
A Simple Approximation Algorithm for the Design of Tree NetworksRaja Jothi�Abstra
tWe present a simple 4-approximation algorithm for the extensively-studied Capa
itated Min-imum Spanning Tree problem. The approximation ratio of our algorithm mat
hes the 
urrentbest ratio of 4, due to Altinkemer and Gavish. Our algorithm is simpler, and easier to analyzewhen 
ompared to the 
urrent best approximation algorithm.Keywords: Capa
itated minimum spanning trees, Approximation algorithms, Network design,Combinatorial optimization.1 Introdu
tionA well-studied problem in network design is the Capa
itated Minimum Spanning Tree (CMST)problem. Consider a given undire
ted vertex-weighted graph G = (V;E) with non-negative 
ostson its edges, root node r 2 V , and 
apa
ity 
onstraint k. The 
ost matrix on the edges is symmetri
and satis�es the triangle inequality. The CMST problem asks for a minimum 
ost spanning treerooted at r, in whi
h the sum of the vertex weights in every subtree 
onne
ted to r is at most k.The CMST problem is NP-hard [5℄.The CMST problem is one of the extensively studied network design problem in ComputerS
ien
e and Operations Resear
h. Numerous heuristi
s and exa
t algorithms have been proposedover the past 40 years. For a detailed survey on the literature, we refer the reader to [1, 4, 6℄. Inthis paper, we restri
t ourselves to approximation algorithms for the CMST problem.An �-approximation algorithm for a 
ombinatorial optimization problem is a polynomial timealgorithm, whi
h �nds a feasible solution of 
ost at most � times the 
ost of an optimal solution.We 
all � to be the approximation ratio of the algorithm. The value of � is greater than or equalto 1 for minimization problems, and less than or equal to 1 for maximization problems. The 
loserthe value of � to 1, the better the approximation ratio.For the CMST problem, Gavish and Altinkemer [3℄ were the �rst ones to present an algorithmwith any 
onstant approximation ratio. In [2℄, they presented a (3� 2k )-approximation algorithmfor the spe
ial 
ase of the CMST problem, in whi
h the vertex weights are all the same. Theyused this algorithm as a bla
k-box to present a 4-approximation algorithm for the original CMST�Department of Computer S
ien
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problem with arbitrary weights. Hen
eforth, we will be referring Altinkemer and Gavish by theirinitials AG.In this paper, we present a new 4-approximation algorithm for the CMST problem. Our algo-rithm is simpler and easier to analyze when 
ompared to 
urrent best approximation algorithm [2℄available for the problem. The approximation ratio guaranteed by our algorithm mat
hes the 
ur-rent best ratio of 4 [2℄. We show that there are instan
es for whi
h the 
ost of the solution produ
edby our algorithm is about one third of that produ
ed by AG's algorithm.2 PreliminariesWe use the terms nodes and verti
es inter
hangeably. Let juvj denote the 
ost of an edge 
onne
tingverti
es u and v. We use r to denote the root vertex. For a given CMST instan
e, let OPT denotean optimal solution with C� being its 
ost, and let Cmst denote the 
ost of a minimum spanningtree (MST).Lemma 2.1 ([2℄) C� � maxfCmst;Pv2V w(v)jrvjk g.3 Overview of AG's algorithmAG's algorithm [2℄ 
onverts a given CMST instan
e with arbitrary vertex weights and 
apa
ity kinto a new instan
e with unit vertex weights and 
apa
ity k=2, by repla
ing ea
h vertex v 2 V ofweight wv with wv unit weight verti
es. They 
onstru
t a traveling salesman tour (TSP) visiting allthe verti
es in the new instan
e, and partition the tour into segments (subtrees) of weight k=2. One
an perform an optimal partitioning of the tour, instead of settling for an arbitrary partitioning,by 
hoosing the best partitioning among all possible partitionings. If one 
hooses to do an optimalpartitioning, there may be up to 2 segments that are of weight less than k=2.After partitioning the tour into segments, they 
onne
t r to the 
losest node in ea
h segment.They then show how to 
onvert the solution for the unit weight instan
e with 
apa
ity k=2 intoa feasible solution for the given instan
e with 
apa
ity k. While their algorithm for the CMSTproblem with unit vertex weights is straightforward, 
onverting the solution for the unit vertex-weighted CMST instan
e with 
apa
ity k=2 into a feasible solution for the arbitrary vertex-weightedCMST instan
e with 
apa
ity k is quite involved. We refer the reader to [2℄ for more details.As per their algorithm, the �nal 
ost of the solution 
omprises two 
omponents: (i) the 
ost ofthe edges in the TSP, and (ii) the 
ost of the other edges (edges that 
onne
t the segments to r).Sin
e a TSP 
an be 
onstru
ted by doubling the edges of an MST, for any given instan
e, the 
ostof the TSP is at most 2C� (by Lemma 2.1). They show that the 
ost of 
onne
ting ea
h segmentto r is at most 2C�. This translates into an overall 
ost of at most 4C�.2



4 Our AlgorithmOur algorithms improve on the ideas of AG's algorithm. Unlike AG's algorithm, our algorithms
an dire
tly be applied to a given instan
e without having to do any 
onversions as in [2℄, therebyredu
ing the running time. Our algorithm for the CMST problem is given below.Algorithm Partition-Tour (V �; r; k)1. Constru
t a TSP tour t on V � [ frg.2. set segmentWeight = 0.3. Starting from r, traverse the tour in 
lo
kwise dire
tion.4. Let p and s be the verti
es that are lying just before and after v on the tour.5. While not all verti
es in t are traversed and segmentWeight < k, visit the next vertex v.(a) If segmentWeight +w(v) < k, set segmentWeight + = w(v).(b) Else if w(v) � k=2, remove v from t, and use short
utting to 
onne
t p to s. (
omment:v is a segment by itself)(
) Else remove the edge 
onne
ting v to p from t, and set segmentWeight = w(v).6. Return the segments.Algorithm CMST-Main (V; r; k)1. Constru
t an MST T spanning V .2. Root T at the root vertex r.3. Let t1; t2; : : : ; tm be the subtrees rooted at the 
hildren of r.4. For every subtree ti 
onne
ted to r in T ,(a) S  Partition-Tour (fvjv 2 tig; r; k).(b) For every segment in S, if it is not already 
onne
ted to r, 
onne
t r to the 
losest vertexin the segment.It 
an be veri�ed that the above algorithm outputs a feasible solution for a given CMST instan
e.In what follows, we show that the 
ost of the solution output by the above algorithm is at most 4times the 
ost of an optimal solution.Theorem 4.1 Our CMST algorithm guarantees an approximation ratio of 4.3



Proof. The 
ost of the �nal solution 
omprises of two 
omponents: (i) the 
ost of the TSP toursfor ea
h subtree hanging o� r, and (ii) the 
ost of 
onne
ting the individual segments, of weight atmost k, to r. It 
an be easily seen that the 
ost of the TSP tours is at most twi
e the 
ost of theMST we started with. This is due to the reason that one 
an easily 
onstru
t a tour spanning r andthe verti
es in a subtree rooted at r by just doubling the ne
essary MST edges and short
uttingthe resulting Euler tour.We now show that the 
ost of 
onne
ting the individual segments to r is at most twi
e the 
ostof OPT. As per the partitioning pro
edure, observe that all, but the last, segments in a tour areguaranteed to be of weight at least k=2. Moreover, noti
e that there is no need to 
onne
t the �rstand the last segment of a tour to r as they are already 
onne
ted to r by the tour edges, whose
ost has already been a

ounted. Let s1; s2; : : : ; sm be the segments for whi
h the algorithm addededges to 
onne
t them to r. Re
all that ea
h of these edges 
onne
ts r to the 
losest vertex in asegment. Let V 0 represents the set of all verti
es in segments s1; s2; : : : ; sm, and let vi be the vertexin si that is 
onne
ted to r. Let W (si) =Pj2si w(j). Then,jrvij � Xj2si w(j)jrjjW (si)� Xj2si w(j)jrjjk=2mXi=1 jrvij � mXi=1Xj2si w(j)jrjjk=2� Xj2V w(j)jrjjk=2� 2� C� (by Lemma 2.1)Thus, we 
an 
on
lude that the overall 
ost of the tree output by the algorithm is at most 4 timesthan that of an optimal solution.In pra
ti
e, our algorithm may a
tually perform better than AG's algorithm. Let us 
onsideran instan
e with unit weight verti
es, with r pla
ed at distan
e M from all the other verti
es. Letthe non-root verti
es be 
lustered into k + 1 groups of k � 1 verti
es, with inter-distan
e betweenverti
es in the same group being �, and inter-distan
e between verti
es in di�erent groups being2M . Observe that the edges of the instan
e under 
onsideration obeys triangle inequality. Figures 1and 2 illustrate the exe
ution of AG's algorithm and our algorithm, respe
tively, for the instan
ewith k = 8. While the 
ost of the solution obtained by AG's algorithm is 3(k�1)M+(k�1)(k�2)�,the 
ost of the solution obtained by our algorithm would only be kM + (k� 1)�. For a large k anda small �, our algorithm would return a solution of 
ost about one third of that returned by AG'salgorithm. Note that the solution obtained by our algorithm is in fa
t optimal.4
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)Figure 1: AG's algorithm on the sample instan
e with k = 8. (a) TSP tour spanning all the verti
es.(b) Partitioning of the TSP tour. (
) Partitioned subtrees are 
onne
ted to root r, with the 
ost ofthe �nal tree being 3(k� 1)M + (k � 1)(k� 2)�.
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Figure 2: Our algorithm on the sample instan
e with k = 8. (a) MST spanning all the verti
es.(b) TSP tours, ea
h spanning r and the verti
es in a subtree rooted hanging o� r. (
) Partitioningof the TSP tours into segments. (d) Partitioned subtrees are 
onne
ted to root r, with the 
ost ofthe �nal tree being kM + (k� 1)�.
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