
 1

Application of Multi-domain and Multi-language Cosimulation

to an Optical MEM Switch Design

Abstract

 This paper presents the applicability of a cosimulation methodology based on an object-oriented

simulation environment, to multi-domain and multi-language systems design. This methodology start with a

system model given as a netlist of heterogeneous components and enables the systematic generation of

simulation models for multi-domain and multi-language heterogeneous systems. For experiments, we used a

complex multi-domains application: an optical MEM switch.

1. Introduction

Today’s embedded systems are getting more and more heterogeneous including multi-domains

(electronic, mechanical, and optical) components. Designing such systems is challenging in two aspects:

heterogeneous design languages and high complexity of design to integrate heterogeneous components. Due to

the heterogeneity of such systems, they are described using different domain-specific languages (e.g. C language

and HDL for software and hardware design and MATLAB models of electro-mechanical sub-systems, etc.). To

cope with the design complexity of refining heterogeneous components and their integration, the design process

has a top-down flow from a high-level specification down to a low-level implementation. In this case, the

validation of system design at any stage of the design flow is challenging. The key issue is the coordination

between the different sub-systems that manipulate different communication concepts and are described using

different design languages.

Recently optical MEMS’s (micro-electro-mechanical systems) have been transitioning from abstract

ideas to marketable products such as switching, scanning, projection, printing, etc. All optical-switches are

becoming increasingly popular due to the many advantages that they propose over typical optical fiber optic

switches (e.g. small , fast, reliable, and eventually will be inexpensive to produce) [1]. Today, MEMS become

sub-systems of heterogeneous systems (e.g. complex controls are in charge of processors, communicating with

MEMS through analogical hardware).

In this paper, we present a method of co-simulating such heterogeneous systems that include software

processors, analog hardware and MEM sub-systems.

2. Related Work

Cosimulation is currently very popular for electronic systems design. Most of existing work presents

methodologies for digital hardware-software cosimulation, e.g. N2C [2], Seamless CVE [3]. Ptolemy [4]

 2

provides cosimulation for heterogeneous systems where heterogeneity concerns models of computation, e.g.

process models, SR, FSMs, event-driven models, etc.

 For MEMS design, academic research has created specialized tools for MEM modeling and simulation

[5], [6], and has bridged the gap between CAD and foundry facili ties. Chatoyant [7] is also a CAD tool for

optical MEMS.

3. Conceptual framework

This section presents the conceptual framework of our cosimulation tool based on SystemC [8]. More

specifically, we present the specification and execution models that we use for heterogeneous systems design.

3.1. Specification models for heterogeneous systems

We represent systems as an ensemble of hierarchical modules communicating through communication

channels. To separate communication and behavior, we use a concept of wrapper. To be specific, we use a

wrapper for a module (1) described in an environment different from SystemC; (2) its communication

protocol/abstraction level is different from the rest of the system. A module wrapper is an ensemble of two kinds

of ports:

- internal ports (specific to the modules)

- external ports (connected to the communication channels)

Figure 1.a ill ustrates an example of a heterogeneous system specification. The wrapper concept enables

the designer to easily specify the heterogeneous systems. For instance, to specify an optical module that is

connected to the communication network, the interface of the optical module is specified as the internal port

specification and that of the communication network as the external port specification.

3.2. Simulation models for heterogeneous systems

Due to the difference between the internal and external ports specification, the heterogeneous system

specification may not be executable. To obtain simulation model for a heterogeneous specification, interfaces

adapting the different simulators or communication protocols/levels have to be generated. These interfaces

implement in fact the simulation models of the modules wrappers. In our approach, the simulation model of the

wrappers consists in two types of interfaces:: (1) simulator interface - that adapt different simulators; (2)

communication interface – that adapt different communication protocols/levels. Figure 1 presents an example of

heterogeneous spsecification and its corresponding simulation model.

Module1
(language1)

Comm. Nework

Module2
(language2)

CosimulationBus (systemC)

Sim. intf

Comm. Intf

Sim. intf

Module1 Module2

Internal ports

External ports

(a) Specification model (b) Simulation model

Fig. 1. System specification and corresponding simulation model

Internal ports

External ports

 3

 A simulator interface is required when the module behavior is simulated by a different simulator than

the cosimulation bus in SystemC. It is specific to the used simulator.

A communication interface has a generic architecture composed of three basic elements:

- module adapter (MA) that provides the internal ports (e.g. FIFO port) with required communication services

(e.g. fifo_write, fifo_read, etc.). It performs also data conversion and channel resolution. The channel resolution

is required since the number of internal ports can be different from that of corresponding external ports.

- internal communication media (ICM) to transfer data between module adapter and channel adapter. ICM can

be an RPC (remote procedural call) relationship (i.e. the MA calls RPCs provided by channel adapters).

- channel adapter (CA) that enables the module to access the external channel. To do that, after receiving a

channel access request (via MA) from the module behavior, it uses channel communication services (e.g.

read_hs in the case of hand-shake communication network, etc.). To each external port, a channel adapter is

assigned.

To ill ustrate how these elements compose a communication interfaces, figure 2 shows the structural

details of the communication interface of module 1 in figure 1.b.

As shown in the figure, the communication interface has a module adapter that has two internal port

connections and three channel adapters each of which has an external port connection. In the figure, the internal

communication media is shown as a set of arrows each of which can be an RPC relationship.

3.3. Generation of simulation models from specification models

Simulation models are generated automaticall y using a library containing simulator interfaces and

modules/channels adapters composing communication interfaces. The flow is il lustrated in figure 3. As shown in

the figure, given a specification model, we find a module to which a simulator interface and/or a communication

interface are/is required. For each of such modules, we find a simulator interface specific to the module and/or

compose a communication interface using a module adapter specific to the module and channel adapters that are

specific to the communication channels connected to the module.

M A

CA CA CA

Comm. intf .

Fig. 2. A n example of internal structure of communication interface

 4

The details of the generation of the simulation model in the case of optical switch design will be given

in Section 5 and 6.

4. Optical MEM Switch

We applied the presented concepts to the design of a complex heterogeneous system: the optical MEM

switch. The global view of the system is presented in figure 4. The system is composed of three sub-systems:

(1) The control sub-system that will be finally mapped on a processor (control sub-system in figure 4). It

calculates electronic orders (voltage) that commands motion of the mechanical mirrors composing the

optical sub-system.

(2) The electro-mechanical converter that transforms the voltage from the output of the control sub-system

into mechanical orders, in terms of distance, for each of the mirrors.

(3) The optical sub-system that is composed of a 2x2 mirror array, two light generators (G1, G2 in figure 4)

and two beams detectors (D1, D2 in figure 4). Four lenses (L1-L4) are used to change the intensity and

phase of the light.

Fig. 4. Optical MEM switch

E lec tro -m ec ha nica l
c o n ve rto r

�����������

	�
�
���

C o ntr o l
su b-sy ste m

��������������� G1 G2

D 1

D 2

L1 L2

L4

L3

Simulator intf.

Simulator intf. Module adapter

Simulator intf. Chanel adapter

Communication intf.

Specification model

Simulation model

Comm. intf.
generator

MA

CACA

Simulation models
generator

Fig. 3. Flow for the generation of simulation models

Cosimulation Library

Module1
(language 1)

Comm. Nework

Module2
(language2

)

Cosimulation Bus (systemC)

Sim. intf

Comm. Intf

Sim. intf

Module1 Module2

 5

The switching operation of MEM optical switch is achieved through the mechanical motion of mirrors

steering the data path from the inputs (G1 and G2 in figure 4) to the desired outputs (D1 and D2 in figure 4).

This mechanical motion is controlled by the control sub-system.

To perform switching operation, the control sub-system controls the reflection of the mirrors. As shown

in figure 5.a, depending on the positions of mirrors, the mirrors may reflect totally (d=0), partially or to not

reflect their inputs (d = dmax). Figure. 5.b shows four mirrors that have two inputs from two beam generators (G1

and G2) and two outputs to two light detectors (D1 and D2). In the figure, the control sub-system controls the

reflection of each of mirrors in the manner shown in figure. 5.a.

We specified the control sub-system in SystemC and the electro-mechanical part in Matlab. For the

behavior of optical devices (mirrors, lens, beam generators and detectors), we used C++ models from the

libraries of Chatoyant [7].

The system specification is presented in figure 6.a. For the simplicity of the explanation, only two

mirrors of the mirror array are shown in the figure. Modules in the system communicate through communication

channels that encapsulate simple hand-shake protocols. Each mirror module receives control data (i.e. the

reflection command) from the electro-mechanical converter with a FIFO communication protocol. To specify the

interface of the optical modules and that of the communication channels, module wrappers have internal and

external ports. As shown in figure 6.a, the internal ports specific to the module, are FIFO ports and the external

ports connected to the communication channels are simple hand-shake ports.

...
d=0

d=dmax

d
...

d=0

d=dmax

d
no reflection

total reflection

M1 M2

G1 G2

D1

D2
M3 M4

M1 M2

G1 G2

D1

D2
M3 M4

(a) (b)

Fig. 5. Mechanical motion of mirrors according to the mechanical orders

 6

5. Cosimulation of the Optical MEM Switch

5.1. Systematic Generation of the Simulation Model

To validate the system, the simulation model of the optical MEM switch is generated. Figure 6.b shows

a generated simulation model of the system specification in figure 6.a.

• Simulator interface

Since Matlab-Simulink is used to model the electro-mechanical converter sub-system, to adapt Matlab-

Simulink simulator to the SystemC cosimulation back plane, the corresponding simulator interface is generated.

The simulator interface corresponding to each C++ Chatoyant model is very simple, consisting in standard

SystemC interfaces that wraps C++ codes. To generate the simulator interfaces, we need necessary information

from the system specification as follows.

- Reference to the behavior of the models

- Internal port specification

o e.g. inputs/outputs and the correspondent communication protocols, data types, etc.

Control.
Sub-system
(SystemC)

Communication Network

Electro-mec.
Converter
(Matlab)

Mirrors array (C++ Chatoyant)

Control.
Sub-system
(SystemC)

Electro-mec.
Converter
(Matlab)

Sim.Intf

Mirror 1
(C++)

Comm.Intf

Sim.Intf

…

Cosimulaiton Backplane

Mirror1 Mirror2
…

Mirror 2
(C++)

Comm.Intf

Sim.Intf

Hand-shakeports

FIFO ports

(a) System specification model

(b) Simulation model

Fig. 6. Specification and simulation models for the optical MEM switch

 7

• Communication interface

The communication interfaces that adapt the communication specific to the mirrors model to the rest of

the system are also generated. This is made by instantiating the three components, module adapter, channel

adapter and internal communication media described in Section 3.2, from the cosimulation library. Figure 7

shows some code sections of module adapter and channel adapter of the mirror module wrapper. The module

adapter of mirror module provides the module with simple FIFO communication primitives (e.g. write_fifo in

the figure) called by the mirror module behavior. The channel adapter calls the communication primitives (e.g.

read_hs) of the handshake communication channel. The module adapter and the channel adapter communicate

through RPC (remote procedural call).

5.2. Cosimulation results

For the experiment we used a 2x2 mirror array that have inputs from two beams generators and outputs

to two lights detectors (see figure 5.b).

We run the cosimulation of the MEM optical system. In the experiment, initiall y, the beam from G1 is

detected by D1 and the beam from G2 is detected by D2. Figure 8.a shows the initial mirror configuration where

two mirrors M1 and M4 are reflecting light from G1 to D1 by mirror M1 and from G2 to D2 by mirror M4. In

the experiment, we simulate the execution of control commands that change the initial mirror configuration in

figure 8.a to the mirror configuration of figure 8.b, where mirror M2 reflects the beam from G2 to D1 and mirror

M3 reflects the beam from G1 to D2.

Each of beam generators and each of detectors can generate/detect upto nine beams. For a better

examination of the results, we parameterize G1 and G2 differently: G1 generates one of nine beams, and G2

generates four of nine beams. Figure 9 a and b show the generated beams by G1 and G2. In the figures, nine

1. Template <class T>;
2. class M A _fi fo<T>
3. : public sc_module;
4. publi c f i fo_i f //decl
5. { public : sc_port<T> to_CA ;
6. private : f i fo f i fo_inst;}
7. // f i fo i/ f implementation
8. V oid Write_fi fo(T data){
9. while(f i fo_inst.getsize()>=size_max}
10. { wait();}
11. f i fo_inst.push(data);
12. }
13. …

1. Template <class T>;
2. Class CA _hand_shake<T>
3. : public sc_module;
4. publi c hs_i /f // decl
5. { public : sc_port<T> to_CA ;
6. // hand_shake i/ f implementation
7. void read_hs(T data){
8. get_hs(T_data)
9. //only chanel primiti ve cal l
10. }
11. …

(a) M odule A dapter (a) Channel A dapter

Fig. 7. Pseudo-codes for module and channel adapters

1

3

2

4

G 1 G 2

D1

D2

1

3

2

4

G 1 G 2

D1

D2

(a) Initial mirror configuration (b) After executing the control commands

Fig. 8. Change of mirrors configuration in the experiments

 8

rectangles represent nine possible beam positions and dots represent generated beams. Figure 9.a shows that G1

generates one beam centered in the figure, G2 four beams at the positions as shown in the figure.

The control sub-system sends commands to the mirrors by changing the electronic voltage assigned to

each mirror. The electro-mechanic converter converts the electronic commands to the mechanic commands, i.e.

the distance of mirror movement. Table 1 shows the voltage levels of electronic orders of the control sub-system

and their correspondent mechanical orders converted in terms of distance for the mirror movement (as shown in

figure 5.a). As shown in the table, to change the mirror configuration from total reflecting to non-reflecting, or

vice versa, the mirror needs to be moved 400 µm by the commands of the control sub-system. To do that, the

control sub-system gives eleven steps of command as shown in Table 1.

The evolution of data path steering, i.e. beam reflection by the mirrors, during the simulation is

ill ustrated in figure 10. Each line of images corresponds to each of two detectors composing the optical sub-

system. Initially, mirrors M1 and M4 steer the data path, by reflecting totally the beam received from G1 to D1

and the four beams from G2 to D2, respectively. Note that, in that case, mirrors M2 and M3 are not reflecting

any beams. We can remark that at the first simulation step, D1 and D2 detect the outputs of G1 and G2,

respectively, which are totally reflected by mirrors M1 and M4. During the simulation, mirrors change graduall y

their position according to the commands sent by the control part (in the Matlab simulator). For instance, at the

second step of control commands, M4 changed its position and reflected partially - three of its four input beams.

Consequently, D2 detected parts of the light generated by G2 (three beams). At the end of simulating eleven

steps of command, mirrors M3 and M2 steer the data path, reflecting totally their inputs from G1 and G2,

respectively. In this case, mirrors M1 and M4 are not reflecting any beams.

Voltage Distance (µm)

0.0 0

12.7795 20

17.3641 40

20.3459 60

22.4453 80

23.9098 100

24.8782 120

25.4335 140

25.6295 160

25.6309 162

>25.6309 400

Fig. 9. Outputs for the beam generators

a) G 1 b) G2

Table 1. Mechanical/electrical
orders for data path steering

 9

The simulation time is about 30 seconds. This enabled a fast validation of the overall system

functionality, before its implementation in a final architecture.

6. Conclusion

This paper has shown the applicabilit y of a multi-domain and multi-language cosimulation

methodology. This methodology enables the automatic generation of simulation models for the homogeneous

specifications where the different modules may use different communication concepts or may be described in

different languages. We applied the methodology for the cosimulation to a complex heterogeneous multi-

domains application: an optical MEM switch.

References

[1] Wu, M.C., “Micromachining for Optical and Optoelelctronic Systems”, Proc. of the IEEE, Vol. 85 No. 11, Nov. 1997

[2] Coware, Inc., “N2C”, available at http://www.coware.com/cowareN2C.html

[3] R. Klein. 1996. Miami “A Hardware Software Co-Simulation Environment” , from RSP’96. IEEE CS Press. Pages 173-177.

[4] S. Lee and J.M. Rabaey “A hardware software cosimulation environment” , International Workshop on Hardware- Software

Codesign” , Cambridge, oct. 1993.

[5] Senturia, S.D., “CAD for Microelectromechanical Systems”, Tranducers’95, June 25-29, 1995, Stockholm, Sweden, vol. 2.

[6] Wilson, N.M., et al., “A Heterogeneous Environment for Computational Prototyping and Simulation Based Design of

MEMS devices” , SISPAD98, Leaven, Belgium, Sept., 1998.

[7] T. Kursweg, J. Martinez, S. Levitan, P. Marchand, D. Chairulli , “Dynamic Simulation of Opitcal MEM Switches” , DTIP,

France, april , 2001.

[8] SystemC Consortium, “SystemC Version 2.O” available at http://wwww.systemc.org

D1 D1

D2

Fig..10. Results of cosimulation of the optical MEM switch

Simulation steps

