
Transforming equality logic to
propositional logic

Hans Zantema and Jan Friso Groote
Department of Computer Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.zantema@tue.nl jfg@win.tue.nl

Abstract

We investigate and compare various ways of transforming equality for-
mulas to propositional formulas, in order to be able to solve satisfiability
in equality logic by means of satisfiability in propositional logic. We pro-
pose equality substitution as a new approach combining desirable properties
of earlier methods, we prove its correctness and show its applicability by
experiments.

1 Introduction

We consider equality formulas being propositional formulas in which the atoms
are equalities between variables. Two such formulas are called equality equivalent,
denoted by 'E, if for any interpretation of the variables in any domain they yield
the same result. For instance, we have

x = y ∧ x = z 'E x = y ∧ y = z

since for both formulas the result is true if and only if the variables x, y, z all
three have the same interpretation. On the other hand, in propositional logic
they are not equivalent: writing p, q, r for x = y, x = z, y = z, respectively, we
do not have p ∧ q ≡ p ∧ r.

The main question we address is the question of how to check whether two
(big) equality formulas are equality equivalent automatically. A direct observa-
tion shows that

φ 'E ψ ⇐⇒ ¬(φ↔ ψ) 'E false,

hence checking equivalence of two formulas can be done by checking whether
a formula is equivalent to false. The latter is called satisfiability, hence we are
interested in satisfiability of equality formulas.

1

This problem plays an important role in hardware verification. In fact there
one is interested in a slightly more extensive logic: the logic of equality with
uninterpreted functions (UIF, [5]). However, by Ackermann’s transformation ([1])
the problem of deciding validity of a formula in UIF is reduced to satisfiability of
equality formulas. More recently, an improved transformation serving the same
goal was proposed in [3].

One approach was presented in [7], where a variant of BDD-technology (EQ-
BDDs) was developed for satisfiability of equality formulas. The given method is
complete in the sense that their algorithm always terminates, and decides whether
the given formula is satisfiable. Unfortunately, in EQ-BDDs there is no unique
representation as is the case in ordinary BDDs for propositional formulas. An-
other method is proposed in [11]. There a resolution-like method was developed
for checking satisfiability formulas in CNF.

A different approach is first transform the equality formula to a propositional
formula and then analyze this propositional formula. For propositional formulas
a lot of work has been done for efficient satisfiability checking, yielding a variety
of efficient and usable implementations. In this paper we concentrate on transfor-
mations Ψ from equality formulas to propositional formulas by which satisfiability
of equality formulas is transformed to satisfiability of propositional formulas, i.e.,

φ 'E false ⇐⇒ Ψ(φ) ≡ false.

Having such a transformation Ψ then checking satisfiability of an equality formula
φ proceeds as follows: compute Ψ(φ) and decide whether Ψ(φ) ≡ false by a stan-
dard satisfiability checker for propositional formulas. For such a transformation
Ψ a number of properties is desirable:

• the size of Ψ(φ) is not too big;

• the structure of Ψ(φ) reflects the structure of φ;

• the variables of Ψ(φ) represent equalities in φ.

The main goal of these properties is that checking (propositional) satisfiability
of Ψ(φ) by standard techniques is feasible for a reasonable class of formulas φ.
Roughly speaking two main approaches can be distinguished:

1. Addition of transitivity. In this approach it is analyzed which transitivity
properties may be relevant for φ, and Ψ is defined by

Ψ(φ) = φ ∧ T,

where T is the conjunction of the relevant transitivity properties. This
approach is followed in [6, 4, 2].

2

2. Bit vector encoding. In this approach dlog(#A)e boolean variables xi are
introduced for every variable x, where #A is the size of the set A of vari-
ables, and Ψ(φ) is obtained from φ by replacing every x = y by∧

i

(xi ↔ yi).

In [6] this is already mentioned as a folklore method. Closely related is
range allocation [9, 10]. In this approach a formula structure is analyzed to
define a small domain for each variable, preferably smaller than #A. Then
a standard BDD based tool is used to check satisfiability of the formula
under the domain.

By addition of transitivity the variables of Ψ(φ) represent equalities in φ, but
the structure of Ψ(φ) does not reflect the structure of φ. For instance, if φ is a
formula over n variables then the size of T is Θ(n3) which can be much bigger
than the size of φ itself. On the other hand by bit vector encoding the structure
of Ψ(φ) reflects the structure of φ, but the variables of Ψ(φ) do not represent
equalities in φ. Moreover, although the size of the transformed formula is small,
it often turns out that the efficiency of proving unsatisfiability of this formula by
standard approaches is very bad.

In this paper we define equality substitution eqs as an alternative transforma-
tion that combines both desired properties. The emphasis is on proving correct-
ness: both for the earlier approaches and equality substitution we prove the basic
correctness property φ 'E false ⇐⇒ Ψ(φ) ≡ false. We are not aware of earlier
full proofs for the earlier approaches. In the last section we report some experi-
ments showing that equality substitution outperforms the bit vector encoding for
a class of formulas similar to the pigeon hole formulas. Comparison of equality
substitution to addition of transitivity shows a similar performance, but equality
substitution yields much smaller formulas.

2 Basic definitions and properties

Let A be a finite set of variable symbols. We define an equality formula by the
syntax

V ::= x | y | z | · · · where A = {x, y, z, . . .}
E ::= V = V | true | false | ¬E | (E ∨ E) | (E ∧ E) | (E → E) | (E ↔ E)

Hence an equality formula consists of equations x = y for x, y ∈ A and usual
boolean connectives. As usual redundant parentheses will be omitted. For in-
stance, if x, y, z ∈ A then (x = y ∧ y = z) → x = z is an equality formula.

A domain D is defined to be a non-empty set. For any domain D we call
a function ε : A → D an assignment to D. For any assignment ε we define its
interpretation ε on equality formulas inductively as follows:

3

ε(x = y) =

{
true if ε(x) = ε(y)
false if ε(x) 6= ε(y)

ε(true) = true
ε(false) = false

ε(¬φ) = ¬ε(φ)
ε(φ ∨ ψ) = ε(φ) ∨ ε(ψ)
ε(φ ∧ ψ) = ε(φ) ∧ ε(ψ)
ε(φ→ ψ) = ε(φ) → ε(ψ)
ε(φ↔ ψ) = ε(φ) ↔ ε(ψ)

Two equality formulas φ, ψ are called equality equivalent, denoted as φ 'E ψ,
if ε(φ) = ε(ψ) for every domain D and every assignment ε to D. For instance,
one can check that

(x = y ∧ y = z) → x = z 'E true.

We will concentrate on the question how to decide whether φ 'E ψ for arbi-
trary equality formulas φ, ψ. It is easily checked that

φ 'E ψ ⇐⇒ ¬(φ↔ ψ) 'E false

hence we may and shall concentrate on the question whether φ 'E false for a
given equality formula φ.

Fix a total order < on A. For an equality formula φ write R(φ) for the equality
formula obtained from φ by replacing every x = x by true and replacing x = y
by y = x if y < x, for all x, y ∈ A. Clearly R(φ) 'E φ for every equality formula
φ. An equality formula φ is called reduced if φ = R(φ), i.e., it only contains
equations x = y satisfying x < y. By applying this reduction our question of
deciding φ 'E false for arbitrary equality formulas reduces to the question of
deciding φ 'E false for a reduced equality formula φ.

We write ≡ for logical equivalence in the sense of propositional logic; if ap-
plied to equality formulas this means that an equation x = y is considered as a
propositional atom.

Write T for the conjunction of all formulas

¬R(x = y) ∨ ¬R(y = z) ∨R(x = z)

for which x, y, z ∈ A are all three distinct.

Theorem 1 Let φ be a reduced equality formula. Then φ 'E false if and only if
φ ∧ T ≡ false.

Proof: First assume that φ ∧ T ≡ false. Let ε : A → D be arbitrary; we have
to prove that ε(φ) = false. By transitivity of equality in D we obtain that

ε(¬R(x = y) ∨ ¬R(y = z) ∨R(x = z)) = true.

As a consequence we obtain ε(T) = true. Hence

ε(φ) = ε(φ) ∧ ε(T) = ε(φ ∧ T) = false;

4

the last step follows from φ ∧ T ≡ false and the definition of ε.
Conversely assume that φ 'E false holds and φ∧ T 6≡ false; we have to derive

a contradiction. Since φ ∧ T is satisfiable there is an assignment δ on the atoms
of the shape x = y to the booleans such that δ(φ ∧ T) = true, where δ is the
interpretation corresponding to δ. Hence δ(φ) = δ(T) = true. Define the relation
' in A as follows:

x ' y ⇐⇒ δ(R(x = y)).

From the definition of R it follows that ' is reflexive and symmetric; since δ(T) =
true we conclude that ' is transitive. Hence ' is an equivalence relation. By
injectively mapping the equivalence classes of ' to some domain D we obtain an
assignment ε : A→ D satisfying

x ' y ⇐⇒ ε(x) = ε(y).

By construction we now have ε(φ) = δ(φ) = true, contradicting the assumption
φ 'E false. 2

Theorem 1 shows that addition of transitivity is a valid approach for trans-
forming equality formulas to propositional formulas by which satisfiability of
equality formulas is transformed to satisfiability of propositional formulas. The
next theorem states validity of the bit vector encoding approach.

Fix N to be the smallest number satisfying 2N ≥ #A. For every x ∈ A
introduce N boolean variables x1, . . . , xN . Write AN for the set of all of these
N ∗ #A boolean variables. The bit vector encoding bve transforming equality
formulas over A to propositional formulas over AN is defined as follows:

bve(x = y) =
N∧

i=1

(xi ↔ yi),

bve(true) = true, bve(false) = false, bve(¬φ) = ¬bve(φ),

bve(φ � ψ) = bve(φ) � bve(ψ)

for x, y ∈ A, � ∈ {∨,∧,→,↔}.

Theorem 2 Let φ be an equality formula over A. Then φ 'E false if and only
if bve(φ) ≡ false.

Proof: For the ‘if’ part we take an arbitrary assignment ε : A → D satisfying
ε(φ) = true and we prove that this gives rise to a satisfying assignment for bve(φ).
Since #ε(A) ≤ #A ≤ 2N there exists an injective map α : ε(A) → {false, true}N .
Define α : AN → {false, true} by

α(ε(x)) = (α(x1), . . . , α(xN))

5

for all x ∈ A. Extend α to propositional formulas over AN by defining

α(true) = true, α(false) = false, α(¬φ) = ¬α(φ),

α(φ � ψ) = α(φ) � α(ψ)

for x, y ∈ A, � ∈ {∨,∧,→,↔}. For x, y ∈ A we obtain

ε(x = y) = true ⇐⇒ ε(x) = ε(y)
⇐⇒ α(ε(x)) = α(ε(y)) (since α is injective)
⇐⇒ (α(x1), . . . , α(xN)) = (α(y1), . . . , α(yN))
⇐⇒ α(x1) = α(y1) ∧ · · · ∧ α(xN)) = α(yN)

⇐⇒ α(
∧N

i=1(xi ↔ yi)) = true
⇐⇒ α(bve(x = y)) = true.

This holds for every equality x = y. Hence,

α(bve(φ)) = ε(φ) = true.

So, we have a satisfying assignment α for bve(φ), which we had to prove.
For the converse assume α : AN → {false, true} is a satisfying assignment for

bve(φ). Let D = {false, true}N . Define ε : A → D by ε(x) = (α(x1), . . . , α(xN)).
Similarly as above we obtain α(bve(x = y)) = true ⇐⇒ ε(x = y) = true,
hence from α(bve(φ)) = true we may conclude ε(φ) = true, contradicting the
assumption φ 'E false. 2

The requirement 2N ≥ #A is essential for the validity of Theorem 2 as is
shown by the following example. Let A = {x1, . . . , xn} and n > 2N . Then∧

1≤i<j≤n

¬(xi = xj) 6'E false,

while

bve(
∧

1≤i<j≤n

¬(xi = xj)) =
∧

1≤i<j≤n

¬(
N∧

k=1

(xik ↔ xjk)) ≡ false.

3 Equality substitution

In this section equality substitution eqs is introduced for transforming equality
formulas to propositional formulas, combining desired properties of the two trans-
formations considered until now. Just like in bit vector encoding a substitution
is applied on the equalities in the formula, and the rest of the formula remains
unchanged. The main point is to define eqs(x = y) for variables x, y such that
φ 'E ψ ⇐⇒ eqs(φ) ≡ eqs(ψ).

6

Let < on A be the order that we already fixed for defining R. It is convenient
to number the elements of A with respect to this order, i.e., we assume A =
{x1, x2, . . . , xn} for n = #A, satisfying

xi < xj ⇐⇒ i < j.

For every i, j satisfying 1 ≤ i < j ≤ n we introduce a fresh propositional
variable pij; the set of all these n(n−1)

2
variables is denoted by PA.

For 1 ≤ k ≤ i < j ≤ n we define P (k, i, j) inductively by

P (i, i, j) = pij

for all i, j satisfying 1 ≤ i < j ≤ n, and

P (k, i, j) = (pki ∧ pkj) ∨ (¬pki ∧ ¬pkj ∧ P (k + 1, i, j))

for all k, i, j satisfying 1 ≤ k < i < j ≤ n. We will use these formulas only for
k = 1; the formula P (1, i, j) is a propositional formula over PA of size O(i). For
instance, P (1, 3, 5) is equal to

(p13 ∧ p15) ∨ (¬p13 ∧ ¬p15 ∧ ((p23 ∧ p25) ∨ (¬p23 ∧ ¬p25 ∧ p35))).

We define the transformation eqs from equality formulas over A to proposi-
tional formulas over PA as follows:

eqs(xi = xj) =

true if i = j,
P (1, i, j) if i < j,
P (1, j, i) if j < i,

eqs(true) = true, eqs(false) = false, eqs(¬φ) = ¬eqs(φ),

and
eqs(φ � ψ) = eqs(φ) � eqs(ψ)

for � ∈ {∨,∧,→,↔}.
It is hard to give an intuition for eqs other than what follows directly from

its definition; surprisingly the original intuition we had for eqs turned out to be
wrong. Many modifications of eqs turned out to violate the essential property
below.

Theorem 3 Let φ, ψ be arbitrary equality formulas over A. Then

φ 'E ψ ⇐⇒ eqs(φ) ≡ eqs(ψ).

7

Indeed, eqs((x1 = x2 ∧ x2 = x3) → x1 = x3) is equal to

(p12 ∧ ((p12 ∧ p13) ∨ (¬p12 ∧ ¬p13 ∧ p23))) → p13

which is logically equivalent to eqs(true) = true.
In the remainder of this section we prove Theorem 3. We start by proving

φ 'E ψ ⇐= eqs(φ) ≡ eqs(ψ).

We assume that
δ(eqs(φ)) = δ(eqs(ψ))

for all δ : PA → Bool, and we have to prove that ε(φ) = ε(ψ) for every domain D
and every assignment ε : A→ D. This follows from the following lemma, proving
the ⇐-part of Theorem 3.

For an assignment ε : A→ D we define δε : PA → Bool by

δε(pij) ⇐⇒ ε(xi) = ε(xj).

Lemma 4 Let φ be an equality formula and let ε : A → D be any assignment.
Then

ε(φ) = δε(eqs(φ)).

Proof: Due to the compositional definition of eqs it suffices to prove this for φ
being of the shape xi = xj. In case of i = j this holds since ε(xi = xi) = true =
δε(true) = δε(eqs(xi = xi)). In the remaining case i 6= j we may assume i < j by

ε(xi = xj) = ε(xj = xi)

and symmetry in the definition of eqs. Since eqs(xi = xj) is equal to P (1, i, j) it
remains to prove

ε(xi = xj) ⇐⇒ δε(P (1, i, j)).

We prove this by proving the stronger claim

ε(xi = xj) ⇐⇒ δε(P (k, i, j)).

for all k = 1, 2, . . . , i by reverse induction on k. For k = i this holds by definition.
As the induction hypothesis we now assume

ε(xi) = ε(xj) ⇐⇒ ε(xi = xj) ⇐⇒ δε(P (k + 1, i, j)).

Now we have

δε(P (k, i, j)) ⇐⇒ (by definition)

δε((pki ∧ pkj) ∨ (¬pki ∧ ¬pkj ∧ P (k + 1, i, j))) ⇐⇒ (by definition)

(ε(xk) = ε(xi)∧ ε(xk) = ε(xj))∨ (ε(xk) 6= ε(xi)∧ ε(xk) 6= ε(xj)∧ δε(P (k+1, i, j)))

8

⇐⇒ (by the induction hypothesis)

(ε(xk) = ε(xi) ∧ ε(xk) = ε(xj)) ∨ (ε(xk) 6= ε(xi) ∧ ε(xk) 6= ε(xj) ∧ ε(xi) = ε(xj))

⇐⇒ (by transitivity of =)

(ε(xk) = ε(xi) ∧ ε(xi) = ε(xj)) ∨ (ε(xk) 6= ε(xi) ∧ ε(xk) 6= ε(xj) ∧ ε(xi) = ε(xj))

⇐⇒ (proposition logic)

(ε(xk) = ε(xi) ∨ ε(xk) 6= ε(xj) ∨ ε(xi) 6= ε(xj)) ∧ ε(xi) = ε(xj)

⇐⇒ (by transitivity of =)

ε(xi) = ε(xj) ⇐⇒ ε(xi = xj)

which we had to prove. 2

The hard part of Theorem 3 is the ⇒-part. For that we need a lemma.

Lemma 5 Let T be the conjunction of all formulas

¬R(x = y) ∨ ¬R(y = z) ∨R(x = z)

for which x, y, z ∈ A are all three distinct. Then eqs(T) ≡ true.

Proof: We have to prove that eqs(¬R(x = y) ∨ ¬R(y = z) ∨ R(x = z)) ≡ true.
Let j, k,m satisfying 1 ≤ j < k < m ≤ n be the numbers of the variables x, y, z in
some order. Then the required property is one of the following three propositional
equivalences:

¬P (1, j, k) ∨ ¬P (1, j,m) ∨ P (1, k,m) ≡ true,

¬P (1, j, k) ∨ P (1, j,m) ∨ ¬P (1, k,m) ≡ true,

P (1, j, k) ∨ ¬P (1, j,m) ∨ ¬P (1, k,m) ≡ true.

We will prove the more general property that for every i satisfying 1 ≤ i ≤ j the
following three propositional equivalences hold:

¬P (i, j, k) ∨ ¬P (i, j,m) ∨ P (i, k,m) ≡ true,

¬P (i, j, k) ∨ P (i, j,m) ∨ ¬P (i, k,m) ≡ true,

P (i, j, k) ∨ ¬P (i, j,m) ∨ ¬P (i, k,m) ≡ true.

First assume that the first equivalence does not hold. Then there is an as-
signment such that the propositions

P (i, j, k) = (pij ∧ pik) ∨ (¬pij ∧ ¬pik ∧ P (i+ 1, j, k)),

P (i, j,m) = (pij ∧ pim) ∨ (¬pij ∧ ¬pim ∧ P (i+ 1, j,m)),

¬P (i, k,m) = (¬pik ∨ ¬pim) ∧ (pik ∨ pim ∨ ¬P (i+ 1, k,m))

9

all three hold. If pij holds then we conclude from the validity of the first two
propositions that pik and pim both hold too, contradicting the validity of the
third proposition. Hence ¬pij holds. Then by validity of all three propositions
we conclude that ¬pik, ¬pim, P (i+ 1, j, k), P (i+ 1, j,m) and ¬P (i+ 1, k,m) all
hold. Repeating the same argument j − i times yields that

P (j, j, k) = pjk, P (j, j,m) = pjm,

¬P (j, k,m) = (¬pjk ∨ ¬pjm) ∧ (pjk ∨ pjm ∨ ¬P (j + 1, k,m))

all three hold, contradiction. Hence the first equivalence to be proved holds.
Next assume that the second equivalence does not hold. Then in a similar

way after j − i steps we obtain that

P (j, j, k) = pjk, ¬P (j, j,m) = ¬pjm,

P (j, k,m) = (pjk ∧ pjm) ∨ (¬pjk ∧ ¬pjm ∧ P (j + 1, k,m))

all three hold, contradiction.
Finally assuming that the third equivalence does not hold yields in a similar

way that
¬P (j, j, k) = ¬pjk, P (j, j,m) = pjm,

P (j, k,m) = (pjk ∧ pjm) ∨ (¬pjk ∧ ¬pjm ∧ P (j + 1, k,m))

all three hold, contradiction. 2

Now we prove the ⇒-part of Theorem 3.
Assume φ 'E ψ. Then ¬(φ ↔ ψ) 'E false. From Theorem 1 we conclude

that ¬(φ ↔ ψ) ∧ T ≡ false. In this equivalence the equalities are considered
as propositional variables. Since eqs has been defined as a substitution on these
variables we conclude eqs(¬(φ↔ ψ) ∧ T) ≡ false. We obtain

¬(eqs(φ) ↔ eqs(ψ)) ≡ eqs(¬(φ↔ ψ))
≡ eqs(¬(φ↔ ψ)) ∧ eqs(T) (by Lemma 5)
= eqs(¬(φ↔ ψ) ∧ T)
≡ false

hence eqs(φ) ≡ eqs(ψ), which concludes the proof of Theorem 3.

4 Experimental results

In this section we report some experimental results comparing addition of tran-
sitivity, bit vector encoding and equality substitution, all three in combination
with various propositional satisfiability provers.

10

We consider the formulas formn from [11] that are related to the pigeon hole
formulas in proposition calculus. Just like pigeon hole formulas these are pa-
rameterized by a number n, they are easily seen to be contradictory by a meta
argument, and each of the formulas is the conjunction of two subformulas. The
formulas are defined as follows.

formn ≡ (
∧

1≤i<j≤n

xi 6= xj) ∧
n∧

j=1

(
∨

i∈{1,...,n},i6=j

xi = y)

There are n+1 variables x1, . . . , xn, y. The first subformula states that all values
of x1, . . . , xn are different. The second subformula states that the value of y occurs
in every subset of size n − 1 of {x1, . . . , xn}, hence it will occur at least twice
in {x1, . . . , xn}, contradicting the property of the first subformula. Hence the
total formula is unsatisfiable. This is a non-trivial kind of unsatisfiability in the
following sense: the whole formula is a conjunction of a great number of formulas,
and for every of these conjuncts it holds that the formula is satisfiable after
removing the conjunct. Moreover, for every pair of variables the equality between
these variables occurs in the formula, either positively or negatively. Since pigeon
hole like formulas are well-known to be notoriously hard in propositional logic, we
consider this formula to be an interesting candidate for experiments for techniques
for checking satisfiability of equality formulas. We did our experiments on the
formula formn for n having the values 10, 15, 20, 30, 40, 50, 60.

We used three different propositional satisfiability checkers. The first one con-
sists of computing the BDD using the package CUDD, see
http://supportweb.cs.bham.ac.uk/documentation/cudd/. In the table this
checker is denoted by ‘bdd’. The second one first transforms the formula to CNF
using Tseitin’s transformation and then applies zChaff, see
http://ee.princeton.edu/~chaff/zchaff.php. In the table this checker is
denoted by ‘ch’. The last one is the checker HeerHugo ([8]), denoted by ‘hh’. All
experiments are carried out under Linux on a 1Ghz. pentium 4.

The following table reports the results. Times are in seconds; ‘-’ means that
more than 600 seconds were required. Size indicates the number of binary symbols
in the propositional formula.

11

add transitivity bit vector encoding equality substitution
n size bdd ch hh size bdd ch hh size bdd ch hh

10 1619 1 0 0 1079 56 1 113 794 0 0 0
15 5354 - 0 0 2519 - 7 - 2554 1 0 1
20 12539 - 0 0 5699 - 91 - 5889 20 0 1
30 41759 - 0 1 13049 - - - 19284 - 0 4
40 98279 - 1 3 28079 - - - 44979 - 1 16
50 191099 - 2 6 44099 - - - 86974 - 2 49
60 329219 - 4 11 63719 - - - 149269 - 5 123

About the bdd experiments with addition of transitivity we note that the
order in which the big conjunction is computed is of great influence on the result.
In the table we first computed the bdds of formn and T separately and then
computed the conjunction, as is suggested by the the shape of the formula. Only
computing the bdd of T is already very expensive: for 12 variables the resulting
bdd has over one million nodes. However, by computing the bdd of formn and
then consecutively taking conjunction with each of the transitivity properties
gives a much better result: then unsatisfiability of form60 is proved in 62 seconds.

As a conclusion from the table we may state that the best results are obtained
by the two transformations addition of transitivity and equality substitution, both
in combination with zChaff: then unsatisfiability of form60 is proved in only a few
seconds. Among these two transformations equality substitution gives rise to
the smallest formulas. Although bit vector encoding gives rise to much smaller
formulas, it gives a very bad performance on proving unsatisfiability.

5 Concluding Remarks

We proposed equality substitution as a new transformation by which the satisfi-
ability problem for equality logic is transformed to the satisfiability problem for
propositional logic. Both for earlier approaches and for this new approach we
gave proofs for correctness. We did some experiments on pigeon hole like formu-
las showing that equality substitution serves well for proving unsatisfiability of
equality formulas in combination with the propositional prover zChaff. Although
this involves only one particular class of formulas, it is an indication for practical
applicability.

References

[1] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam, 1954.

12

[2] R. Bryant and M. Velev. Boolean satisfiability with transitivity constraints.
ACM Transactions on Computational Logic, 3(4):604–627, October 2002.

[3] R.E. Bryant, S. German, , and M.N. Velev. Processor verification using
efficient reductions of the logic of uninterpreted functions to propositional
logic. ACM Transactions on Computational Logic, 2(1):93–134, January
2001.

[4] R.E. Bryant and M.N. Velev. Boolean satisfiability with transitivity con-
straints. In E.A. Emerson and A.P. Sistla, editors, Computer-Aided Verifi-
cation (CAV’00), volume 1855 of LNCS, pages 85–98. Springer-Verlag, July
2000.

[5] J.R. Burch and D.L. Dill. Automated verification of pipelined microproce-
soor control. In D.L. Dill, editor, Computer-Aided Verification (CAV’94),
volume 818 of LNCS, pages 68–80. Springer-Verlag, June 1994.

[6] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD based procedures
for a theory of equality with uninterpreted functions. In Proceedings of
Conference on Computer-Aided Verification (CAV), volume 1427 of Lecture
Notes in Computer Science, pages 244–255. Springer, 1998.

[7] J. F. Groote and J. C. van de Pol. Equational binary decision diagrams. In
M. Parigot and A. Voronkov, editors, Logic for Programming and Reasoning
(LPAR), volume 1955 of Lecture Notes in Artificial Intelligence, pages 161–
178. Springer Verlag, 2000.

[8] J. F. Groote and J. P. Warners. The propositional formula checker HeerHugo.
Journal of Automated Reasoning, 24:101–125, 2000.

[9] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality
formulas by small domains instantiations. In Computer Aided Verification
(CAV’99), volume 1633 of LNCS, pages 455–469. Springer-Verlag, 1999.

[10] Y. Rodeh and O. Shtrichman. Finite instantiations in equivalence logic with
uninterpreted functions. In Computer Aided Verification (CAV’01), volume
2102 of LNCS, pages 144–154. Springer-Verlag, July 2001.

[11] O. Tveretina and H. Zantema. A proof system and a de-
cision procedure for equality logic. Technical Report CS-report
03-02, Eindhoven University of Technology, 2003. Available via
http://www.win.tue.nl/~hzantema/TZ.pdf.

13

