

Collapse-to-Zoom: Viewing Web Pages on Small Screen
Devices by Interactively Removing Irrelevant Content

Patrick Baudisch1, Xing Xie2, Chong Wang3, and Wei-Ying Ma2
1Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA

2Microsoft Research Asia
Zhichun Road,

Beijing 100080, China
{xingx, wyma}@microsoft.com

3Tsinghua University
Department of Automation

Beijing 100084, China
wangchong99@mails.tsinghua.edu.cn

ABSTRACT
Overview visualizations for small-screen web browsers
were designed to provide users with visual context and to
allow them to rapidly zoom in on tiles of relevant content.
Given that content in the overview is reduced, however,
users are often unable to tell which tiles hold the relevant
material, which can force them to adopt a time-consuming
hunt-and-peck strategy. Collapse-to-zoom addresses this
issue by offering an alternative exploration strategy. In
addition to allowing users to zoom into relevant areas, col-
lapse-to-zoom allows users to collapse areas deemed ir-
relevant, such as columns containing menus, archive mate-
rial, or advertising. Collapsing content causes all remaining
content to expand in size causing it to reveal more detail,
which increases the user’s chance of identifying relevant
content. Collapse-to-zoom navigation is based on a hybrid
between a marquee selection tool and a marking menu,
called marquee menu. It offers four commands for collaps-
ing content areas at different granularities and to switch to
a full-size reading view of what is left of the page.

Keywords
Web browser, collapse-to-zoom, marquee menu, small
screen device, PDA, pen, overview, fisheye, zooming,
marking menu, dragging, gestures, user interface. blutwurst

INTRODUCTION
Web pages are often designed with a desktop screen in
mind, i.e., they use multi-column layouts and/or are pre-
formatted to a certain page width. On a small screen de-
vice, such as a PDA, such pages can be hard to read. If
rendered in a desktop-like two-dimensional layout, such
pages can require users to scroll horizontally while reading
text (Figure 1). To avoid the need for horizontal scrolling,
some of the recent browsers narrow down cells (e.g. MS
Pocket Internet Explorer™) or even rearrange the table
structure into a single column to make the page fit the
screen width (e.g. Opera™ opera.com).
While single-column views can facilitate the reading proc-
ess, they result in a correspondingly larger amount of verti-
cal scrolling. In Figure 1, for example, accessing material

in the center column now requires users to scroll past the
entire content of the left column, as that column will appear
at the top of the single-column page. For a typical page,
this accounts for several PDA screens worth of material.

Figure 1: The problem: viewing a page designed for
the desktop on a small screen device requires users
to scroll not only vertically, but also horizontally.

To reduce the need for vertical scrolling and to provide
users with visual context, researchers have proposed pro-
viding users with a miniature version of the page. Such
overviews are either thumbnails, i.e., zoomed-out copies of
the page [15, 16] or summarized versions of the page [6,
17]. Overviews allow users to zoom in on content in order
to view it in a close-up view. However, given that content
in the overview is reduced users are often unable to tell
which tiles hold the relevant material. In the example
shown in Figure 2a even the headlines have become un-
readable, which can force users to adopt a time-consuming
hunt-and-peck strategy.
In this paper, we present collapse-to-zoom, a technique that
addresses this issue by offering an alternative exploration
strategy. In addition to the known strategy of zooming into
relevant areas, collapse-to-zoom allows users to collapse
areas deemed irrelevant, such as columns containing
menus, archive material, or advertising (Figure 2b). Col-
lapsing content causes all of the remaining contents to be
redrawn in more detail (Figure 2d), which increases the
user’s chances of identifying relevant content. When fi-
nally switching to the full-size view (Figure 2g), the page
has been reduced significantly, which allows users to scroll
through the remaining content in an efficient way.

We begin by giving a brief summary of the related work.
Then we give a detailed walkthrough of collapse-to-zoom
and describe its gesture-based navigation mechanism. We
then briefly describe our implementation before we con-
clude with a summary and an outlook on future work.

RELATED WORK
There are four general approaches to displaying web pages
on small screen devices [4]: device-specific authoring;
multiple-device authoring; automatic re-authoring, and
client-side navigation. The first two allow obtaining high-
quality results by taking the specifics of the device into
account during page authoring, but in exchange they re-
quire the cooperation of the individual page authors. This
prevents these techniques from being applied to already
existing pages, which limits the practical applicability of
these approaches. Automatic re-authoring, such as web
page summarization [10, 6] does not require the collabora-
tion of page authors; neither does it require any user effort.
However, techniques in this category are limited to what
can be extracted from the page, such as its structure or text
content. Oblivious of the user’s task at hand, a summarizer
cannot know, for example, whether the user plans to make
use of a page’s link menu or whether it is safe to remove
the menu.
Collapse-to-zoom falls into the remaining category of cli-
ent-side navigation which encompasses a wide range of
techniques. Outlining transforms pages into sets of tiles.
Tiles may then be presented to the user one at a time
(power browser [7]) or as a layout of cards (flip zooming
[5], WebThumb [16]). As mentioned above, other browsers
combine tiling with zooming, so that users can use an over-
view to access the individual tiles (e.g., [9, 15, 17]).
The approach of collapsing page content makes collapse-
to-zoom a member of the family of generalized fisheye
views [11]. Existing research prototypes allow users to
collapse text sections (active outlining [13]) or pan a fish-
eye lens across the page (fishnet [2]). Collapse-to-zoom is
different from these in that it allows users to collapse tiles
in a 2D layout, such as cells in a table. In particular, col-
lapse-to-zoom uses space gained from collapsing tiles to
immediately magnify the remaining page content.
Collapse-to-zoom uses gestures for collapsing and expand-
ing content (a so-called marquee menu). For a more gen-
eral taxonomy of selection gestures see paintable interfaces
[1]. Unlike gestures in existing systems, such as power
browser [7], marquee menus offer command gestures that
simultaneously define a target area and the command to be
executed on that area.

COLLAPSE-TO-ZOOM: A WALKTHROUGH
Figure 2 gives a walkthrough of collapse-to-zoom using the
example of the news page from Figure 1. The user’s task is
to find news articles about the Bertelsmann Company.
(a) As the page loads, the browser detects that the page is
significantly bigger than the screen and thus shows a
thumbnail view instead. (b) The headlines are scaled below
recognizability, so the user cannot decide if any of the

a b

c d

e f

g

about to collapse columnthumbnail view

about to collapse 2nd column content area has expanded

about to click a headline about to expand-and-zoom

reading article in detail view hnext day: pre-collapsed
Figure 2: Collapse-to-zoom walkthrough

shown headlines involve the topic of interest. However,
layout conventions allow the user to recognize the main
structure of a news page, i.e., menu, articles, and advertis-
ing columns. To see the news headlines in more detail, the
user performs a pen gesture to collapse the advertising col-
umn and then (c) the menu column (we will present our
gesture language in detail in the next section). (d) As a re-
sult, these columns are now replaced with thin gray place-
holders and the freed screen space has been used to render
the remaining column with the news headlines at a larger
size. While the abstracts are still fairly small, headlines
have now become readable. Note how the placeholders
provide the user with visual context. In addition, they allow
the user to restore the respective tile. Tapping the left
placeholder, for example, would restore the view to the
state shown in Figure 2c. In the expectation to return to this
news site, the user bookmarks it.
(e) The user scrolls through the page and finds a headline
containing the name Bertelsmann. Without leaving over-
view mode, the user follows the link by tapping it. (f) The
article page is loaded and since it is too long to fit into the
browser window, it too is displayed as an overview. To be
able to read the story the user performs an expand-and-
zoom gesture on the story area. (g) This removes all content
outside the story area and switches to single-column view.
The user can now advance through the story efficiently
using the device’s hardware scrolling buttons.
(h) The next day, the user invokes the bookmark created
earlier and the browser loads the new edition of the page.
However, the browser also restores the collapse-state the
page was in when the bookmark was created. All headlines
are therefore readable right away; no further user interac-
tion is required. In addition, the page loads faster, as image
material in the collapsed areas is not loaded.
The collapse-to-zoom mechanism described in this walk-
through minimizes the need for zooming and trial-and-error
exploration. Instead of forcing users to iterate between
overview and detail view, collapse-to-zoom allows users to
make continuous progress towards the page content that is
relevant to the user’s task at hand. By collapsing elements
deemed irrelevant users narrow down the page, thereby
reducing the amount of content that has to be examined
when finally switching to detail view. The need to scroll
over irrelevant content is eliminated. In addition, collapsing
content causes the remaining material to be re-rendered
with increased detail, which often enables users to continue
zeroing in on the relevant material.
With collapse-to-zoom, all page navigation is done up front
(often using only a single expand-and-zoom action). Once
users switch to single-column view, subsequent navigation
reduces itself to scrolling, which most devices support con-
veniently with a set of hardware scroll buttons.

NAVIGATION USING A MARQUEE MENU
Navigation in collapse-to-zoom is based on a novel menu-
ing technique what we call a marquee menu. Marquee
menus are based on a marquee selection. Marquee selec-

tion is commonly used in image editing programs, spread-
sheets (Figure 3b), etc. Dragging the pen on the screen
creates a rectangular selection enclosing the start and end
point of the drag gesture. Marquee menus also share prop-
erties known from marking menus [14], namely the use of a
directional gesture for command selection.
The main strength of marquee menus is that they combine
area selection and command selection into a single gesture.
The user performs a marquee selection (visual feedback
shown in Figure 3a) and when the user lifts the pen a
command is executed. Which commands is executed is
determined by the direction of the drag movement. Since
there are four directions for selecting a given rectangular
area (starting at any of four corners), marquee menus allow
users to choose from up to four commands (Figure 3a).
The four commands of collapse-to-zoom’s marquee menu
are based on the following mnemonic scheme (Figure 3c).
Vertical: Up means expand, down means collapse. Expand
stand for “collapse everything outside this area”, which
effectively grows the selected area. Diagonal: The two
indispensable functions are placed on the top-right/bottom-
left diagonal, where right-handed users can access them
conveniently by pivoting around the wrist. The main func-
tions are collapse column, which is guaranteed to cause
remaining screen content to grow, and expand-and-zoom,
which expands the selected area and switches to full-size
single column reading mode. The opposite diagonal offers
cell-wise commands for manual fine tuning. Left-handed
users can mirror the menu (as in Figure 2).

collapse-cellcollapse-column

expand-cell expand&zoom

m
ai

nc
om

ands
m

a

c

b

expand

collapse

Figure 3: (a) The marquee menu and the com-
mands it offers in collapse-to-zoom. Dragging the
pen creates a selection. On pen lift the command
associated with the drag direction is executed. Dur-
ing dragging, the icon of the upcoming command is
shown; the lasso assumes the color red for collapse
and green for expand commands. (b) Example of a
marquee selection in a spreadsheet. (c) Mnemonics
behind the arrangement of the four commands.

The fact that all the expand/collapse navigation is based on
drag gestures allows collapse-to-zoom to use pen tapping
for following links. Unlike most existing systems that re-
quire users to switch to detail mode first [9], this allows
users to follow links directly from the overview.
Marquee menus allow users to abort a command by drag-
ging the pen back to the starting point (marked by the

command icon) and lifting it. Besides that, our browser
offers an undo button that undoes the last navigation com-
mand, and buttons that allow users to switch between over-
view, single column view, and 2D spatial view of the page
(see the four right-most buttons in Figure 2; the other five
buttons offer traditional browser navigation). Hitting the
overview mode button when already in overview mode
restores a page, i.e., restores all placeholders in it.

IMPLEMENTATION
We implemented collapse-to-zoom and its marquee menu
as a simulation of a Compaq iPAQ that we run on a Ta-
bletPC. Compared to a PocketPC-based implementation,
this provides us with a more powerful development plat-
form and allows us to anticipate the graphics processing
power that the GPU-supported small screen devices of the
next generation will offer. The tablet also allows us to ex-
plore pen-based interactions.
Our implementation is based on the Microsoft Web-
Browser Control that parses, renders, and scales the loaded
pages (CSS zoom feature supported in Microsoft IE since
version 5.5, see http://msdn.microsoft.com). This allows
the prototype to load and render live web pages. Marquee
gestures are implemented by intercepting mouse events and
bypassing the function that normally highlights text while
dragging. In its current version, our prototype is limited in
that marquee gestures cannot be invoked on top of links.
Our prototype splits web pages into a set of tiles using the
algorithm described in [9]. In a first pass, an iterative sepa-
rator detection algorithm breaks the page down into tiles
and transforms the page into a slicing tree based on the
position information of each tile [17]. In a second pass, the
slicing tree is transformed back into a web page. This is
done by creating a nested table reflecting the structure of
the slicing tree and pasting the tile content generated during
the first pass into the individual table cells. The resulting
page is displayed using the web browser control. The page
now contains individual cells for each collapsible unit, so
that collapse actions can be executed by replacing cells
with placeholder contents. The lasso around selected cells
is implemented by changing the cell border color and re-
rendering the page.
CONCLUSIONS
Collapse-to-zoom is a technique that helps users view web
pages on small screen devices. Our two main contributions
are (1) the concept of collapsing irrelevant cells to cause
the remaining content to be rendered at higher detail and
(2) a single-stroke-based gesture language called marquee
menu. Collapse-to-zoom supports the user’s two main
tasks: Marquee menu commands provide efficient access to
relevant content located inside the page; link tapping di-
rectly in the overview allows users to instantly move on the
content located elsewhere. Our experience so far is that the
relevant content in most pages is arranged in the shape of a
rectangle, which allows users to handle these pages with a
single expand-and-zoom gesture. Pages that do not fall into
this category can be handled by combining collapse cell
and restore placeholder commands.

As future work we plan to run an experimental comparison
between collapse-to-zoom and other web browsers for
small screen devices. Furthermore, we plan to explore in
how far the concepts described in this paper can be applied
to the desktop, e.g., to remove advertising or to prepare
pages for printing.

Acknowledgements
Thanks to Aaron Filner, Autumn Stroupe, and Henry Chen
for their comments on our earlier design prototypes.
Thanks also to Mary Czerwinski, George Robertson, and
Ken Hinckley for their comments on a draft of this paper.

REFERENCES
1. Baudisch, P. Don't Click, Paint! Using Toggle Maps to Ma-

nipulate Sets of Toggle Switches. In Proc. UIST ’98, pp.65–66.
2. Baudisch, P., Lee, B., and Hanna, L. Fishnet, a fisheye web

browser with search term popouts: a comparative evaluation
with overview and linear view. In Proc. AVI’04, pp. 133-140.

3. Bederson, B., Hollan, J., Perlin, K., Meyer, J., Bacon, D., and
Furnas, G. Pad++: A Zoomable Graphical Sketchpad for Ex-
ploring Alternate Interface Physics. J. of Visual Languages
and Computing, 7, 3–31, 1996

4. Bickmore, T., and Schilit, B, Digestor: Device-Independent
Access to the World Wide Web. In Proc. Seventh Intl. WWW
Conference 1997, pp. 655–663.

5. Björk, S., Holmquist, L.E., Redström, J., Bretan, I., Daniels-
son, R., Karlgren, J., and Franzén, K. WEST: a web browser
for small terminals. In Proc. UIST’99, pp. 187–196.

6. Buyukkokten, O., Garcia-Molina, H., Paepcke, A. Text
Summarization for Web Browsing on Handheld Devices.
Transactions on Inf. Sys. 20(1):82-115.

7. Buyukkoten, O., Garcia-Molina, H., Paepcke, A., and Wino-
grad, T. Power browser: efficient web browsing for PDAs. In
Proc. CHI’00, pp. 430–437.

8. Cai, D., Yu, S., Wen, J.R., and Ma, W.Y. VIPS: a vision-
based page segmentation algorithm. Microsoft Technical Re-
port, MSR-TR-2003-79, 2003.

9. Chen, Y., Ma, W.Y., and Zhang, H.J. Detecting Webpage
Structure for Adaptive Viewing on Small Form Factor De-
vices. In Proc. WWW’03, pp 225–233.

10. Gupta, S., Kaiser, G., Neistadt, D., ad Grimm, P. DOM-based
Content Extraction of HTML Documents. In Proc. WWW
2003, pp. 207–214.

11. Furnas, G. Generalized Fisheye Views. In Proc. CHI‘86, pp.
16–23.

12. Gessler S., and Kotulla, A. PDAs as Mobile WWW Browsers.
Computer Networks and ISDN Systems 28(1-2):53-59, 1995.

13. Hsu, J., Johnston, W., and McCarthy, J. Active Outlining for
HTML Documents: An X-Mosaic Implementation. In Proc.
Second Intl. WWW Conference 1994.

14. Kurtenbach, G. and Buxton, W. User Learning and Perform-
ance with Marking Menus. In Proc. CHI’94, pp. 258–264.

15. Milic-Frayling, N. and Sommerer, R. SmartView: Enhanced
Document Viewer for Mobile Devices. Microsoft Research
Technical Report MSR-TR-2002-114.

16. Wobbrock, J., Forlizzi, J., Hudson, S., Myers, B. WebThumb:
interaction techniques for small-screen browsers. In Proc.
UIST '02, pp. 205–208.

17. Chen, L.Q., Xie, X., Ma, W.Y., Zhang, H.J., Zhou H.Q., Feng
H.Q., DRESS: A Slicing Tree Based Web Representation for
Various Display Sizes. Microsoft Research Technical Report
MSR-TR-2002-126.

