Deep Packet Filter with Dedicated Logic and Read Only Memories

Young H. Cho and William H. Mangione-Smith
{young, bi I | mre}@e. ucl a. edu
University of California, Los Angeles
Department of Electrical Engineering
Los Angeles, California 90095

Abstract

Searching for multiple string patterns in a stream of
data is a computationally expensive task. The speed of the
search pattern module determines the overall performance
of deep packet inspection firewalls, intrusion detection sys-
tems (IDS), and intrusion prevention systems (IPS). For ex-
ample, one open source IDS configured for 845 patterns,
can sustain a throughput of only 50 Mbps running on a dual
1-GHz Pentium 111 system. Using such systems would not
be practical for filtering high speed networks with over 1
Gbps traffic. Some of these systems are implemented with
field programmable gate arrays (FPGA) so that they are
fast and programmable. However, such FPGA filters tend
to be too large to be mapped on to a single FPGA. By shar-
ing the common sub-logic in the design, we can effectively
shrink the footprint of the filter. Then, for a large subset of
the patterns, the logic area can be further reduced by using
a memory based architecture. These design methods allow
our filter for 2064 attack patterns to map onto a single Xil-
inx Spartan 3 - XC352000 FPGA with a filtering rate of
over 3 Gbps of network traffic.

1 Introduction

The recent emergence of application-level network at-
tacks clearly indicate that inspecting the network packet
header alone is insufficient to protect computers from net-
work intrusion. In the near future, it may become necessary
that all firewalls employ some sort of deep packet filters to
detect application level attacks in the packet payloads.

Deep packet filters are designed to not only examine
headers but also the payloads of packets. Therefore, a se-
curity system that incorporates a deep packet filter offers
better protection from attacks than traditional firewalls. For
example, traditional firewall have not been effective in dif-

*This research work was supported by NSF Grant #CCR-0220100.

Firewall

Deep Intrusion
Packet | Filtering
Inspection: System

Figure 1. Firewall with Deep Packet Inspection

ferentiating network packets containing denial of service
(DoS) attacks such as “Code Red” worm from normal pack-
ets. However, a deep packet inspection system can be con-
figured to detect “Code Red” worm by searching for a string
pattern “.ida?” in the payload [2].

Packet header inspection can be done efficiently with rel-
atively low cost since the locations of packet header fields
are defined by protocol standards. However, the payload
contents are not constrained by any standard definitions.
Therefore, payload search and analysis tends to be more
complex and expensive.

Today, companies such as Netscreen, SourceFire, and
Cisco produce firewalls that employ some form of deep
packet filtering [5]. Most of these systems use one or more
general purpose processors running signature-based packet
filtering software. It is difficult, if at all possible, for a sin-
gle software deep packet inspection system for 500 realistic
patterns to sustain a bandwidth of 100 Mbps or more. Few
co-processors such as PMC-Sierra ClassiPi and Broadcom
Strata Il are reported to support such speeds. According to
their specifications, the bandwidth on the order of giga-bits-

per-second can not be achived for even the most common
attack pattern set with one of these co-processors.

1.1 Deep Packet Filters

In deep packet filtering, the patterns must be compared at
every byte alignment of a payload during the string search
process. Thus, the throughput of a search algorithm running
on a sequential processor decreases as the number of byte
comparison increases. One can overcome such performance
limitation by translating the algorithm into an efficient par-
allel processing design.

Since the signature set for intrusion is constantly up-
dated, re-programmability is essential for a deep packet fil-
ter system. Considering the criteria for the application, FP-
GAs are an excellent design platform because of their abil-
ity to quickly map and re-map parallel hardware designs
onto the same device.

Our contribution in this paper are two effective design
techniques for building a compact deep packet filter in re-
configurable devices. The first method is used to com-
press the hardware size (compared to previous designs) by
reusing the subcomponents of reconfigurable discrete logic
(RDL) filter [13]. The second method utilizes built-in mem-
ory to further reduce the footprint of the filter logic.

In order to place our work in perspective, section 2
briefly presents other reconfigurable string search imple-
mentations. In section 3, we describe our original deep
packet filter and its results. Then we present design tech-
nology that reduce the design footprint by effectively elim-
inating duplicate logics. In section 4, we propose a ROM
based architecture which further reduces the area especially
well with larger rule set. Finally, we conclude with a sum-
mary of our design and comparison of our work with other
similar projects.

2 Related Work

Currently, there are a few fast pattern search algo-
rithms implemented in FPGA to meet the performance
requirements of high-bandwidth network filters. Sidhu
and Prasanna mapped Non-deterministic Finite Automata
(NFA) for regular expression into FPGA to perform fast pat-
tern matching [11]. Using this method, Franklin et. al com-
piled patterns for an open-source NIDS system into JHDL
[6].

Then Washington University translated regular expres-
sions into deterministic finite automata (DFA) showing that,
in practice, most DFA optimizes to compact and fast hard-
ware [9]. Due to the parallel nature of the hardware, these
designs maintained high performance regardless of the size
of the patterns.

The Granidt project of Los Alamos National Laboratory
implemented a fast re-programmable deep packet filter us-
ing content addressable memories (CAM) and the Snort rule
set [7]. Our implementation of the same application uses
RDL to build fast pattern match engines. Our match en-
gine is a parallel pipelined series of reconfigurable lookup
tables (LUT) that can sustain a bandwidth of 2.8 Gbps [2].
Sourdis mapped a similar design with a deeper pipeline to
increase the filtering rate [12] while Clark made some area
improvements [3].

All of the above efforts have experimented only with a
small subset of the Snort rules containing fewer than one
hundred different patterns. If all of the current Snort rule set
was compiled using any of the above designs, the resulting
hardware would be too large to fit in to a single FPGA. In
the light of this, a research group from Washington Univer-
sity fit a pattern detector with most of the Snort rules into a
single FPGA (Xilinx XCV2000E) using index lookup tech-
nique. With the use of Bloom filters [1], they detect the
patterns at 600 Mbps with some false positives. However,
due to the nature of the algorithm, identifying the detected
pattern or false positive would eventually require a string
comparison process [4, 8].

3 Reconfigurable Discrete Logic Filter

Our system is composed of several inspection units that
simultaneously compare incoming data with all the signa-
tures defined in the signature set [2]. Due to the regular
structure of the design, the logic area can be reduced by ap-
plying a number of optimization techniques. By reducing
the logic area we can map a large number of signature onto
asingle FPGA.

As with the other projects described in the previous sec-
tion, our implementation uses the high-level software rule
signature from Snort to build a reconfigurable deep packet
filter. A rule contains information to search through all lay-
ers of network packets to detect a particular attack. When
a packet contains a targeted header, an exhaustive pattern
search is performed on its payload to confirm a detection of
an attack [10].

We use the Snort rules to automatically generate deep
packet filtering modules in VHDL. This intermediate form
of the hardware description can be compiled and mapped
on to FPGAs by most vendor tools.

3.1 Brute Force Method

The core processing unit of our deep packet filter is
shown in figure 2. Since our design is made with reconfig-
urable logic gates, byte comparators are simply an 8 to 1 bit
decoder. From this point on we will refer to such pipelined
string of comparators as 1-byte inspection module.

Pipeline of 8-bit registers

Serial Serial
String String
Input Output
AND
Gates

ol

Figure 2. Simple String Search Engine for
“ABC”: Since the input substring is “ABD”,
the comparator detects no match.

The processing unit is easily scalable by simply widen-
ing the bus and adding duplicate inspection modules for
each byte alignment. For our initial research [2], we gener-
ated inspection modules for a four byte wide bus as shown
in figure 3. In place of 1-byte inspection modules, substring
inspection modules are used to examine every alignment of
incoming data.

For each signature, we generate a series of 4-byte inspec-
tion modules. These modules are connected in parallel, as
in figure 4, to compare incoming substrings with all the pat-
terns at every cycle. Therefore, performance of the filter is
only dependent on the bus width and clock rate.

In our initial experiment, we used 105 of the most com-
mon attacks described in the Snort rule set to construct a
deep packet filter. This early system was mapped, placed,
and routed on to an 20,000 gate Altera EP20K FPGA with a
critical path of 11.685 ns. At 90 MHz with 32-bit wide bus,
our system can filter 2.88 Gbps of data regardless of the size
of the patterns or the packet length [2].

3.2 Logic Reuse Techniques

As mentioned in section 2, the main challenge facing
most reconfigurable deep packet filters are the large logic
resource requirements. There are 2,064 signatures in the
Snort rule set as of November 2003. Since there are a to-
tal of 21,830 bytes in the signature set, we can estimate
that implementing the whole set would require over 230,000
logic gates. Mapping such design using 20,000 gate FPGAs
would require 12 FPGAs. On the other hand, it may be pos-
sible to map the system on two largest Xilinx Virtex 11 Pro
(XC-2VP125) FPGA:s.

Instead of attempting to map such large design on to sev-
eral FPGAs, we worked to optimize our design shrink its de-
sign footprint. During the analysis, we found that some of

> |>|m|o

Figure 3. Parallel String Search Engine for
“ABCDE”: “ABC” was matched on the pre-
vious cycle, enabling the registers to allow
signal from “DE” comparator to latch; on fol-
lowing clock cycle, Match signal would indi-
cate a match.

the rules look for the same string patterns but with different
headers. By combining all the signatures with the same pay-
load content, we can eliminate duplicate patterns. Through
simple pre-processing, we reduced the number of total rules
from 2,064 down to 1,519 rules containing unique patterns.

In order to verify our resource usage, we attempted to
generate our original design for the entire Snort rule set.
Unfortunately, during the mapping stage of the design com-
pilation, Xilinx ISE tool ran out of memory (2 GB maxi-
mum for 32-bit Operating System) after 24 hours of com-
pilation. We tried to compile the design with Quartus I,
but ended with the same result. We could not exhaustively
test for the limitations of CAD tools because of the lengthy
compilation time; instead we began to make improvements
to the logic thus reducing the source code and its complex-

ity.

3.21 Shared Substring Compar ator

Filtering a stream of data through a multiple byte bus re-
quires inspection of the same data at different byte align-
ments of the bus. Therefore, as shown in figure 3, our 4-
byte wide datapath contains four modified 1-byte inspec-
tion modules for each target pattern in the signature set. As
a result, each module consists of several 1 through 4 byte
substring comparators in each stage of the pipelined regis-
ters.

Since all 4-byte substring inspection modules are con-
nected in parallel, there are multiple comparators that check
for the same substring. Since all the input pins of the com-

Control| __ ./ iMAC! RULE1

Unit 3 iMatch‘ |

32bit Reg | [proy
[]
T Enbl
[Content
. Pattern —— Malicious
- Match Packet
T Flag
R RULE 2 b
= RULE n He,

v

Pipelined 32 bit Data Stream

Figure 4. Parallel Deep Packet Filter

parators are connected to the same bus, some comparators
are, in fact, exact duplicates of each other.

The first step of eliminating duplicate comparators is to
break every target string into a set of 1 to 4-byte segments.
Then a set of unique segments is extracted from the origi-
nal set. All unique string segments are then translated into
comparators eliminating duplicate components. Finally, the
outputs of the comparators are forwarded to modules that
use them.

Same Substrings

[

g :E‘ / A
4Byte ——tt AlB 7 BHIA
Input —= BHANB AHBHA
8 AHBHAHB BHAHBNA
K BllallBNA BB ’E
{]
x(B][AlB B[/A
B[A B
B
T~
Rule for Rule for
“BABAB’ “ABAB"

Figure 5. Reusing Common Substrings: All
the matching substrings with same alignment
are combined.

As an example, figure 5 shows that there are four pairs
of duplicate comparators for 4-byte substring inspection

modules for “BABAB” and “ABAB”. From inspection, we
find that extra comparators for substrings “ABAB”, “BAB”,
“AB”, and “B” can be eliminated. Since the output of
the previous pipeline stage is forwarded to enable the next
stage, no additional logic is required for this area improve-
ment.

By applying this optimization over the entire system, the
total logic area shrank to half of its initial size. This process
also reduced the size of the hardware description source
code which effects the compilation time.

3.2.2 Shared Byte Comparators

Within the multiple byte comparators, we found another op-
portunity to reuse the substructures of the system. Each byte
comparators are constructed using a tree of 8 to 1 bit de-
coders. By applying the same technique we used in section
3.2.1, we can eliminate duplicate 1-byte comparators in the
substring modules.

First, we had to determine the optimum size for the 1-
byte comparator. We deduced that reducing the size of the
subcomponent will increase its use in comparators. How-
ever, the side effects of the smaller subcomponent is in-
creased number of wires to route. Therefore, smaller sub-
components will reduce the size of the basic modules but
larger number of connections will force the compiler to du-
plicate these modules to distribute the fanout.

Since the Xilinx LUT has 4-inputs, we initially pro-
duced each comparator as 4-bit subcomponents. At most,
only sixteen different comparators were mapped for each
4-bit input. As expected, each subcomponent was reused
many times. In fact, in order to accommodate the output
load, the Xilinx compiler automatically generated duplicate
logic. The result did not give a significant area improvement
from the results of reusing substring comparators.

In order to reduce the amount of wires, we increase the
size of the subcomponent to 8-bit. Due to the internal struc-
ture of Xilinx, for some 8-bit gates, the mapper can use two
4-bit LUTSs eliminating a need for an extra LUT to connect
the two. Consequently, the design has reduced to one third
of its original size.

To illustrate the effect of this technique, figure 6 shows
that the output of the “B” comparator in the first pipeline
stage can be reused for two other comparators in the second
pipeline stage. By eliminating all duplicates, the example
design in figure 6 only needs a total of eight 8-bit compara-
tors. Thus, the total logic requirement for the example is
reduced to 25 percent of the original design.

For systems with a large set of signatures, each align-
ment requires 8-bit comparators of all combinations. Effec-
tively, 8-bit to 256-bit address decoder are placed at each
alignment. Each of the decoded bits are then used as inputs
for unique substrings described in the previous section.

L)
2
4Byte ——i AHB
Input g BHAMB
8 AHBHA
i Bl{AllB[
g Feesvl
» B||A
» B
5>
Rule for Rule for
“BABAB” “ABAB”

Figure 6. Reusing Common 8-bit Compara-
tors: All the common 8-bit comparators in
the same alignment are combined.

3.3 Signature Index

The inspection module for each pattern produces a 1-bit
output to indicate whether its target string is detected at that
clock cycle. Our initial design ORed all of these bits to-
gether. Such indications maybe sufficient in some applica-
tions, but it is much more desirable to produce a correspond-
ing signature index number for further analysis. Therefore
we have designed an address encoder for flag bits.

3.3.1 Prioritized Address Encoder

Since there are 1519 unique inspection modules for the most
current Snort rule set, the address encoder must produce an
11-bit output. Producing a 1519-bit to 11-bit output is not
a trivial task because there are so many input bits. Not only
that, more than one inspection module may match at the
same time. Therefore, our address encoder must have a pri-
ority mechanism.

For simplicity, we wrote our address encoder in VHDL
using a long chain of CASE statements. When we at-
tempted to compile our encoder for the entire rule set, the
size of the mapped logic exceeded reasonable amount of
gates. Due to an iterative chain of combinational logic, the
latency for each bit of the address became too long to be
effective. Also, the complexity introduced by the compiler
made pipelining difficult. Instead of optimizing such poor
result, we present an efficient hardware design of a priority
address encoder.

3.3.2 Pruned Priority Binary Tree

Our new pattern identification mechanism can be repre-
sented as an OR binary tree as shown in figure 7. We found
that we can use branches of our binary tree to efficiently
generate priority based addresses.

M
AlL_~»te A2
+ +
: B B2 | B3 B4
{.CIL.C2 C3[..) 4 iCE 06 iCZ..\C8
+0 (+) [+) (+) H{+)i(+ {+) A+
11[10o](di7ll6ls][4]fs][2f][0

Bit3= Al

Bit2=BL+ 53-51 B L
Bit1=C1+C3* B1+C5* AL+C7+ Al* B3
Bit0= D15+ D13+ C1+ D11° Bl+ D9 Bl* C3+D7* Al

+D5¢ Al* C5+D3¢ Al* B3+D1* Al* B3* C7

Figure 7. Pruned Priority Address Encoder:
M, A2, B4, C8, and DO are not needed to
encode address bits, thus pruned off. Bit3
through 1 are logic equations for prioritized
address.

We know that the root of the binary tree has two
branches. For the sake of description, we can label these
child nodes “Al1” and “A2”, as shown in figure 7. The defi-
nition of binary tree leads us to calculate that the most sig-
nificant bit of encoded address must be “1” if the tree under
Al contains a flag that is “1”.

Since higher flags have the priority over lower flags, the
output of A2 need not be considered. Therefore, the most
significant bit value is assigned as the output of Al. For
the next address bit, we consider branches with nodes that
are immediate children of A1 and A2; we label root nodes
of these branches “B1” through “B4”. Once again, we can
deduce that the second address bit is “1” if the output of B1
is “1”. But we also find that the second address bit is “1”
if the output of B3 is “1” while no higher flags are “1”; in
the binary OR tree we only need to check that Al is “0” to
verify that higher flags are not “1”. We extract subsequent
address bits using same procedure.

To save area, unused nodes of the OR tree are deleted.
Starting with the main root node, all nodes on the lower

edge of tree can be pruned off. With registers at the output
encoded address bits, the critical path has maximum of (log
n)-1 gate delays where n is the number of the input bits.

3.4 RDL Filter Results

More efficient deep packet filters can be produced after
applying the above improvements. To aid in the design pro-
cess, a tool with macro and script capability was developed.
This tool is used to pre-process multiple rule files and ma-
nipulate data for producing experimental designs. Several
VHDL generators are interfaced with the main code. Many
scripts were written to generate different versions of VHDL
for identifying the best data manipulation steps.

By trying different combinations of VHDL codes, we
found that breaking up the single module into several
smaller modules allowed significantly faster compilation.
Since our design has a highly parallel structure, such mod-
ification was not difficult. However, this approach also ran
into a memory problem when the code was broken into too
many modules. Thus, by trying out many more models, we
found an approximate size for each module that gave an ef-
fective load and compile time.

We also learned that restructuring modules in hierarchi-
cal fashion improved the speed of compilation. Thus, our
VHDL generators were modified to pre-process all data to
determine data dependencies and valid hierarchical struc-
ture.

The restructured datapath with logic improvements re-
duced the size of the source code down to one third of the
initial size. As a result, the entire Snort rule set can be com-
pletely compiled on to an FPGA in about 3 hours. Succes-
sive iteration times are shortened when previously compiled
files are used as guide files for the new version.

3.4.1 Areaand Performance

The timing and area report generated by the compiler is
used to determine the accurate logic area and system per-
formance. For our purpose, we do not include static data in-
spection units. However, we believe that all logic improve-
ments will impact the size of these smaller unit.

After pre-processing the data to reuse substring com-
parators, our design mapped onto about 120,000 logic gates.
This result showed promise because it was first of its kind
that mapped on to a single FPGA, namely XC2VP125.

Once we enhanced the VHDL generator to implement 8-
bit comparator reuse, we found further area reduction. Ac-
cording to the compilation report from the ISE mapper, the
total gate usage was under 22,000 gates in Xilinx FPGA.
This result indicated that our design can be mapped onto a
much smaller FPGA.

We extended our design with a priority address encoder.
Our final design successfully mapped onto 26,607 Xilinx

logic gates which placed and routed onto 15,202 Slices of
Spartan 3 XC3S2000 FPGA.

By combining many logic gates, we effectively reduced
the amount of connection as well as the average wire length.
However, since this new system is much larger than our ini-
tial design, performance only improved slightly with maxi-
mum clock rate of 100 MHz. Therefore, with a 32-bit data-
path, our system is capable of filtering at a line speed of 3.2
Gbps.

4 Read-Only-Memory Based Filter

Suffix
Address

Prefix
Match
Module

Data

2 Memory Match

Bit

Byte C at
y Alignment omperetor
Multiplexed
i Pipelined
Pipeline Pattern

Figure 8. Block diagram of Read-Only-
Memory based inspection unit

The memory based filter (Figure 8) is a pipelined data-
path with a prefix match module, ROM, multiplexor, and
XNOR based comparator. First, the prefix module matches
the initial part of the incoming data, which we call prefix,
with a set of patterns it is configured to detect. At the same
time, the starting alignment of the matching sub-pattern
which we call “prefix” is also determined. Identity infor-
mation is then directly mapped as an address into a ROM
where the rest of the pattern, called the suffix, is stored as
shown in figure 9. The incoming data and suffix are com-
pared at a corresponding alignment to determine whether an
exact match has occurred.

Prefix Suffix

2] [[o [NV AR Hm

——
{}Translated m Stored

Module |address | Memory

Figure 9. Pattern Prefix and Suffix

Although this datapath requires more logic than a single
RDL based pattern matching module, the amount of logic

area per pattern can be less when large number of suffixes
are stored in the memory.

4.1 Pattern Selection

In order for the given design to function correctly with-
out additional logic, one must partition the patterns into
sets. Each set is then executed on dedicated hardware. An
obvious rule to consider is that all the prefixes of the pat-
tern set for a single datapath must be unique within the set.
Otherwise, when incoming data contains prefix of two or
more patterns at the same time, the module would not be
able to determine which suffix to read from the ROM. No
other rules are needed for datapath with one byte input. In
fact, even the alignment information would be unnecessary
since all would have the zero alignment.

Although the prefix width can be of any size, for simplic-
ity, our implementation designates the length of the prefix
to be equal to the width of the input bus. In order for the de-
sign to work with a wider bus, a few additional rules need
to be applied.

Since we intend to perform exact prefix comparisons,
patterns that are shorter than the width of the prefix would
not benefit from this design. Therefore, we select only the
patterns that are longer than the prefix length.

The ROM can only output a suffix of a single pattern at
each rising edge of the clock. Thus, any pattern prefix that
can cause detection of more than one alignment must be
sorted out. The only pattern prefixes that can trigger such
an event are the ones with matching beginning and ending
sequence. For instance, if the prefix match module was con-
figured with a prefix “ABAB”, the alignment for the incom-
ing data “ABAB” could be either 0 or 2. This is because the
second sub-string “AB” could be the actual starting point of
the pattern. Therefore, valid four byte prefixes must meet
the following three conditions. (1) Byte 1 of the prefix can
not be equal to byte 4. (2) The substring from byte 1 to 2
cannot equal substring byte 3 to 4. (3) Substring from byte
1 to 3 cannot equal substring byte 2 to 4.

Finally, no more than one prefix in the same pattern set
should trigger a detection. Although all prefixes are unique,
certain incoming data can trigger two different byte align-
ment detection of two different patterns. To avoid such de-
tection, the three conditions described in the previous para-
graph must be applied for every two prefixes within the set.

4.2 Prefix Match Module

The role of the prefix match module is to identify a given
incoming data fragment with a prefix of patterns configured
in the datapath. It also needs to determine the byte align-
ment of a possible starting point. One may use some sort of

hash function to use small amount of logic resource. How-
ever, for simplicity, we modified the RDL design generator
to build VHDL modules for exact pattern matcher for all the
prefixes.

[Alignmentj [Alignmentj

Addr Enc

Suffix Index

Byte Alignment

Figure 10. Structure of prefix match module

Each prefix is compared separately at each alignment
equivalent to how patterns were mapped in figure 3. There-
fore, the match signals from all alignment chains can be
encoded to provide alignment information. Since pre-
processing guarantees that only one prefix in a given subset
will be detected at each clock cyle, it does not have to con-
sider the priority of matching patterns as with the RDL filter.
As shown in figure 10, the logic that handles alignment and
the address encoding is much simpler and compact.

4.3 FPGA ROM Module

Since memory modules are not standardized among dif-
ferent FPGA manufacturers, describing a generic and ef-
ficient memory module in VHDL is difficult. Even if the
generic VHDL module are created, most vendor specific
compilers usually do not know to map them on to the mem-
ory. Instead, memory modules are translated into some
form of combinational logic that use unnecessarily large
amount of resources. In order to most effectively use the
embedded memory, a target specific VHDL generator is
necessary.

FPGA memory modules can be configured to have dif-
ferent data bus width and entries. Most FPGA vendor tools
have memory primitive templates that can be used to cor-
rectly configure the built-in memory. A primitive template
is chosen based on the dimensions of the pattern set for the
best utilization. In general, the memory configuration with
the widest data bus is the best because of the long length of
the patterns. Once the template is chosen for a given pattern
set, its suffixes are processed and written in to the multiple
primitive modules. These modules are instantiated and con-
nected within a top memory module to hide the distribution
of the memory content over multiple modules.

4.3.1 Improving Memory Utilization

When pattern sets are derived from the entire signatures,
each set may have suffixes of varying lengths. If any one
of these set is mapped directly onto a single ROM, mem-
ory utilization tends to be very low. There are many ways
to modify the memory to improve its utilization. How-
ever, more logic is needed to build a more efficient memory.
Since our goal is to minimize the logic resource, we present
a simple modification to the memory that can double the
memory utilization.

Width K bits Width (K+1) bits
—> —
0000000 £ 1 cosesee O
CO0000 £ | eee® OCO
0000 o | |ee® OO0
8| oo o | |eee® OO0
= Z | | @® 000000
niileee)
z| oe®
@e¢)
3
O

() Sorted Suffix (b) Higher Utilization

Figure 11. Rearranging data to increase mem-
ory utilization

While experimenting with dividing the patterns, we
found that the majority of sets were mid-size suffixes. Most
of the sorted suffixes look similar to figure 11a. When these
patterns are stored directly into the memory, nearly half of
the memory is wasted. Our modification is aimed improve
the utilization by filling in the empty spaces with the valid
data. To do this, all the even entries are stored top to bot-
tom as with a normal memory. Then all the odd entries are
stored from the bottom to the top as shown in figure 11b;
effectively reversing the bit-wise dimension of the entire
memory. With this simple data rearrangement, the number
of entries are reduced to half of the original memory.

Data(k:0)

Addr(m:1)

Physical

Memory
Address

Output(K:0)

addr data

Data(0:k)

Addr(0)

CLK

Figure 12. Wrapper logic is applied to the
memory to improve its utilization.

In order to correctly read the rearranged memory entries,
a small amount of wrapper logic is necessary. Figure 12 is a

block diagram of the wrapper logic. At the address input of
the memory, all the bits, except for the least significant bit
(LSB), are passed to the actual memory. The LSB is used
to determine whether the memory is even or odd. If the
address is even, the rest of the address bits are unchanged
and passed on as a physical address. Otherwise, the address
bits are first inverted and then passed on to the memory.
Likewise, the output of the memory is connected to a 2-to-1
multiplexor with the LSB connected to its select pin. When
the LSB indicates even entry, the normal output is selected.
If odd entry is called, the output with the reversed bit order
would be selected.

4.4 Suffix Comparator

Suffix Comparator

Align

Data Shifter

(Multiplexor)

Compare
N A
_;/»
Suffix

Suffix Length

Match
—>

Figure 13. Incoming data is pipelined then
aligned to compare against suffix.

Once the suffix is read from the ROM, the subsequent
data is pipelined and shifted to the lineup at the comparator
as in figure 13. Based on the length of the longest pattern
and ROM latencies, the number of pipeline stages are de-
termined. The shifters are made with a single level of mul-
tiplexors or they are pipelined to multiple levels, depending
on the width of the input bus. In addition to suffix data,
ROM must store the length of each pattern. The length is
decoded at the comparator to only compare the valid bits.
When the incoming data is lined up with the corresponding
suffix from the ROM, they are bit-wise compared according
to length information.

If the rest of the incoming data matches the suffix, the
module indicates the match. When the match signal is as-
serted, the address that was used on the ROM can be for-
warded as an output to specify the triggered rule.

4.5 ROM Design Implementation

Although ROM based filters can be implemented in any
FPGASs, we choose to use Xilinx Spartan 3 FPGA due to
its low price. Block memory capacity of a Spartan 3 family
chip is fixed at 18-kbit per memory unit. The Xilinx library
contains template of many types of memory modules for
a 18-kbit block memory in VHDL. Using these templates
allow the Xilinx compiler to correctly use the built-in mem-
ory of the target FPGA. A single 18-kbit block memory can
be configured as ROM of 1-bit by 16384 entries as well as
72 bit by 256 entries. Thus, we consider the dimension of
the pattern sets, memory utilization, and average resource
usage per signature before using a particular template.

| Set || Signatures | Bytes | % of Total |
1 495 rules 6,805 bytes 36%
2 212 rules 2,776 bytes 15%
3 134 rules 1,828 bytes 10%
4 94 rules 1,056 bytes 5%
5 64 rules 774 bytes 4%

| Total || 999rules | 13,239bytes | 70% |

Table 1. Five largest pattern sets that satisfy
the ROM constraints make up 70 percent of
the entire Snort rules.

As with the RDL design, we implement 32-bit ROM
based filters using the most current Snort signature set con-
sisting of 1519 unique patterns. Before we generate the
VHDL modules, the patterns are selected and divided using
the rules defined in section 4.1. We found that 89.5 per-
cent of all patterns implemented in the RDL based design
can be reimplemented in the ROM based design. However,
smaller pattern sets tend to not benefit from the ROM based
method because of its large generic datapath. Thus, we im-
plement the five largest pattern sets which totals 70 percent
of the entire Snort rule set as shown in table 1. We imple-
ment each set into two different filter modules, one using
the RDL method and the other with the ROM method.

45.1 Areaand Performance

For our implementation, there is no benefit of using the im-
proved ROM design described in section 4.3.1 for all the
sets except for the largest one that contains 495 rules. This
is because the rest of the pattern sets have less than 256 en-
tries, which is supported by the memory configuration with
the widest data bus. Therefore, only the largest ROM was
converted to a higher utilization ROM.

Table 2 shows the resulting area in terms of D-flip flops,
LUT4, and block memory for the implementations using the
two methods. As expected, the largest pattern set benefited

RDL ROM
Set | Dff | Lut4 | Mem || Dff | Lut4 [Mem
1 9,936 | 11,883 0 5,682 | 6,136 5
2 4703 | 5,795 0 2,924 | 3,269 4
3 3,246 | 4,150 0 2,171 | 2,478 4
4 2,121 | 2,633 0 1,587 | 1,837 3
5 1,561 | 1,993 0 1,259 | 1,468 3

Table 2. Xilinx Spartan 11l XC3S2000 FPGA re-
source usage for pattern sets described on
table 1. Capacity of a single block memory in
Spartan Ill is 18 kbits.

the most from using the ROM based design. Overall results
show that, for the functionally equivalent filter, the ROM
design uses about half of the RDL design.

We implement the ROM design to run at the same per-
formance as the RDL design. Even with a simplified ad-
dress encoder, the critical paths for the ROM based designs
still existed in the address encoder. Because of variability
in of place and route process, performance measurement is
only as good as the constraints that are placed on the de-
sign. Since the purpose of this section is to validate the
effectiveness of the ROM design methodology, we success-
fully compile them with master clock constraints of 100
Mhz which, in turn, yields total bandwidth of 3.2 Gbps.

5 Comparison of Results

To evaluate of our design methods, on table 3, we com-
pare our area and performance results with previous work
of other projects. Two approaches described in this paper
has the best gates per byte ratio, allowing the entire Snort
rules to map on to a single Xilinx XC3S2000 FPGA. From
experience in implmenting larger rule sets, we learned that
the address encoder is system performance bottleneck. The
latency of the address encoder is dependent on the size of its
address space and its internal pipeline stages. Increasing the
internal pipeline stages of the address encoder will increase
performance of our design; but a better solution maybe ob-
tained by dividing the rule set into number of smaller rule
sets with smaller address space.

6 Conclusion

We have devised two effective methods of designing dy-
namic pattern search engines in FPGA.

The first method uses RDL to detect dynamic patterns in
a stream of data. This design method, applied without any
optimization, became too large to fit in a single FPGA. By
reusing redundant logic within the entire design, the RDL

BW | #of | #0of | Totd |Mem|Gates

P DI | (Gbps) | Patm |Bytes| Gates | (kb) | Byte
Cho-Msmith | Spartan3
RDL8 W/Reuse* 1500 2.00 |1625|20800| 16930 | 0 |0.81
Cho-Msmith | Spartan3
RDLS w/Reuse 1500 0.80 |1519(19021| 15356 | 0 |0.81
Cho-Msmith | Spartan3

ROM32 based 2000 320 | 495 |6805| 6136 | 90 |0.90

Clark-Schimmel[3]| Virtex | a5 11515117537/ 19608 | 0 |1.10

RDL8 1000
Cho-MSmith | Spartan3
RDL32 wWReuse | 2000 320 |1519|19021) 26607 | O |1.40
Cho-MSmith | Spartan3

RDL64WReuse | 5000 6.40 |1519|19021 47933 | 0 | 252

Franklinetd.[6] | VirtexE

Reg. Expresson | 2000 040 | 1 |8003|20618 | 0O |258

Clark-Schimmel[3]| Virtex2

RDL32 8000 489 |1512|17537| 54890 | 0 |3.10

Choetd.[2] Altera

RDL32 Original | EP20K 2.88 | 105 |1611| 17000 | O |10.55

Gokhaleetd.[7] | VirtexE

CAM based 1000 218 | 32 | 640 | ~9722 | 24 |15.19

Sourdiset al. [12] | Virtex2

RDL 6000 8.06 | 210 |2457| 47686 | 0 |19.41

Moscolaetal. [9] | VirtexE

Quad DFA 2000 118 | 21 | 420 |~14660| O |34.90

Sdhuetd. [11]

NFA Reg. Expr. Virtex 1000 046 | 1 | 29 | 1920 | 0 |66.21

* Highly pipelined — maximum of 1-level gate delay between registers.

Table 3. Comparing area and performance re-
sults of FPGA based deep packet filters.

design ultimately shrunk down to less than one tenth of its
initial hardware size.

The second method uses built-in memory in the FPGA
and XOR based comparators. We show that this method
further reduces the area when it is applied to a large pattern
set.

We built our deep packet filter for the recent set of Snort
rules (1519 to 1625 unique patterns) using RDL based ar-
chitecture. Then we converted large subsets of the rules
using ROM based method. As a result, what was once over
230,000 gates now fits on to a single Spartan 3 FPGA using
at most 1.4 gates per byte of pattern.

In addition to small footprint, our implementations of the
pattern inspection module are capable of filtering network
traffic at 3.2 Gbps. Since the critical path for the implemen-
tation was determined to be in the address generation, its
performance can be increased either by breaking up the pat-
terns in a set or by deepening the address generator pipeline.

Our preliminary results using pipelined version of ad-

dress encoder indicate that the design design can be accel-
erated to run at 8 Gbps without using any additions look-
up-tables.

References

[1] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. In Communications of the ACM. ACM,
July 1970.

[2] Y. H. Cho, S. Navab, and W. H. Mangione-Smith. Deep
Network Packet Filter Design for Reconfigurable Devices.
In 12th Conference on Field Programmable Logic and Ap-
plications, pages 452-461, Montpellier, France, September
2002. Springer-Verlag.

[3] C.R. Clark and D. E. Schimmel. Scalable Parallel Pattern-
Matching on High-Speed Networks. In |EEE Symposiumon
Field-Programmable Custom Computing Machines, Napa
Valley, CA, April 2004. IEEE.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep Packet Inspection using Parallel Bloom
Filters. In IEEE Hot I nterconnects 12, Stanford, CA, August
2003. IEEE Computer Society Press.

[5] 1. Dubrawsky. Firewall Evolution - Deep Packet Inspection.
Infocus, July 2003.

[6] R.Franklin, D. Carver, and B. L. Hutchings. Assisting Net-
work Intrusion Detection with Reconfigurable Hardware. In
Proceedings of the |[EEE Symposium on FPGA's for Custom
Computing Machines, Napa Valley, CA, April 2002. IEEE.

[7] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole,
and V. Hogsett. Granidt: Towards Gigabit Rate Network
Intrusion Detection Technology. In 12th Conference on
Field Programmable Logic and Applications, pages 404—
413, Montpellier, France, September 2002. Springer-Verlag.

[8] J. Lockwood, J. Moscola, M. Kulig, D. Reddick, and
T. Brooks. Internet Worm and Virus Protection in Dynami-
cally Reconfigurable Hardware. In Military and Aerospace
Programmable Logic Device (MAPLD), Washington DC,
September 2003. NASA Office of Logic Design.

[9] J. Moscola, J. Lockwood, R. Loui, and M. Pachos. Im-
plementation of a Content-Scanning Module for an Inter-
net Firewall. In IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa Valley, CA, April 2003.
IEEE.

[10] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In USENIX LISA 1999 conference,
http://www.snort.org/, November 1999. USENIX.

[11] R. Sidhu and V. K. Prasanna. Fast Regular Expression
Matching using FPGAs. In IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley,
CA, April 2001. IEEE.

[12] 1. Sourdis and D. Pnevmatikatos. Fast, Large-Scale String
Match for a 10Gbps FPGA-based Network Intrusion Detec-
tion System. In 13th Conference on Field Programmable
Logic and Applications, Lisbon, Portugal, September 2003.
Springer-Verlag.

[13] D. L. Steven A. Guccione and D. Downs. A Reconfigurable
Content Addressable Memory. In IPDPS 2000 Workshop,
Cancun, Mexico, May 2000. IEEE Computer Society Press.

