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Abstract

We present a package for algorithms on planar networks. This package comes with a graphical
user interface, which may be used for demonstrating and animating algorithms. Our focus so
far has been on disjoint path problems. However, the package is intended to serve as a gen-
eral framework, wherein algorithms for various problems on planar networks may be integrated
and visualized. For this aim, the structure of the package is designed so that integration of
new algorithms and even new algorithmic problems amounts to applying a short “recipe.” The
package has been used to develop new variations of well-known disjoint path algorithms, which
heuristically optimize additional NP-hard objectives such as the total length of all paths. We
will prove that the problem of �nding edge-disjoint paths of minimum total length in a planar
graph is NP-hard, even if all terminals lie on the outer face, the Eulerian condition is ful�lled,
and the maximum degree is four. Finally, as a demonstration how PlaNet can be used as a tool
for developing new heuristics for NP-hard problems, we will report on results of experimental
studies on e�cient heuristics for this problem. ? 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We present a package to display and animate algorithms that work on planar net-
works. So far, we have been concentrating on disjoint path algorithms, because this is
the �eld of our theoretical interest. See [19] for a survey. On one hand, the aim of
this package is to demonstrate these algorithms by means of a graphical user interface
(GUI). On the other hand, it can be used as a tool for developing new heuristics for
NP-hard problems and for experimental studies of such heuristics. The package is
implemented in C++ and runs on Sun Sparc stations, and the graphics are based on
the X11 Window System. A restricted demo version, the sources, and some additional
information are available in the World Wide Web (URL http:==www.informatik.uni-
konstanz.de=Forschung=Projekte=PlaNet=). In this paper, we shall describe the full
version.
Instances for the di�erent algorithmic problems may be generated either interactively

or by a random generator, stored externally in �les, and read from the respective �le
again. All instances are strongly typed, that is, each instance is assigned a (unique) al-
gorithmic problem to which it belongs. This classi�cation of instances is re
ected by the
GUI: the user cannot invoke an algorithm with an instance of the wrong type. Another
advantage of this classi�cation is that data structures for di�erent algorithmic problems
may be implemented di�erently. For example, if an algorithmic problem is restricted
to grid graphs, instances of this problem should be implemented as two-dimensional
arrays, whereas general planar graphs should usually be implemented by adjacency
lists.
Like instances, all algorithms are classi�ed according to the problems they solve,

and this classi�cation is also re
ected by the GUI. For each algorithmic problem there
may be an arbitrary number of algorithms solving this problem. For two algorithmic
problems, P1 and P2, let P1 4 P2 indicate that P1 is a special case of P2. Such relations
of problem classes can be integrated into the package and are then also re
ected by
the GUI. More speci�cally, an algorithm solving problem P may be applied not only
to instances of type P, but also to instances of any type P′ such that P′ 4 P. In other
words, although all instances and algorithms are strongly typed by the corresponding
algorithmic problems, an algorithm may be applied to any instance for which it is
suitable from a theoretical point of view, even if the types of the algorithm and the
instance are di�erent.
In Section 2, we describe the GUI in greater detail. The internal structure of the

package is designed to support the integration of new algorithms. As a consequence,
developers may insert new algorithms and algorithmic problems by applying a short
“recipe”, which requires no knowledge about the internals. For this aim, the internal
structure of the package has been designed in a framework-like manner. In Section 3,
we introduce our overall design and explain this recipe. In Section 4, we will describe
the algorithms that have been integrated so far. To our surprise, it has turned out that
generating suitable probability distributions for special planar problem classes is not
straightforward, and designing random generators took us a lot of time.
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In Section 5 we will report on new, heuristic, variations of known algorithms. The
problem of �nding edge-disjoint paths in a planar graph such that each path connects
two speci�ed vertices on the outer face of the graph is well studied. The “classical”
Eulerian case introduced by Okamura and Seymour [16] is solvable in linear time
[26]. So far, the length of the paths were not considered. In this paper, we prove that
the problem of �nding edge-disjoint paths of minimum total length in a planar graph
is NP-hard, even if the graph full�lls the Eulerian condition and the maximum de-
gree is four. Minimizing the length of the longest path is NP-hard as well. E�cient
heuristics based on the algorithm from [26] are presented that determine edge-disjoint
paths of small total length. We have studied their behavior, and it turns out that some
of the heuristics are empirically quite successful. The report on heuristics in Section
5 will serve as an example how PlaNet can be used as a tool for developing new
heuristics for NP-hard problems and for experimental studies of such heuristics.

2. From a user’s perspective

At every stage of a session with PlaNet, there is a current algorithmic problem
P. The problem P indicates the node in the problem class hierarchy on which the
user currently concentrates. In the beginning, P is void, and the user always has the
opportunity to replace P by another problem in the hierarchy. A new current problem
may be chosen directly from the list of all problems or by navigating over the problem
class hierarchy. In the latter case, a single navigation step amounts to replacing P either
by one of its immediate descendants or by one of its immediate ancestors. To initialize
P in the beginning, each of the topmost (i.e., most general) problems may be used as
an entry point for navigation.
Once the current algorithmic problem is initialized, the user may construct a current

instance and choose one or two current algorithms. Afterwards, the user may apply
these two algorithms simultaneously to the current instance in order to compare their
results.
An instance may be generated or read from a �le only if the type P′ of the instance

satis�es P′ 4 P. Analogously, an algorithm may be chosen only if the type P′′ of
the algorithm satis�es P 4 P′′. In particular, this guarantees that the algorithm is
suitable for the instance. These restrictions on instances and algorithms are enforced
by the GUI: to select an algorithm, the user must pick it out of a list, which is collected
and o�ered by the GUI on demand. This list only contains algorithms of appropriate
types (namely types P′′ such that P′′ ¡ P). Analogously, the lists of random instance
generators and of externally stored instances only contain items of appropriate types
(types P′ such that P′ 4 P).
When applying one or two algorithms to an instance, the GUI not only shows the

�nal results, it also displays the execution of an algorithm step-by-step. After each
modi�cation of the display, the algorithm stops for a prescribed wait time. By default,
this wait time is zero, and the user only observes the �nal result, because the display of
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the procedure is too fast. The user may change this wait time to an arbitrary multiple
of 1=1000 sec. in order to observe the procedure step-by-step.
Many algorithms consist of a small number of major steps, for example, preprocess-

ing and core procedure. For each major step of an algorithm, a separate window is
opened. The initial display of such a window is the result of the former major step
or – if it is the very �rst major step – the plain input instance. The procedure of this
major step is displayed in the associated window, and afterwards the window remains
open showing the �nal result of the major step. Therefore, on termination of the whole
algorithm, all intermediate stages are shown simultaneously and may be compared with
each other.
The GUI o�ers a feature to print the contents of a window or to dump it to a �le

in PostScript format.
We refer to [8] for a tutorial, a more detailed overview, and a reference manual.

3. From a developer’s perspective

The implementation heavily relies on the object-oriented features of C++. Here
we do not say much about object-oriented programming; see for example [13] for a
thorough description of object-oriented programming, and see [21] for a description of
C++. For further details of our internal design, we again refer to [8]. Nonetheless, in
order to make this section self-contained, we �rst introduce all terminology that we
need to describe the internal design.
Classes. Classes are a means of modeling abstract data types. For example, the

abstract data type “stack” is essentially de�ned by the subroutines “push”, “pop”, and
“top”. A stack class wraps an interface around a concrete implementation of stacks
(encapsulation), which consists solely of such subroutines (usually called the methods
of the stack class). Consider an algorithm which works on stacks and whose imple-
mentation uses this stack class. In such an implementation, only the interface may be
accessed; the concrete implementation behind the interface is hidden from the rest of
the code. This allows software developers to adopt a higher, more abstract point of
view, simply by disregarding all technical details of the implementation of abstract data
types.
Inheritance. A class A may be derived from another class B. This means that the

interface of A is the same as or an extension of the interface of B, even if the concrete
implementation behind the interface is completely di�erent for A and B. Moreover, an
object of type A may be used wherever an object of type B is appropriate. For example,
a formal parameter of type B may be instantiated by an actual parameter of type A. A
class may be derived from several classes (multiple inheritance). Therefore, inheritance
may be used to model relationships between special cases and general cases. Moreover,
inheritance may be used for “code sharing,” that is, all methods of class B may be
called by the methods of class A to perform central tasks.
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Dynamic polymorphism. This is another application of inheritance. Dynamic poly-
morphism means that classes A1; : : : ; Ak are derived from a common “polymorphic”
class B, but the access methods of B are only declared, not implemented. Here in-
heritance is simply used to make A1; : : : ; Ak exchangeable: a formal parameter of type
B is used whereever it does not matter which of A1; : : : ; Ak is the type of the actual
parameter.
This concludes the introduction into object-oriented terminology. In PlaNet, each

algorithmic problem is modeled as a class, and inheritance is used to implement the
relation “≺”. The topmost element of the inheritance hierarchy is the basic LEDA
graph class [11,12]. Consequently, each problem class o�ers all features of the LEDA
class by code sharing.
We paid particular attention to the problem of integrating new algorithms and new

problem classes into the package afterwards. The problem classes and their inheritance
hierarchy are described by a �le named classes.def, in a high-level, descriptive lan-
guage, which is much simpler than C++. Each problem class is represented by an
item within classes.def, which consists of one clause for each piece of information: the
name of the problem class, the classes from which it is derived, a default directory for
instances of the new problem class, and the name of a documentation �le (“help �le”)
for this problem class. Moreover, the item of a problem class contains an arbitrary
number of subitems for algorithms, which solve this problem. The project make�le
scans classes.def and integrates all problem classes and their inheritance relations, and
all solvers, into the package.
Therefore, integration of a new problem class amounts to inserting a new item in

classes.def. In addition, a �le named Con�g must be changed slightly. This �le consists
of de�nitions of two string variables and a line that executes the project make�le
depending on the contents of these two strings. These two strings de�ne all additional
object �les and their directories, respectively. The project make�le searches each such
directory for a subproject make�le. If there is one, it is executed in order to generate
the object �les, otherwise a default rule is applied to generate all object �les in this
directory. After that, these object �les are collected in a library, and this library is
linked to the rest of the package. When several developers work on the integration
of di�erent new problem classes and algorithms in the package simultaneously, each
developer needs to maintain his=her own local copy of classes.def and of this small
�le Con�g; all other stu� may be shared.
Besides the advantages of encapsulation discussed above, we use encapsulation for

several further important design goals, notably the task of separating the code for
graphics from the code for the algorithms. Since the GUI displays not only the output
of an algorithm but also its procedure, graphics and algorithms are strongly coupled.
However, it is highly desirable to separate algorithms and graphics strictly from each
other. In fact, otherwise algorithms and graphics cannot be modi�ed independently
of each other, and changing a small part of the package may result in a chain of
modi�cations spread all over the package. This means that maintaining and modify-
ing the package is simply not feasible. Several authors of this paper had discouragingly
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bad experiences with packages wherein the algorithms were “messed” with the
graphics.
In PlaNet, the graphical display is delegated to the underlying problem class. This

means the following: the most general problem class, called net graph, encapsulates
a reference to an additional object, which serves as a connection to the underlying
graphic system. Clearly, this object is inherited by all problem classes. This object is
of a polymorphic class type, and from this class type another class is derived, which
realizes the graphical display under the X11 Window System. To run the package
under another graphical system, it is only necessary to derive yet another class from
this polymorphic class. 1 If one or more algorithms shall be extracted and run without
any graphics, a dummy class must be derived, whose methods are void.
In a preceding project, CRoP [23,25], which solves combinatorial VLSI routing

problems, graphics and algorithms were separated from each other as follows. An
algorithm produces not only a �nal result, but also records all actions that may be
relevant for the graphical display in an additional output data structure. Afterwards,
these recordings are handed over to the implementation of the GUI, which passes over
them to display the procedure of the algorithm. In our experience, the object-oriented
solution applied in PlaNet is much more appropriate.

4. Algorithms

So far, the algorithmic problems modeled with PlaNet mainly re
ect our theoretical
research interests.
• Algorithms to compute a random triangulation and a Delaunay triangulation, respec-
tively ([7], cf. [2,17]). These algorithms are mainly intended to serve as a basis for
random generation of instances.

• Various smaller algorithms such as removing a random couple of edges, random
paths, and the like. These procedures are mainly intended to support 
exible random
instance generation, too.

• The vertex-disjoint Menger problem, that is, �nd the maximum number of internally
vertex-disjoint paths such that all paths connect the same pair {s; t} of vertices. The
linear-time algorithm from [18,20] has been integrated.

• An algorithm for computing a minimum (s; t)-separator given a maximum number
of vertex-disjoint (s; t)-paths.

• The edge-disjoint version of the former problem. The linear-time algorithm from
[28,29] has been integrated.

• Further versions of the vertex- and edge-disjoint Menger problems, respectively,
where the task is to �nd the maximum number of vertex-disjoint paths such that each

1 In terms of design patterns, this concept implements the observer and the bridge pattern [5].
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path connects two vertices out of a given triple {s; t; u}. New linear-time algorithms
for these two problems have been integrated [14].

• The Okamura–Seymour problem [16]: Given a planar graph and pairs of vertices
{s1; t1}; : : : ; {sk ; tk} on the outer face (terminals) such that the so-called Eulerian
condition is satis�ed, �nd edge-disjoint paths p1; : : : ; pk such that each path pi con-
nects {si; ti}. In that, an instance is said to ful�ll the Eulerian condition if, for each
vertex, the degree plus the number of terminals placed on this vertex sum up to an
even number. The linear-time algorithm from [24,26] has been integrated.

• Several variations of the former algorithm, which heuristically minimize the total
length of all paths. We report on these in Section 5.

All of our random instance generators apply the following two steps. First a triangula-
tion is constructed (note that the triangulations are exactly the maximal planar graphs
with respect to insertion of edges). Afterwards, a couple of edges, paths, or whatsoever
are removed. Our experience is that suitable random distributions can be implemented
this way much more easily than, for example, by constructing random graphs incre-
mentally. For example, a class of suitable random distributions for graphs subject to
the Eulerian condition can be relatively easily implemented by removing a couple of
edge-disjoint paths from a triangulation, namely such that the number of paths meeting
a vertex is even if and only if this vertex already ful�lls the Eulerian condition in
the initial triangulation. In contrast, an incremental approach causes a lot of di�cult
technical problems (e.g., maintenance of planarity throughout the procedure).

5. Edge-disjoint paths with short length

In this section now, we consider the problem of �nding edge-disjoint paths of short
length in a planar graph. We prove that the problem of �nding edge-disjoint paths of
minimum total length in a planar graph is NP-hard, even if all terminals lie on the
boundary of the outer face, the graph ful�lls the Eulerian condition, and the maximum
degree is four. Minimizing the length of the longest path is NP-hard as well. E�cient
heuristics based on the algorithm from [26] are presented that determine edge-disjoint
paths of small total length.
Let G= (V; E) be a simple, undirected, planar graph given along with a �xed com-

binatorial embedding, that is, the adjacency list of each vertex is sorted according to
a �xed geometric embedding in the plane, and there is one designated face, the outer
face. Consider a set N = {{s1; t1}; : : : ; {sk ; tk}}, where s1; t1; : : : ; sk ; tk are vertices of G
on the boundary of the outer face. The elements of N are called nets and the si; ti
are called terminals. Notice that the terminals are not necessarily di�erent. A graph
G = (V; E) together with a set of nets N = {{s1; t1}; : : : ; {sk ; tk}} satis�es the Eulerian
condition if and only if the graph (V; E + {s1; t1} + · · · + {sk ; tk}) is Eulerian. The
problem is to determine edge-disjoint paths p1; : : : ; pk ; such that pi connects si with ti
for i=1; : : : ; k. The basic result due to Okamura and Seymour is a theorem that gives
a necessary and su�cient condition for solvability [16]. E�cient algorithms based on
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the proof of this theorem are given in [1,9,10]. An algorithm solving the problem in
linear time is presented in [26]. The complexity status is open for the case when the
Eulerian condition is dropped.
So far, the length of the paths were only considered for very restricted cases, i.e.,

where the graph is a rectilinear grid [3,22,27]. The only case known,
where edge-disjoint paths of minimum total length can be determined in polynomial
time is when the instance is a dense channel [3]. In this case, the problem is even
solvable in time linear in the number of nets [22]. For convex grids, an e�cient heuris-
tic to determine edge-disjoint paths of small total length is presented in [27]. In this
paper, we prove that �nding edge-disjoint paths of minimum total length in planar
Eulerian instances of maximum degree four is NP-hard, and minimizing the length of
the longest path is NP-hard as well. We present e�cient heuristics based on the algo-
rithm from [26] that determine edge-disjoint paths of small total length. The heuristics
have been implemented and included in PlaNet. They are studied empirically, and for
not too large instances the results are compared to the solutions determined by an exact
approach 2 with exponential worst-case time complexity.

5.1. Preliminaries

De�nition 5.1. An optimization instance is a pair (G;N ) consisting of a planar graph
G = (V; E) and a set of terminal pairs N = {{s1; t1}; : : : ; {sk ; tk}}. The graph G is
embedded in the plane such that the terminals s1; : : : ; sk ; t1; : : : ; tk lie on the boundary
of the outer face. (G;N ) satis�es the Eulerian condition. A decision instance consists
of an optimization instance (G;N ) and a nonnegative integer K .

Problem 5.2. Edge-Disjoint Paths Problem

Given: An optimization instance (G;N ).

Problem: Find k edge-disjoint paths in G connecting si and ti, for 16i6k.

In the following, we assume G to be biconnected. For a non-biconnected graph the
problem can be easily solved by considering its biconnected components separately
[16]. We �rst outline the algorithm from [26], which solves the edge-disjoint paths
problem in linear time. For technical reasons, G is modi�ed such that all terminals have
degree 1 and all other vertices have even degree. Obviously, an instance can easily be
transformed into a completely equivalent instance that ful�lls this assumption. Now,
let x be an arbitrary terminal, called the start terminal. Without loss of generality,
according to a counterclockwise ordering of all terminals starting with x, si precedes ti
for i=1; : : : ; k, and ti precedes ti+1 for i=1; : : : ; k−1. The latter clearly means that in a
sense all t-terminals are sorted in increasing order. The algorithm is based on “right-�rst

2 The authors want to thank Martin Oellrich and Andreas S. Schulz for making the implementation of an
exact method using CPLEX available.
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search”, i.e., a depth-�rst search where in each search step the edges are searched from
right to left. It consists of two phases. In the �rst phase, an “easier” instance (G;N ( ))
of parenthesis structure is solved. Then in the second phase, a solution to the instance
(G;N ) is determined based on the solution for (G;N ( )).
For the �rst phase, consider the 2k-string of s-terminals and t-terminals on the outer

face in counterclockwise ordering, starting with x. The ith terminal is assigned a left
parenthesis if it is an s-terminal, and a right parenthesis otherwise. The resulting
2k-string of parentheses is then a string of left and right parentheses that can be paired
correctly, i.e., such that the pairs of parentheses are properly nested. The terminals
are now newly paired according to this (unique) correct pairing of parentheses, i.e.,
an s-terminal and a t-terminal are paired if and only if the corresponding parenthe-
ses match. It is easy to see that (G;N ( )) is solvable, if (G;N ) is. Procedure 5.3
determines such a solution (q1; : : : ; qk) for (G;N ( )). This solution will be used to de-
termine the �nal solution. In contrast to the original nets, we denote the nets in N ( )

by {s( )1 ; t( )1 }; : : : ; {s( )k ; t( )k }, and we assume without loss of generality that ti = t( )i for
i = 1; : : : ; k. The paths qi are determined by a right-�rst search. Let v ∈ V , and let
e be incident to v. We will say that the next free edge after e with respect to v is
the �rst free edge to follow e in the adjacency list of v in counterclockwise
ordering.

Procedure 5.3.
for i:=1 to k do
let qi initially consist of the unique edge incident to s

( )
i ;

v:= the unique vertex adjacent to s( )i ;
while v is not a terminal do

let {v; w} be the next free edge after the leading edge of qi with respect
to v;
add {v; w} to qi;
v:=w;

if v 6= t( )i then stop: return “unsolvable”;
return (q1; : : : ; qk);

The auxiliary paths q1; : : : ; qk yield a directed auxiliary graph A(G;N; x) of instance
(G;N ) with respect to start terminal x. Just orient all edges on the paths q1; : : : ; qk
according to the direction in which they are traversed during the procedure. Then
A(G;N; x) consists of all vertices of G and of all oriented edges. The solution p1; : : : ; pk
for the original instance (G;N ) is now determined in the auxiliary graph. That is, edges
that are not contained in the auxiliary graph will not be occupied by a path p1; : : : ; pk
of the �nal solution. Even more, the edges occupied by the �nal solution are exactly
the edges of the auxiliary graph. The solution paths pi are determined by a “directed”
right-�rst search. That is, edges that belong to A(G;N; x) are used according to their
orientations in A(G;N; x).
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Algorithm 5.4.
determine A(G;N; x) for an arbitrary start terminal x;
for i:=1 to k do
let pi initially consist of the unique edge leaving si in A(G;N; x);
v:= the head of this edge;
while v is no terminal do
let (v; w) be the next free edge leaving v after the leading edge of pi with
respect to v;
add (v; w) to pi;
v:=w;

if v 6= ti then stop: return “unsolvable”;
return (p1; : : : ; pk);

Algorithm 5:4 can be implemented to run in linear time using a special case of
Union-Find [4]. For a proof of correctness see [26]. We will focus on the following
optimization problem.

Problem 5.5. Minimum Edge-Disjoint Paths Problem.

Instance: An optimization instance (G;N ).

Problem: Find k edge-disjoint paths p1; : : : ; pk in G connecting si and ti, for 16i6k,
such that

∑k
i=1 length(pi) is minimum. (The length of a path p is the number of edges

on p.)

5.2. NP-completeness proof

We prove that the decision problem corresponding to Problem 5:5 is NP-complete,
even if the maximum degree of the graph is four.

Problem 5.6. Minimum Edge-Disjoint Paths Decision Problem.

Instance: A decision instance (G;N; K).

Question: Are there edge-disjoint paths p1; : : : ; pk in G connecting si and ti, for
16i6k, such that

∑k
i=1 length(pi)6K?

Theorem 5.7. The minimum edge-disjoint paths decision problem stated as Problem
5:6 is NP -complete; even if the maximum degree of G is four.

Proof. It is easy to see that Problem 5:6 is in NP. For the NP-completeness proof
we use a transformation from 3SAT [6]. An instance of 3SAT is given by a set U
of variables, |U | = n, and a set C of clauses over U , |C| = m, such that |c| = 3 for
c ∈ C. The problem is to decide if there is a satisfying truth assignment for C. We
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Fig. 1. (a) Super-vertex of type 1. (b) Super-vertex of type 0.

can assume without loss of generality that n is an even number (otherwise, we can
obviously add a “dummy variable”).
Let K :=n(9m+1)+m(6n+1). We construct an even instance (G;N ) consisting of

a planar graph G with maximum degree four, and a set of nets whose terminals lie on
the boundary of the outer face of G. G is a grid-like graph consisting of 2n horizontal
lines i1; i2; i = 1; : : : ; n and 3m vertical lines j1; j2; j3; j = 1; : : : ; m. An horizontal line
il; l ∈ {1; 2} and a vertical line jr ; r ∈ {1; 2; 3} meet in a “super-vertex” vil;jr of type 1
or type 0. A super-vertex of type 1 consists of four vertices and a super-vertex of type
0 consists of �ve vertices. See Fig. 1. Variable ui ∈ U corresponds to two subsequent
horizontal lines i1; i2, where ui corresponds to i1 and ui corresponds to i2. The clause
cj ∈ C corresponds to the vertical lines j1; j2; j3, where jr corresponds to the rth literal
in cj. For every variable ui ∈ U and every clause cj ∈ C we have a net {sui ; tui}
and a net {scj ; tcj}, respectively. Terminal sui lies on a vertex connected to the two
leftmost super-vertices on horizontal lines i1 and i2, while terminal tui lies on a vertex
connected to the two rightmost super-vertices on horizontal lines i1 and i2. Analogously,
terminal scj lies on a vertex connected to the three uppermost super-vertices on vertical
lines j1, j2 and j3, and terminal tcj lies on a vertex connected to the three lowermost
super-vertices on vertical lines j1, j2 and j3. In order to guarantee that the instance is
Eulerian, vertices corresponding to sui (resp. tui) are pairwise connected by an edge,
i.e., edges {sui ; sui+1} and {tui ; tui+1} are added for i=1; : : : ; k−1. Observe that a shortest
path connecting sui and tui (resp. scj and tcj) has length 9m+ 1 (6n+ 1). See Fig. 2.
For super-vertex vil;jr , where horizontal line il; l ∈ {1; 2} and vertical line jr ; r ∈

{1; 2; 3} meet, we have

type(vil; jr ):=



0 if l= 1 and @ui occurs in clause cj as rth literal
or l= 2 and ui occurs in clause cj as rth literal;

1 otherwise:

By de�nition, a super-vertex vil; jr is of type 0 if and only if setting the corresponding
literal @ui (resp. ui) to false does not satisfy the corresponding clause cj. Obviously,
the two paths connecting sui and tui (resp. scj and tcj) can be both shortest only if they
meet in a super-vertex of type 1. See Fig. 3 for an example.



102 U. Brandes et al. / Discrete Applied Mathematics 92 (1999) 91–110

Fig. 2. Generic example of an instance of Problem 5:6 corresponding to an instance of 3SAT .

Fig. 3. The instance of Problem 5:6 corresponding to the clauses c1 = u1 ∨ u2 ∨ @u3; c2 =
@u1 ∨ u3 ∨@u4; c3 =@u1 ∨ u2 ∨ u4. The shaded super-vertices are of type 1, the black super-vertices
of type 0.

Now, a satisfying truth assignment for an instance of 3SAT induces a solution to
the corresponding instance of Problem 5:6 as follows. Net {sui ; tui} is routed along
horizontal line i1 if and only if ui is set true. Net {scj ; tcj} is routed along the leftmost
vertical line jr ; r ∈ {1; 2; 3} corresponding to a literal satisfying cj. Then nets {sui ; tui}
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and {scj ; tcj} meet only in super-vertices of type 1. Consequently, the total length of
the solution is K .
On the other hand, in a solution of length at most K to the instance of Problem 5:6

any net {sui ; tui} has length 9m+ 1 and any net {scj ; tcj} has length 6n+ 1. Therefore,
nets only meet at super-vertices of type 1. This induces a truth assignment for the
instance of 3SAT where ui is set true if and only if {sui ; tui} is routed along horizontal
line i1. If for a clause cj the corresponding net is routed along vertical line jr , then the
net corresponding to the rth literal of cj passes jr through a super-vertex of type 1.
Consequently, this literal must be true, and cj is satis�ed.

Problem 5.8. Minimum Longest Path Problem.

Instance: A decision instance (G;N; K).

Question: Are there edge-disjoint paths p1; : : : ; pk in G connecting si and ti, for
16i6k, such that the length of the longest path pi is at most K?

Corollary 5.9. Problem 5:8 is NP-complete, even if the maximum degree of G is
four.

Proof. We use a slight modi�cation of the reduction from Theorem 5.7. The instance
for 3SAT is modi�ed by adding “dummy variables” and “dummy clauses”, such that
for the corresponding graph G the number of vertical lines is equal to the number
of horizontal lines, and K is set to the shortest length of a path connecting the two
terminals of a net. Then in a set of paths corresponding to a satisfying truth assignment
every path has length K .

5.3. Heuristics

In this section, we describe several heuristics for Problem 5:5 that are based on
Algorithm 5:4. We present an extensive experimental study comparing these heuris-
tics and an exact method on more than 1800 instances. However, the exact method
has exponential running time in the worst–case. For larger instances (more than 100 ver-
tices and 20 nets) this method delivered no solution in more that 90% of the instances.
In principle, the heuristics pursue three di�erent ideas. An obvious way to improve

Algorithm 5:4 heuristically is to choose the start terminal x best possible. Second,
we can use the fact that only edges occupied by the auxiliary graph determined in
Procedure 5.3 belong to the �nal solution. Third, shortest paths computations may
be included into the computation of the edge-disjoint paths. Observe that in general
a collection of shortest paths connecting the terminals of the nets are not a feasible
solution, because they are not pairwise edge-disjoint.
The �rst three heuristics use a sort of preprocessing for Algorithm 5:4 where the

start terminal is chosen heuristically. Then the basic algorithm is called. The crucial
fact used by the heuristics is that the 2k-string of s-terminals and t-terminals on the
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outer face in counterclockwise ordering can be shifted cyclically without in
uencing
the solvability of the instance. Possibly, si has to be exchanged with ti to maintain
the property that si occurs before ti in the string. Now, an interval of length li is
associated with every net ni, and the list is shifted cyclically until the total interval
length is minimal. After that, Algorithm 5:4 is called with the �rst terminal of the
2k-string as the start terminal x. These heuristic algorithms also have linear running
time.

Heuristic 5.10. Edge-Disjoint Min Interval Path Algorithm I. The interval length li is
de�ned as the number of terminals between si and ti in the sequence.

Heuristic 5.11. Edge-Disjoint Min Interval Path Algorithm II. The length li is de�ned
as the number of edges on the outer face between si and ti.

Heuristic 5.12. Edge-Disjoint Min Interval Path Algorithm III. The length li is de�ned
as the number of edges on the outer face between si and ti minus the edges incident
to the terminals si and ti.

The next three heuristics also use a sort of preprocessing for Algorithm 5:4 where
the start terminal is chosen heuristically. These heuristics start again at the ordering of
the s- and t-terminals, in the �rst phase of the basic algorithm. But here the nets of the
problem with parenthesis structure are considered. An interval length li is associated
with every net n( )i ; i ∈ {1 : : : k} of instance (G;N( )). For the de�nition of li see below.
Then, the 2k-string of terminals with minimum total interval length is determined and
Algorithm 5:4 is called with the �rst terminal as start terminal of that string. The
running time is O(n+ k2).

Heuristic 5.13. Edge-Disjoint Min Parenthesis Interval Path Algorithm I. The interval
length li is de�ned as the number of terminals between s

( )
i and t( )i in the sequence.

Heuristic 5.14. Edge-Disjoint Min Parenthesis Interval Path Algorithm II. The length
li is de�ned as the number of edges on the outer face between s

( )
i and t( )i .

Heuristic 5.15. Edge-Disjoint Min Parenthesis Interval Path Algorithm III. The length
li is de�ned as the number of edges on the outer face between s

( )
i and t( )i minus the

number of edges incident to the terminals si and ti.

The next two heuristics use the following observation. In the second phase of Al-
gorithm 5:4 the paths are constructed using only edges from the auxiliary graph. The
running time is linear respectively O(nk).

Heuristic 5.16. Reduced Edge-Disjoint Path Algorithm. The heuristic now uses the
observation above by invoking Algorithm 5:4 �rst and then removing all edges; which
are not considered. Then; a new start terminal is chosen randomly and the algorithm
is called again with this reduced instance.
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Fig. 4. Representation of the avarage di�erence between exact and heuritic solutions.

Heuristic 5.17. More Reduced Edge-Disjoint Path Algorithm. Heuristic 5:16 is applied
for every terminal as the start terminal in the second call of the basic algorithm. This
is done in the heuristic algorithm and the resulting solution is shown.

The following heuristics use a sort of postprocessing for the basic algorithm. Algo-
rithm 5:4 is called �rst and then the constructed paths are reconsidered. The running
time is linear respectively O(nk).

Heuristic 5.18. Edge-Disjoint Path Algorithm – Last Path Shortest Path. The aim of
this heuristic algorithm is to shorten the length of the last path of the solution de-
termined by Algorithm 5:4. Therefore; the last path is determined by an algorithm to
compute shortest paths using only edges of the input instance which are not occupied
by the other paths.

Heuristic 5.19. Edge-Disjoint Path Algorithm – Longest Path Shortest Path. Ana-
logously; this heuristic algorithm shortens the longest path of the solution deter-
mined by Algorithm 5:4. The longest path is determined by an algorithm to compute
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Fig. 5. The main menu for handling instances and the listing of all instances of type “vertex-disjoint Menger
problem”.

Fig. 6. Small randomly generated, triangulated planar graphs.

shortest paths using only edges of the input instance which are not occupied by the
other paths.

Heuristic 5.20. Edge-Disjoint Path Algorithm – All Paths Shortest Paths. This method
uses a sort of postprocessing for the basic algorithm. Algorithm 5:4 is called �rst
and then the constructed paths are reconsidered one after the other. Let p1; : : : ; pk
be the constructed paths. For pk to p1 all paths are removed from the graph and
redetermined by an algorithm which determines shortest paths using only edges of
the input instance which are not occupied by the other paths.

The last heuristic is a combination of two of the previously described methods. Its
running time is O(nk).
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Fig. 7. An instance of type “vertex-disjoint Menger problem”, with source 30 and target 17, and the solution
constructed by the algorithm from [18,20]. In black-and-white mode, the vertex-disjoint paths from the source
to the target are dashed.

Heuristic 5.21. Min Parenthesis Interval II and All Paths Shortest Paths. This method
calls as a preprocessing Heuristic 5:14. As a postprocessing Heuristic 5:20 is executed.

The heuristics have been implemented and included in PlaNet. They were tested
on randomly generated instances. The random instance generator applies the following
two steps. First a triangulation is constructed. (Recall that the triangulations are exactly
the maximal planar graphs with respect to insertion of edges inside the outer face.)
Afterwards, a couple of edges, paths, and cycles is removed. The Eulerian condition is
guaranteed by removing a couple of edge-disjoint paths from the triangulation, namely
such that the number of paths meeting a vertex is even if and only if this vertex
already ful�lls the Eulerian condition in the initial triangulation. Our experience is that
suitable random distributions can be implemented this way much more easily than,
for example, by constructing random graphs incrementally. In contrast, an incremental
approach causes a lot of di�cult technical problems (e.g., maintenance of planarity
throughout the procedure).
We have studied the heuristics on more than 1800 instances in total. The results of

our experimental studies are shown in Fig. 4 and Table 1. We tested 100 instances
of each pair (n; k) in Table 1, where n is the number of vertices of the graph and k
is the number of nets. The heuristics are compared to an exact approach [15] that is
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Fig. 8. An instance of type “Okamura–Seymour problem”, i.e., all terminals are on the boundary, and for
each vertex the degree plus the number of teminals placed on it sum up to an even number. The dashed
lines are the edges occupied by the algorithm from [24,26] (drawn in di�erent colors in color mode). The
degree-one nodes on the boundary are auxiliary nodes and have been added by the algorithm. Each terminal
has been moved by the algorithm to one of these auxiliary nodes.

based on branch-and-bound. Of course, the exact method has exponential running time
in the worst-case.
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