
Proc. IASTED Robotics and Applications Conference, Santa Barbara, USA, October 1999.

LOCALLY-OPTIMAL PATH PLANNING BY USING PROBABILISTIC
ROADMAPS AND SIMULATED ANNEALING

GILDARDO SÁNCHEZ, FERNANDO RAMOS, JUAN FRAUSTO
Computer Science Department

ITESM Campus Morelos
Av. Paseo de la Reforma 182-A

Col. Lomas de Cuernavaca, 62589
Cuernavaca, Morelos, MEXICO

{gisanche, framos, jfrausto}@campus.mor.itesm.mx

Abstract:
It is presented an algorithm for locally-optimal path
planning which is based on Kavraki and Latombe’s
Probabilistic Roadmaps (PRM) and Simulated
Annealing (SA). The PRM method is able to
generate collision-free paths in a very short time
(once that the roadmap has been constructed).
However, when generating the paths, it is not taken
into consideration any optimization criteria. It means
that it would be interesting trying to reduce the cost
of the paths. We propose in this work a method
based on a simulated annealing to solve this
optimization problem. SA is a method that has been
successfully applied in complex optimization
problems, and it seems straightforward to think of its
application for optimizing a path provided by PRM.
In other words, PRM are used to generate one valid
solution, and SA is used to optimize it. The results
show that the method can be applied for off-line
planning (the SA took between 15 and 30 seconds in
most of the cases), and we established a set of results
that can be used in order to compare the performance
of SA against other optimization algorithms.

Keywords: path planning, optimization, randomized
algorithms, motion planning, manipulator robotics.

1. INTRODUCTION

Many efforts have been conducted in robotics research
for solving the basic problem of motion planning, which
consists on generating a collision-free path between an
initial and a goal position for one robot in a static and
completely known environment, where there could be
obstacles [1]. There is strong evidence that a complete
planner (i.e., one that finds a path whenever one exists and
indicates that no one exists otherwise), will take time
exponential in the number of degrees of freedom (dof) of
the robot (i.e, that the algorithm belongs to a class of
problem known as NP-Complete) [2].

The computational complexity of the problem suggests
the application of randomized techniques, in which case
there is a tradeoff between completeness and velocity of the
algorithm. Generally speaking, the algorithms for motion
planning can be broadly classified in any of two
possibilities: i) global planners, and ii) local planners. In the
first case it is required a complete model of the free space,
and in the second case the knowledge is bounded to a
certain neighborhood of the current position of the robot. In
practice, the global approach is well suited to generate
collision-free paths in the case of the basic problem. It is the
case of Probabilistic Roadmaps (PRM), a randomized
method proposed by Kavraki and Latombe which has been
successfully applied for solving motion planning problems
in static and completely known environments [3], [4].

The original PRMs find paths quickly (in the order of
seconds), considering that the graph used to represent the
free-space has already been constructed. The generated
paths are only guaranteed to be free of collision. However,
we think that it is possible to obtain better paths,
considering that a better path is one than uses more
efficiently the resources. For instance, by requiring less time
to complete the execution of the path or by demanding less
energy. In practice, finding better paths could imply
reducing cycle times for task execution, or reducing
operational costs of the robots.

This paper presents an algorithm for finding locally-
optimal paths1. The main idea is to obtain any path between
a pair of configurations, and optimizing it by using a well
known non-deterministic optimization technique called

1 The paths are named locally-optimal because of the
method we used for improving the path. It works on a
certain neigborhood of an initially proposed path, as a
consequence, we can only guarantee finding an optimum in
that restricted search space.

Proc. IASTED Robotics and Applications Conference, Santa Barbara, USA, October 1999.

Simulated Annealing (SA) [5]. The structure of this paper is
as follows: section two describes related works concerning
optimal path planning, section three presents the statement
of the problem to be tackled, section four describes the
algorithm proposed, section five shows the results obtained
and finally, section six presents conclusions and future
work.

2. RELATED WORK

One of the optimal motion problems that have
received more attention is the unconstrained shortest-path
problem in two dimensions. The problem consists of
computing, for a point robot, the shortest path between two
given points, such that the path does not intersect the
interior of a given set of polygons (considered as obstacles).
The algorithms developed for solving this problem can be
classified as visibility-graph methods and shortest-path-map
methods [6].

The visibility-graph methods are based on the
construction of a weighted graph and the application of any
Dijkstra-type algorithm for search. The critical step is the
construction of the visibility graph. The time required grow
very fast with the number of dof of the robot and the degree
of the algebraic equations used to describe the obstacles,
making this approach impractical for robots with more than
four degrees of freedom [1]. Any shortest path algorithm
that depends on an explicit construction of the visibility
graph will have a worst-case running time of Ω(n2) [2].

The shortest-path-map method constructs a planar
subdivision of the plane with respect to the start point s, so
that all points in the same region of the subdivision have the
same vertex sequence in their shortest paths from s. Many
works have been focused on very specific instances of the
problem, giving place to different algorithms, for instance,
Mitchell and Papadimitriou [7] presented an algorithm that
operates on planar subdivisions and which runs in O(n7L),
where n is the number of edges in the subdivision and L is
the precision of weights associated with the graph. The
shortest-path problem in three dimensions is substantially
more difficult that the 2D one; in fact, it was proved to be
NP-hard by Canny and Reif [8]. Most of the optimal motion
planning problems are intractable.

Other cases, in optimal motion planning include the
kinodynamic motion planning, which studies the problem of
computing collision-free, minimum-time trajectories for a
robot whose motion is governed by Newtonian dynamics
and whose accelerations and velocities are bounded [6].
Donald and Xavier studied the following problem: given a
robot system, find a minimal-time trajectory from a start
position and velocity to a goal position and velocity, while

avoiding obstacles and respecting dynamic constraints on
velocity and acceleration [9]. Recently, Steven LaValle et
al. presented an approach for optimal motion planning for
multiple robots. Their work is based on multi-objective
optimization and game theory [10]. Besides, Hsu and
Latombe presented an algorithm for optimizing the base
location of a manipulator in an environment with obstacles.
Our method resembles the one of Hsu in the sense that both
methods try to optimize the execution of tasks. However, in
our case, we optimize paths, while Hsu’s method optimizes
robot location [11].

3. PROBLEM DEFINITION

The problem consists of finding a path p that
connects the initial and final configurations with the lowest
cost. The cost associated to a path can be established
considering parameters such as the time required, the energy
demanded or the smoothness of the path, among the most
important. In our particular case, we considered as a first
attempt the optimization of the path in terms of the time
required executing the path.

Assuming that the controller of the robot uses a joint-
interpolated motion strategy2, the time required to follow a
path can be computed as follows:

1) Having two consecutive configurations qi and qi+1,
obtain the maximum displacement between pairs of
corresponding joints. For q = {θ1, …, θn}, where n is
the number of dof of the robot, find ϕ = maxj |θi,j -
θi+1,j|, for all j= 1,…, n, where θi,j denotes element j of
configuration i. Considering the joint-interpolated
motion strategy, we need the maximum displacement to
compute the time required to accomplish one
movement of the robot.

2) Considering a maximum velocity κ for the joints,
obtain the time τ for the movement from configuration
qi to configuration qi+1.

τ = ϕ / κ
3) To obtain the total time Γ for a path to be executed.

Γ = ∑m
i=1 τi

 where m is the number of configurations in the path.

It is important to point out that it is possible to add
more terms to the cost function, in which case care must be
taken in order to maintain the homogeneity of units.

2 It means that the robot controller has to calculate the
amount of time it will take each joint to reach its destination
at the commanded speed. It selects the maximum time
among these, and uses this value as the time for all the axes
[16].

Proc. IASTED Robotics and Applications Conference, Santa Barbara, USA, October 1999.

4. THE ALGORITHM

The algorithm that we propose proceeds as follows:

a) Applies the PRM algorithm [3] for preprocessing the
free-space (it is necessary to have a description of the
obstacles and of the robot).

b) Given an initial and final configuration, it lets the PRM
generate any valid path.

c) Takes the path and uses Simulated Annealing [5][12] to
improve the path until an optimum is found or until
certain stopping criteria is met.

There are two components of the process that deserve a
more detailed description: Probabilistic Roadmaps and
Simulated Annealing.

Probabilistic Roadmaps:
PRM proceeds by a two-stage algorithm:

À Preprocessing: a set of collision-free
configurations is generated and their nodes are
interconnected into a network using very simple
and fast planning techniques applied to pairs of
neighboring nodes. The network produced has a
large number of nodes (order of thousands). It may
contain one or more components, depending on the
robot’s free space and the time spent on
preprocessing. The network obtained represents the
free-space connectivity. Nodes in that network are
valid (i.e. without collision) configurations of the
robot, and edges between nodes indicate that it is
possible for the robot to travel in a straight-line
segment from one to another configuration without
colliding.

À Query: after preprocessing, planning a path
between any two configurations is solved by
connecting both configurations to some two nodes
A and B in the network, and searching the network
for a sequence of edges connecting A and B. The
planner fails if it cannot connect any of the two
input configurations to the network, or if A and B
lie in two different connected components of the
network.

Simulated Annealing:
It emulates a physical process that proceeds in two

steps: a) increases the temperature of a solid until it gets
liquefied, b) slowly decreases the temperature until the solid
crystallizes. Its purpose is to generate solids at its lowest
energy level. The computational algorithm can be
summarized as follows: given a candidate solution c to the
problem, with an associated cost cd, generates a

modification of the solution t in the neighborhood of the
current solution, with cost ct. If ct<cd then takes the
modification as the better solution and iterates again. If ct>cd

generates a random number x (0<x<1) and sees if x< exp[(ct

-cd)/T], in which case, takes the modification, otherwise
rejects it and iterates again. This step is used to escape local
minima, by allowing the algorithm to explore alternatives
that seem to be worst. The value of T is used as a parameter
for regulating the acceptance ratio of solutions[13], [12]. It
will be explained later in this paper.

The following is the algorithm proposed for
obtaining a locally optimal path. It receives qi and qg, the
initial and final configurations, respectively.

There are some points regarding the algorithm that
require more attention. We have not mentioned how the cost
of a path is evaluated (lines 3 and 6), neither have we
explained what it means to accept a trial even when its cost
is worst that the one we have as optimum at that moment
(lines 11 and 12). In the same way, we should mention how
the algorithm is considered to stop (line 16), and of course,
how a given path is modified (line 5).

In our case, the cost of a path is given by the
function described in section 3. It considers that the time
that a robot requires executing the path is the parameter to
be optimized. It means that we would like a robot that
moves on the shortest time. In order to avoid demanding
dangerous accelerations, we bounded the maximum velocity
allowed for moving the joints. It should be pointed out that
it does not imply any loose in generality. Other parameters
could be considered.

Algorithm locally-optimal path
1. Construct the roadmap for the environment
and the robot.
2. Find a collision-free path for qi and qg and
call it p.
2. If a collision-free path is found (p ≠∅)
3. Evaluate its cost: p_cost
4. do {
5. Propose a new path t, modifying path p
6. Evaluate the cost of t: trial_cost
7. if (trial_cost < p_cost)
 Accept path t as the best so far
 goto 15
9. else {
10. Let x be a random number
 between 0 and 1
11. if (x<exp((p_cost-trial_cost)/T))
12. Accept trial path, goto 15
13. else rejects trial path
15. iter++;
16. }
17. while (iter<MAX_ITER or STOP <> TRUE)
18. return (p, p_cost)

Proc. IASTED Robotics and Applications Conference, Santa Barbara, USA, October 1999.

At a first glance, a simulated annealing algorithm
looks like a greedy algorithm, and it is well known that
these kind of algorithms have a common problem: they
easily get stuck into local minima. However, SA has a
mechanism to escape from traps: it accepts solutions not as
good as the one it has at a given time, but it maintains the
possibility of using it to move around. In our case, if by
modifying a path we found another one that is better (i.e.,
cheaper); we keep it as the best solution so far. In case that
the trial path is worst, there is a chance (represented by the
Boltzmann function (exp (p_cost - trial_cost/T)), where T is
a parameter that represents the temperature. It is very
important to mention that the performance of a SA
algorithm relies heavily on the adequate selection of some
parameters, we will describe some of them now. The initial
value of T, the way in which T is decreased (note that at a
higher value of T almost any solution is accepted, without
regarding its cost, and as T decreases, the algorithm gets
more and more greedy), and the number of iterations we
would like to do.

The modification of a given path is as follows:
Consider a function d, which receives two configurations x
and y of the robot as parameters, and returns the longest
Euclidean distance of x and y in Rd. It means that we want
to obtain the maximum displacement that any point in the
robot will suffer when traveling from configuration x to
configuration y.

d(x,y) = max z ∈ robot |z(x) - z(y)|
z denotes a point on the robot (which can be located at the
joints or the end-effector), z(x) is the position of z in the
workspace when the robot is at configuration x, and |z(x) -
z(y)| is the Euclidean distance between z(x) and z(y). Figure
1 illustrates the meaning of function d(x,y).

Figure 1. Function d(x,y), which returns the longest
Euclidean distance among two configurations.

We define a neighborhood space by using a value
ε, which is the maximum Euclidean distance allowed to be
traveled by any point in the robot. What the algorithm does
is: given a path, choose randomly any configuration, and

any joint belonging to it. Randomly propose a new value for
the joint, and see if the distance between the original and the
modified configuration (distance measured according to the
d function) does not exceed ε, in which case the proposed
path is checked for collision, and if it does not collide with
anything, it is a good one, and it can be used in the rest of
the algorithm. In other case, repeat the process for proposing
a new configuration. The reason behind limiting the distance
that is permitted to displace the robot is simple: we would
like to use the PRM’s local planner in order to save time.

Finally, the criteria for stopping can be established
in different fashions. In our case, we considered that the
algorithm should stop by one of two causes: a maximum
number of iterations have been reached, or the algorithm has
made a certain number of iterations not finding any different
solution. Of course that the last condition can be reached in
the case of a local minimum. However, in practice what can
be done is to re-run the complete algorithm (in such a case,
it is said that the algorithm is a multiple-restarting one). The
idea behind that action is to initiate the process from other
initial point in order to have more chances of going on the
right way.

5. RESULTS

Some of the results obtained are summarized in the
tables I, II and III. All tests were run on a RS6000 250
Power Station, considering a 5 dof planar robot. The
obstacles are represented by convex polygons in the
working space. The joints were discretized for having up to
128 values each. In all cases the number of configurations
that conformed a path is 1500. We run several experiments
varying the following parameters: initial temperature T,
temperature decrease ratio (α), and maximum number of
iterations. The time required to construct the PRM and to
search for the path is not reported in the tables, since the
graph that represents the Cfree space was constructed once
for a given environment and it was not changed.

Exp
No

Initial
Cost

Final
Cost

No of
Iterations

Running
time
(sec)

Time
reduction

(sec)
1 12.8 8.7 3560 12 4.1
2 14.5 13.2 5000 17 1.3
3 15.3 10.3 4092 14 5
4 10.5 6.2 5000 19 4.3

Table I. T0=5000, MAX_ITER= 1000, α = 0.95

x

y

d(x,y)

Proc. IASTED Robotics and Applications Conference, Santa Barbara, USA, October 1999.

Exp
No

Initial
Cost

Final
Cost

No of
Iterations

Running
time
(sec)

Time
reduction

(sec)
1 13.5 11.6 5242 23 1.9
2 14.2 12.3 8890 56 1.9
3 19.6 17.3 8721 57 2.3
4 11.3 8.8 9029 68 2.5

Table II. T0= 10000, MAX_ITER= 5000, α = 0.97

Exp
No

Initial
Cost

Final
Cost

No of
Iterations

Running
time
(sec)

Time
reduction

(sec)
1 15.5 8.6 10273 85 6.9
2 18.4 18.2 11927 93 0.2
3 19.2 17.2 8927 62 2
4 10.2 10.2 5424 65 0

Table III. T0= 100000, MAX_ITER=10000, α = 0.5

From the tables shown, we can extract some
interesting observations: The time invested for reducing
execution time ranges from few seconds (12 in the best
case) to almost one minute and a half (in the worst case).
The save of execution time goes from 0 (in the worst case)
to 5 seconds (in the best). Now, what it means in practical
terms? Lets suppose that a robot executes only task A,
which takes 19.6 s (case 3 in table II), all 24 hours, 365
days, which means executing 4408 times the task in one
day. Reducing 2.3 seconds in the task, means 4994
repetitions, i.e., 586 more than before. It could be
significantly enough to invest one minute (really more,
because of the construction of the PRM, which in our case
took almost 4 minutes).

We can also observe that when the decrease of the
temperature was faster, the reduction was lower, perhaps
because the algorithm got "frozen" too early.

By running more experiments, we would be able of
tuning up the algorithm, finding a trade off between the
value of α and MAX_ITER. Some other thing that could be
important to emphasize is that in almost all cases the
PRM+SA obtained a better path that the one proposed by
PRM alone.

6. CONCLUSIONS AND FUTURE WORK

From the experiments run, we show that simulated
annealing could improve the solutions found by the
probabilistic roadmap method. It means that it would be
interesting doing further research on the coupling of
optimization techniques and motion planning methods.

Concerning the application of SA, an additional
effort can be conducted for tuning the algorithm. Besides,
some SA-like algorithms can be tested searching for an
improvement in the performance of the algorithm (for
instance, threshold algorithms).

Other research line that can be developed is the
modification of the objective function. It is possible to add
constraints (or terms) in order to get paths that are smooth
(with bounded velocity and acceleration), short and cheap
(considering energy consumption).

In the same way, it would be a good idea to apply
this algorithm in cases where traditional PRM fail or require
great effort to find a solution. It is the case of problems in
which the space has too many narrow passages. Other
possibility could be trying this scheme in problems in which
a complete network is not constructed. In particular we are
thinking in the work of David Hsu and Jean-Claude
Latombe on planning for expansive configuration spaces
[14], [15]. In that approach, instead of computing the whole
network, a couple of trees rooted at the initial and final
configurations are grown until they get in a certain vicinity
among them. In this case, we could let the trees find one
path, and then use a SA in order to improve the path.

REFERENCES

[1] J-C Latombe, Robot Motion Planning, Kluwer
Academic Pub., Boston, MA, 1991.

[2] J.F. Canny, The Complexity of Robot Motion
Planning, MIT Press, Cambridge, MA, 1988.

[3] L. Kavraki, Random Networks in Configuration
Space for Fast Path Planning, PhD Thesis, Stanford
University, 1995.

[4] L. Kavraki, J-C Latombe, Probabilistic Roadmaps
for Robot Path Planning, In Practical Motion
Planning in Robotics: Current and Future
Directions”, K. Gupta & A. del Pobil Eds., Addison-
Wesley, 1998.

[5] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi,
Optimization by Simulated Annealing No. 13, May
1983, Vol. 2220, Nr. 4598, pp. 671-680.

[6] H. Wang, Approximate and Adaptive Algorithms for
some Optimal Motion-Planning Problems, PhD
Thesis, Duke University, 1996

[7] J.S.B Mitchell, C. Papadimitriou, The weighted
region problem: finding shortest paths through a
weighted planar subdivision, Tech. Rep. Cornell
University, 1985.

Proc. IASTED Robotics and Applications Conference, Santa Barbara, USA, October 1999.

[8] J. Canny, and J. Reif, New lower bound techniques
for robot motion planning. Proc. of the IEEE Symp.
On the Foundations of Computer Science, Los
Angeles, CA, 1987.

[9] B. Donald, P. Xavier, J. Canny, and J. Reif.
Kinodynamic Motion Planning, J. ACM, 40(5):1048-
1066,1993.

[10] S. LaValle, S. A. Hutchinson, Optimal Motion
Planning for Multiple Robots Having Independent
Goals, IEEE Trans. On Robotics and Automation,
Vol. 14, No. 6, Dec. 1998.

[11] D. Hsu, J-C Latombe, S. Sorkin, Placing a Robot
Manipulator Amid Obstacles for Optimized
Execution, Submited to IEEE Int. Symp. On
Assembly and Task Planning, 1999.

[12] V. Cerny, Thermodynamical Approach to the
Traveling Salesman Problem: An Efficient Simulation
Algorithm, J. Of Optimization Theory and
Applications, Vol. 45, No. 1, pp. 41-51, 1985.

[13] E. Aarts, J. Korst, Simulated Annealing and
Boltzmann Machines, John Wiley & Sons, 1989.

[14] D. Hsu, J-C Latombe, R. Motwani, Path Planning in
Expansive Configuration Spaces, Proc. IEEE Int.
Conf. On Robotics and Automation, pp. 2719-2726,
1997.

[15] D. Hsu, On Finding Narrow Passages with
Probabilistic Roadmap Planners, Proc. 1998
Workshop on Algorithmic Foundations of Robots,
1998

[16] M. Groover, M. Weiss, R. Nagel, N. Odrey,
Industrial Robotics, McGraw-Hill Int. Editions, 1986

