
Construction of abstract state graphs with PVSSusanne Graf and Hassen SaidiVERIMAGCentre Equation, 2, Avenue de la Vignate, 38610 Grenoble-Gi�eresfgraf,saidig@imag.frcontact author : Susanne Grafappeared in the Proceedings of CAV'97, LNCS 1254Abstract: We describe in this paper a method based on abstract interpretationwhich, from a theoretical point of view, is similar to the splitting methods proposedin [DGG93, Dam96] but the weaker abstract transition relation we use, allows us toconstruct automatically abstract state graphs paying a reasonable price.We consider a particular set of abstract states: the set of the monomials on a setof state predicates '1; :::; '`. The successor of an abstract state m for a transition �of the program is the least monomial satis�ed by all successors via � of concrete statessatisfying m. This successor m0 can be determined exactly if for each predicate 'i itcan be determined if 'i or :'i is a postcondition of m for � . In order to do this, weuse the Pvs theorem prover [SOR93] and our Pvs-interface de�ned in [GS96]. If thetactic used for the proof of the veri�cation conditions is not powerful enough, only anupper approximation of the abstract successor m is constructed.This allows us to compute upper approximations of the set of reachable stateswhich is su�cient for the veri�cation of invariants. Also, for almost the same price,an abstract state graph can be constructed: the expensive part of the algorithm is thecomputation of an abstract successor as it requires several validity checks. Therefore,only relatively small state graphs can be constructed and the additional cost for thestorage of the transition relation is almost negligible. An abstract state graph can beused for the veri�cation of any property expressible as a temporal logic formula with-out existential quanti�cation over paths, due to the results on property preservation[CGL94, LGS+95] using a model checker.An abstract state graph represents also a relatively precise global control graphof the system (the guards of the system are used for the construction of the abstractstate graph) which can be used for a backwards veri�cation of invariants as describedin [GS96]. A global control graph allows us to generate much stronger structural in-variants using the tool described in [?, BBC+96] than the initial presentation as aparallel composition of processes. In the case that the control of the system is com-pletely independent of the data part, a control graph is obtained much easier by partialevaluation as proposed in [HGD95]; our method allows to mechanize the constructionof the global control graph also if some control variables depend on data, as for exam-ple in the protocol studied in Section 4.We have implemented a particular case of this method in our tool [GS96] where onlysuccessors of complete monomials are constructed: if a successor is not a completemonomial, it is split into its complete monomials. We have also interfaced our tool



with the state space analysis tools Ald�ebaran [FGK+96].We have veri�ed a bounded retransmission protocol developed by Philips whichhas been proven correct before using the Coq theorem prover [GvdP93, HSV94] andon Pvs [HS96]. But for all these proofs powerful auxiliary invariants had to be givenby the user. Using our tool, the correctness of this protocol can be proved almostwithout user intervention.A Web page, concerning our experience with the veri�cation of the Bounded Retrans-mission Protocol, can be found at the addresshttp:://www.imag.fr/VERIMAG/PEOPLE/Hassen.Saidi/BRP
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Construction of abstract state graphs of in�nitesystems with PVSSusanne Graf and Hassen SaidiVERIMAG1AbstractIn this paper, we propose a method for the automatic construction of anabstract state graph of an in�nite state system using the Pvs theorem prover.Given a system and a partition of the state space induced by n predicates'1; :::; 'n on the concrete program variables which de�nes an abstract state space,we construct an abstract state graph, starting in the abstract initial state. Thepossible successors of a state are computed using the Pvs theorem prover byverifying for each index i if 'i or :'i is a postcondition of it. This allows anabstract state space exploration for arbitrary systems.Using this method, we have automatically veri�ed a bounded retransmis-sion protocol which cannot be proved using backward analysis without providingstrong auxiliary invariants.keywords: abstract interpretation, state graph exploration, theorem proving1 IntroductionIt is now widely accepted that abstraction techniques are useful, and even necessaryfor a successful veri�cation [Kur94, CGL94, GL93, LGS+95, Gra95, Dam96] [DF95].However, in case that the system has an in�nite state space, it is di�cult to mechanizethe construction of an abstract system or state graph. In [GL93, KDG95] tools aredescribed which, given a system (with variables on �nite domains), a set of abstract(boolean) variables, and an abstraction relation relating the concrete and the abstractvariables, construct automatically a corresponding abstract system, which then maybe analyzed by any model-checker. For the analysis of real-time and particular hybridsystems, there exist tools for the abstract analysis by means of abstract interpreta-tion methods based on the use of polyhedra [HH95, DOTY96, HPR94] but they arerestricted to systems with linear assignments. In [Gra95, DF95], methods for the con-struction of abstract state graphs of more general in�nite state systems are proposed,but they require an important amount of user intervention, as it is necessary to givefor any atomic operation of the system a corresponding abstract operation which mustbe proven to be correct. The de�nition of abstract operations and the correspondingcorrectness proofs are in general rather time consuming, and in case of modi�cation ofthe system or non satisfaction of the desired properties on the abstract system, someof them need to be modi�ed.We describe a method based on abstract interpretation which, from a theoreticalpoint of view, is similar to the splitting method proposed in [DGG93, Dam96] butthe weaker abstract transition relation we use, allows us to construct automaticallyabstract state graphs paying a reasonable price.1Centre Equation, 2, Avenue de la Vignate, 38610 Grenoble-Gi�eresfgraf,saidig@imag.fr1



We consider a particular set of abstract states: the set of valuations of a tupleof boolean variables B1; :::; B` representing a tuple of state predicates '1; :::; '`. Asabstraction introduces non-determinism a successor of an abstract state via an abstracttransition may not be a single abstract state, but a set of abstract states represented bya boolean expression expA(B1; :::; B`). We consider only particular successors which arerepresentable by monomials on B1; :::; B`: the successor of a (set of) abstract state(s)expA(B1; :::; B`) for a transition � of the program is the least monomial representingall successors via � of concrete states represented by expA('1; :::; '`). This successorcan be determined exactly if for each predicate 'i it can be determined if 'i or :'i isa postcondition of expA('1; :::; '`) for � . In order to do this, we use the Pvs theoremprover [SOR93] and our Pvs-interface de�ned in [GS96]. If the tactic used for theproof of the veri�cation conditions is not powerful enough, an upper approximation ofthe abstract successor is constructed.This allows us to compute upper approximations of the set of reachable stateswhich is su�cient for the veri�cation of invariants. Also, for almost the same price,an abstract state graph can be constructed: the expensive part of the algorithm is thecomputation of an abstract successor as it requires several validity checks. Therefore,only relatively small state graphs can be constructed and the additional cost for thestorage of the transition relation is almost negligible. An abstract state graph can beused for the veri�cation of any property expressible as a temporal logic formula with-out existential quanti�cation over paths, due to the results on property preservation[CGL94, LGS+95] using a model checker.An abstract state graph represents also a relatively precise global control graph ofthe system (the guards of the system are used for the construction of the abstract stategraph) which can be used for a backwards veri�cation of invariants as described e.g. in[GS96, BLO98b]. A global control graph allows us to obtain much stronger structuralinvariants using the tool described in [BBC+96, BL98] than the initial presentation asa parallel composition of processes.We have implemented a particular case of this method in the tool described in [GS96]where the successors of canonical monomials are constructed. We have also interfacedthe tool with the state space analysis tool Ald�ebaran [FGK+96].We have veri�ed a bounded retransmission protocol developed by Philips which hasalready been proven correct before using theorem provers [GvdP93] [HSV94, HS96].But for all these proofs powerful auxiliary invariants had to be given by the user. Usingour tool, this protocol can be veri�ed without user intervention.2 Construction of abstract state graphs2.1 Preliminary de�nitionsWe consider systems which are parallel compositions of processes of the following form,where we consider parallel composition by interleaving and synchronization by sharedvariables as in Unity [CM88]: 2



De�nition 2.1 (Processes)Name : PDeclarations : x1 : T1; :::; xn : TnTransitions : � 1; :::; �pInitial States : initwhere P is a name, xi are variables of type Ti (which may be any type de�nablein Pvs). The list of variables declared in one process indicates which variables are(intended to be) used in this process, but in fact all variable declarations are global.Each transition � i is a guarded assignment of the formgi(x) 7�! x := assi(x) (1)where gi(x) is a boolean Pvs-expression and assi(x) a tuple of Pvs-expressions assijof type Tj . In order the structural invariant generation to be e�ective, each processhas a �nite domain control variable, which is always tested for and assigned with aconstant expression.Semantics: As parallel composition is as in Unity, the state graph associated witha parallel composition of processes is the state graph associated with a single processhaving, as variables the union of the variables of all processes, as transitions theunion of the transitions of all processes, and as initial predicate the intersection ofthe initial predicates of all processes. That means, parallel composition is only usefulfor better readability and for the generation of structural invariants [BL98]. Therefore,we consider here without loss of generality only systems with a single process P . Pde�nes a state graph SP = (QP ; RP ; IP ), where� QP = T1�:::�Tn� RP = Spi=1 �i, where �i(q) = � ? if gi(q) � falseassi(q) otherwisedenotes also the (partial) transition function associated with transition � i.� IP = fq j init(q) � trueg is the set of initial states.Predicate transformers: Let us �rst recall brie
y the notion of predicate trans-formers associated with relations and their well-known characterization for guardedcommand programs. In the sequel, we always consider sets of states to be representedby predicates ' (hence the name predicate transformer).De�nition 2.2 (predicate transformers) Let R be a binary relation on a set Qand ' 2 P(Q) represent a subset of Q. Then,� post[R](') = 9q0 : R(q0; q) ^ '(q0)� gpre[R](') = 8q0 : (R(q; q0)) '(q0))post[R](') de�nes the set of successors of ' by R (strongest postcondition). gpre[R](')represents the largest set of states such that all its successors satisfy ' (weakest pre-condition). Preconditions for guarded commands � i of the form (1) can be expressedwithout quanti�ers: 3



gpre[� i](') � (gi(x)) '[assi(x)=x]) (2.1)whereas the quanti�ers in the postconditions can in general not systematically beeliminated. For this reason, symbolic forward analysis is more di�cult than backwardanalysis and it is di�cult to compute e�ectively an abstract state graph by forwardanalysis: the successor(s) of an abstract state (representing a predicate ' on concretestates) represents an upper approximation of the postcondition of ' by the concretetransition relation.These predicate transformers have many interesting properties (see for example [Sif82]),but here we need only the following:post[R](')) '0 i� ')gpre[R]('0) (2.2)Abstract semantics of programsAll the results presented in this section are an application of abstract interpretation[CC77]. However, we do not suppose the reader to be familiar with abstract interpre-tation. Here, we limit ourselves to abstractions representing supersets of the concretesystem (in fact, its execution sequences) as we are interested in verifying propertiessuch that whenever a system satis�es property p, then also any system with a smallertransition relation (and therefore set of reachable states).De�nition 2.3 (abstract state graphs) Let S = (Q;RP = [�i; I) be the stategraph of a program, QA a lattice of abstract states and (� : P(Q) 7! QA ; 
 : QA 7!P(Q)) a Galois connection2. SA = (QA ;[�Ai ; IA) is an abstraction of S i�� I � 
(IA)� 8i 8qA 2 QA : post[�i](
(qA)) � 
(�Ai (qA))The abstraction function � associates with any set of concrete states a correspondingabstract state (the abstract state space is a lattice where larger abstract states repre-sent larger sets of concrete states). The concretization function 
 associates with everyabstract state the set of concrete state that it represents. The above de�nition simplyexpresses that the abstract initial state represents (at least) all concrete initial states,and the successor of any abstract state qA by some abstract transition represents allsuccessors of the set of concrete states represented by qA by the corresponding con-crete transition. Thus, every concrete execution sequence is represented by at least oneabstract one. Intuitively, the smaller the represented superset of execution paths is,the more properties are satis�ed on the abstract system. The reason why the abstractlattice is not necessarily of the form 2E where E is a set of abstract states, is thatfor e�ciency reasons one does not want to consider any such set of abstract states,but only some of them. For example, an often used rather coarse approximation isto approximate every non singleton set of abstract states with the top element of thelattice representing the set of all (abstract and therefore also concrete) states.2a Galois connection is a pair of functions (�; 
) satisfying �(
(qA )) = qA and ' ) 
(�(')).Given 
, � is implicitly de�ned by �(') = ufqA 2 QA j') 
(qA )g.4



2.2 A particular abstraction schemeChoice of an abstract state lattice: We consider an abstract state lattice QAinduced by a set of ` predicates f'1; :::; '`g on the variables of the concrete program P 3.We choose as abstract state space the set of predicates on ` boolean variables B1; :::; B`,where each variable Bi represents all concrete states satisfying the predicate 'i. Thatmeans that the set of concrete states represented by any element of the abstract latticecan easily be computed by substituting each occurrence of an abstract variable Bi bythe concrete predicate 'i which it represents:
(expA(B1; :::; B`)) = expA['=B]whereas the implicitly de�ned abstraction function�(') =^fexpA(B1; :::; B`) j') expA['=B]gcan in general not easily be computed. For this reason, we use an upper approximationof the function which is less expensive to compute and which yields only particularelements of the abstract lattice which are the monomials on B1; :::; B`4:�0(') = `̂i=1fBi j') 'igNotice that the set M of monomials on abstract boolean variables B1; :::; B` formsa complete lattice and (�0; 
) is a Gaulois connection from the set of concrete predi-cates to M. The set of atoms of the lattice is the set of the 2` canonical monomials(representing abstract states).Abstract transitions: For each concrete transition � i of the program, we de�ne anabstract transition function �Ai associating with any set of abstract states expA a set ofabstract states representing all successors of the concrete states represented by expA.The least such set is �(post[� i](
(expA))), but as we have already seen this is expensiveto compute. Therefore we choose the weaker approximation �0(post[� i](
(expA)))which is much easier to compute as it has the form of a monomial:�Ai (expA) = 8>>>><>>>>: false if expA['=B]) :gi (3.0)Vj̀=18<: Bj if post[�i](expA['=B])) 'j (3.1):Bj if post[�i](expA['=B])) :'j (3.2)true otherwise (3.3) 9=; otherwise (3)Notice that expA has no successor if and only if in all states satisfying 
(expA), � i isnot enabled. The properties (2.1) and (2.2) allow to recognize easily that the involvedimplications can be expressed without introducing existential quanti�ers. E.g. (3.1)is equivalent to3predicates '1; :::; '` de�ne a partition of QP , even if they are not independent4a monomial on B1; :::;B` is a conjunction of Bi's and :Bi's containing each Bi at most once.Furthermore, we consider the predicate false as a monomial.5



expA['=B] ^ gi ) 'j [assi(x)=x] (3.1)That means that the successor of a given abstract state can be \computed" if itis possible to check the validity of the implications in (3). In the case that theseimplications are in a decidable theory this can be done by means of an appropriatedecision procedure. We choose to use an automatic theorem prover which implementsalso many interesting decision procedures. In this case, we are sure to compute exactlythe transition relation de�ned by (3) if for all indices i either (3.0), (3.1) or (3.2) canbe proved. Otherwise, the impossibility to prove either of these implications may havetwo di�erent causes:� It may be the case that post[�i](expA['=B]) has a non-empty intersection withboth 'j and with :'j . In this case, the non-determinism in the abstract transi-tion relation, is due to the fact that{ either, the set of abstract starting states expA has been chosen too big: itcould be cut into smaller pieces and their successors computed separately,{ we consider monomials as successors,{ or the abstract state space is not �ne enough.� It may simply be the case that the applied proof strategy is not powerful enough.Abstract initial state: As abstract initial state we choose IA = �0(init). Noticethat in most practical cases the initial state de�nes exactly one possible value for mostvariables and can be computed easily by evaluating the predicates 'i in the initialstate.2.3 Abstract state space exploration methodsThis allows us to do a state space exploration, starting in the abstract initial state. Us-ing the above de�ned abstract transition functions �Ai , di�erent upper approximationsof the set of reachable states (invariants) can be de�ned.First approximation: I1 is obtained by imposing also on all computed approxi-mations of the set of reachable abstract states the restriction to be a monomial, wherewe denote by t the lub-operator of the lattice of monomials M:I1 = 1Gj=0Xj where � X0 = IAXj+1 = Fpi=1 �Ai (Xj)All approximations Xj are monomials. As the longest chains in M are of length `, I1can be computed in at most ` iterations.Second approximation: The strongest invariant that can be obtained using �Ai , isobtained by allowing approximations to be arbitrary elements of the abstract lattice(boolean expressions on B1; :::; B`) and by applying �Ai only on canonical monomialsbmc(B1; :::; B`) representing a single state:I2 = 1_j=0Xj where � X0 = IAXj+1 = Wf�Ai (bmc) j bmc ) Xj ; i = 1::pg6



This corresponds to the invariant obtained by an enumerative state exploration wherethe successor sets are computed individually for each already reached state. Noticethat this increases the precision as�Ai (bmc1) _ �Ai (bmc2)) �Ai (bmc1 _ bmc2)but the inverse implication does not hold in general. However, if bmc1 and bmc2 di�eronly on the values of abstract variables Bj such that the set of successors does notdepend on the fact that 'j holds or not, then the inverse implication holds also andit is not useful to compute the successors of these two states separately.Complexity issues: It is reasonable to express the complexity of the computation ofthe above invariants by means of the number of necessary proofs. In order to computethe successor of any set of abstract states expA, at most K = 2 � p � `+1 proofs (1 forthe enabledness and 2 proofs for each predicate 'i and each transition � j) are needed.The computation of the invariant I1 needs therefore maximally ` �K proofs, but itis in general too weak. For the second invariant, in the worst case, the successors of(almost) all 2` abstract states (canonical monomials) have to be computed, leadingto maximally 2` �K proofs. However, in practice, the number of necessary proofs ismuch smaller as1. some transitions � j leave some predicates 'i trivially unchanged or transform'i independently of all (or most) other predicates 'k In this case it is better tocompute the successors of a set of abstract states (represented by a monomial)instead of each (reachable) state contained in this set.2. only a small subset of all abstract states is reachable (otherwise '1; :::; '` hasprobably not been well chosen)3. we have not required the predicates '1; :::; '` to be independent. If they are not,not all 2` canonical monomials represent a non-empty set of concrete states. Inthis case, a dependency predicate allows us to consider only non-spurious abstractstates.Improvement of the computed invariants: The invariants IK can be improvedby using them as the starting point of a backward analysis as it has been suggested,e.g., in [CC77]:I+K = V1j=0 Yj where � Y0 = IKYj+1 = Yj ^Vpi=1gpre[�i](Yj) (4)Improved versions of this backward analysis which use theorem proving to dischargeveri�cation conditions are implemented in [BBC+96, GS96, BLO98b]. Notice that theapproximations Yi are arbitrary predicates of the concrete property lattice and notnecessarily boolean combinations of '1; :::; '`. In order to do an abstract backwardanalysis (cf. [CC77]) a lower approximation of gpre[�i](Yj) is needed.Construction of a state graph: As the computation of a successor requiresseveral proofs, only relatively small abstract state spaces (a few thousand successorcomputations) can reasonably be explored. Under these circumstances, the additionalcost for storing not only the set of reachable states but also the transition relation isalmost negligible. This has at least two advantages:7



� Any property representable as a temporal logic formula on atomic propositionsin fB1; :::; B`g without existential quanti�cation over executions can be veri�edon the abstract state graph using a model checker.� The obtained abstract state graph represents a relatively precise global controlgraph, especially if all abstract states represent a set of concrete states enablingexactly the same transitions (this is the case if the guards of the program areboolean combinations of predicates in f'1; :::; '`g). The method and tool de-scribed in [BL98] generate stronger structural invariants for this control graphthan for the initial control structure. These invariants can be used to improvethe result of the backward analysis de�ned by (4).Re�nement of an abstract state graph: If the abstract state space explorationby means of �Ai does not allow some property to be veri�ed, one can try to constructa more precise abstraction by adding more predicates to '1; :::; '`, that is, to considera �ner partition of the concrete state space. E.g., for the computation of a successorof expA^Bnew by the re�ned transition relation, not all implications of De�nition (3)have to checked, but only the new ones and those which could not be proved validduring the computation of the successors of expA. Notice that this information canbe deduced from the so far constructed transition relation and it is not necessary tokeep a list of valid assertions. That means the construction of a su�ciently precisestate graph can be obtained in an incremental manner. This does not mean however,that it is a good idea to start with a single predicate '1, compute an abstract stategraph, and add incrementally more and more predicates. In general it is better tostart directly with a \reasonable" set of predicates, and to re�ne it only if it turns outto be not su�cient.3 An implementationIn the tool Invariant checker [GS96, Sa��97] which implements the backward compu-tation of inductive invariants (4) and also the methods described in [BBC+96, BL98]for the generation of structural invariants, we have also implemented an abstract stategraph generation. We have achieved an integration with the Pvs theorem prover whereall the implications necessary to compute the successors of an already reached stateare submitted to the Pvs prover. A proof strategy combining decision procedures,rewriting and boolean simpli�cation using Bdds, is systematically applied. This proofstrategy is often su�cient to prove all valid implications that are generated.As the tool can handle programs with explicit control locations, an abstract stateis a tuple (ctrl; bmc) where ctrl is a concrete control con�guration and bmc is a valuationof a set of boolean variables B1; :::; B` as de�ned in the preceding section.1. Given a set of concrete predicates f'1; :::; '`g, an upper approximation of adependency predicate is computed and used in order to generate only consistentsuccessors. The exact dependency predicate can be computed if f'1; :::; '`g canbe divided using syntactical independency into a set of small sets of potentiallydependent predicates. 8



2. Auxiliary invariants are generated using the initial control structure where allcontrol con�gurations of a system consisting of several parallel components areconsidered reachable.3. An abstract state graph is generated. The invariant I , which is a conjunction ofalready known invariants of the system relevant for the transition under studyis used to construct smaller successors for each abstract state by replacing theimplications of (3) by weaker ones. For example the implication (3.1) becomes:I ^ 
(expA) ^ gi ) 'j [assi(x)=x] (3.1')Also, not all the implications of (3) are generated, but only those compatible withthe generated dependency predicate and those which cannot be directly obtained fromthe already computed abstract transition relation. (3.1') considers only successors ofstates in I . We could also take care to add only abstract successors representing anon-empty set of concrete states in I , but experimentation showed that this representsa lot of e�ort for a small number of states that could be eliminated.An algorithm: We present here a version of the algorithm for systems withoutexplicit control locations. It is based on the representation of abstract state and tran-sition sets by means of boolean expressions on B1; :::; B`5 respectively Bdds. However,we had problems to interface Pvs with an external Bdd package and in the actualimplementation sets are represented explicitly by lists.Preliminary de�nitions:� We construct an abstract invariant IAD obtained by analysis of the dependenciesbetween the predicates '1; :::; '`. Furthermore, we generate a concrete invariantI using the facilities in our tool. At each successor computation we will only useits useful conjuncts.� We try to �nd by static analysis some constraint Ctau[i](B1; :::; B`; B01; :::; B 0̀)for each transition �i. For example, we examine which are the predicates 'j nottouched by it which allows intersect Ctau[i] with the constraint Bj = B0j .� We de�ne an abstract predicate Aguard[i] = �0(gi) for each transition �i. Ingeneral the predicates '1; :::; '` are chosen in such a way that Aguard[i] representsexactly the guard gi of the transition �i.� AReach represents at each stage of the algorithm the so far computed set ofreachable states. At termination it represents an invariant of the program.� Atau[i] represents at each stage of the algorithm an upper approximation of theabstract transition relation �Ai .� To explore is an auxiliary variable representing the set of states for which we havestill to compute the successors.5a transition relation is represented by a predicate of the form trans(B1; :::;B`; B01; :::;B 0̀ ) whereB1; :::;B` represents the start and B01; :::;B 0̀ the target state of each represented transition9



Initializations:AInit := �0(init);for all i : Atau[i] := IAD ^ IAD 0^Ctau[i] ;AReach := AInit ;To explore := AInit ;Iteration:While To explore 6= falseChoose m in To explore ;To explore := To explore ^ :m ;% compute the set of successors succ of m and update %% the abstract transition relation and set of reachable states %If m)Aguard[i] then % this is a boolean decision %succ := Vj̀=18>>>><>>>>: Bj if Atau[i] ^m) B0j %idem%:Bj if Atau[i] ^ m ) :B0j%idem%Bj if I ^ post[�i](
(m))) '0j:Bj if I ^ post[�i](
(m))) :'0jtrue elseAtau[i] := Atau[i] ^ (m ) succ[B=B0]) ;To explore := To explore ^( succ ^: AReach) ;AReach := AReach _ succ ;This algorithms allows us to generate a state graph in a totally automatic manneras we never try to prove interactively a generated implication: if the proof of a validimplication fails, a weaker successor is obtained. The user guides the veri�cationby (re)de�ning the predicates '1; :::; '` for the de�nition of the abstract state graphand by de�ning the automatic proof strategy. The constructed abstract state graphis transformed into the format of the Ald�ebaran tool [FGK+96], and can then beanalyzed by all the techniques available in Ald�ebaran, such as minimization, model-checking and graphical display of graphs. In a near future, it is foreseen to representabstract state sets and transition relation by Bdds, which is convenient for an incre-mental construction of the abstract state graph and for the e�cient representation ofglobal constraints on Atau[i].Choice of the predicates 'i: In order to obtain good results, it is often essential touse the guards appearing in the transitions of the system. This allows us to constructsuccessors only via transitions enabled in all represented concrete states and replacesthe enabledness check (3.0) by a boolean test. In order to prove that  is an invariantof the system (or any other property involving  ), we can also try to use  for thede�nition of the abstract state space. Furthermore, each predicate is split into its set ofliterals. E.g., for the veri�cation of the invariant (6) below we take '1 = (OUT = IN)and '2 = (OUT = tail(IN)) instead of the disjunction '1 _ '2; otherwise, in most10



cases, too much information is lost. Sometimes, it may be helpful to use '1, '2 and'1 _ '2.Example: We have applied this method for the veri�cation of a simple alternatingbit protocol. The protocol is correct if the list of already received messages OUT is apre�x of the list of so far sent messages IN such that OUT has at most one elementless than IN . This can be expressed by2(OUT = IN _ OUT = tail(IN)) (6)Using the already implemented backward veri�cation method to prove (6), the com-putation of the appropriate inductive invariant6 does not terminate and no interestingstructural invariants are generated.Using the two predicates appearing in the guards of the program (they expressfor both processes that the received bit is the expected one), a deterministic abstractstate graph is obtained by the algorithm implemented in our tool. 34 (decidable)implications are submitted to the prover, 5 abstract states are found reachable, andthe construction takes 68 seconds.Using the literals '1 and '2 of (6) for the construction of the abstract state graph,leads to a state graph with more states and more non-determinism, but not to a moreprecise one. We have used two methods to obtain a more precise approximation:1. We have re�ned the so far obtained abstract state graph by using also the internalpredicate message(message channel) = head(IN) | expressing that the lastsent message is the head of IN . This re�nement does not allow to eliminate anystate nor transition and the resulting abstract state graph is exactly the initialone, but all its states satisfy either \IN = OUT" or\ OUT = tail(IN)".2. We have used the computed abstract state graph as a control graph on whichthe tool generates much stronger structural invariants than on the original sys-tem. Then, we apply the suggested backward analysis to strengthen the alreadyobtained invariant. The Property (6) can be proved with a single iteration.In this simple example, the control depends only on �nite domain variables, and itwould be much easier to construct the control graph using partial evaluation as pro-posed e.g. in [HGD95]. In the example of the next section however, the control dependson non instantiated parameters and partial evaluation is not possible.4 Case Study : Bounded Retransmission ProtocolWe have used this method to verify a Bounded Retransmission Protocol (BRP) de-veloped by Philips [GvdP93]. The BRP protocol is an extension of the alternatingbit protocol, where not single messages, but message packets are transmitted and thenumber of possible retransmissions per message is bounded by some number max. Weconsider a fully parameterized version of the protocol where the packets can be of anysize, andmax any positive number. The protocol has already been proved before usinga theorem prover [GvdP93, HSV94, HS96], where a large amount of user interactionhas been necessary to provide powerful enough auxiliary invariants.6The weakest inductive invariant implying IN = OUT _ OUT = tail(IN)11
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AckFigure 1: The architecture of the BRP protocolDescription of the protocol: The sender receives from a sending client a messagepacket to transmit. The sender delivers a con�rmation to its client: OK, if all messageshave been transmitted and acknowledged, NOT OK, if the transmission has been abortedas more than max retransmissions would have been necessary to deliver a message,DONT KNOW, if the last message has not been acknowledged (in this case, it is notpossible to know if this message or its acknowledgment has been lost).The receiver acknowledges each received message, and delivers an indication to thereceiving client. The indication is FIRST for the �rst received message of a packet,INCOMPLETE for any intermediate message, and OK for the last message. If the senderabandons the transmission of a packet after sending successfully at least one message,the receiver delivers a not NOT OK indication.There are two timers T1 and T2. Timeout of T1 indicates to the sender that amessage (or its acknowledgment) has been lost. Timeout of T2 indicates to the receiverthat the sender has de�nitively abandoned the transmission of the packet.Correctness criterion: One must prove that the sequences of received messagesand of sent messages are consistent, that is, Property (6) of Section 3. It has alsoto be proved that for each packet, the indication and the con�rmation delivered tothe clients are consistent. That means, if the sender delivers a OK con�rmation, thereceiver delivers an OK indication. If the receiver delivers a NOT OK indication, thesender delivers the DONT KNOW or NOT OK con�rmation. These properties can easily beexpressed by temporal logic formulas.Veri�cation of the protocol: To construct the abstract state graph for the BRP,we have used 19 predicates appearing in the guards of the system. The constructedabstract graph has 475 states and 685 transitions and has been obtained in threehours on a Sparc 10. Of the 24 possible global control con�gurations, only 9 arefound reachable. On this graph, the control properties concerning con�rmations andindications could be veri�ed using Ald�ebaran. Property (6) has been veri�ed ona weaker abstraction where only predicates concerning the transmission of a singlemessage are considered (it can be obtained by Ald�ebaran from the above mentionedmore complex abstraction). The obtained abstract state graph is very similar to the oneobtained for the alternating bit protocol, except that at any moment the transmissioncan be abandoned because the maximal number of retransmissions may have beenreached. 12



5 ConclusionsWe have presented and implemented a method allowing to construct abstract stategraphs of arbitrary in�nite state systems, where abstract states are valuations of aset of predicates '1; :::; '` on concrete variables. At a �rst sight, the method maylook rather expensive as the construction of a successor requires several proofs, andthe construction of an abstract state graph for the BRP with 500 states takes severalhours. However, the actual implementation is extremely ine�cient as the independencebetween transitions and predicates is not really exploited. Furthermore, all proofs aredone without user interaction using a single tactic, and if this tactic fails to provesome valid statements, a weaker abstraction is obtained. Once the user has providedthe predicates '1; :::; '` (the tool proposes a set consisting of the literals occurring inthe guards and properties to be proved), the construction is completely automatic. Inthis case, execution time is less critical. It is always possible to apply this method toget a �rst approximation of a system which | from the point of view of human e�ort| is for free. The constructed state graph is always of a reasonable size and can beexplored by a model-checker. It can also be used as a �nite global control graph whichcan be used for further invariant generation and backward analysis.If the initial set of predicates, de�ning the abstract state space, does not give asatisfactory abstraction, one can try to add new predicates to obtain a more preciseabstraction. To provide a new predicate is similar to providing an auxiliary invariant,which is usually necessary to prove program properties. However, it is easier to providesome predicates leading to a su�ciently re�ned state graph than the correspondingauxiliary invariant (expressing when these predicates hold and when not). Sometimes,the re�ning predicates can be obtained from the so far constructed abstract state graphby examining the nondeterminism occurring in sequences leading to states violatingthe required invariant.This construction of an abstract state graph is in some sense complementary to thetableau construction implemented in STeP [BBC+96] where the tableau of the propertyto be proved (or disproved) is taken as the starting point for an abstract state graphconstruction by expanding it until it �ts with the program. We take the control of theprogram of the program as a starting point and re�ne it until it satis�es the propertyto be veri�ed. The particularity of our method is that it integrates a reachabilityanalysis in order to avoid the (costly) computation of successors of unreachable states.It has also some other interesting characteristics:� it is incremental: a re�nement generates new implications which are weakeningsof those generated for the previous partition. Hence, all implications valid for agiven partition, are also valid for a �ner partition. Furthermore, in order to usethis fact, it is not necessary to store the already proved implications, but onlythe corresponding abstract transition relation.� The abstract state graphs constructed by our method are interesting for debug-ging. It can be used to guide the search of a concrete execution sequence violatinga required property, especially as any transition enabled in some abstract stateis enabled in all concrete states it represents.13



Since the �rst version of this paper new results in this direction have been obtained.In [BLO98a], Bensalem et al. present a similar abstraction framework which improvesthe one presented here essentially in two points:� Successors of sets of abstract states (abstract predicates) and not only of sin-gle abstract states are constructed. Also, not only successors of the form of amonomial are constructed. In fact, if the transitions � of a system,{ let many predicates trivially unchanged,{ '1; :::; '` can be cut into subsets which are transformed by � independentlyof each other, and all these subsets are smallthen, one may well consider arbitrary successor sets.� The computation of the abstract transition relation is not combined with thestate space exploration. On one hand, this may lead to many computations ofsuccessors of unreachable states. On the other hand, if there are many indepen-dencies as described above, the number of unnecessary successor computationsmay in fact be quite small. And it is an advantage to construct a abstracttransition relation for each transition of the concrete system; the obtained setof transition relations can be used directly by an appropriate model-checker foreither state graph generation or \on-the-
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