
Heterogeneous k-Server
Fork/Join Blocking Queue

Approximation with Deferred
Job Pickup

Marc Mosko
Ovid Jacob

CMPE 230 Class Project
March 10, 1999

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 1 3/10/99

CMPE 230 Class Project

Abstract We review the literature related to Fork-Join queues, as applicable to

the class project. Based on several articles, we propose a simplified reduced state

solution that only tracks the number of tasks in the fastest queue, the slowest queue, and

the number of tasks waiting in the join area. This yields a continuous time Markov chain

with three state variables. We model transitions caused by intermediate servers as a

service rate times a probability that the server is busy. We base the conditional

probability on the number of jobs in the fastest and slowest queues. Using an m-Erlang

distribution for the time to complete m jobs, we estimate the probability that an

intermediate queue is ahead of the fastest or slowest queues. We also present simulation

results for the system over various system parameters.

Introduction

We wish to model a Fork-Join process with k

heterogeneous servers. We call the join point

queue 0, with n0 tasks and service rate µ0. Unless

otherwise noted, we picture the network as per

Figure 1. In models proposed by Dallery [DA94],

we use the structure of Figure 2. When a job

arrives with Poisson rate λ, it is split into k

identical tasks. After independent processing,

tasks go to the join queue. When all k tasks of a

job arrive, the job may be removed at a later time.

Unlike normal fork-join models, completed jobs do not immediately depart the system. The model is

restricted such that at any given time, there may be no more than N jobs in the system. With some

ni µ i

n1 µ 1

nk µ k

n0 µ 0λ

Figure 1. Fork-Join Process

ni µ i

n1 µ 1

nk µ k

λ

Figure 2. Fork-Join Process with Blocking [DA94]

b1

bi

bk

µ 0

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 2 3/10/99

periodicity ∆, a purge process runs and removes completed jobs from the join queue. We wish to compute

the probability of removing J jobs given that there are M in the system.

We begin in Section 2 with a review of the literature as it applies to our problem. In Section 3 we present

our model for the queuing system. We analyze the model in Section 4, commenting on robustness and

stability. Section 5 presents our simulation methodology. Section 6 details the results of our model and

simulations. We compare the results for certain system parameters. We summarize our findings in Section

7, concluding with thoughts on further research.

Section 2: Related Work

For two queues (k=2), one may find the exact solution to the non-blocking problem [FL84, FL85]. The

solutions Flatto proposes are cumbersome and sophisticated. While one may use the results to validate an

approximation [e.g. LU98, BA98], one may not easily adapt these equations to other purposes.

Dallery et al. [DA94] models Fork-Join networks with blocking using a graph method. His model uses

blocking-before-service and requires an initial marking of the state of the system. As shown in Figure 2,

Dallery�s model uses an output buffer for each service facility. As applied to our problem, a given server

would block service of jobs in the input buffer if there were not room in the output buffer. The purging

process, shown as the sink server, would remove a number of jobs equal to the minimum of the jobs in the

output buffer. The source server would block if there were no room in each of the input buffers. Using this

model, we would need to adjust the input and output buffers as if they used shared memory. The total size

of n + b for a given server should exceed N. A simple approximation, which should hold for the

equilibrium condition λ < min(µ1 � µk), would be to limit n to N/2 and b to N. From our simulation results,

blocking most often occurred from filling the join queue, not from overflowing the input queue. The

removal process is more difficult to model.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 3 3/10/99

One simple approximation of the removal process for Dallery�s formulation is to give the sink a service rate

of min(b1 � bk)/ ∆. This would give an �average� removal rate, but make the service rate at the sink state

dependent. One might also try a service rate of N / ∆, and allow the model to starve the sink when there are

fewer than N jobs waiting for pickup.

Dallery states a set of �evolution equations� which describe the time sequence of completions from each

server. One could, in theory, use these equations to completely describe a system. As Dallery notes, it is

difficult to use these equations for anything by deterministic service times. Otherwise, the service

completion times become compound distributions that involve a �maximum� function. One finds

compound distributions complex enough for simple Bernoulli and Poisson distributions.

In a subsequent paper [DA97], Dallery extends [DA94] to complex Fork/Join networks. These networks

have various loading and unloading policies. [DA97] does not add any new constructs that would help us in

our problem.

Varki et al. [VA96] use three equivalent models of a homogeneous fork/join network to derive

performance characteristics. This model is not applicable to our situation of a blocked heterogeneous

network. We will, however use a few of the ideas from Varki in our m-Erlang model. In a Markov model

of a two-server system, Varki states that the arrival rate at the join point is equal to 2µ in the case both

servers are busy or µ if only one server is busy. We shall use a similar idea, except with unequal service

rates and an approximation of server busy periods.

Balsamo et al. [BA98] study approximations for a heterogeneous fork/join network similar to those found

in parallel processing computer systems. Balsamo�s state description is the number of jobs in each service

queue. In her model, completed jobs at the join point immediately depart. There is no blocking. She

constructs an infinite state Markov process, where an arrival bumps all queues to the n+1 state. Departures

affect individual queues and reduce them to the n-1 state. This creates an embedded Markov chain in a

continuous time Markov chain. Balsamo then uses two approximations to generate finite Quasi-

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 4 3/10/99

Birth/Death processes and proves that these provide an upper and lower bound the true solution. Balsamo

shows that for a two server model, her approximation bounds the exact solutions found by Flatto [FL84,

FL85]. Our solution is similar to Balsamo. Most notably, we reduce the state space further and do not use

the Matrix-Geometric approach [NE81]. In our formulation of an m-Erlang system, we will make

approximations to limit the state space to three degrees while accounting for blocking.

In another study that has some possible applicability to our problem, Frostig et al. [FR97] analyze

stochastic ordering in fork-join queues. The main work studies a two queue system, but she later

generalizes it to more servers. The infinite customer supply case only has a 1 dimensional state space: the

number of departures. It leads to a set of three non-homogeneous Markov chain equations. Her state space

for a starved system has four dimensions. She models the number of arrivals to the join queue, the number

of departures from the join queue, the number of �lost� arrivals, and the choice of the fastest server. In a

system with infinite customer supply, the system never loses an arrival. In a starved system, some arrivals

from an infinite supply model are �lost� and cannot accumulate in the join queue. In the starved server

case, the four dimensional state space has thirty-two equations covering different possibilities of state

transitions. As one will see, we drew several ideas from this paper into our model.

Lui et al. [LU98] studies infinite capacity fork-join queues with homogeneous servers. Each server has a k-

Erlang distribution with identical mean service time. The goal of the paper is to present computationally

feasible approximations. Lui achieves this approximation by noting that the state space is not uniformly

distributed. For servers with identical service time, the state space is most likely to be clustered around an

{n,n,n�} state space, where all queues have the same number of jobs waiting. His approximation is to

limit the radius of calculation. One might, for instance, only consider state spaces ±5 tasks. Lui imposes

the restraint that if a task departure would violate the maximum distance between queues, it cannot depart

and must repeat the last stage of service. We will use an idea similar to this in our model. We will

intuitively argue in our approximation that if both the fastest server and the slowest server have no jobs

waiting, then neither should any intermediate servers.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 5 3/10/99

Section 3: Problem Model

Our state space is restricted to three dimensions: {n1, nk, n0}, as per Figure 1. We assume that server 1 is

the fastest system (largest µ) and server k is the slowest system (smallest µ). We estimate the number of

jobs in the system as
k

onknn
M

++
= 1 . We claim that the set of state transitions are as shown below.

The numbers in the right hand column refer to state transition equations.

The fourth and fifth transitions merit discussion. Transition (4) represents a transition from an intermediate

server (not the fastest nor the slowest). Pi is the probability that server i is busy given the current system

state. We shall call this the Intermediate Server Probability. This is our approximation to reduce the state

space. Note that we use an �average� transition rate, since we divide by k-2. Transition (5) reflects the

periodic drain on the model. We call the term N /(k ∆) the drain rate. Since we generate up to k tasks in

the join queue for each job, we drain the join queue at a rate scaled by the number of tasks we generate.

The factor N enters the equation since in the problem all joined tasks leave the system simultaneously. This

is a crude estimate. We find that this transition rate plays a critical role in our model.

We define a renewal period as when all server queues (excluding the join queue) are empty. We need to

count the total number of jobs that pass through server 1 and server k since the beginning of each renewal

period. We call this number Ni,τ , where i is the server and τ is the renewal period. This is predominately

for expository purposes. We do not maintain such a state in the model. We will later show an

approximation for Ni,τ below.

λ

knkN
NMpµ

nµ
nµ

NnnnNMλ

k,n,nn
1,n,nn

1,n,nn
,n1,nn
1,n1,nn

nnn
k

i ii

kk

1

k

ok1

ok1

ok1

ok1

ok1

ok

k

0,1,10,0,0

)5(,/
)4(,
)3(0,
)2(0,
)1(,,,

1
1

,,

0

1

2

1

1

1

2
1

≥∆
<

>
>

<<<

−
+

+−
+−

++

�
−

=−

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 6 3/10/99

 For transition (4), we model a series of completion times at each server. Each completion time is an

exponential random variable. A series of m completions is an m-Erlang random variable. To compute the

Intermediate Server Probability, we consider three cases. If the fastest server is busy, we compute the

probability that an intermediate server i has completed N tasks in the same or less time than server 1 has

completed only N1,τ tasks. If the fastest server is empty, but the slowest server is busy, we compute the

probability that an intermediate server i completed all M tasks in the same or less time than server k

completed Nk,τ tasks. If both the fastest and slowest servers are idle, we state that pi is zero. We cannot

compute similar probabilities when there are no tasks in the queues, since we do not know how long a time

has elapsed since the queues were emptied. When we have jobs waiting, we know the time is bounded.

They are bounded, because the service queues are not independent, but all share equal arrivals.

Figure 3 shows an example of the ISP. There are

M=5 jobs in the system. Server 1 has processed

three jobs. Server k has processed one job. In this

example, we would compute the Intermediate

Server Probability based on server 1 (case 1

below). If n1 were empty, we would use server k

(case 2 below).

Case 1: n1 > 0

 We consider the case that the fastest server has n1 tasks. We wish to compute the probability that

some intermediate server i has ni > 0, given n1. We would equate this to one minus the probability

that server i has completed n1 + N1,τ tasks at least as fast as server 1 has completed N1 τ tasks. The

probability that server 1 completes N1,τ in time t is given by the Erlang distribution

t
k

e
k

tNktf 1

)!1(
)()|(

1
11

,11
µ

τ

µµ −
−

−
==

?
ni µ i

n1 µ 1

nk µ k

λ

Figure 3. Bounding Processing Times, M=5.
Shaded area shows Join Queue.

N1,t

?
Ni,t

Nk,t

n0 µ 0

CMPE 230 Project Marc Mosko
Ovid Jacob

The probability that server i completes n1 + N1,τ tasks in time T≤ t is given by the Erlang

cumulative distribution

We may combine these equations to find the probability that server i completes all n1 + N1,τ

quicker than server 1 may complete N1,τ tasks as shown. We take the definitions of j and k from

the above equations.

Case 2

�
−

=

−−=+=
1

0
,11 !

)(1)|(
j

u

t
u

i
ie

u
tNnjtF µ

τ

µ i

� �
∞

−
−−

− �
�

�
�

�
	

�
�
	

�

−==
1

11
1

1
)()(

1],|0[dte
t

e
t

kjnP t
kj

t
u

i
i

i µµ
µµµ

1
Eq
Page 7 3/10/99

Since we model a continuous time Markov chain, we integrate over all possible times that it takes

server 1 to complete k tasks. We multiply the cdf F(t|j,k) times the probability that it took server 1

t time units to complete j tasks. The probability that we seek is found as P[ni>0] = 1-P[ni=0].

Although the integral is very difficult to solve analytically, it yields to numerical methods.

Following Numerical Recipes [PR88], we may solve the �improper� integral as a Romberg

function on an open interval.

: n1 = 0 and nk > 0

This will be similar to Case 1. We wish to find the probability that server i took longer to process

nk + Nk,τ tasks than server k took to process Nk,τ tasks. The equations follow the same form as Case

1.

=
�
�

�
� ��
� −��
�0 0)!1(! kuu

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 8 3/10/99

Case 3: n1 = 0 and nk = 0

In this case, we have no marking in the system by which to measure time. There could be any

finite interval since servers 1 and k finished processing their tasks. In this case, we must resort to

the argument that since the slowest server and the fastest server have finished processing all tasks,

it is likely that all intermediate servers have also finished their tasks. We also note our argument

above that we cannot bound time in this case, as we can when there are tasks waiting.

The �sender� of the jobs knows several global state variables. N is the maximum number of allowable jobs

in the system, J is the number of jobs removed from the system. The number of jobs removed from the

system would be J = min(M � max(n1, nk), n0 / k). One should not confuse these �evaluation� epochs with

the renewal process mentioned above. The renewal processes generate the markers {Ni,τ}. Our state is the

3-tuple {n1, nk, n0}.

We create an infinitesimal transition rate matrix Q from the above equations. Using an appropriate

numerical method, we solve the eigenvalue equation π Q = 0, where π is the steady-state probability

matrix.

To have any chance at writing the infinitesimal generator, we need to simplify the equations for pi. We will

approximate Ni,τ, being the number of tasks processed at server i since the last time we were in state

{0,0,0}, by Ni,τ = max(M � ni, 1). This will make our renewal process coincide with the evaluation epochs.

Now, all variables only depend on the current state and the global variable N.

Section 4: Model Analysis

We discuss several aspects of our model. We begin with a discussion of the effectiveness of our model at

limiting the state space. Based on our experience with the model, we comment on the robustness and

stability of the Markov chain.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 9 3/10/99

One goal of our model was to reduce the state space to a manageable size. By limiting the system to three

queues regardless of the number of servers involved, we hoped to keep the state space small. As it turns

out, since the domain of n0 is [0�kN], we still have dependence on the number of servers. A three server

model with N=10 will generate 2541 states. A 2541x2541 Q matrix may still be solved with simple

methods, such as LU decomposition with equation substitution [PR88, ST94], if one has at least 60 MB of

memory. For N=10, there are 4961 states for k=5 and 6171 for k=6. One may approximate the number of

states as S ≈ 1/3 kN 3. We observed the 1/3 scaling factor from our various trails. The maximum number of

array elements will be approximately 5 times the number of states. A system with k=5 and N=50 would

have approximately 625,000 array elements. While these numbers are much better than a model with all k

servers, they still require sparse storage and iterative methods [e.g. ST94].

We found that our model is very sensitive to the drain rate in transition equation (5). The problem

description states that with periodicity ∆, the system purges all joined jobs. In a Markov model, we must

approximate the purge process. We chose a transition rate that scales with the number of jobs in the

system. It reduces the join queue by k tasks for each purge event. We experimented with other transition

rates. We tried, for instance using our approximate of M in place of N. We also looked at reducing the

state to n0 = n0 mod k with a slower rate. We found that these formulae were less accurate than the simple

equation we used.

Since the model is very sensitive to the drain rate, and it is not obvious what value one should use, we are

not confident that the model exhibits stable behavior. Modest changes in the draining rate may cause large

swings in the output. For this reason, we do not believe this model would work well outside of certain

parameters.

We found from our results that the model performed poorly when the drain rate N /(k ∆) ≈ 1/µmax. This

represents an �equilibrium� state where there are probably about as many jobs waiting for service as there

are jobs waiting in the join queue. In this context, the model is hypersensitive to transitions from the

service facilities, which is where we make a large approximation.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 10 3/10/99

In our implementation of the model, we used a simple LU decomposition with equation substitution. We

followed the LU decomposition algorithm from Numerical Recipes [PR88]. The matrices were generated

following [ST94]. This method transposes the Q matrix and replaces the last row with 1�s. Letting Z

equal the modified, Q matrix, one solves π Z = e, where e = (0,0,�,0,1)T. We found that the LU method

of [PR88] solved this non-homogeneous system better than the original π Q = 0, for which it always

returned the trivial 0 matrix.

Section 5: Simulation

We used the Sim++ simulation environment from the simpack3 distribution [FI95]. Below, we discuss our

simulation design and the methods we used to track system parameters. We describe the statistics that the

simulation produced. A job refers to an arrival before splitting in to parallel tasks. A task is 1/k parts of a

job, where k is the number of servers.

Simpack uses tokens, which pass through facilities. There is a universal future, which schedules up

coming events. A scheduled event has a time and C++ callback function. A token may contain several

attributes. These attributes may carry information through the simulation.

Our simulation begins by calling a �kickoff� function that schedules 10,000 job arrivals from a Poisson

distribution. Each job is assigned a Global ID (GID). A job generates k task tokens. Each task token has a

Unique ID (UID) and GID. A task token is scheduled for a specific facility. There are k facility objects,

each with a unique facility ID. The token also stores the facility ID of the queuing facility. Storing the

facility ID in the token allows us to use only one instantiation of each facility function. The facility

functions may lookup the facility ID from the token and index to an array of pointers of the facility class.

Facilities for service queues are modeled with three functions. We model the join queue with a different set

of functions. The arrival() function checks the system to see if the system is blocked. It does this by

looking at the maximum number of jobs in each facility queue and the number of jobs in the join queue. If

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 11 3/10/99

the system is blocked, it will discard the arrival. Otherwise, the arriving token is scheduled to the request()

function with zero delay. If the server is available, request() schedules the release() function some time in

the future based on an exponential distribution and the facility�s service rate. With zero delay, the release()

function schedules the token to the join facility arrival function, S0_arrival().

The join facility also has three functions. The function S0_arrival() accepts a token from a facility�s

release() function. S0_arrival() uses an associative cache to count the arrival of tokens with the same

GID. We schedule each token for the function S0_purge() at the next purge time. The function

S0_purge() examines the associative cache. Any GID that has k arrivals is freed and appropriate counters

incremented. The third function periodically collects statistics on the purge process.

We store a two-dimensional array, pmf[jobs][removed]. The jobs dimension is the number of jobs

currently in the system. The removed dimension is the number of GID�s S0_purge() released since the last

purge event. We schedule a function S0_stats() just after S0_purge(). The stats function examines the

number of GID�s released and updates the pmf. It also updates the NextPurge variable, which stores the

time of the next S0_purge() event. NextPurge is either constant or exponential, depending on startup

parameters. If there are any tokens still in the system, S0_stats() schedules itself again.

The simulation will end when there are no more tokens in the system and the last S0_stats() event finishes.

We may then compute statistics from the pmf array. We compute the expected number of jobs removed for

each jobs index, where the jobs index is the number of jobs in the system. This yields an observed

estimation of the probability P[J | M], where J is the number of jobs removed and M is the number of jobs

in the system.

For k=2 and k=3 ran the simulation for ten repetitions with the same system parameters. For k=5, we ran

for ten repetitions, but with only 5,000 arrivals. Each run reported E[J | M], the expected number of jobs

removed given the number of jobs in the system. We averaged this number of the ten repetitions. Each

trial also reported the overall E[J], which we use to compare results with the analytical model.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 12 3/10/99

Section 6: Simulation and Model Comparison

We found that our approximation model generally agrees with simulation results. Figures 4 to 21 show the

probability mass function for E[J | M] from our simulation runs. We also show the 95% confidence

interval for each simulation result. A confidence interval of exactly 0 indicates the variance was exactly

zero, which usually means that the value only appeared once. Each data series also includes a valued

labeled �all�. This represents E[J] over all M. We compare E[J] with the results from our model. The

data point for the model is labeled �Model.� The confidence value for the Model is actually the percentage

difference between the �Model� value and the �All� value. We compute the percentage difference as

(Model � All) / Model.

Each graph has a specific k value, which is the number of �receiver� queues. It is the number of parallel

systems. N is the maximum number of jobs allowed in the system. The Skew parameter is the amount of

change between each server. The �fastest� server has the stated service period (1/µ). Each server beyond

the first has a service period of 1/µ + k * skew. The other values have standard meanings, as defined

earlier in the paper.

In general, our model was within 10%, except for the k=3, N=10, ∆=5 series (Figures 4-7). This series

was consistently 30% over simulation. We would expect that it has to do with how we estimated the drain

rate in the Markov model. For the same parameters, but with ∆=10 (Figures 8-11), we find the model is in

reasonable agreement with simulation.

We also included two data series with k=5 servers. We only run these for N=5, which generated 756

states. Our model performed well against the simulation results. The simulations were only run for 5,000

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 13 3/10/99

arrivals, as opposed to the 10,000 arrivals for other data series as a time saving measure. The model was

within 3% of the simulation results.

We see from figures for the k=2 series (Figures 12-19) that the modeling and the simulation agree

reasonably well. Half the series are under 5% difference, and all are under 14%. The series that are over

5% difference are those where the drain rate is comparable to the service rate.

In the k=3 series (Figures 4-11), we see similar behavior. In Figures 4 to 7, the model performs poorly

compared to the simulation. The results are consistently about 30% over simulation. In these cases, the

drain rate is too small for the number of jobs generated by the Markov model.

The k=5 series (Figures 20-21) agree very well with simulation. Our results are within 3% for the two

series we analyzed.

Section 7: Conclusion

The general agreement of our model with simulation, usually within 10%, shows promise that our

intermediate server approximation could model large k systems. An implementation that uses sparse

matrices and iterative methods would be required for larger N values. A key point of further research is

how to better model the draining from the Markov chain. Our approximation for the purge process is not

always suitable.

We note that when the drain rate is approximately equal to the service rate, our model does not match

simulation well. We believe this is an effect of our Markov model. Our approximation for M, the number

of jobs in the system, does not account for tasks in the intermediate queues. When the drain rate is

approximately equal to the service rate, the number of unaccounted tasks in the intermediate queues is at its

peak. This is also the case when a large number of jobs come into the join queue via the Intermediate

Server Probability . One may be able to refine our model by a better accounting of these deficits.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 14 3/10/99

References

[BA98] Balsamo, Simonetta, L. Donatiello, N. Van Dijk, �Bound Performance Models of

Heterogeneous Parallel Processing Systems,� IEEE Trans. PDS, v. 9 n. 10, Oct. 1998, pp.

1041-1056.

[DA94] Dallery, Yves, Z. Liu, D. Towsley, �Equivalence, Reversibility, Symmetry and

Concavity Properties in Fork-Join Queuing Networks with Blocking,� J. ACM, v. 41 n. 5,

Sept. 1994, pp. 903-942.

[DA97] Dallery, Yves, Z. Liu, D. Towsley, �Properties of Fork/Join Queuing Networks with

Blocking Under Various Operating Mechanisms,� IEEE Trans. Robotics and

Automation, v. 13 n. 4, Aug. 1997, pp. 503-518.

[FI95] Fishwick, Paul A., Simulation Model Design and Execution. Building Digital Worlds.

Prentice-Hall, Inc., New Jersey, 1995.

[FL84] Flatto, L, S. Hahn, �Two Parallel Queues Created by Arrivals With Two Demands I�,

SIAM J. Applied Math, v. 44, n. 5, Oct 1984, pp. 1041-1053.

[FL85] Flatto, L, S. Hahn, �Two Parallel Queues Created by Arrivals With Two Demands II�,

SIAM J. Applied Math, v. 45, n. 5, Oct 1985, pp. 861-878.

[FR97] Frostig, Esther, T. Lehtonen, �Stochastic Comparisons for Fork-Join Queues with

Exponential Processing Times,� J. Appl. Prob, v. 34, 1997, pp. 487-497.

[LU98] Lui, John C. S., R. Muntz, D. Towsley, �Computing Performance Bounds of Fork-Join

Parallel Programs Under a Multiprocessing Environment,� IEEE Trans. PDS, v. 9 n. 3,

Mar. 1998, pp. 295-311.

[NE81] Neuts, Marcel. F., Matrix-Geometric Solutions in Stochastic Models. An Algorithmic

Approach, Dover Publications, Inc., New York: 1981.

[PR88] Press, William H., B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C.

The Art of Scientific Computing, Cambridge University Press, Cambridge: 1988.

[ST94] Stewart, William J., Introduction to the Numerical Solution of Markov Chains, Princeton

University Press: New Jersey, 1994.

CMPE 230 Project Marc Mosko
Ovid Jacob

Page 15 3/10/99

[TH94] Thomasian, Alexander, A. Tantawi, �Approximate Solutions for M/G/1 Fork/Join

Synchronization,� Proc. 1994 Winder Simulation Conference, Florida Dec. 11-14, 1994,

pp. 361-368.

 [VA96] Varki, Elizabeth, L. Dowdy, �Analysis of Balanced Fork-Join Queuing Networks,� Perf.

Eval. Rev., v. 24 n. 1, May 1996, pp. 232-241.

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=3, N=10, ∆=5, λ=1, 1/µ=0.1, skew=0

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.9761 1.9528 2.9192 3.9095 4.8797 5.8447 7.7986 8.8062 9.8418 4.9314 7.18

Confidence 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002 0.0006 0.0017 0.0011 0.0011 31.3%

1 2 3 4 5 6 8 9 10 all Model

Fig. 4

Expected Number Purged Jobs
k=3, N=10, ∆=5, λ=1, 1/µ=0.1, skew=0.025

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.9619 1.9357 2.9086 3.8874 4.8516 5.8218 7.718 8.7103 9.7557 4.9754 7.23

Confidence 0.0005 0.0003 0.0002 0.0001 0.0002 0.0001 0.0017 0.0019 0.0045 0.0007 31.2%

1 2 3 4 5 6 8 9 10 all Model

Fig. 5

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=3, N=10, ∆=5, λ=1, 1/µ=0.5, skew=0

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.9263 1.8562 2.7175 3.5799 4.396 5.1788 5.8433 6.4459 7.0901 7.521 4.8435 6.80

Confidence 0.0008 0.0006 0.0015 0.0016 0.0021 0.0022 0.005 0.0048 0.0095 0.0124 0.0009 28.8%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 6

Expected Number Purged Jobs
k=3, N=10, ∆=5, λ=1, 1/µ=0.5, skew=0.125

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.8862 1.7349 2.5494 3.2074 3.9136 4.381 4.9688 5.2199 5.404 4.5392 6.65

Confidence 0.005 0.0031 0.0052 0.0017 0.0058 0.0015 0.0104 0.0138 0.0029 0.0019 31.7%

1 2 3 4 5 6 8 9 10 all Model

Fig. 7

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=3, N=10, ∆=10, λ=1, 1/µ=0.1, skew=0

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1 1.9688 3 3.949 4.951 5.9411 7.9076 8.8838 9.9652 8.541 8.76

Confidence 0 0.0047 0 0.0009 0.0013 0.0005 0.0001 0.0005 5E-05 0.0012 2.6%

1 2 3 4 5 6 8 9 10 all Model

Fig. 8

Expected Number Purged Jobs
k=3, N=10, ∆=10, λ=1, 1/µ=0.1, skew=0.025

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1 2 2.95 3.9378 4.9224 5.8738 7.8832 8.8863 9.9548 8.4812 8.78

Confidence 0 0 0.0029 0.0015 0.0012 0.0012 0.0002 0.0003 7E-05 0.0014 3.4%

1 2 3 4 5 6 8 9 10 all Model

Fig. 9

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=3, N=10, ∆=10, λ=1, 1/µ=0.5, skew=0

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1 2 2.9026 3.7794 4.6898 5.6348 7.452 8.292 9.2892 7.844 8.61

Confidence 0 0 0.0046 0.0111 0.01 0.0058 0.0045 0.0031 0.0014 0.0008 8.9%

1 2 3 4 5 6 8 9 10 all Model

Fig. 10

Expected Number Purged Jobs
k=3, N=10, ∆=10, λ=1, 1/µ=0.5, skew=0.125

0

2

4

6

8

10

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1 1.7708 2.8592 3.6078 4.4154 5.2794 6.7672 7.4438 8.1904 7.4164 8.56

Confidence 0 0.0815 0.01 0.0315 0.0147 0.0086 0.0163 0.0106 0.0059 0.0017 13.4%

1 2 3 4 5 6 8 9 10 all Model

Fig. 11

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=2, N=10, ∆=5, λ=1, 1/µ=0.1, skew=0

(2.00)
-

2.00
4.00
6.00
8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.97 1.96 2.92 3.89 4.89 5.85 6.85 7.82 8.79 9.81 4.95 4.93

Confidence 3E-04 6E-05 2E-04 1E-04 3E-04 6E-05 5E-04 8E-04 0.002 0.004 6E-04 -0.4%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 12

Expected Number Purged Jobs
k=2, N=10, ∆=5, λ=1, 1/µ=0.1, skew=0.05

(2.00)
-

2.00
4.00
6.00
8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.96 1.94 2.91 3.89 4.84 5.80 6.76 7.74 8.66 9.74 4.92 4.90

Confidence 2E-04 3E-04 1E-04 6E-05 2E-04 4E-04 0.001 0.001 0.002 0.003 0.002 -0.4%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 13

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=2, N=10, ∆=5, λ=1, 1/µ=0.5, skew=0

(2.00)
-

2.00
4.00
6.00
8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.93 1.84 2.76 3.63 4.47 5.28 6.05 6.71 7.23 7.79 4.87 4.42

Confidence 0.0012 0.001 0.0006 0.0007 0.0007 0.002 0.0029 0.0113 0.0088 0.0127 0.0008 -10.2%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 14

Expected Number Purged Jobs
k=2, N=10, ∆=5, λ=1, 1/µ=0.5, skew=0.25

(2.00)
-

2.00
4.00
6.00
8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.91 1.72 2.53 3.22 3.70 4.11 4.49 4.67 4.78 4.90 4.35 4.00

Confidence 0.003 0.003 0.001 0.006 0.005 0.005 0.01 0.027 0.008 0.006 0.001 -8.7%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 15

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=2, N=10, ∆=10, λ=1, 1/µ=0.1, skew=0

-

2.00

4.00

6.00

8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1.00 2.00 2.99 3.94 4.97 5.92 6.90 7.90 8.88 9.96 8.63 8.93

Confidence 0 0 9E-04 0.001 5E-04 3E-04 0.001 6E-04 4E-04 4E-05 0.001 3.4%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 16

Expected Number Purged Jobs
k=2, N=10, ∆=10, λ=1, 1/µ=0.1, skew=0.05

-

2.00

4.00

6.00

8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1.00 2.00 2.99 3.94 4.92 5.94 6.88 7.87 8.84 9.95 8.48 8.91

Confidence 0 0 7E-04 0.001 8E-04 4E-04 0.002 5E-04 5E-04 8E-05 0.003 4.8%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 17

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=2, N=10, ∆=10, λ=1, 1/µ=0.5, skew=0

-

2.00

4.00

6.00

8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1.00 1.93 2.94 3.78 4.76 5.72 6.68 7.50 8.46 9.42 7.96 8.54

Confidence 0 0.013 0.004 0.005 0.008 0.003 0.003 0.007 0.003 0.002 0.003 6.9%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 18

Expected Number Purged Jobs
k=2, N=10, ∆=10, λ=1, 1/µ=0.5, skew=0.25

-

2.00

4.00

6.00

8.00

10.00

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 1.00 1.79 2.78 3.56 4.40 5.20 6.08 6.67 7.37 7.86 7.26 8.36

Confidence 0 0.098 0.055 0.032 0.041 0.011 0.009 0.011 0.016 0.007 0.004 13.1%

1 2 3 4 5 6 7 8 9 10 all Model

Fig. 19

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

CMPE230 Class Project Marc Mosko
Ovid Jacob

Expected Number Purged Jobs
k=5, N=5, ∆=5, λ=1, 1/µ=0.5, skew=0

0

1

2

3

4

5

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.8934012 1.770017 2.616757 3.418703 4.221787 3.460745 3.54344

Confidence 0.0004712 0.0017105 0.0026378 0.0013293 0.0017246 0.0005657 2.3%

1 2 3 4 5 all Model

Fig. 20

Expected Number Purged Jobs
k=5, N=5, ∆=1, λ=1, 1/µ=0.1, skew=0

0

1

2

3

4

5

Jobs In System

E
xp

ec
te

d
 J

o
b

s
P

u
rg

ed

E[J | M] Confidence

E[J | M] 0.8879682 1.771004 2.634027 3.407288 4.297625 1.0038147 1.01465

Confidence 2.316E-05 3.954E-05 0.0006705 0.0017861 0.0075488 8.89E-05 1.1%

1 2 3 4 5 all Model

Fig. 21

k = # queues
N = max jobs
∆ = Purge interval
λ = arrival rate
1/µ = Fastest server period
skew = 1/µ increment per server

	Marc Mosko
	C
	CMPE 230 Class Project
	Introduction
	Section 2: Related Work
	Section 3: Problem Model
	Section 4: Model Analysis
	Section 5: Simulation
	Section 6: Simulation and Model Comparison
	Section 7: Conclusion
	References

