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Abstract

This paper develops a framework based on convex optimizatio eco-
nomic ideas to formulate and solve approximately a richsclatsdynamic
and stochastic resource allocation problems, fitting inreege discrete-state
multi-projectrestless bandit problem (RBPt draws on the single-project
framework in the author’'s companion paper “Restless bandiginal pro-
ductivity indices I: Single-project case and optimal cohtif a make-to-stock
M/G/1 queue,” based on characterization of a projet#sginal productiv-
ity index (MPI) Our framework significantly expands the scope of Whittle
(1988)'s seminal approach to the RBP. Contributions inelyg Formulation
of a generic multi-project RBP, and algorithmic solutiom gingle-project
MPIs of arelaxed problemgiving a lower bound on optimal cost perfor-
mance; (ii) a heuristic MPI-basdtbdging point and index policyiii) appli-
cation of the MPI policy and bound to the problem of dynamikesiuling
for a multiclasscombined MTO/MTS3//G/1 queue with convex backorder
and stock holding cost rates, under the LRA criterion; amyir@sults of a
computational study on the MPI bound and policy, showinddltter's near-
optimality across the cases investigated.

1 Introduction

This paper develops a framework based on convex optimizatid economic ideas
to formulate and solvepproximatelya rich class of dynamic and stochastic re-
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source allocation problems, fitting in a generic discresesmulti-projectrestless
bandit problem (RBR)It draws on the single-project framework in the author’s
companion paper Nifio-Mora (2004), based on a unifying definand character-
ization of a project’'snarginal productivity index (MPI)

The approach is deployed to address an important problemaimufactur-
ing applications, concerning the dynamic scheduling of &irpuoduct combined
make-to-order (MTOjnake-to-stock (MTSroduction-inventory facility, modeled
by a multiclass MTO/MTSM /G /1 queue with convex backorder/stock holding
cost rates. Results includehedging point and index scheduling policgming
close to minimizing théong-run average (LRAQost rate per unit time, andawer
boundon optimal LRA cost performance.

Our framework significantly expands the scope of Whittle8&% seminal
approach to the multi-project RBP. Whittle considered a @hadncerning the op-
timal allocation of effort to a collection of discrete-gd¥larkovianrestless bandit
(RB)projects, i.e. binary-action (work/redt)arkov decision processes (MDPg)
fixed number of which must be active at each time. The special chszemne
project must be active, and rested projects do not change staovers the classic
multi-armed bandit problem (MBP}¥olved optimally by thésittins indexpolicy.
See Gittins (1979). The increased modeling power of the RBfes at the expense
of tractability, as it id?-space hardSee Papadimitriou and Tsitsiklis (1999). Whit-
tle (1988) introduced an index(i) attached to an RB project, depending only on
its statei, and proposed as a heuristic the resulting index policy:R&beach time
on the required number of projects having larger index &aldgheWhittle index
emerges in the solution of relaxed problemwhich further gives gerformance
bound in terms of theLagrange multiplierassociated to an average-activity con-
straint. Such index policy is optimal in the MBP case, andgsiptically optimal
under certain conditions. See Weber and Weiss (1990).

Yet the Whittle index doesot exist for all RB projects, only for a restricted
class of so-callethdexableprojects. Whittle (1988) stated:

“... one would very much like to have simple sufficient coruis for
indexability; at the moment, none are known.”

Such scope limitation is particularly severe in the mudissl queueing scheduling
model considered in this paper, which is readily formulas@ multi-project RBP.
The Whittle index does not exist for the constituent prgagatder the LRA crite-
rion, as pointed out by Whittle (1996, Ch 14.7) himself, aydvieatch and Wein
(1996). The latter authors state:

“In contrast, the backorder problem is not indexabléx) does not
exist (i.e. equals—oo) for all . The difficulty is thatv is a La-
grange multiplier for the constraint on the time-averagmber of ac-

tive arms. For the backorder problem, any stable policy reeste a
time-average op classes, so relaxing this constraint does not change
the optimal value, and the Lagrange multiplier does nottekisfact,

no scheduling problem with a fixed utilization will be indéka.”

In the companion paper Nifio-Mora (2004) (cf. also Nifiot®¢2003)), we
resolved both issues. Thus, we introduced a unifying defimaf MPI for a generic



RB project, of which the Whittle index is a special case. Wehier introduced an
MPI relative to a newmixed LRA-bias criterionwhich applies to the scheduling
model of concern in this paper, where the Whittle index dassrist. We further
furnished acomplete characterizatioof indexability (existence of the MPI) for a
generic RB project, showing its equivalence to satisfactiy the project of the
economiclaw of diminishing returns (LDRip effort. The paper further presented
sufficient conditions for indexability, based on satisi@ttby project performance
measures opartial conservation laws (PCLskxtending to the countable-state
case the finite-state PCL framework introduced by the authidifio-Mora (2001a,
2002); andPCL-indexabilityanalyses of single-class service-controlled MTO and
MTS M /G/1 queues with convex holding cost rates, which are the RB gi®je
the multiclass model considered in this paper.

Extensive research efforts have been devoted to the deSgpheduling poli-
cies for multiclass queues, focusing either onplhee MTO or MTS cases. In the
MTO case, most work has assumed linear holding cost raterumhichstatic
index rulessuch as they rule are often optimal. See, e.g. Niflo-Mora (2001b) and
the references therein. Haji and Newel (1971) argued theiitapce of incorporat-
ing insteadcconvex increasing costs of deJand proposed a corresponditgnamic
index rule Their results were extended by Van Mieghem (1995), whdbtisteed
a form of heavy-traffic optimality for such policy. Ansell @t (2003) and Glaze-
brook et al. (2003) have addressed the pure MTO case of thelmodsidered in
this paper. They have sought to overcome the nonexistentiee diVhittle index
under the LRA criterion by showing its existence under discounted criterion
Then, taking the limit of the discounted Whittle index schliyy the discount factor
as this vanishes gives a convenient LRA index. They establish results in the
MTO M/M /1 andM/G/1 cases by an ad hoc DP analysis, under the assumption
that holding cost rates amnvex increasingn the queue’s state. Their approach,
however, fails to produce bounds on optimal LRA cost pertomoe; and does not
apply to the MTS case, where holding cost rates are V-shaptbe inatural queues’
state ofnet backorder levelsSee Section 2.

The problem of scheduling a multiclass MTS queue to minintiseounted
or LRA linear backorder and stock holding costs has attracted majorndseé
forts since the 1990s. A variety of policies has been prahoskaracterized by
a hedging point and index policyln the standard application to a multi-product
production-inventory facility, the hedging point correspls to abase-stock level
for each product, and determines work vs. idling decisidhs:facility works as
long as there is a product whose stock level is below its stk level. The in-
dex policy dynamically determines which product is prodij@mong those whose
stock is not full. See, e.g. Zheng and Zipkin (1990), Weir9@)9 Zipkin (1995),
Veatch and Wein (1996), and Pefia-Pérez and Zipkin (19B8ijther, Ha (1997),
and de Véricourt et al. (2000) have shed light on the strectd optimal policies,
justifying some of the proposed heuristics. In recent wbiksonchet and Hongler
(2003) have calculated ttaiscountedWhittle index for an MTSM /M /1 queue
with linear backorder and stock holding cost rates. However, they disappli-
cation of such approach under the LRA criterion, due to theeRristence in such
case of the Whittle index. We remark that, while the premgilassumption of lin-
ear stock holding costs can be reasonable in practice, éamppgnore realistic to
consider nonlinear convex increasing backorder cost,ratese do in this paper.

3



Research omombinedMTO/MTS multiclass queueing systems has received
relative scarce attention, mostly addressing issues dbmeance analysis and
“MTO vs. MTS” decisions. Such systems model flexible prodctfacilities
where standard products are MTS, while custom products 8r®.Msuch com-
bined mode of operation is becoming increasingly pervasivenanufacturing,
which underscores the importance of addressing the camelgmy scheduling prob-
lem. To the best of our knowledge, this paper is the first toesidthe latter. We
refer the reader to Soman et al. (2004) for a comprehensiieweof work on
combined MTO/MTS systems.

1.1 Contributions

Motivated by the issues discussed above, this paper pseenfollowing contri-
butions: (i) Formulation of a generic multi-project RBPdaalgorithmic solution
via single-project MPIs of eelaxed problemgiving a lower bound on optimal cost
performance; (ii) a heuristic MPI-basédging point and index poli¢iii) ap-
plication of the MPI policy and bound to the problem of dynaracheduling for

a multiclasscombined MTO/MT8//G/1 queue with convex backorder and stock
holding cost rates, under the LRA criterion; and (iv) reswf a computational
study on the MPI bound and policy, showing the latter’s ragatimality across the
cases investigated.

1.2 Structure of the paper

The rest of the paper is organized as follows. Section 2dunirtes our motivating
problem, concerning the dynamic scheduling of a multicll§O/MTS queue.
Section 3 extends the single-project solution framewoek MPIs in Nifio-Mora
(2004) to develop a heuristic hedging point and index pdiarya generic multi-
project RBP. Section 4 deploys the RBP policy and bound imtbdel of concern.
Finally, Section 5 reports the results of a computationadyst

In what follows, we refer the reader to the companion papé&oMilora (2004)
for required background material on the single-projececas

2 Motivating problem

Consider a model for a multi-product production-inventftawsility, where a product
range labeled byy ¢ K = {1,..., K} dynamically vies for access to shared
production capacity. Products are partitionedkas= KMT© U KMTS, Products

k € KMTO mustbe MTO, whereas products ¢ KMT™S canbe MTS, allowing
backorders. Note that such setting includespghee MTO casgKMT™S = ()) and
thepure MTS cas€KMTO = ().

Customer orders of unit size for product K arrive as a Poisson process with
rate \;. A single flexible machine, which is used to process all agderakes a unit
of productk in a production timedistributed as a random variable with Laplace-
Stieltjes transform (LSTY(+), having finite mearl /p;, and variancer;. Arrival
streams and production times are mutually independentotenby pi, = A/ 1k



productk’s traffic intensity, we assume ttstability condition

PéZPk<1-

keK

For a product: € KMTO, customer orders are placed upon arrival in a corre-
spondingbackorder queue (BQhosestateat timet > 0, given by its size, we
denote byXy(t). The correspondingtate spacés Ny, = {0,1,...}.

For a produck € KMTS items can be made in advance of demand, to be placed
in a correspondindinished goods stock (FGSyhose size at timéwe denote by
X, (t). The FGS has finite storage capacitjor up tos, > 1 units. An arriving
order finding an empty FGS is placed in the corresponding B@se size at time
t we denote byX,' (¢). We consider the product's state to beritt backorder level
Xi(t) = X7 (t) — X, (t), so that its state space§, = {—sj,...,0,1,...}.

A central controller governs system evolution by choice s€leduling policy
m, prescribing dynamically whether the machine is to be idlevorking and, in
the latter case, on which product. The policy is drawn fromdlassII of admis-
sible policies which are: (i)nonpreemptivei.e. production of an item cannot be
interrupted; thus, théecision epoch sequencensists of order arrival epochs to
an empty system, and product completion epochsn@idanticipative i.e. deci-
sions depend on the history of the system up to and includiagotesent epoch;
and (iii) stable i.e. the policy must induce an equilibrium distribution thie joint
state process, having finite moments of the required ordeen/gervice times are
exponential, we can choose to expdihtb includepreemptivepolicies.

The system incurs backorder and/or stock holding costarably across prod-
ucts. Produck accrues costs at rate, (i) per unit time while its state i,. We
will refer to the first and second-order differenc®éy, (i) = hy(ix) — he(ix_1)
andA2hk(z’k) = Ahk(lk) — Ahk(lk — 1).

Assumption 2.1 Holding cost ratedy, (i) satisfy the following:
(i) They are bounded belovinf{hy(ix) : ir € Nx} > —oc.
(i) They are convexA2hy (i) > 0, for i, € Nj such thati, — 2 € Ny.

(iii) If 9y (-) has finite moments of up to order;, + 1, thenhy (i) = O(i,"*) as
ik — +00.

Notice that we do not require holding cost rafegi;) to be monotonic in
i € Ng, as such assumption is not appropriate in the MTS case witkobders.
Instead, one will typically have that such rates are V-stapg(iy ) is nondecreas-
ing for i, > 0 (i.e. backorder cost rates are nondecreasing in the baakiaekl);
and iy (ix) is nonincreasing foi, < 0 (i.e. stock holding cost rates are nonde-
creasing in the stock leveliy).

We will address thé&.RA scheduling probleymwhich is to find a policyr™ € 11
attaining the minimum LRA valug* of costs incurred.

/ S b (x0) dt] . (1)

0 kek

1
ff=1inf lim —E7
r€d T—+oo T




Given the intractability of problem (1) in such generalibyr prime goals will
be: (1) to design a well-grounded, tractable heuristic dulileg policy 7*, which
comes close to attaining the optimal cost vafifeand (2) to construct a tractable
lower boundf < f*.

3 Multi-project RBP

3.1 Problem description

This section extends the single-project framework andyaislin Section 3 of
Nifio-Mora (2004) to addressraulti-project RBRwhere acentral plannemwishes
to optimally allocate effort to a collection df RB projects, labeled by € K =
{1,...,K}. The joint state process X(t) = (X (t)) ek, fort > 0, whereX,(t)
is projectk’s state. Control is exercised by adoption of a policydrawn from a
classII of nonanticipative admissible policies. This prescribew lasingle oper-
ator, able to work on at most one project at a time, is to be dyndipialocated.
Our focus on the single-operator case is only due to easepafséion, as the ap-
proach and results below readily extend to thelti-operatorcase. Each project
has its owrmanagey in charge of policy implementation.

We refer the reader to Section 3 of Nifio-Mora (2004) for acdpson of the
individual RB projects considered here. Below we add thabel i to the notation
introduced there. Thus, projekthas discrete state space

Ne={jeZ: <j<i},

where—oo < 62 < E,{; < 400, with controllable (resp. uncontrollable) state space
N,io’l} (resp.N,iO} = {9}). Its individual class of admissible policies is denoted
by IT;.. We will also refer to the project’s threshold, 6., policies, having active-
state setsSy,(ix,), for i, € Nj,. Cost and work measurg© andg,*, for 7, € II,

are extended tg;” andgy, for 7 € II. The following conditions are required to
hold.

Assumption 3.1 For any projectk € K and policyr € II:
(i) sup {g;" : mp € I} > gf.
(i) inf {f7*:m, € I} < fF.

In words, the work (resp. cost) performance achieved onjagirby a system-
wide policy cannot exceed (resp. fall below) the correspandupremum (resp.
infimum) performance value under its individual policies.

Projects are assumed to inelexablerelative to threshold policies. See Defini-
tion 3.6 in Nifio-Mora (2004).

Assumption 3.2 Projectk € K is % -indexable, with MPV ().

Managers vie for access to the operator as this becomealzleqiht a decision
epoch sequendg =0 < t; < --- < t, — 400 asn — +oo, consistent with the



individual projects’. Denote by (t,,) = (ax(t)),cx thejoint actionat epocht,,,
whereay(t,,) € {0,1} is projectk’s action. Thesample-path activity constrairns

a(t) £ ap(t) <1, t>0. )
keK
The cost performance under a polieys evaluated byolding cost measure
fTEY T
keK

The multi-project RBPof concern is to find a policy attaining the system’s
optimal cost performance:

Findz* eIl: f™ = f*2inf{f": 7 € II}. (3)

Our goals are: (i) design a well-grounded tractable pofitye II, coming
close to minimizing cost performance; and (ii) produce atéble lower bound
f < f*, which can be used to assess the policy’s suboptimality gap.

3.2 Relaxed problem

We will develop an approach based on solution cdlaxed problemThis refers to
work measurgy™, evaluating the effort under a poliey, given by

g EY g
keK

Note that Assumptions 3.1(ii) in Nifio-Mora (2004) and ant{i} ensure existence
of an upper boung:
9" <g, mell 4)

Inequality (4) will furnish the key constraint to define ttedaxed problem.

Consider anodified systerwhere each project has its own operator, and hence
the set of active projects ranges fréno K. Control is exercised throughralaxed
policy 7, drawn from a clasdl of admissible relaxed policiesWork and cost
measures are extended to policies II, giving f7, g7,

e T and g2 gi

keK keK
The following conditions are required to hold.
Assumption 3.3
(i) II > II.
(i) o J] .

keK
i) {(oF 7): 7 €T} = {(gf*, 1) m € I}, keK.
Remark 3.4 In words, Assumption 3.3 says the following:
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() Part (i) justifies the term “relaxed policies.”

(i) Part (i) means thatl includes the clas$], i [T}, of admissible decentral-
ized policies These are of the for@ = (m), .k, i.€. each projeck is
autonomously controlled under its own individual poligy € II,,.

(iif) Part (iii) says that a project's work-cost performanachieved by relaxed
policies7 € IT is the same as that achieved by individual policigse I1.

Therelaxed problenof concern is:
me#eﬁ:ﬁ*:fémﬂjﬂg%g@%eﬁ}. (5)

3.3 Reformulation as convex resource allocation problem

We develop below a convex optimization approach to solvélpro (5), drawing
on Section 3.3 in Nifio-Mora (2004). Define tletaxed achievable work-cost (per-
formance) regiorby

H2 {(b, 2) €R?: (b,2) = (g7, f7) for somer € ﬁ}, (6)

and denote its projections over the work and cost spac@andV, respectively.
We next show that such regions can be decomposddimgowski sumgde-
noted by operatom) of their single-project counterparis;,, B, andV.

Lemma 3.5
(@) H = @pexHy.
(b) B = ®rexB.

©) V= ®rex Vi

ﬁéﬁa@ewzm@:@iﬁnmwmﬁeﬁ}

= {(b,z) €R?2: (b,2) = (Zg’rk,Zf”’“):mg EHk,kEK}

kekK keK

= {(b, Z) < Rz : (b, Z) = Z(bk,zk), (bk,zk) < Hk,k‘ S K} £ @kEKHk-
keK

Parts (b) and (c) follow from part (a). O

Convexity of such regions follows from their single-prdjeounterparts’, ex-
tending toclosuresH, B andV. Consider theelaxed efficient work-cost frontier

oH 2 {(b,z) eﬁ[:be@andzgf%forany%eﬁwithg%:b}.



This is characterized as the graphreffaxed cost function

~

C(v) éinf{f% L =b7e ﬁ} :inf{z (b, 2) eﬁ[}, beB, (7)
whose convexity follows from that of regidﬂAﬂ, so that
oH = {(b, Cb)):be 1@} . )
We can now reformulate (5) as thenvex resource allocation problem
Findb* € B : C(b") :féinf{é(b):bg@be@}. @)
To evaluateC (b) we will further address theelaxedb-work problem
Find#* € with g* = b: f* = C(b) & inf{f% g =bre ﬁ} . (10)
A relaxed policyw € II will be said to beb-work feasiblef g" =b.

3.4 Lagrangian multiplier analysis and decentralization

We address problem (10) via a Lagrangian approach, aloniteeof Section 3.4
in Nifio-Mora (2004). Dualizing constrainf® = b by multiplier v € R gives the
Lagrangian function

LEW) 2 v [ =] = > o) -,
keK
where - - -
vk (v) 2 [T +veg.
Again we interpret’ as thewagerate Aearned by operators. Henn@(u) gives
projectk’s holding and labor costs, and," (v) is the system-wide cost where work

expended above (resp. belokwinits is paid (resp. sold) at wage
The unconstrainetlagrangian problenis

Find7* € I : 7 (v) = £ (v) 2 inf {zf(y) Fe ﬁ} . (11)

We next show that use of decentralized policies (7)rex Suffices to solve (11).
Letv; (v) be the optimal value gfrojectk’s v-wage subproblem

Find ), € II, vg’t (v) = vi(v) = inf {op*(v) : m € T } (12)

Lemma 3.6

L (v) = Z vp(v) — vb.

kek

Proof. We can write

ZF(v) 2 inf {zf(u) = ﬁ} = inf {ng(u) = ﬁ} — b

keK

(13)
= inf {ng’“(u) s € g, k € K} —vb= Zv;;(y) —vb,
keK keK
where the third identity follows from Lemma 3.5(a). O

9



The central planner can thus solve the Lagrangian problequbting to man-
agers wage’, and letting them solve their-wage subproblems. This suggests
decentralizing the relaxddwork problem’s solution through wage choice.

3.5 Duality-based optimality conditions and shadow wages

We next seek to find optimality conditions for a decentralizmlicy in primal
relaxedb-work problem. To price the value of work we will use dsal (or pricing)
problem, which is to find a wage® € R maximizing (concave) objective(v):

Findv* € R: .2 (v*) = Q(b) £ sup{L'(v) : v € R}. (14)
We will use theduality gapassociated to a relaxed polidyand a wagev:
Af(w) & 7 =L (). (15)
Notice that, for a decentralized poligy= (7 )rcxk, the duality gap reduces to

b-> gr ] (16)

kek

AT) = 3 [ (v) = vi(v)] + v

kek

The next result follows immediately.

Lemma 3.7 (Weak duality)

(@) Letw € I1 be b-work feasible and let € R. Then, 2 (v) < fr.
(b) Q(b) < C(b).

Lemma 3.7 and identity (16) suggest the following sufficieptimality condi-
tions for a decentralized policy* = (7} )xek € [ [,k IIx and a wage™ € R:

() Primal feasibility: > g7* = b.
kek

(i) Project-wise oetimality: Policy 7} is optimal for projectt’s v*-wage sub-
problem, i.ev * (v*) = v} (v*) for k € K,
Theorem 3.8 (Sufficient optimality conditions) Under conditiongi)—(ii) above:
(a) Policy 7 is optimal for primal relaxed-work problem(10).
(b) Wager* is optimal for its dual problenq14).

(c) Strong duality holds()(b) Z

keK

Proof. The results follow via Lemma 3.7, using the fact that caondg (i)—(ii) and
identity (16) ensure there is a zero duality gap. O
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We will refer to a wage * satisfying the conditions in Theorem 3.8 astadow
wagefor the relaxed-work problem. IfC(-) is derivable ab, we have
Ve = —ié(b) (17)
- db )
Namely,v* is themarginal productivity of workn the relaxed-work problem.
As in Lemma 3.4 of Niflo-Mora (2004), existence of a shadowevis neces-
sary for optimality.

Lemma 3.9 Let7* be an optimal decentralized policy for the relaxediork prob-
lem. Then, there exists a corresponding shadow wége

3.6 Construction of relaxed cost function

We address next theonstructionof function C’(b). We will use the following
notation. Given a joint stat¢ = (jx)rex, denote byS(j) = (Sk(Jjr))kex the
decentralized policy using ths, (ji )-active policy on projeck € K. Write further
00 = (()rex, £ = (£ )rex, and lete, be thekth unit coordinate vector iR¥.

Consider the algorithm in Figure 1, which generates a semuehjoint state,
project label, and wage triplg§”, k,,, v™), for n > 0. This is finite if all project
state spaces are finite, and is infinite otherwise. The wotéti > 0” thus refers to
relevant values of.. The algorithm constructively defines cost functiorf (b) for
b € B, by linear interpolationon generated work-cost paifgS@"), fSU™).

The main result of this section, given in Theorem 3.11 belsmhatéy(b) =
@(b). We will draw on the following preliminary result.

Lemma 3.10 Sequencéj”, k,,, v™) satisfies the following:
(@) v <yt

(b) max vi(jp) <v'= V;;n (];?:1) =

min v (jp + 1).
>0 keK

Jp<t; kekK

Proof. (a) It follows by construction, using nondecreasingndssach index;;(-).

(b) The “min” equality follows by choice of,, in the algorithm.

To show the “max” inequality use induction en We interpret the case = 0
letting the maximum ovelt be —oco. The case: = 1 follows fromvj; (jj; ) = v° <
v!'. Suppose it holds forn — 1. Then, using part (a) and the induction hypothesis
gives that, fork # k,_; with j7~' > ¢9, we have

=0t =G = v < v, Gk) = vt <ot =0 G,
This completes the proof. O
Theorem 3.11 The relaxed-work problem’s cost function is given by

C(b) = C7 (b) = max {fs(jn) + " {gs(jn) — b} in > 0} , beB,

and is hence piecewise linear convex.

11



Initialization:
let j©:=€% n:=0
Loop:

while j» # ¢! do
choosek,, € arg min{v;(j; + 1) : jj < {},k € K}
let j"tl:=j" +e;,; letv":= I/Zn(jgjl)
let 7 (b) == f3U") 4 pm [5G —p] | b e[S, gSiM)]
let n:=n+1
end { while }

Figure 1: Algorithmic construction of relaxed cost functio

Proof. Forb e [¢8U""), ¢SU™)], let

A b- gSE™h b gSEmh
g0 — ST T 5 LD

dn

Define decentralized policy™ = (7}})kex by

Y OO e
S GEY ik =k,

whereS;" (ji ") is the randomized policy defined as in Section 3.7 of Nifiaso
(2004). Then, it is easily seen, using Lemma 3.10(b), thiitypa™ and wage
V™ satisfy the sufficient optimality conditions for the reldxizwork problem in
Theorem 3.8. The “max” representation follows from the &tho’s construction
and Lemma 3.10(a). This completes the proof. O

3.7 Algorithm and optimal decentralized policy for relaxed problem

We next draw on the above to solve relaxed problem (5) by antiedized policy,
thus producing the required lower bouﬁdan optimal cost. For such purpose, we
introduce the algorithfiRELAXED, described in Figure 3.

The algorithm takes as input an upper bogrwh work performance satisfying
(4). Upon termination, it produces as output a G-IL@\GV*,n,j",kn,qn). From
this we construct decentralized poligy = (7})rex by letting

* A Sk(]l?) ifkeK\{kn}
PSR GE i k= k.

The main result of this section, given in Theorem 3.12 belevthat policy7* is
optimal for the relaxed problem. This is graphically illeged in Figure 2.

Theorem 3.12 Decentralized policyr™ solves optimally relaxed proble®). Its
optimal value is given by, as computed by the algorithm.

12
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Figure 2: Solution of relaxed problem (depending on pasitbupper bound)).

Proof. From the discussion in Section 3.6, we see that algorithrh AED
traversesfrom right to left the relaxed efficient work-cost frontielThe algo-
rithm exploits the latter's piecewise linear structure fiyoting from a corner
(¢84™), 80" to the left-adjacent corndySU™ ™), SG™) along such frontier.
Termination occurs when a corngSU™ )| £SG"")) s first reached having a fea-
sible work performanceSU”™") < G, anda nonnegative right slope” > 0. O

3.8 Hedging point and index policy, and auction interpretaton

We propose next a heuristic policy for RBP (3), based on thienghindex solution
to the relaxedj-work problem. In contrast with the policy proposed by Wahitt
(1988) for a special type of RBP, prescribing to engage dt éatwe a project with
larger index, our proposed policy introducebexlging pointi* = (i} )rck, Where
iy € Ny, for k € K, to determinadling decisions.

Our heuristic policy with hedging poirit, which we denote byt (i*), operates
as follows. At a decision epoch in stgte= (ji )rex:

1. If j < i* (componentwise), let the operator rest (idle the system).

2. Otherwise, assign the operator to a projgg} satisfying
k(3) € arg max{vj (jk) : jx > it k € K}

Such policy resolves the dynamic resource allocation pralidy adecentral-
ized auctionmechanism. When the operator becomes free, managers Etdeai
projects vie for access to it during the next periodbigiding an amount equal
to their project's MPI. The central planner resolves thetiancby allocating the
operator to the highest bidder, among projdctshose state lies above their crit-
ical threshold:;. In the multiple-operator model extension, an auction \adag
performed for each free operator.

It remains to determine an appropriate hedging pdint A naive approach
would use the optimal solution of the decentralized proklethe previous Section

13



ALGORITHM RELAXED

Input: g
Output: (f, v n, " kn, qn)
Initialization:
let j:=¢°% let n:=—1
Loop:
repeat

let n:=n+1

choosek,, € arg min{v;(j; + 1) : j < {},k € K}
let jutt =" ep, let v = v ()
until ¢S0"") <G and v >0

Ending:
if :q\ < gs(jn) then
g— St
let = : let v* := "
= e GE) S V=V
k@ - kn'
let f:= fSU") 4 [¢SU") — 3]
else
Iet qn ‘= 1, Iet v = 0, |et f = gS(Jn)
end {if }

Figure 3: Algorithm for solving the relaxed problem.

to seti* = j”, wherej” is produced by algorithm RELAXED in Figure 3. We have
found through computational experience, however, thah sypproach produces
inadequate (too large) threshold levélsyielding a policy whose performance is
often far from optimal.

Instead, we propose to determine threshold pidinsing thedescent algorithm
described in Figure 4. The algorithm’s validity relies oe tbllowing conjecture.

Conjecture 3.13 The continuous extension by linear interpolation of dise@st
functioni — £ is convex.

Besides being intuitively appealing, we have experiméntadrified Conjec-
ture 3.13 across a wide range of problem instances, comdsmpto the schedul-
ing model of concern in this paper. Figure 5 graphicallysiliates the conjecture’s
validity in one of the instances we have investigated.

Regarding implementation of algorithm DESCENT, in praeitowill typically
not be possible to evaluate functibn— f*@. Instead, one can usimulationto
obtain an estimatég™® of (1) and perform the comparison step in the algorithm
using corresponding estimates. We remark that in the @fgois step for finding an
adjacenthedging point improving upon the current one, it is meantva hedging
point obtained by a unit displacement (+/- 1pinecomponent of the current point.
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ALGORITHM DESCENT
Output: i*

Initialization:

set i’ (arbitrarily); let n:=0
let FOUND :=false

Loop:

repeat

try to find i"*! adjacent to i” such that f7("™") < ##(")

if there is no such i"*! then let FOUND :=true else letn :=n + 1
untii FOUND

Ending:

let i*:=i"

Figure 4: Algorithm DESCENT for hedging-point computation

4 Application of the MPI policy and bound

In this section we return to our motivating scheduling peoblin Section 2, to
construct the policy and bound resulting from the above &aork. We first note
that the LRA scheduling problem (1) of concern is immediatekrmulated as a
special case of multi-project RBP (3). The latter’s indivadi projects are service-
controlled MTO and MTSV//G/1 queues with convex holding cost rates. In Sec-
tions 6 and 7 of the companion paper Nifilo-Mora (2004) thdeewiill find PCL-
indexability analyse®f such RB projects, including closed-form expressions for
the corresponding MPIs relative to th&®A-bias criterion which is the appropriate
one for our purposes. We obtain the following unifying fotation for the MPI

vy (ix) of queuek. Let L, be a random variable having the equilibrium distribution
of a standard\//G/1 queue with arrival rata,, and service-time LSTy(-). Then,

vi(in) = weE [Ahy(Li + )], i€ N = {—sp +1,...,0,1,...}. (18)

To obtain the lower boun(f on optimal LRA cost performance, the above
framework requires us to produce an upper bogruh overall work measurg™.
In our case, the latter is th@as or excess worlperformance achieved by policy
over the nominal allocatiop, given by

of £ lim {E;T UOOO e~*a(t) dt] - g} = ET [/Ooo(a(t) —p) dt} ., (19)

wherea(t) € {0,1} is the facility’s busy/idle indicator, and we have now made
explicit the dependence on initial joint sta¥(0) = i. Given the latter, we will
give a corresponding upper bound

Define

_ + Uk
G 2 u _ Z < ) . (20)
k
The following result establishes th@tprowdes the required upper bound.
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Figure 5: Convexity off*® in case 5 of Table 1.

Proposition 4.1
glﬂ- < /g\ia m € IL

Proof. We first transform the multiclass combined MTO/MT%/G/1 model into
a multiclasspure MTO model in the standard fashion, i.e. by redefining theestat
of queuek to be Ly (t) = Xy (t) — sk > 0, for k € K. Now, itis clear that bias, or
excess work, measutg in (19) is maximized byanywork-conserving (nonidling)
policy in the transformed system. Hence, we only need caleuhe bias work
corresponding to any such policy in the multiclass MM G/1 queue, for which
we draw on and extend standard results in Kleinrock (1976,3%h

Let ¢, = ¢r(a) be the LST of the busy period for the latter system startirt wi
oneclassk customer, i.e. with initial stat&(0) = ex. The¢,'s are characterized
as the unique solution of fixed-point equation system

K
Ok = U <a+z>\l(1—¢l)> =tk (a+A1-9)), kek, (21)
=1

where we write )
A=) d 6= Zkg,.
Zk;: r and ¢ Zk: 3 o

We can thus bound above the bias wogfkcorresponding to a policy € II as
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follows:

gf < lim EFCFS [ / e “"1{L(t) # 0} dt| —
0

SIS

a\,0

i —Sk
TR B U T )
N0 at+A—XA «

(1—p) @+ A=) —aJ], o™

- i{% ala+ X — )

i (1= p)(1 = A (@) = [T b~ — a Xy in — si) gyt~ Tl )
NG a+A=Ap+a(l - A (a))

o "L PA"(0) = 23 — s O Tl 6 + O()

a0 2 —2\¢' () + O(«)

1 (1= p)A$"(0) + 23 (ix — s1)#%(0)

2 1— A/ (0)

g Do)
2(1=p)

% HEk

=G
(22)

Notice that, in (22)[EF°FS[.] denotes expectation relative to the first-come firsr-
serve (FCFS) policy, though any other nondling admissiloléecy would give the
same evaluation for the right-hand side. Further, we hapéeahtwice I'Hopital’'s
rule, and have used the identities

1/
_¢ )
1(0) = =,
p
—A¢'(0) = ——,
(0) =,
" 1/’ (0 1 2 1 2
61(0) = Ye(0) | hw r DN _ {ui +U’“} n 2N {H? +Ul}
g (1-p)? 1—p (1-p)2 (1= p)®
and
A¢"(0) =Y Mgy (0)
%
1 2 1 2
= _2+Jl
YL + > k) N
2= 2P B
L—i—az %—i—alz
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Case Type M X o opp f By B o G
1 MTS-MTS 04 04 1 1 50 25 0O O 1 1
2 MTS-MTS 04 04 1 1 50 5 0 0 1 1
3 MTS-MTS 06 01 1 1 200 5 0 0 10 0.25
4 MTS-MTS 12 01 2 1 50 20 O O 1 1
5 MTS-MTS 04 04 1 1 50 25 3 4 10 0.25
6 MTS-MTS 06 01 1 1 200 5 3 4 10 0.25
7 MTS-MTS 04 04 1 1 50 25 1 1 1 1
8 MTS-MTO 04 04 1 1 50 25 1 1 1 1
9 MTS-MTO 04 04 1 1 50 5 1 1 1 1
10 MTS-MTO 06 01 1 1 200 5 1 1 10 0.25
11  MTS-MTO 12 01 2 1 50 20 1 1 1 1
12 MTO-MTO 1 5 3 12 5 1 2 01 O 0
13 MTO-MTO 1 5 3 12 5 1 2 02 O 0
14 MTO-MTO 1 5 3 12 5 1 2 05 O 0
15 MTO-MTO 1 5 3 12 5 1 2 1 0 0
16 MTO-MTO 1 5 3 12 5 1 2 2 0 0
Table 1: Cases investigated.
which are readily obtained from (21). This completes thefiro O

5 Computational study

The author has implemented all the algorithms presentddsmpaper in C++, using
the GNU gcc compiler. In this section we report the results @omputational
study on the performance of our proposed MPI policy and baandss the range
of 16 two-class instances shown in Table 1. All service tieresexponential. The
experiments have been run on a Pentium IV computer at 3.06 Ghz

Note that instances 1-7 correspond to pure MTS problemd, &¢lcombined
MTS-MTO problems, and 12—-16 are pure MTO problems. Costrpaters are to
be read as follows. The backorder cost rate for quege{1, 2} in statej, > 0 is

hi(ik) = e + Spins  Jr > 1.

The finished goods stock holding cost rate for queue {1,2} (whenk € KMTS)
in statej, < —1is
hie(ik) = chje,  Je < —1.

Instances 1-4 are taken from Table 1 in de Véricourt et &0Q2 Instances
5-7 introduce quadratic backorder cost rates into someefatiove pure MTS
problems. Instaces 8-11 have queue 1 operated in MTS modypuand 2 in MTO
mode. Instances 12-16 are taken from Table 1 in Ansell e2@03).

Table 2 reports the result of the computational study. Foheéastance, we
have computed an approximatigif to the optimal LRA cost rate per unit time
using value iteration on a truncated state space of Zigex 200. We have ob-
served that increasing the state space size beyond suth diods not significantly
change the value of*. The hedging points have been computed by the algorithm
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Case Hedging point f* fMPL pmyopic f fSPP
1 (-8, -7) 15.467 15.467 27.832 7.646 (50.6 %)
2 (-6, -4) 10.467 10.467 13.847 6.137 (41.4 %)
3 (-5,-3)  60.703 60.752 60.752 59.775 (1.5 %)
4 (-8, -2) 10.273 10.273 11.322 8.764 (14.7 %)
5 (-2, -21) 25.956 25.957 26.065 21.586 (16.8 %)
6 (-6, -6) 62.222 62.228 62.439 60.556 (2.7 %)
7 (-10, -6) 16.416 16.562 38.860 7.784 (52.6 %)
8 (-15, 0) 34.056 34.056 116.115 22.021 (35.3 %)
9 (-12, 0) 18.001 18.001 55.489 8.688 (51.7 %)
10 (-6, 0) 64.892 64.912 66.991 60.535 (6.7 %)
11 (-10, 0) 13.273 13.273 22.086 10.142 (23.6 %)
12 (0, 0) 15.404 15427 15412 11592 (24.7%) 15.089 (2(%)
13 (0,0 17.985 17990 17.985 13.474(25.1%) 17.778 (1.2 %)
14 (0, 0) 20.992 21.096 21.096 14.934 (28.9%) 20.660 (1.6 %)
15 (0,0 22917 22917 22,999 15.867 (30.8%) 22.418 (2.1 %)
16 (0, 0) 25.146 25146 25353 17.092 (32%) 24.703 (1.8 %)

Table 2: Results of computational experiments.

DESCENT in Figure 4. After computing a hedging poiit, i3), we have set
(s1,s2) = (i7,143), and then used the initial staté,i2) = (s1,s2) to compute
G: by (20), and hence the lower bourfdon optimal cost. The column fofMP!
shows the LRA cost performance for our proposed MPI-basddihg point and
index policy, calculated by value iteration on the statemh¢ated state space. The
column for fM°P¢ shows the corresponding LRA cost performance for the policy
that uses the stated hedging point, along with the myopiexindl”°"° discussed
in Sections 6 and 7 of Nifio-Mora (2004). Further, the coluiomfSPP borrows
results from Ansell et al. (2003) on a lower bound on LRA castddl on aemi-
definite programmingelaxation.

We see in Table 2 that our proposed MPI policy is nearly ogtiacaoss the
16 instances considered, exhibiting a negligible subagiityngap. The myopic
policy is close to optimal in some instances, but in otherpérformance is poor.
As we argued in Sections 6 and 7 of Nifio-Mora (2004), the ntymlex does not
account for long-term effects, which explains its poor fesin more congested
systems. Regarding our proposed lower bofindie see that in most instances it is
not as close to the optimal cogt as would be desirable. However, notice that, to
the best of our knowledge, no other lower bound on optimal eba comparable
scope to ours has been proposed in the literature. The cabantime semi-definite
programming lower boundSPP shows that the latter, in the cases where it is avail-
able, is relatively close to optimal.
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