visualization and animation of the node behavior,
simulations, and results are a must. The iNSpect program is aquick low-overhead solution to
animating mobility model files and topologies for NS-2. By using the iNSpect tool, a researcher
can quickly discover anomalies in topology files, the NS-2 model itself, or even in the results of
a particular protocol. In addition, because iNSpect runs outside of NS-2, it is fast and can save
numerous hours of detailed detective work trying to validate results. Our iNSpect program can
be used in many different ways to enable the quick and accurate inspection of wireless network
scenarios with NS-2. As we have seen in our own research, iNSpect can reveal issues that summary
statistics cannot. From analyzing node movement to packet routing, iNSpect can provide insight
not available from totals and averages. Our tool is useful for simulations of large sensor networks, a
simple wireless LAN, or a mobile ad hoc network. The iNSpect program supports wireless network
capabilities of NS-2 and lets the human visual system participate in the analysis. Information on
obtaining our iNSpect code is available athttp://toilers.mines.edu. To see iNSpect in
action, go tohttp://toilers.mines.edu/iNSpect.

VI. ACKNOWLEDGMENTS

We thank Dr. Jeff Boleng for the mobility file parsing code. We thank Ed Krohne for the inspiration
to develop a tool to visualize a mobility file and a visualization trace file.

14



References

[1] E. Angel. Interactive computer graphics: a top-down approach with OpenGL. Addison
Wesley, 1997.

[2] C. Bettstetter. Smooth is better than sharp: A random mobility model for simulation of
wireless networks. InProceedings of the Fourth ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM’01), pages 19–27, 2001.

[3] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network research.
Wireless Communications & Mobile Computing (WCMC), 2(5):483–502, 2002.

[4] Jivei Chen. DSR performance is too bad in ns2, why? http://mailman.isi.edu/pipermail/ns-
users/2004-March/040565.html. Page accessed on June 14, 2004.

[5] M. Colagrosso, N. Enochs, and T. Camp. Improvements to location-aided routing through
directional count restrictions. InProceedings of the International Conference on Wireless
Networking (ICWN), 2004. To appear.

[6] Jyoti Grover. How to draw graphs from ns trace files. http://mailman.isi.edu/pipermail/ns-
users/2004-May/041965.html. Page accessed on June 14, 2004.

[7] A. Gurtov and S. Floyd. Modeling wireless links for transport protocols. Submitted to ACM
Computer Communications Review, 2004.

[8] Z. Haas, M. Pearlman, and P. Samar. The interzone routingprotocol (IERP) for ad hoc
networks. Internet Draft: draft-ietf-manet-zone-ierp-02.txt, July 2002.

[9] Z. Haas, M. Pearlman, and P. Samar. The zone routing protocol (ZRP) for ad hoc networks.
Internet Draft: draft-ietf-manet-zone-zrp-04.txt, July2002.

[10] X. Jiang and T. Camp. A review of geocasting protocols fora mobile ad hoc network. In
Proceedings of the Grace Hopper Celebration (GHC 2002), 2002.

[11] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark. Routing protocols
for mobile ad-hoc networks - a comparative performance analysis. In Proceedings of the
ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM),
pages 195–206, 1999.

[12] E. M. Belding-Royer K.C. Almeroth, A. Jardosh and S. Suri. Towards realistic mobility
models for mobie ad hoc networks.(MOBICOM ’03, September 2003.

[13] Hou C. Kee. NAM support for wireless traffic. http://mailman.isi.edu/pipermail/ns-
users/2004-May/042046.html. Page accessed on June 14, 2004.

[14] Y. Ko and N.H. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. InPro-
ceedings of the ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM’98), pages 66–75, 1998.

15



[15] J. Mehringer. The NAM editor. A presentation for the CONSER retreat, slide 2, 2001.

[16] W. Navidi and T. Camp. Stationary distributions for the random waypoint mobility model.
IEEE Transactions on Mobile Computing, January-March 2004. To appear.See TR-1 for an
early version of this paper.

[17] W. Navidi, T. Camp, and N. Bauer. Improving the accuracy ofrandom waypoint simulations
through steady-state initialization. InProceedings of the 15th International Conference on
Modeling and Simulation (MS 2004), 2004.

[18] The NS manual: formerly known as notes and documentation, 2003.
http://www.isi.edu/nsnam/ns/. Page accessed on June 1st,2004.

[19] G. Pei, M. Gerla, X. Hong, and C. Chiang. A wireless hierarchical routing protocol with
group mobility. InProceedings of the IEEE Wireless Communications and Networking Con-
ference (WCNC), pages 1538–1542, September 1999.

[20] CMU Monarch project. Ad-hockey. http://www.monarch.cs.rice.edu/cmu-ns.html. Page ac-
cessed on June 14, 2004.

[21] The Rice Monarch Project. The Rice Monarch extensions to the ns simulator.
http://www.monarch.cs.rice.edu/cmu-ns.html. Page accessed on June 1, 2004.

[22] The VINT Project. The network simulator - ns-2. http://www.isi.edu/nsnam/ns/. Page ac-
cessed on June 1st, 2004.

[23] E. Royer, P.M. Melliar-Smith, and L. Moser. An analysis of the optimum node density for ad
hoc mobile networks. InProceedings of the IEEE International Conference on Communica-
tions (ICC ’01), pages 857–861, 2001.

[24] K. To. Bug in ns-2.27 wireless channel. http://mailman.isi.edu/pipermail/ns-users/2004-
April/041388.html Page accessed on May 1st, 2004.

[25] M. Woo, J. Neider, and T. Davis.OpenGL Programming Guide: The official guide to learning
OpenGL. Addison Wesley, 1997.

[26] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Proceedings of
the Annual Joint Conference of the IEEE Computer and Communications Societies (Infocom
’03), pages 1312–1321, 2003.

16


