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ABSTRACT depth information along with intensity images to estimate the ego-
motion and the depth map of the scene.

Several researches have worked on the problem of ego-motion
: ; . estimation and depth recovery using intensity images. Feature
;_nap u3|tng f[;dgpfth based_ parallax _moc(i;(_ahd brightness de_nva— dbased methods [1][2] use features or tokens to get depth informa-
Ives extracted from an image pair.  5IVen a coarse, nNoiSy andyq, 4n4 motion. Flow based methods [3][4] assume that optical

partial depth map acquired by a range-finder or obtained from aflow is available. Direct methods (5]6][7][8][9][L0][11] do not
Digital Elevation Map (DEM), we first estimate the ego-motion by require intermediate steps such as feature extraction or flow com-

comtt)lnlng a glcntbql tega-motltc;]n cor:.stratm; and a local tpr'ghtngfﬁ utation and work directly with spatial and temporal image gra-
constancy constraint. Using theé estimated camera motion an ients. Most of the previous approaches assumes locally smooth

av?ilgb\lz deﬁt_h mtﬁp ;estitr?r?tteihmotionli)_f the 3? points iﬁ Cop“ﬁ’jf"depm models for estimating depths [7][10] or small depth varia-
sated. Yve utilize the fact that the resulting surface parallax eld 1S ;4o compared to the distance from the camera [3][8]. However,

an epipolar field and knowing its direction from the previous mo- these assumptions are violated when the depth variations may be
tion estimates, estimate its magnitude and use it to refine the deptr]

timate. Instead of . th lax field or | arge (for example, in urban environments) and at depth bound-
map estimate. Instead ol assuming a smooth parallax fIeld or 10- 505~ The effect of noise in available data may require a non-
cally smooth depth models, we locally model the parallax magni-

tud ing the denth ; late th bl i mooth local depth refinement. We show how to use the epipolar
ude using the depth map, formulate the problem as a géneraliz€, o ngtraint and model the parallax field appropriately to deal with
eigen-value analysis and obtain better results. In addition, con-

fid for denth estimat ided which b such cases. Parallax based approaches proposed in [9][11] assume
idence measures for depth estimales are provided which €an be, 4o minant planar region to be present in the image or the presence
used to remove regions with potentially incorrect (and outliers in) of a small planar region for motion estimation [12]. Our approach
depth estimates for robustly estimating ego-motion in the next iter-

tion. Result both svnihet d real | ted does not require any such assumptions. Also, many of the previous
ation. Results on both synthetic and reéal examples are presented. anods use the information from the entire image for estimating

ego-motion which may not be useful and can even contribute to
1. INTRODUCTION errors. We show how to discard potentially erroneous image re-
gions that may include incorrect depth estimates and ambiguities
3D scene reconstruction and ego-motion estimation has been ararising from the presence of local edge structure in the direction of
active area of research over the past few decades. Dynamic scenthe focus of expansion by incorporating a confidence measure in
analysis requires estimation of the relative motion between the estimating depths.
camera, scene and the scene structure in the form of a depth map. We describe our algorithm in detail in Section 2. Section 3
Motion estimation of a camera moving in an environment is useful presents results on both synthetic and real models and comparisons
for tasks such as navigation, obstacle-detection etc. and recoverof the recovered depth map and ego-motion using the proposed
ing the scene structure helps in enhanced visualization and build-model with those obtained using a constant parallax model. This
ing 3D models of the scene. With increased use of range scannerss followed by conclusions in section 4.
and DEM’s, there is considerable interest in fusing the depth in-
formation provided by them with the information from the image
sequences to develop robust algorithms for building enhanced 3D 2. ALGORITHM
models. The available depth information, however, is often noisy,
coarse and partial (may lack data at certain regions). In this pa-Our method is a direct approach that uses two intensity images
per, we address the problem of using such noisy, coarse and partia{referred to akeyandoffsetframes) and an initial coarse, noisy
and partial depth map (referred tora$erence depth mapo esti-
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cussions. Assuming brightness constancy, we hage t) = I(r—u,t—

We present an iterative algorithm for robustly estimating the ego-
motion and refining and updating a coarse, noisy and partial depth




1) wherelI(r,¢) andI(r,¢t — 1) denote the key and offset frames of expansion (FOE), i.e it is an epipolar field. Since we have an

respectively. Then the 2D image motians given by [6] estimate of the FOE (defined &8sy, ys)) from T3, for each pixel
(z,y) we have
u= AhT + BQ2 Q) Su = Adu (5)
= 22 _ (z—zy) (y—yy) T da.
where B = 7 2 “UF) Jh =1 4= wneredu(z, ) = | Y@=zt —yp)?’ %/<I*If>2+<y*yf>2] _de
(f + %) — -z z notes the parallax direction aritidenotes the parallax magnitude.
—f 0 = Using (5), (3) can be written as

0 and (I',Q2) denote the translational and rota- )
. - U . - E=) (L5 + Al ()
tional velocities. For estimating ego-motion and depth, we mini- =
mize the deviations from the brightness constancy equation
wherel, = VIT du denotes the projection of the intensity gradi-
E = Z(I(r’t) —I(r —u,t— 1))2 %) ent on the parallax direction. The regidhfor depth refinement
R is chosen to be a local neighborhood®fx N pixels. We first
minimize (6) to get an estimate ¢f and then use it to obtai&@
from (4) and (5). Thus, the ambiguity arising from the aperture

problem has been resolved because the incremental 2D motion is

over suitable region®. A way to minimize (2) is to perform it-
erative Gauss-Newton minimization (we call these iteratlonal
iterationg. Let du denote the incremental 2D motion for a local  ~gnstrained to lie along a line passing through the FOE.

iteration due to motion refinement or depth refinement. The ap- For estimation problems such as above, a smoothness con-
propriate motion (or depth) refinement can be estimated by mini- grzint is generally applied. For example, in optical flow estima-

mizing - , tion, it is often assumed that the flow is constant within a neigh-
E=Y (VITsu+AI) (3) borhood or is a parametric function [13] that imposes smooth flow.
R The smoothness constraint on depths can be applied by assuming

with respect taju, whereVI = [I,, I,]” denotes the spatial im- @ smooth depth model (constant or planar) over the neighborhood
age derivatives anchI = I(r,t) — I(r —u,t — 1) denotes the  (&s in [7][10]) and directly using (4) and (3) to estimafe How-
difference of the key image and the warped offset image accordingever, these assumptions are violated at depth boundaries. Also, the
to current depth and motion estimates. In what follows, we de- €ffect of noise in available depth map estimate (from a range finder

scribe the motion estimation and depth refinement steps in detail. or from the previous iterations) may require a non-smooth depth
refinement within the neighborhood. Thus in such cases, the paral-

lax magnitude isot smooth over the neighborhood. From (4) and
(5), we observe that the parallax magnitygidhas a dependence
Let Z; denote the current estimate of the depth map (referenceon % Therefore, we propose to use the followidgpth based

2.1. Ego-Motion estimation given a depth map

depth map or estimated from a previous global iteration) wité- parailax model (DBPM)
noting the global iteration index. To estimate the ego-motion, we a a
minimize (2) with respect td@" and(2 usingZ; as the depth map. B =ao+ ?1 + Z—QQ (7)

The regionR is decided on the basis of the confidence measure
provided by the depth refinement phase as described in section 2.2vhere the parameteis, a; andas are assumed to be constant

(for the first global iteration we use the entire image region). within the neighborhood. Note that even though we use a paramet-
Let T3, ©2; denote the ego-motion estimate from the previous ric model, it allows the parallax magnitude to vary non-uniformly
global iteration (for the first global iteration, we ue= [0, 0, 1]7 within the region since the model is based on depth values that can

,Q = [0,0,0]7). Within each global iteration, we refine the ego- vary non-uniformly within the region. This in turn, allows discon-
motion estimate by performing local iterations as follows. Let tinuity preserving depth refinement within the region.

0T, 692 be the incremental ego-motion update for a local iteration. We minimize (6) by formulating it as a generalized eigen-
Using (1), we havéu = Ah,;dT + B2 whereh, = Zi 0T, 62 value problem to obtain a total least squares (TLS) solution. Let
can be obtained by minimizing (3) with respec#td, Q2 with su B r_ [t R RO 0 O

as above. This is a linear systemdifi, 6<) and a least square solu- v =[B1, B]" = Bp, wherel3 = 0 0 0 1 h; h?

tion is obtained. The local iterations are performed until the error gndp = [a0, a1, a2, az, as, as}T denote the parameters to be es-

E in (3) stops decreasing. timated. The parallax magnitude will then be given by3 =
. . . £L. Equation (6) can be written &8 = 3 7" 99" where
2.2. Depth refinement using ego-motion g = [I,, AI]T. To avoid the trivial solutiony = 0, the constraint

f7T7 = 1 is imposed. Using Lagrange multipliers, the error func-

We now show how to refine the depth map given an estimate of ! '
tion can be written as

the ego-motion and the available depth information. TgtQ;
denote the current ego-motion estimate &denote the available E=p" Y (B'g9"B)p+ A(1—p' B Bp) (8)
depth map estimate. L&Y be the incremental depth map estimate Nx N

andZ = Z; + §Z be the refined depth map. Using equation (1)

incremental 2D motion can be written as Differentiating with respect tp, we getGp = ADp, whereD =

BB andG = Y . x B"g9" B. Since the rank oD is two,
Su= A(h — hi)T; (4) there will be only two valid generalized eigen-value/eigen-vector
pair. LetA; > )\ be the valid generalized eigen-values. The
whereh = % Thus, the incremental motion due to depth re- generalized eigen-vector corresponding\towill be the solution
finement §urface parallax fieldlis in the direction of the focus  for p. Consider the following scenarios:



1. Homogeneous regions: No intensity variation in spatio tem-
poral directionA\; = X2 =0

2. Intensity gradient is in direction perpendicular to the paral- »
lax direction, i.el, = 0. A1 > 0,A2 =0

3. Intensity variation in accordance with7. A\; > 0, A2 =0

4. Intensity variation in all directions. No sufficient structure.
)\1 > 0, )\2 >0

Confidence measures based on eigen-values and/or conditior
number have been proposed in [13][14]. We Gse- (31532) !
as the confidence measure for depth estimation. Homogeneous reg
gions (casd) can be identified by using a threshold on the sum of §
eigen-values. Regions where local edge structure is aligned aloncg
the parallax direction (casg) can be identified by thresholding
I,. For all such regions¢ is set to zero. Thus(' is close to :
one when the parallax magnitude can be estimated reliably (case
3) and small otherwise (case2,4). The regionR for estimat-
ing ego-motion in section 2.1 is chosen as those pixels where
exceeds a pre-defined threshold.

3. EXPERIMENTS

3.1. Synthetic Example

We conducted experiments on the Yosemite sequence and a serr

synthetic 3D model (with real textures) of an urban environment. _ )
Only the results on Yosemite data are presented here due to spac?g' 1. (a) Keyimage (b) True depth map (c) Reference depth map

constraints. Figure 1 shows the key image, the true depth map(d) Estimated depth map using DBPM (e) Estimated depth map

for the key image and the initial reference depth map (the cloud USiNg CPM (f) Regions (in white) whex@ > 0.1 for (d)
regions are not included in the experiment). The reference depth
map was obtained by first smoothing the true depth map with a 100 =N ¢ Zomrre—Z\2
constant filter of siz@5 x 25 pixels to get a coarse depth map. depth mapZ as RMSE = 7> 7 (#%*<==)" whereN de-
Gaussian noises( = 0.07) was then added to it. A rectangular notes the number of pixels. Table 1 gives the RMS!E between the
region in the center (Figure 1(c)) of the coarse and noisy depth frue depth map and the estimated depth maps using DBPM and
map was modified to a constant depth value which is equivalent to CPM and shows that DBPM performs much better. These num-
having no depth information in that region. Thus our initial depth P€rs are calculated at pixels where the confidefic the end of
map is coarse, noisy and lacks information at certain regions. ~ 9lobal iterations is greater thani (shown in Figure 1(f)).

We use only one local iteration for depth refinement and a to-
tal of 10 global iterations. The true FOE and rotational parame- 3.2. Real Example

ters are(0,0.17) and (0, —0.0017,0.0003) respectively. Figure . .
2(a) shows the convergence of FOE estiméigs y ;) with global A DEM m_odel of (inner harbor area) Baltimore downtovyn was
rendered irDpenGLand the reference depth map was obtained us-

iterations for a constant parallax model (CPM) and DBPM. Esti- . heZ buff h o b) Fi h he k
mated rotational parameters using DBPM at the end of global iter- N9 theZ buffer as shown in Figure 3(b). Figure 3(a) shows the key

ations are(0, —0.0018, 0.0005) which are close to the true val- rame from the video sequence which was captured using a Sony
ues. The FOE estimate converges to the true value for DBPM ¢@mcorder placed on a cart (not mounted) moving across a street.
but not for CPM indicating that our model is more robust. Fig- The dom_lnant trqnslatlonal motion was mthe cameZ’:tChrectlpn

with vertical motion close to zero. The estimated ego-motion us-

ure 2(c) shows the mean confidence over the entire image using d h - 2(b). Ei 5 h
DBPM which increases as depths get refined and becomes stableé'd PBPM and CPM are shown in Figure 2(b). Figure 2(c) shows

The confidence threshold for choosifgfor ego-motion estima- the mean confidence over the entire image using DBPM which in-

tion was set td).3. The estimated depth maps at the end of global Cré@ses and converges with global iterations. Figure 3(c) and 3(d)
iterations using DBPM and CPM are shown in Figure 1(d) and ,ShOWS the estimated depth maps (brighter regions are far_ther) us-
(e) respectively. Qualitatively, depth map estimated using CPM is ing D_BPM and CPM respectively. N(_)te the corr_ectly estimated
much more noisy than the one estimated using DBPM indicating P°!€ in the center and the lamp post in the top right corner. The
that DBPM can handle noise in available data much better. Also, depth map esu_mated using DBPM is more accurate, less noisy and
the artificial depth discontinuities in the center of reference depth depth boundaries are preserved better.

map are not removed by CPM (the true depth map does not have

those) but are handled properly by DBPM. Thus a more realistic 4. CONCLUSIONS

3D model can be obtained using DBPM when depth information is

missing from certain regions. We define the relative mean squareAn iterative algorithm is presented for estimating ego-motion and
error (RMSE) between the true depth m&p.,,. and any other depth recovery from a noisy, coarse and partial depth map and im-



T JTBEEM | - -m oo E---m- oo age derivatives. A new depth based parallax model is proposed for

ociel | -EI- yf DBPM g
oasl | e ot Com ] modeling the parallax field and a TLS solution along with confi-

R 1 dence measures are derived for the model. Results and compar-
isons with locally smooth depth model on synthetic and real ex-
ample shows the effectiveness of our approach. Future efforts will
focus on extending the algorithm to multiple frames beyond the
current two-frame approach.
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