
Learning Partially Observable Action Models
Eyal Amir

Computer Science Department
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
eyal@cs.uiuc.edu

Abstract. In this paper we present tractable algorithms for
learning a logical model of actions’ effects and precondi-
tions in deterministic partially observable domains. These
algorithms update a representation of the set of possible ac-
tion models after every observation and action execution. We
show that when actions are known to have no conditional
effects, then the set of possible action models can be rep-
resented compactly indefinitely. We also show that certain
desirable properties hold for actions that have conditional ef-
fects, and that sometimes those can be learned efficiently as
well. Our approach takes time and space that are polynomial
in the number of domain features, and it is the first exact so-
lution that is tractable for a wide class of problems. It does
so by representing the set of possible action models using
propositional logic, while avoiding general-purpose logical
inference. Learning in partially observable domains is diffi-
cult and intractable in general, but our results show that it can
be solved exactly in large domains in which one can assume
some structure for actions’ effects and preconditions. These
results are relevant for more general settings, such as learn-
ing HMMs, reinforcement learning, and learning in partially
observable stochastic domains.

1 Introduction

Agents that act in complex domains usually have limited
prior knowledge of their actions’ preconditions and effects
(thetransition modelof the world). Such agents need to learn
about these action to act effectively, and they also need to
track the state of the world, when their sensory information
is limited. For example, a robot moving from room to room
in a building can observe only its immediate environment.
Upon discovering a switch in the wall, it may not know the
consequences of flipping this switch. After flipping it, the
agent may observe those effects that occur in its immediate
environment, but not those outside the room. When it leaves
the room and discovers some change in the world, it may
want to ascribe this change to flipping the switch.

Learning transition models in partially observable do-
mains is hard. In stochastic domains, learning transition
models is central to learning Hidden Markov Models
(HMMs) [17] and to reinforcement learning [8], both of
which afford only solutions that are not guaranteed to ap-
proximate the optimal. In HMMs the transition model is
learned using the Baum-Welch algorithm, which is a spe-
cial case of EM. It is a hill-climbing algorithm which is
only guaranteed to reach a local optima, and there is no time
guarantee for convergence on this local optima.Reinforce-
ment learningin partially observable domains [7] can be

solved (approximately) by interleaving learning the POMDP
with solving it (the learning and solving are both approxi-
mate because finite memory or finite granularity is always
assumed) [3, 12, 13]. It is important to notice that this prob-
lem is harder than solving POMDPs. In some cases, one can
solve the POMDP with some guarantee for relatively fast
convergence and approximation, if one knows the underlying
transition model [9, 14]. Also, in deterministic cases, com-
puting the optimal undiscounted infinite horizon policy in
(known) POMDPs is PSPACE-hard (NP-complete if a poly-
nomial horizon) in the number of states [11], but reinforce-
ment learning has no similar solution known to us.

In this paper we present a formal, exact, many times
tractable, solution to the problem ofsimultaneously learn-
ing and filtering (SLAF) preconditions and effects of actions
from experiences in partially observable domains. We put
emphasis on the solution being tractable as a function of the
number of state featuresrather than the (exponentially larger)
number of states.

First, we present a formal system that captures this prob-
lem precisely for possibly nondeterministic actions. It main-
tains a set of pairs〈state,transition-relation〉 that are consis-
tent with the actions and observations collected so far (the
transition belief state). Then, we present a generic algorithm
that uses logical deduction and learns transition models in
deterministic partially observable domains.

We present more tractable algorithms for special cases of
SLAF. We examine actions that are (1)always executable
or sometimes inexecutable(depending on deterministic pre-
conditions), and (2)conditionalor nonconditional(whenever
executable, have the same effect). For the case of STRIPS ac-
tions (always executable, nonconditional) we show that our
algorithm runs in time linear in the number of propositional
domain features and the space taken to represent our transi-
tion belief state. We can maintain this transition belief state
in polynomial space (in the number of features and actions
available in our domain) under very relaxed conditions. We
present a more general algorithm (than our STRIPS one) that
treats other cases with a polynomial time per time step, when
actions are known to act as 1:1 mapping on states, and they
provide an approximation otherwise.

Our algorithms are the first to learn exact action models
in partially observable domains. They are also first to find
an action model at the same time that they determine the
agent’s knowledge about the state of the world. They draw
on intuitions and results of [1] for known (nondeterministic)
action models. If we assume that our transition model is fully
known, then our results reduce to those of [1] for determin-
istic actions.



A wide range of virtual domains satisfy our assumptions
of determinism and structured actions, and we are in the pro-
cess of testing our algorithms in large domains, including
over1000 features (see [6] for current progress).

Previous work on learning action’s effects and precon-
ditions focused on fully observable domains. [5, 19] learn
STRIPS actions with parameters by finding the most gen-
eral and most specific in a version space of STRIPS oper-
ators. [15] uses a general-purpose classification system (in
their case, MSDD) to learn the effects and preconditions of
actions, identifying irrelevant variables. [2] presents an ap-
proach that is based on inductive logic programming. Most
recently, [16] showed how to learn stochastic actions with no
conditional effects (i.e., the same stochastic change occurs at
every state in which the action is executable). The common
theme among these approaches is their assumption that the
state of the world is fully observed at any point in time. [18]
is the only work that considers partial observability, and it
does so by assuming that the world is fully observable, giv-
ing approximate computation in relevant domains.

2 Filtering Transition Relations

West East

offoff

=⇒

West East

onon

¬sw∧ ¬lit ∧ E sw-on sw∧ lit ∧ E

Figure 1. Two rooms and flipping the light switch

Consider a simple world with two rooms, one with a
switch, and the other with a light bulb whose state can be
observed only when the agent is in that room (see Figure
1). Assume that our agent initially knows nothing about the
three actions go-E (go to the Eastern room), go-W (go to the
Western room), and sw-on (flip the switch toon). Our agent’s
problem is to determine the effects of these actions (to the ex-
tent that it can, theoretically), while also tracking the world.

We describe the combined problem of filtering (updating
the agent’s belief state) and learning the transition model for-
mally. A transition systemis a tuple〈P,S,A,R〉, where
• P is a finite set of propositional fluents;
• S ⊆ Pow(P) is the set of world states;
• A is a finite set of actions;
• R ⊆ S ×A× S is the transition relation.
Here, aworld state, s ∈ S, is a subset ofP that contains
propositions true in this state, andR(s, a, s′) means that state
s′ is a possible result of actiona in states.

A transition belief stateis a set of tuples〈s,R〉 wheres is
a state andR a transition relation. LetR = Pow(S×A×S)
be the set of all possible transition relations onS,A. Let
S = S ×R. Everyρ ⊆ S is atransition belief state. When
we hold a a transition belief stateρ we consider every tu-
ple 〈s,R〉 ∈ ρ possible. With this formal system we assume
that observations are given to us (if at all) as logical sen-
tences after performing an action. They are eitherstate for-
mulae(propositional combinations of fluent names) orOK
or ¬OK (observing the action is possible or impossible to

execute). We denote the former kind of observation witho,
and the latter withOK,¬OK, respectively.

Definition 1 (Transition Filtering Semantics) Let ρ ⊆ S

be a transition belief state. Thefiltering of ρ with actions
and observations〈a1, o1, . . . , at, ot〉 is
1. Filter[ǫ](ρ) = ρ;
2. Filter[a,OK](ρ) =

{〈s′, R〉 | 〈s, a, s′〉 ∈ R, 〈s,R〉 ∈ ρ};
3. Filter[a,¬OK](ρ) =

{〈s,R〉 | 〈s,R〉 ∈ ρ, ∀s′ ∈ S 〈s, a, s′〉 /∈ R};
4. Filter[o](ρ) = {〈s,R〉 ∈ ρ | o is true ins};
5. Filter[〈ai, oi, . . . , at, ot〉](ρ) =

Filter[〈ai+1, oi+1, . . . , at, ot〉]
(Filter[oi](Filter[ai](ρ))).

We call Step 2progression witha, Step 3disqualifyinga, and
Step 4filtering with o.

The intuition behind this definition is that every transition
relation,R, and initial state,s, produce a set of state-relation
pairs{〈si, R〉}i∈I in the result of an action. If an observa-
tion discards some statesi, the pair〈si, R〉 is removed from
this set. We conclude thatR is not possible when all pairs
including it are removed from the set.

A nondeterministic domain descriptionD is a finite set
of transition rulesof the form “a causesF if G” which de-
scribe the effects of actions, forF andG propositional state
formulae. We say thatF is theheadandG is thetail of those
rules. WhenG ≡ TRUE we write “a causesF ”.

The semantics of a domain description that we choose is
compatible with thestandard semanticsbelief update oper-
ator of [20]. We define it below by firstcompletingthe de-
scription and then mapping the completed description to a
transition relation.

For domain descriptionD we define a transition system
withPD andAD the sets of propositional fluents and actions
mentioned inD, respectively. For actiona and fluentf , let

GD(a, f) =
∨

{G | “a causesF if G” ∈ D, f ∈ L(F )},

a disjunction of the preconditions of rules that possibly affect
fluentf (an empty disjunction is equivalent to FALSE). We
use “a keepsf if G” as a shorthand for the rules “a causesf
if f∧G” and “a causes¬f if ¬f∧G”. It designates thenon-
effectsof actiona. DefineComp(D), thecompletion ofD

Comp(D) = D ∪ {“a keepsf if ¬GD(a, f)” |
a ∈ A, f ∈ P, GD(a, f) 6≡ TRUE}.

This definition is well behaved, in the sense that
Comp(D) = Comp(D ∪D′), if D′ ⊆ Comp(D).

Let FD(a, s) = {F | “a causesF if G” ∈ D, s |= G},
the set of effects ofa in s, according toD.D defines a tran-
sition relationRD as follows

RD = {〈s, a, s′〉 | s, s′ ∈ S, a ∈ A, s′ |= FD(a, s)} (1)

When there is no confusion, we writeR for RD. We say
that two domain descriptionsD1, D2 are equivalent (D1 ≡
D2), if RD1

= RD2
.D is acomplete domain description, if

RD = RComp(D). In that case we say thatR is completely
defined byD.



Time step 1 2 3 4 5 6 7
Action go-W sw-on go-E sw-on go-W go-E
Location E ¬E ¬E E E ¬E E
Bulb ? ¬lit ¬lit ? ? lit ?
Switch ¬sw ? ? ¬sw sw ? sw
Possible OK ¬OK OK OK OK OK

Figure 2. An action-observation sequence (table entries are observations). Legend:E: east;¬E: west;lit: light is on;¬lit: light is off; sw:
switch is on;¬sw: switch is off;OK: action executable;¬OK: action not executable.

Example 2 Consider the scenario of Figure 2 and assume
that actions are deterministic, unconditional, and always ex-
ecutable (assuming no action was performed at step 2). Then,
every action affects every fluent either negatively, positively,
or not at all. Consequently, every transition relationR is
completely defined by someD such that (viewing a tuple as
a set of its elements)

D ∈
∏

a∈







go-W
go-E
sw-on







{

a causesE,
a causes¬E
a keepsE

}

×

{

a causessw,
a causes¬sw
a keepssw

}

×

{

a causeslit ,
a causes¬lit
a keepslit

}

Say that initially we know the effects of go-E, go-W, but do
not know what sw-on does. Then, transition filtering starts
with the product set ofR (of 27 possible relations) and all
possible23 states. Also, at time step 4 we know that the world
state is exactly{E,¬lit ,¬sw}. We try sw-on and get that
Filter[sw-on](ρ4) includes the same set of transition rela-
tions but with each of those transition relations projecting
the state{E,¬lit ,¬sw} to an appropriate choice fromS.
When we receive the observationso5 = ¬E ∧ ¬sw of time
step 5,ρ5 = Filter[o5](Filter[sw-on](ρ4)) removes from
the transition belief state all the relations that gave rise to
¬E or to ¬sw. We are left with transition relations satisfy-
ing one of the tuples in

{

sw-oncausesE,
sw-onkeepsE

}

×{ sw-oncausessw }×

{

sw-oncauseslit
sw-oncauses¬lit
sw-onkeepslit

}

Finally, when we perform action go-W, again we update
the set of states associated with every transition relation in
the set of pairsρ5. When we receive the observations of time
step 6, we concludeρ6 = Filter[o6](Filter[go-W](ρ5)) =







〈{

¬E
lit
sw

}

,







sw-oncausesE,
sw-oncausessw,
sw-oncauseslit ,
go-E...







〉

,

〈{

¬E
lit
sw

}

,







sw-onkeepsE,
sw-oncausessw,
sw-oncauseslit ,
go-E...







〉







(2)

SLAF reduces to filtering (updating the agent’s belief
state) [1, 20, 10] when the transition model is fully specified.

Theorem 3 Letρ = σ × {R}, whereσ ⊆ S andR ⊆ S ×
A × S, and let〈ai, oi〉i≤t be a sequence of actions and ob-
servations. IfFilterR[〈ai, oi〉i≤t](σ) is the belief-state fil-

tering1 of σ with 〈ai, oi〉i≤t, thenFilter[〈ai, oi〉i≤t](ρ) =
FilterR[〈ai, oi〉i≤t](σ)× {R}.

3 Logical Filtering of Transition Models

The example in the previous section illustrates how the ex-
plicit representation of transition belief states may be doubly
exponential in the number of domain features and the number

1 Filtering semantics as defined in [1].

of actions. In this section we follow the intuition that propo-
sitional logic can serve to representsρmore compactly.From
here forth we assume that our actions are deterministic.

In the following, for a set of propositional formulae,Ψ,
L(Ψ) is the signature ofΨ, i.e., the set of propositional sym-
bols that appear inΨ.L(Ψ) is the language ofΨ, i.e., the set
of formulae built withL(Ψ). Similarly,L(L) is the language
of L, for a set of symbolsL.

3.1 Representing Transition Belief States

We define a propositional logical language that allows us to
represent sets of domain descriptions (thus, sets of transi-
tion relations). LetP1,P2 ⊆ L(P) be sets of state formulae
such thatP1 includes only literals orFALSE, P2 includes
only terms (conjunctions of literals) that are not equivalent to
FALSE, and for allϕ,ψ ∈ P1 ∪ P2, if ϕ ≡ ψ, thenϕ = ψ
orϕ ≡ TRUE. We define a propositional vocabulary

L(P1,P2) = {aF
G | a ∈ A, F ∈ P1, G ∈ P2}.

Theorem 4 For every ruler =“ a causesF if G”, for F,G
state formulae, there is a set of transition rulesTR = {“ a
causesli if ti” }i∈I , with a set of indicesI, termsti, and
literals li, such thatr ≡ TR (i.e., we can exchanger for
TR, and get an equivalent domain description).

In the rest of this paper we implicitly assume thatP1,P2 ⊆
L(P) are sets of state formulae as above. Also,D is acom-
pletedomain description with effects inP1 and preconditions
in P2. We also assume that if¬∃s′RD(s, a, s′) for some
s ∈ S, a ∈ A, then there is a rule “a causesFALSE if G”
such thats |= G.

For set of formulaeP2 we defineBottom(P2) = {G ∈
P2 | G 6≡ FALSE, ∀G′ ∈ P2 [(G′ |= G) ∧ (G′ 6≡
FALSE)] ⇒ G = G′}, i.e.,Bottom(P2) is the set of
strongest preconditions inP2.

Definition 5 We define the theory

TL
D = rulesD ∧ implied-weaker-rules∧

implied-stronger-rules∧ exec-precondsD
(3)



rulesD = {aF
G ∈ L | “a causesF if G” ∈ D}

implied-weaker-rules=
∧

F ∈ P1

G, G′ ∈ P2

a ∈ A

(aF
G′ ∧ (G⇒ G′)⇒ aF

G)

implied-stronger-rules=
∧

F ∈ P1

G, G′, G′′ ∈ P2

G′′ ≡ G ∨ G′

a ∈ A

(aF
G ∧ a

F
G′ ⇒ aF

G′′) ∧

∧

F, F ′, F ′′ ∈ P1

F ′′ ≡ F ∧ F ′

G ∈ P2

a ∈ A

(aF
G ∧ a

F ′

G ⇒ aF ′′

G )

exec-precondsD =
{¬aFALSE

G ∈ L | G ∈ Bottom(P2),
∀G′ ∈ P2 ((G |= G′)⇒ “ a causesFALSEif G′” /∈ D)}.

The intention is thataF
G ∈ L is true inTL

D exactly when “a
causesF if G” is in D or there is a stronger transition rule
“a causesF ′ if G′” in D.

The following theorem shows how we can represent deter-
ministic transition relations (with conditional effects) using
only the positive causality statements2.

Theorem 6 (Representing Deterministic Actions)1. TD

is a complete theory
2. If TD |= aF

G, then for everys, s′, if RD(s, a, s′) ands |=
G, thens′ |= F .

3. If TD |= ¬a
F
G, then there ares, s′ such thatRD(s, a, s′)

ands |= G, s′ |= ¬F .

Consequently, for every pair of complete domain descrip-
tionsD1, D2,D1 ≡ D2 iff TD1

≡ TD2
. Thus, every transi-

tion relationR has a unique theoryTD and every theory de-
fines a unique transition relation. (We writeTR for the theory
representing transition relationR.)

Corollary 7 (Always-Executable, Deterministic) If in D
all actions are always executable, then3 exec-preconds=
{¬aFALSE

G | a ∈ A, G ∈ Bottom(P2)} and

TD ≡ rulesD ∧ exec-preconds∧
∧

F ∈ P1

G, G′ ∈ P2

a ∈ A

(aF
G′ ∧ (G⇒ G′)⇒ aF

G) ∧

∧

F ∈ P1

G ∈ P2

a ∈ A

¬(aF
G ∧ a

¬F
G ) ∧

∧

F ∈ P1

G, G′, G′′ ∈ P2

G′′ ≡ G ∨ G′

a ∈ A

(aF
G ∧ a

F
G′ ⇒ aF

G′′)

Defineaf◦ = af
f ∧ a

¬f
¬f .

Corollary 8 (Unconditional, Always-Exec., Deterministic)
Let P2 = {TRUE}, and assume thatD possibly includes
sentences of the form “a keepsF ”, and no sentences of the
form “a causes FALSE”. Then,

TD ≡ rulesD ∧
∧

f∈P,a∈A

(af ∨̄a¬f ∨̄af◦).

We encode sets of domain descriptions as follows: For a
setR ⊂ P(S × A × S) let4 TR =

∨

R∈R TR. For a tuple
〈s,R〉, s ∈ S, we defineT〈s,R〉 = TR ∧ s. Finally, for a
transition belief state,ρ, we defineTρ =

∨

〈s,R〉∈ρ T〈s,R〉.

2 At present it is not clear to the author how one can observe non-
causality in nondeterministic settings.

3 D is omitted as a subscript because it is not relevant.
4 We assume that the set of fluentsP is finite.

Example 9 Consider ρ6 from Example 2 (equation 2).
There, we considered only deterministic, same-effect,
always-executable actions. We takeP1 to include only unit
clauses, andP2 = {TRUE}. We can writeρ6 using a logi-
cal formula that is satisfied only by the tuples inρ6:

Tρ6
≡

(

¬E∧
sw∧

lit

)

∧

(

go-W¬E∧
go-Wsw◦∧
go-Wlit◦

)

∧

(

go-EE∧
go-Esw◦∧
go-Elit◦

)

∧

{

(sw-onE ∨ sw-onE◦)∧
sw-onsw∧
sw-onlit

)

∧
∧

f∈P,a∈A
(af ∨̄a¬f ∨̄af◦)

Notice that, e.g.,¬go-E¬E and¬go-EE◦ are logical conse-
quences ofTρ6

.
The same way allows us to represent a much larger set of

transition relations. For example, in the previous section we
avoided listing the contents of the set of tuplesρ0 because it
was too large (27 possible relations cross-combined with all
23 world states). Now we can write it simply as follows:

(

go-W¬E

go-Wsw◦

go-Wlit◦

)

∧

(

go-EE∧
go-Esw◦∧
go-Elit◦

)

∧

(

(sw-onE ∨ sw-on¬E ∨ sw-onE◦)∧
(sw-onsw ∨ sw-on¬sw ∨ sw-onsw◦)∧
(sw-onlit ∨ sw-on¬lit ∨ sw-onlit◦)

)

∧
∧

f∈P,a∈A
(af ∨̄a¬f ∨̄af◦)

Thus, we can represent a transition belief state,ρ, with a
logical formula,ϕ, over the propositional state fluents and
the propositional symbols for effect sentences.ϕ represents
the set of tuples〈s,R〉 that satisfy it. We call this logical
representation atransition belief formula. It follows thatϕ |=
base, if we takebaseto be the subformula ofTD that is not
rulesD in the appropriate case of Corollaries 7, 8 because
baseis independent ofD in those cases.

3.2 Filtering Logical Action Models

For a deterministic (possibly conditional) action,a, define
the effect model ofa for time t to be

Teff(a, t) =
∧

l∈P1,G∈P2
((at ∧ a

l
G ∧Gt)⇒ lt+1) ∧

∧

l∈P1
(lt+1 ∧ at ⇒ (

∨

G∈P2
(al

G ∧Gt)))
(4)

whereat is a propositional symbol asserting that actiona
occurred at timet, and we use the convention thatϕt =
ϕ[P/Pt], i.e.,ϕt is the result of replacing every propositional
symbol ofϕ with the same propositional symbol that now
has an added subscript,t. The first part of the conjunction is
the assertion that ifa executes at timet, and it causesl, if
G holds, andG holds at timet, thenl holds at timet + 1.
The second part of the conjunction says thatl is true at time
t+ 1 aftera’s execution only ifa has an effectl conditional
on someG, and thisG is true at timet.

For an always-executable, non-conditional action,a, we
get a simpler formula

Teff(a, t) ≡
∧

l∈P1
((at ∧ (al ∨ (al

l ∧ lt))⇒ lt+1) ∧
∧

l∈P1
(lt+1 ∧ at ⇒ (al ∨ (al

l ∧ lt)))

Definition 10 (Logical Transition Filtering)
Progression: Filter[a](ϕ) = CnLt+1(ϕt∧at∧Teff(a, t))
Filtering: Filter[o](ϕ) = ϕ ∧ o



Thus,Filter[a](ϕ) is the set of consequences ofϕt in the
vocabularyLt+1 = Pt+1 ∪ L, the vocabulary that includes
only fluents of timet + 1 and effect propositions fromL.
The following theorem shows that filtering a transition belief
formula is equivalent to filtering a transition belief state.

Theorem 11 For ϕ transition belief formula,a action,

Filter[a]({〈s,R〉 ∈ S | 〈s,R〉 satisfiesϕ}) =
{〈s,R〉 ∈ S | 〈s,R〉 satisfiesFilter[a](ϕ)}

3.3 Distribution Properties

Several distribution properties always hold for filtering of
transition belief states (or formulae). The first one follows
from set theoretical considerations. 11.

Corollary 12 For ϕ,ψ transition belief formulae,a action,
1. Filter[a](ϕ ∨ ψ) ≡ Filter[a](ϕ) ∨ Filter[a](ψ)
2. |= Filter[a](ϕ ∧ ψ)⇒ Filter[a](ϕ) ∧ Filter[a](ψ)

Stronger properties hold if filtering an action is a 1:1 map-
ping between state-transition-relation pairs.

Corollary 13 Leta be an action, andϕ,ψ be transition be-
lief formulae. Then,Filter[a](ϕ ∧ ψ) ≡ Filter[a](ϕ) ∧
Filter[a](ψ), if
1. For every transition relationR possible withϕ ∨ ψ, a

maps states in{s | 〈s,R〉 |= ϕ} 1:1 to states inS, or
2. Whenever〈s1, R〉 |= ϕ ∨ ψ, 〈s2, R〉 |= ϕ ∨ ψ, then
s1 = s2.

Corollary 14 For actiona, states ∈ S, andϕ,ψ transition
belief formulae,

Filter[a](s∧ϕ∧ψ) ≡ Filter[a](s∧ϕ)∧Filter[a](s∧ψ)

This last corollary explains the relationship between learn-
ing in fully observable and partially observable worlds. Our
algorithms for learning world models will be more tractable
when our agent observes more of the environment. We see
in Section 4 that polynomial-time algorithms exist for SLAF
when filtering distributes over conjunctions.

Finally, whenTeff(a, t) ≡ T 1 ∧ T 2 andϕ ≡ ϕ1 ∧ ϕ2,
such thatL(T 1) ∩ L(T 2) = ∅ andL(ϕi) ⊆ L(T i), for
i ∈ {1, 2}, then the filtering factors into filtering ofϕ1, ϕ2

separately. More generally, the following holds.

Theorem 15 Leta be an action, lets ∈ S be a state, letP1

include literals inP and FALSE, letPi
2 (i ∈ {1, 2}) include

clauses inPi such thatL(P) = L(P1)∪̇L(P2), and let
ϕi ∈ L(L(P1,P

i
2) ∪ P) (i ∈ {1, 2}) be transition belief

formulae. Then,

Filter[a](ϕ ∧ ψ) ≡ Filter[a](ϕ) ∧ Filter[a](ψ)

4 Factored Learning and Filtering

Learning world models is easier when filtering dis-
tributes over logical connectives. The computation becomes
tractable, with the bottleneck being the time to filter each part
separately. Figure 3 presents an algorithm for SLAF using
this observation. Filtering of a single fluent (done in function
Fluent-SLAF) and more efficient solutions are the focus of
the rest of this section.

PROCEDURE Factored-SLAF(〈ai, oi〉0<i≤t,ϕ)
∀i, ai action,oi observation,ϕ transition belief formula.
1. Fori from 1 to t do,

(a) Setϕ← Step-SLAF(oi,ai,ϕ).
(b) Eliminate subsumed clauses inϕ.

2. Returnϕ.

PROCEDURE Step-SLAF(o,a,ϕ)
o an observation sentence (conjunction of literals),a an
action,ϕ a transition belief formula.
1. If ϕ is a literal, then returno∧Fluent-SLAF(o,a,ϕ).
2. If ϕ = ϕ1 ∧ ϕ2, return Step-SLAF(o,a,ϕ1)∧Step-

SLAF(o,a,ϕ2).
3. If ϕ = ϕ1 ∨ ϕ2, return Step-SLAF(o,a,ϕ1)∨Step-

SLAF(o,a,ϕ2).

PROCEDURE Fluent-SLAF(o,a,ϕ)
o an observation sentence (conjunction of literals),a an
action,ϕ a fluent.
1. ReturnCnLt+1(ϕt ∧ at ∧ Teff (a, t)).

Figure 3. SLAF using distribution over∧,∨

4.1 Always-Executable STRIPS Actions

STRIPS actions [4] are deterministic and unconditional (but
sometimes not executable). In this section we examine them
with the assumption that our they always executable. We re-
turn to inexecutability in Section 4.2.

Let Lf = {f} ∪ {af , a¬f , af◦ | a ∈ A} be the propo-
sitional vocabulary including only the propositional fluent
symbol f and effect propositions mentioningf . We say
thatϕ is a fluent-factored transition belief formula, if ϕ =
base∧

∧

f∈P ϕf , with L(ϕf ) ⊆ Lf . When a transition be-
lief formulaϕ is fluent-factored, then the result of filtering is
also a fluent-factored formula.

Theorem 16 Letϕ = base∧
∧

f∈P ϕf be a fluent-factored
transition belief formula, withL(ϕf ) ⊆ Lf . Then,

Filter[a](ϕ) ≡ base∧
∧

f∈P

Filter[a](ϕf )

andL(Filter[a](ϕf )) ⊆ Lf . Also, ifo is a conjunction of
literals, thenFilter[o](ϕ) is fluent-factored.

We are left with the problem of filtering eachϕf with a
ando. LetL0

f = Lf \ {f}.

Theorem 17 Let ϕf be a transition belief formula with
L(ϕf ) ⊆ Lf . Then,

Filter[a](ϕf ) ≡ (f ⇒ (af ∨ ((ϕf ⇒ f) ∧ af◦)))∧
(¬f ⇒ (a¬f ∨ ((ϕf ⇒ ¬f) ∧ af◦)))∧
Cn(ϕf ) ∩ L(L0

f )

We can computeCn(ϕf ) ∩ L(L0
f ) without general-

purpose automated deduction, if we keepϕf in a the fol-
lowing form

(¬f ∨ explf ) ∧ (f ∨ expl¬f ) ∧ ξf

whereexplf , expl¬f , andξf are inL(L0
f ). Every formula

in L(Lf ) is logically equivalent to a formula in this form,



PROCEDURE AE-STRIPS-SLAF(〈ai, oi〉0<i≤t,ϕ)
∀i, ai an action,oi an observation,ϕ =

∧

f∈P ϕf a fluent-
factored transition belief formula.
1. Fori from 1 to t do,

(a) Setϕ←
∧

f∈P AE-STRIPS-Fluent-SLAF(oi,ai,ϕf ).
(b) Eliminate subsumed clauses inϕ.

2. Returnϕ.

PROCEDURE AE-STRIPS-Fluent-SLAF(o,a,ϕ)
o conjunction of literals,a action,ϕ = (¬f∨explf )∧(f∨
expl¬f ) ∧ ξf in f -free form.
1. Setexpl′f = af ∨ (af◦ ∧ explf )).
2. Setexpl′¬f = a¬f ∨ (af◦ ∧ expl¬f )).
3. If f does not appear (positively or negatively) ino, then

setξ′f = ξf .
4. Else, ifo |= f (we observedf ), then

(a) Setξ′f ← ξf ∧ expl′f .
(b) Setexpl′f ← TRUE andexpl′¬f ← FALSE.

5. Else (we observed¬f ),
(a) Setξ′f ← ξf ∧ expl′¬f .
(b) Setexpl′f = FALSE andexpl′¬f = TRUE.

6. Return(¬f ∨ expl′f ) ∧ (f ∨ expl′¬f ) ∧ ξ′f

Figure 4. SLAF with always-executable STRIPS.

which we callf -free form. Figure 4 presents a complete al-
gorithm for SLAF using this observation and form.

Now, we examine the size of the formula that results from
filtering. A transition belief formulaϕ in CNF is inf -k-CNF
if every clause mentioningf or¬f has at mostk literals. For
example,f ∨ af is in f -2-CNF, butaf

1 ∨ a
¬f
2 is in f -0-CNF.

We also say thata, o determinef inϕ if ϕ |= af orϕ |= a¬f

or o |= f or o |= ¬f .

Corollary 18 Let ϕ =
∧

f∈P ϕf be a fluent-factored
transition belief formula, ando a conjunction of lit-
erals. Then, Procedure AE-STRIPS-SLAF(〈a, o〉, ϕ) re-
turns a fluent-factored transition belief formulaϕ′ ≡
Filter[o](Filter[a](ϕ)) in timeO(|ϕ|). Further, if ϕ is in
f -k-CNF andϕ, a, o determinef , thenϕ′ is in f -1-CNF.
Otherwise,ϕ′ is in f -(k + 1)-CNF.

Thus, our transition belief formula remains compact, if we
know the effect of our action ona in ϕ, or we observef
frequently enough. For example, if we observe every fluent
every 4 actions, then our transition belief state is always in
5-CNF, meaning that it is of size at mostO(n · m5) for n
fluents andm actions (this is much better than the worst case
which can be doubly-exponential inn,m).

4.2 STRIPS Actions

Assume that we allow actions to fail but we always
observe such success and inexecutability. In both exe-
cutable/inexecutable cases we learn something about the ex-
ecutability of the action under consideration. Unfortunately,
this prevents factoring for the general case of actions, unless
one of the conditions of section 3.3 holds. In the rest of this
section we assume that either one of those conditions holds,
or we accept the approximation offered by Corollary 12. De-

fine

al
e ≡

∧

G∈Bottom(P2)(¬a
FALSE
G ⇒ al

G)

al◦
e ≡

∧

G∈Bottom(P2)(¬a
FALSE
G ⇒ al◦

G)

LetB(a) ≡
∧

l∈P1
(al

e ⇒ lt+1) ∧ base.

Corollary 19 (STRIPS-SLAF of a literal) Letl be a literal
in L(P1,P2) anda an action. Ifl ∈ P1, then

Filter[a,OK](l) ≡ (lt+1 ⇔ (al
e ∨ a

l◦
e )) ∧ ¬aFALSE

l ∧ B(a)

Filter[a,¬OK](l) ≡ lt+1 ∧ a
failed
l ∧ base

If l /∈ P1 (i.e., l is an effect literal), then

Filter[a,OK](l) ≡ l ∧ ¬aFALSE
TRUE ∧ B(a)

Filter[a,¬OK](l) ≡ l ∧ afailed
TRUE ∧ base

Now we replace Procedure Fluent-SLAF in Figure 3 with
Procedure STRIPS-Fluent-SLAF of Figure 5.

PROCEDURE STRIPS-Fluent-SLAF(o,a,ϕ)
o conjunction of literals,a action,ϕ fluent.
1. If l ∈ P1, then

(a) If o |= OK, then return
(lt+1 ⇐⇒ (al

e ∨ a
l◦
e )) ∧ ¬aFALSE

l ∧ B(a).
(b) (o |= ¬OK) Returnlt+1 ∧ a

failed
l ∧ base.

2. (l ∈ P1) If o |= OK, then returnl∧¬aFALSE
TRUE ∧B(a).

3. Returnl ∧ afailed
TRUE ∧ base.

Figure 5. SLAF with STRIPS actions, observing success/failure.

4.3 Conditional Effects

A similar formula to the one above holds for the general case
of deterministic actions (possibly conditional). We assume
thata has preconditions using the propositions in{l1, ..., lk}.

Theorem 20 Filtering for a literal l ∈ P1 satisfies

Filter[a,OK](l) ≡ (let+1 ⇒
∨

G ∈ Bottom(P2, {l1, ..., lk})
G |= lp

(ale
G ∧

∧

j≤k((alj

G ⇒ ljt+1)∧

(a¬lj

G ⇒ ¬ljt+1))))

5 Conclusions

We presented general principles and algorithms for learning
and filtering in partially observable domains. Some of our re-
sults guarantee polynomial-time filtering of transition belief
states indefinitely. In particular, STRIPS domains in which
actions are always executable (or when the preconditions for
those actions are known) can be learned in polynomial time,
if fluents are observed frequently enough.

We expect our algorithms to generalize to action schemas,
where actions are parametrized in various ways (e.g., objects
on which they operate, and numbers that modify the extent
of the action). We plan to explore this direction in the future,
as well as extending this work to agents that have a prior dis-
tribution, knowledge, or preference over the possible worlds
or the actions’ effects.



REFERENCES
[1] Eyal Amir and Stuart Russell, ‘Logical filtering’, in

Proc. Eighteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI ’03), pp. 75–82. Morgan Kaufmann,
(2003).

[2] Scott Benson, ‘Inductive learning of reactive action models’,
in Proceedings of the 12th International Conference on Ma-
chine Learning (ICML-94), (1995).

[3] Lonnie Chrisman, ‘Abstract probabilistic modeling of action’,
in Proc. National Conference on Artificial Intelligence (AAAI
’92). AAAI Press, (1992).

[4] Richard Fikes, Peter Hart, and Nils Nilsson, ‘Learning and
executing generalized robot plans’,Artificial Intelligence, 3,
251–288, (1972).

[5] Yolanda Gil, ‘Learning by experimentation: Incremental re-
finement of incomplete planning domains’, inProceedings
of the 11th International Conference on Machine Learning
(ICML-94), pp. 10–13, (1994).

[6] Brian Hlubocky and Eyal Amir, ‘Knowledge-gathering agents
in adventure games’, inAAAI-04 Workshop on Challenges in
Game AI. AAAI Press, (2004).

[7] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.
Cassandra, ‘Planning and acting in partially observable
stochastic domains’,Artificial Intelligence, 101, 99–134,
(1998).

[8] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W.
Moore, ‘Reinforcement learning: a survey’,Journal of Artifi-
cial Intelligence Research, 4, 237–285, (1996).

[9] Michael Kearns, Yishay Mansour, and Andrew Y. Ng, ‘Ap-
proximate planning in large pomdps via reusable trajectories’,
in Proceedings of the 12th Conference on Neural Information
Processing Systems (NIPS’99), pp. 1001–1007. MIT Press,
(2000).

[10] Fangzhen Lin and Ray Reiter, ‘How to Progress a Database’,
Artificial Intelligence, 92(1-2), 131–167, (1997).

[11] Michael L. Littman,Algorithms for sequential decision mak-
ing, Ph.D. dissertation, Department of Computer Science,
Brown University, 1996. Technical report CS-96-09.

[12] R. Andrew McCallum, ‘Instance-based utile distinctions for
reinforcement learning with hidden state’, inProceedings
of the 12th International Conference on Machine Learning
(ICML-95). Morgan Kaufmann, (1995).

[13] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and
Leslie Pack Kaelbling, ‘Learning finite-state controllersfor
partially observable environments’, inProc. Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI ’99). Mor-
gan Kaufmann, (1999).

[14] Andrew Y. Ng and Michael Jordan, ‘Pegasus: A policy search
method for large mdps and pomdps’, inProc. Sixteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI ’00), pp.
406–415. Morgan Kaufmann, (2000).

[15] Tim Oates and Paul R. Cohen, ‘Searching for planning op-
erators with context-dependent and probabilistic effects’, in
Proc. National Conference on Artificial Intelligence (AAAI
’96), pp. 863–868. AAAI Press, (1996).

[16] Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kael-
bling, ‘Learning probabilistic relational planning rules’. AAAI
Press, (2004).

[17] L. R. Rabiner, ‘A tutorial on hidden Markov models and se-
lected applications in speech recognition’,Proceedings of the
IEEE, 77(2), 257–285, (February 1989).

[18] Matthew D. Schmill, Tim Oates, and Paul R. Cohen, ‘Learning
planning operators in real-world, partially observable environ-
ments’, inProceedings of the 5th Int’l Conf. on AI Planning
and Scheduling (AIPS’00), pp. 246–253. AAAI Press, (2000).

[19] Xuemei Wang, ‘Learning by observation and practice: an
incremental approach for planning operator acquisition’, in
Proceedings of the 12th International Conference on Ma-
chine Learning (ICML-95), pp. 549–557. Morgan Kaufmann,
(1995).

[20] Mary-Anne Winslett, Updating Logical Databases, Cam-
bridge University Press, 1990.


