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Application of Multi-domain and Multi-language Cosimulation  

to an Optical MEM Switch Design 

 

 
 
Abstract  

 

 This paper presents the applicability of a cosimulation methodology based on an object-oriented 

simulation environment, to multi-domain and multi-language systems design. This methodology start with a 

system model given as a netlist of heterogeneous components and enables the systematic generation of 

simulation models for multi-domain and multi-language heterogeneous systems. For experiments, we used a 

complex multi-domains application: an optical MEM switch.  

 

1. Introduction 

    

Today’s embedded systems are getting more and more heterogeneous including multi-domains 

(electronic, mechanical, and optical) components. Designing such systems is challenging in two aspects: 

heterogeneous design languages and high complexity of design to integrate heterogeneous components. Due to 

the heterogeneity of such systems, they are described using different domain-specific languages (e.g. C language 

and HDL for software and hardware design and MATLAB models of electro-mechanical sub-systems, etc.). To 

cope with the design complexity of refining heterogeneous components and their integration, the design process 

has a top-down flow from a high-level specification down to a low-level implementation. In this case, the 

validation of system design at any stage of the design flow is challenging. The key issue is the coordination 

between the different sub-systems that manipulate different communication concepts and are described using 

different design languages. 

Recently optical MEMS’s (micro-electro-mechanical systems) have been transitioning from abstract 

ideas to marketable products such as switching, scanning, projection, printing, etc. All optical-switches are 

becoming increasingly popular due to the many advantages that they propose over typical optical fiber optic 

switches (e.g. small , fast, reliable, and eventually will be inexpensive to produce) [1]. Today, MEMS become 

sub-systems of heterogeneous systems (e.g. complex controls are in charge of processors, communicating with 

MEMS through analogical hardware). 

In this paper, we present a method of co-simulating such heterogeneous systems that include software 

processors, analog hardware and MEM sub-systems.  

 

2. Related Work  

  

Cosimulation is currently very popular for electronic systems design. Most of existing work presents 

methodologies for digital hardware-software cosimulation, e.g. N2C [2], Seamless CVE [3].  Ptolemy [4] 
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provides cosimulation for heterogeneous systems where heterogeneity concerns models of computation, e.g. 

process models, SR, FSMs, event-driven models, etc.  

 For MEMS design, academic research has created specialized tools for MEM modeling and simulation 

[5], [6], and has bridged the gap between CAD and foundry facili ties. Chatoyant [7] is also a CAD tool for 

optical MEMS.  

  

3. Conceptual framework 

 

This section presents the conceptual framework of our cosimulation tool based on SystemC [8]. More 

specifically, we present the specification and execution models that we use for heterogeneous systems design. 

 

3.1. Specification models for heterogeneous systems   

We represent systems as an ensemble of hierarchical modules communicating through communication 

channels. To separate communication and behavior, we use a concept of wrapper. To be specific, we use a 

wrapper for a module (1) described in an environment different from SystemC; (2) its communication 

protocol/abstraction level is different from the rest of the system. A module wrapper is an ensemble of two kinds 

of ports:  

- internal ports (specific to the modules)  

- external ports (connected to the communication channels) 

Figure 1.a ill ustrates an example of a heterogeneous system specification. The wrapper concept enables 

the designer to easily specify the heterogeneous systems. For instance, to specify an optical module that is 

connected to the communication network, the interface of the optical module is specified as the internal port  

specification and that of the communication network as the external port specification. 

 

3.2. Simulation models for heterogeneous systems  

Due to the difference between the internal and external ports specification, the heterogeneous system 

specification may not be executable. To obtain simulation model for a heterogeneous specification, interfaces 

adapting the different simulators or communication protocols/levels have to be generated. These interfaces 

implement in fact the simulation models of the modules wrappers. In our approach, the simulation model of the 

wrappers consists in two types of interfaces:: (1) simulator interface - that adapt different simulators; (2) 

communication interface – that adapt different communication protocols/levels.  Figure 1 presents an example of 

heterogeneous spsecification and its corresponding simulation model.  

Module1
(language1)

Comm. Nework

Module2
(language2)

CosimulationBus (systemC)

Sim. intf

Comm. Intf

Sim. intf

Module1 Module2

Internal ports

External ports

(a) Specification model (b) Simulation model

Fig. 1. System specification and corresponding simulation model
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   A simulator interface is required when the module behavior is simulated by a different simulator than 

the cosimulation bus in SystemC.  It is specific to the used simulator.  

 

A communication interface has a generic architecture composed of three basic elements:  

- module adapter (MA) that provides the internal ports (e.g. FIFO port) with required communication services 

(e.g. fifo_write, fifo_read, etc.). It performs also data conversion and channel resolution. The channel resolution 

is required since the number of internal ports can be different from that of corresponding external ports. 

- internal communication media (ICM) to transfer data between module adapter and channel adapter. ICM can 

be an RPC (remote procedural call ) relationship (i.e. the MA calls RPCs provided by channel adapters). 

- channel adapter (CA) that enables the module to access the external channel. To do that, after receiving a 

channel access request (via MA) from the module behavior, it uses channel communication services (e.g. 

read_hs in the case of hand-shake communication network, etc.). To each external port, a channel adapter is 

assigned. 

 

To ill ustrate how these elements compose a communication interfaces, figure 2 shows the structural 

details of the communication interface of module 1 in figure 1.b.   

 

As shown in the figure, the communication interface has a module adapter that has two internal port 

connections and three channel adapters each of which has an external port connection. In the figure, the internal 

communication media is shown as a set of arrows each of which can be an RPC relationship. 

 

3.3. Generation of simulation models from specification models 

Simulation models are generated automaticall y using a library containing simulator interfaces and 

modules/channels adapters composing communication interfaces. The flow is il lustrated in figure 3. As shown in 

the figure, given a specification model, we find a module to which a simulator interface and/or a communication 

interface are/is required. For each of such modules, we find a simulator interface specific to the module and/or 

compose a communication interface using a module adapter specific to the module and channel adapters that are 

specific to the communication channels connected to the module. 

 

 

 

 

 

 

 

M A

CA CA CA

Comm. intf .

Fig. 2. A n example of internal structure of communication interface 
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The details of the generation of the simulation model in the case of optical switch design will be given 

in Section 5 and 6. 

 

4. Optical MEM Switch  

 

We applied the presented concepts to the design of a complex heterogeneous system: the optical MEM 

switch. The global view of the system is presented in figure 4. The system is composed of  three sub-systems:  

(1) The control sub-system that will be finally mapped on a processor (control sub-system in figure 4). It 

calculates electronic orders (voltage) that commands motion of the mechanical mirrors composing the 

optical sub-system.  

(2) The electro-mechanical converter that transforms the voltage from the output of the control sub-system 

into mechanical orders, in terms of distance, for each of  the mirrors. 

(3) The optical sub-system that is composed of a 2x2 mirror array, two light generators (G1, G2 in figure 4) 

and two beams detectors (D1, D2 in figure 4). Four lenses (L1-L4) are used to change the intensity and 

phase of the light.  

  

 

 

 

 

 

 
Fig. 4. Optical MEM switch 
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The switching operation of MEM optical switch is achieved through the mechanical motion of mirrors 

steering the data path from the inputs (G1 and G2 in figure 4) to the desired outputs (D1 and D2 in figure 4). 

This mechanical motion is controlled by the control sub-system.  

 

 

 

To perform switching operation, the control sub-system controls the reflection of the mirrors. As shown 

in figure 5.a, depending on the positions of mirrors, the mirrors may reflect totally (d=0), partially or to not 

reflect their inputs (d = dmax). Figure. 5.b shows four mirrors that have two inputs from two beam generators (G1 

and G2) and two outputs to two light detectors (D1 and D2). In the figure, the control sub-system controls the 

reflection of each of mirrors in the manner shown in figure. 5.a. 

We specified the control sub-system in SystemC and the electro-mechanical part in Matlab. For the 

behavior of optical devices (mirrors, lens, beam generators and detectors), we used C++ models from the 

libraries of Chatoyant [7]. 

The system specification is presented in figure 6.a. For the simplicity of the explanation, only two 

mirrors of the mirror array are shown in the figure. Modules in the system communicate through communication 

channels that encapsulate simple hand-shake protocols. Each mirror module receives control data (i.e. the 

reflection command) from the electro-mechanical converter with a FIFO communication protocol. To specify the 

interface of the optical modules and that of the communication channels, module wrappers have internal and 

external ports. As shown in figure 6.a, the internal ports specific to the module, are FIFO ports and the external 

ports connected to the communication channels are simple hand-shake ports.  
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d
...
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D2
M3 M4

M1 M2

G1 G2

D1

D2
M3 M4

(a) (b)

Fig. 5. Mechanical motion of mirrors according to the mechanical orders
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5. Cosimulation of the Optical MEM Switch 

 

5.1. Systematic Generation of the Simulation Model 

To validate the system, the simulation model of the optical MEM switch is generated. Figure 6.b shows 

a generated simulation model of the system specification in figure 6.a.  

 

• Simulator interface 

Since Matlab-Simulink is used to model the electro-mechanical converter sub-system, to adapt Matlab-

Simulink simulator to the SystemC cosimulation back plane, the corresponding simulator interface is generated. 

The simulator interface corresponding to each C++ Chatoyant model is very simple, consisting in standard 

SystemC interfaces that wraps C++ codes. To generate the simulator interfaces, we need necessary information 

from the system specification as follows. 

- Reference to the behavior of the models  

- Internal port specification  

o e.g. inputs/outputs and the correspondent communication protocols, data types, etc.    
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(SystemC)
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Sim.Intf

…

Cosimulaiton Backplane

Mirror1 Mirror2
…

Mirror 2 
(C++)

Comm.Intf

Sim.Intf

Hand-shakeports

FIFO ports

(a) System specification model

(b) Simulation  model

Fig. 6. Specification and simulation models for the optical MEM switch
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• Communication interface 

The communication interfaces that adapt the communication specific to the mirrors model to the rest of 

the system are also generated. This is made by instantiating the three components, module adapter, channel 

adapter and internal communication media described in Section 3.2, from the cosimulation library. Figure 7 

shows some code sections of module adapter and channel adapter of the mirror module wrapper. The module 

adapter of mirror module provides the module with simple FIFO communication primitives (e.g. write_fifo in 

the figure) called by the mirror module behavior. The channel adapter calls the communication primitives (e.g. 

read_hs) of the handshake communication channel. The module adapter and the channel adapter communicate 

through  RPC (remote procedural call ).  

5.2. Cosimulation results 

For the experiment we used a 2x2 mirror array that have inputs from two beams generators and outputs 

to two lights detectors (see figure 5.b). 

We run the cosimulation of the MEM optical system. In the experiment, initiall y, the beam from G1 is 

detected by D1 and the beam from G2 is detected by D2. Figure 8.a shows the initial mirror configuration where 

two mirrors M1 and M4 are reflecting light from G1 to D1 by mirror M1 and from G2 to D2 by mirror M4. In 

the experiment, we simulate the execution of control commands that change the initial mirror configuration in 

figure 8.a to the mirror configuration of figure 8.b, where mirror M2 reflects the beam from G2 to D1 and mirror 

M3 reflects the beam from G1 to D2. 

 

Each of beam generators and each of detectors can generate/detect upto nine beams. For a better 

examination of the results, we parameterize G1 and G2 differently: G1 generates one of nine beams, and G2 

generates four of nine beams. Figure 9 a and b show the generated beams by G1 and G2. In the figures, nine 

1. Template <class T>;
2. class M A _fi fo<T>
3. : public sc_module;
4. publi c f i fo_i f //decl
5. { public : sc_port<T> to_CA ; 
6. private : f i fo f i fo_inst;}
7. // f i fo i/ f implementation
8. V oid Write_fi fo(T data){
9. while(f i fo_inst.getsize()>=size_max}
10. { wait();}
11. f i fo_inst.push(data);
12. }
13. …  

1. Template <class T>;
2. Class  CA _hand_shake<T>
3. : public sc_module;
4. publi c hs_i /f // decl
5. { public : sc_port<T> to_CA ; 
6. // hand_shake i/ f implementation
7. void read_hs(T data){
8. get_hs(T_data) 
9. //only chanel primiti ve cal l
10. }
11. …  

(a) M odule A dapter (a) Channel A dapter

Fig. 7. Pseudo-codes for module and channel adapters  
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(a) Initial mirror configuration (b) After executing the control commands

Fig. 8. Change of mirrors configuration in the experiments
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rectangles represent nine possible beam positions and dots represent generated beams. Figure 9.a shows that G1 

generates one beam centered in the figure, G2 four beams at the positions as shown in the figure.  

 

 

 

 

 

The control sub-system sends commands to the mirrors by changing the electronic voltage assigned to 

each mirror. The electro-mechanic converter converts the electronic commands to the mechanic commands, i.e. 

the distance of mirror movement. Table 1 shows the voltage levels of electronic orders of the control sub-system 

and their correspondent mechanical orders converted in terms of distance for the mirror movement (as shown in 

figure 5.a). As shown in the table, to change the mirror configuration from total reflecting to non-reflecting, or 

vice versa, the mirror needs to be moved 400 µm by the commands of the control sub-system. To do that, the 

control sub-system gives eleven steps of command as shown in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The evolution of data path steering, i.e. beam reflection by the mirrors, during the simulation is 

ill ustrated in figure 10. Each line of images corresponds to each of two detectors composing the optical sub-

system. Initially, mirrors M1 and M4 steer the data path, by reflecting totally the beam received from G1 to D1 

and the four beams from G2 to D2, respectively. Note that, in that case, mirrors M2 and M3 are not reflecting 

any beams. We can remark that at the first simulation step,  D1 and D2 detect the outputs of G1 and G2, 

respectively, which are totally reflected by mirrors M1 and M4. During the simulation, mirrors change graduall y 

their position according to the commands sent by the control part (in the Matlab simulator). For instance, at the 

second step of control commands, M4 changed its position and reflected partially - three of its four input beams. 

Consequently, D2 detected parts of the light generated by G2 (three beams). At the end of simulating eleven 

steps of command, mirrors M3 and M2 steer the data path, reflecting totally their inputs from G1 and G2, 

respectively. In this case, mirrors M1 and M4 are not reflecting any beams.  

  

Voltage Distance (µm) 

0.0 0 

12.7795 20 

17.3641 40 

20.3459 60 

22.4453 80 

23.9098 100 

24.8782 120 

25.4335 140 

25.6295 160 

25.6309 162 

>25.6309 400 

Fig. 9. Outputs for the beam generators  

a) G 1 b) G2  

 

Table 1. Mechanical/electrical 
orders for data path steering 
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The simulation time is about 30 seconds. This enabled a fast validation of the overall system 

functionality, before its implementation in a final architecture. 

 

 

 

 

 

 

 

 

 

6. Conclusion  

 

This paper has shown the applicabilit y of a multi-domain and multi-language cosimulation 

methodology. This methodology enables the automatic generation of simulation models for the homogeneous 

specifications where the different modules may use different communication concepts or may be described in 

different languages. We applied the methodology for the cosimulation to a complex heterogeneous multi-

domains application: an optical MEM switch.  
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