
Scientific Programming 20 (2012) 69–80 69
DOI 10.3233/SPR-2012-0339
IOS Press

Storage QoS provisioning for execution
programming of data-intensive applications

Renata Słota
Department of Computer Science, Faculty of Electrical Engineering, Automatics, Computer Science and
Electronics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
E-mail: rena@agh.edu.pl

Abstract. In this paper a method for execution programming of data-intensive applications is presented. The method is based
on storage Quality of Service (SQoS) provisioning. SQoS provisioning uses the semantic based storage monitoring based on a
storage resources model and a storage performance management. Test results show the gain for the execution time when using the
QStorMan toolkit which implements the presented method. Taking into account the SQoS provisioning opportunity on the one
hand, and the increasingly growing user demands on the other hand, we believe that the execution programming of data-intensive
applications can bring a new quality into the application execution.

Keywords: Storage resources, Quality of Service, data-intensive application, distributed environment, storage management, grid

1. Introduction

The e-Science paradigm allows for doing experi-
ments at a much higher level of cooperation, scale and
cost saving. An e-Science experiment is carried out in
a virtual laboratory constructed by applications run-
ning in distributed computing environments like Grids
or Clouds and shared scientific equipment. It is a com-
mon case that such applications are data-intensive and
need large storage resources. Since more than one third
(1/3) on average of the application execution time
is devoted to I/O related operations there is a strong
demand for efficient data access methods with pre-
dictable performance. In addition there is an increasing
gap between computation and I/O performance, which
in turn constantly builds up the role of storage in the
high performance computing area.

The Quality of Service (QoS) of storage is an es-
sential issue for time constrained applications, e.g.,
real time visualization, recording/filtering/processing
of unique irreproducible data sequences, e.g., from ra-
dio telescope. Assuming the possibility of storage QoS
(SQoS) provisioning of the given computing environ-
ment it could be possible to guarantee or eventually de-
crease application execution time taking into account
the costs associated with running the given application.
The SQoS requirements can be defined in the form of
Service Level Agreement (SLA).

Storage QoS provisioning in distributed environ-
ments is a challenging task according to the hetero-
geneity of storage resources, the dynamicity of stor-
age nodes load distribution, the uncertainty of user
behavior, the resource sharing in virtualized environ-
ments introduced for better resource utilization. The
introduction of a common model for storage resources,
which unifies the storage resources monitoring (and es-
pecially the performance monitoring), allows for more
efficient management of storage resources for the pur-
poses of SQoS provisioning. The use of such a model
not only simplifies the monitoring itself but also makes
it possible to introduce a common layer for access to
the monitoring parameters including QoS metrics. It is
important that the construction of appropriate effective
and flexible systems for storage resource management
is easier with the use of semantic technologies, also for
modeling storage resources.

Taking into account SQoS provisioning on the one
hand, and the increasingly growing users demands on
the other hand, we believe that the execution program-
ming of data-intensive applications can bring a new
quality into the application execution. The term “exe-
cution programming” means the ability of formulating
the conditions of applications’ execution (e.g., SQoS
metrics ranges), which need to be met at runtime. If the
application does not need to change its requirements
at runtime then the conditions can be statically defined
before the execution. Otherwise a special application

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

70 R. Słota / Storage QoS provisioning for execution programming of data-intensive applications

programming interface for specifying and modifying
the conditions at runtime is needed.

In this paper a method for execution programming
of data-intensive applications is shown. The method
is based on SQoS provisioning. An essential part of
the article shows a way for achieving SQoS through
the use of the mentioned common model, performance
monitoring, and management strategies for storage re-
sources. For that reason the paper has the following
structure: after presenting the state of the art in the sec-
ond section, the C2SM model, and a storage resource
monitoring based on it, are described in Section 3. The
next section presents how the mentioned monitoring
can be used for the QoS-aware data management. The
QStorMan toolkit, which implements the idea of using
the semantic-based monitoring for management of the
data used by data-intensive applications, is described
in Section 5. In this section the architecture of the
toolkit as well as its interfaces enabling the execution
programming of applications are comprised. The next
section directly concerns the execution programming,
where two basic use cases of QStorMan are shown.
Section 7 contains test results, which show a gain for
the execution time of data-intensive application.

2. Related work

This paper focuses on the use of the possibility to
specify storage QoS requirements for influencing the
storage systems’ behavior on behalf of data-intensive
applications during their execution. Therefore, the se-
lected examples of research in the field of SQoS provi-
sioning, sharing and management of storage resources,
as well as I/O operation characteristics are presented
below.

2.1. QoS for storage

Many of the studies in the field of SQoS provision-
ing are dedicated to delivering SQoS for the file sys-
tems.

In [2] the authors present a QoS based parallel file
transfer to cater customers’ requirement. The proposed
algorithms find out the best resources, which should be
used to transfer the requested data, decide the size of
part of each replica which should be transferred, and
estimate time and cost to accommodate the require-
ment. The proposed algorithms enable the economical
use of distribute grid resources. In [22] the Bourbon
framework is presented. It uses the Ceph peta-scale

object-based storage system. Bourbon enables Ceph to
become QoS-aware by providing the capability to iso-
late performance between different classes of work-
loads. The QoS mechanism in this case accommodates
the stripping and randomized distribution of data used
in Ceph. The global-level of QoS relies upon the low-
level QoS provided by the individual object-based stor-
age devices being part of the system. In [5] a QoS-
aware file system called Apollon, which can efficiently
handle mixed workload is presented. The authors pro-
pose a practical I/O scheduling mechanism to priori-
tize the incoming disk I/O requests. This scheduling
is implemented in a deadline-driven I/O scheduler and
admission control module. The Apollon system is re-
ported to have superior performance in guaranteeing
the QoS requirement of real-time requests.

In the presented paper we obtain SQoS by a suitable
model of storage resources, monitoring storage load
and cost estimation of data access, as well as through
the use of semantic technologies which help in the stor-
age and data management and the SQoS monitoring.

2.2. Provisioning, sharing and management of
storage resources

Given that the research concerning the efficient stor-
age provisioning address many layers in the I/O path
it is also important to study the techniques of man-
agement and the organization of access to storage re-
sources.

Overview of the problems associated with dis-
tributed data sharing, management, and processing in
data grids can be found in [20]. The authors provide
comprehensive taxonomies that cover various aspects
of architecture, data transportation, data replication
and resource allocation, and scheduling. The key con-
cepts of data grids are compared with other data shar-
ing and distribution paradigms like: content delivery
and peer-to-peer networks and distributed databases.
Based on this taxonomy they identify areas for future
exploration. In [21] an intelligent storage system is pre-
sented. The system focuses on I/O performance opti-
mization for a soft real time application. It uses the
knowledge obtained by the intelligence module which
determines the class of incoming workload to improve
the performance using pro-active storage optimization.
Machine-learning based techniques were used to train
the intelligence module. The system uses workload
monitor and analyzer, and system optimizer. The sys-
tem is an autonomic system, which does not require
any changes to existing interfaces. In [23] the con-

R. Słota / Storage QoS provisioning for execution programming of data-intensive applications 71

cept of reference storage system (RSS) is proposed.
The authors state that the latency and bandwidth are
not good requirements for SLA since the users hardly
know what values make sense and this is why the RSS
interface is proposed. RSS is a storage system cho-
sen by users for which the performance is measured
and then used as performance interface between ap-
plication and the mimicked storage servers. The per-
formance is managed by migrating virtual storage de-
vices. A machine learning model is used to implement
the interface.

The above presented examples of storage manage-
ment methods are very sophisticated. In this paper only
simple one based on heuristics is presented, but this
method is sufficient to obtain good results.

2.3. I/O characterization

Because of a wide variety of data-intensive appli-
cations existence this is a wide variety of workloads
generated by these applications. A number of studies
assumes that each of the workloads has its own charac-
teristics for which specific actions, e.g., management,
tuning, configuring can be performed to achieve opti-
mal throughput.

A methodology for evaluating of I/O performance
on computer clusters under different I/O configura-
tions is proposed in [8]. Three levels of the I/O path
are considered: application level, I/O system level and
I/O devices. The method is based on selecting dif-
ferent system configuration and I/O parameters and
evaluating the performance for the given configura-
tion. This information is then used to select the most
appropriate configuration for the given application.
Another methodology for system wide I/O characteri-
zation is proposed in [1]. The authors present a mech-
anism for capturing detailed application-level behav-
ior, which allows to identify the system-wide trends
and the application-specific I/O strategies. The method
uses storage device instrumentation, static file system
analysis and monitoring. Such studies are interesting
and can be used to support the automatic detection of
the applications’ characteristics, which in turn can help
to find what are the exact application requirements.
Such aspects are covered in [6], where the behavior-
inspired data management is proposed.

Our assumption is that the application behavior is
changing during its run-time and that the knowledge
about the changes is placed in the application. There-
fore, an application interface for SQoS requirements
is needed. This interface also allows users to choose a
less expensive method of the application execution.

3. Model C2SM and storage resources monitoring

The monitoring of storage resources is essential for
the systems where QoS and SLA are involved. The
monitoring provides input data to other modules which
use these data to make performance influence decisions
aimed at meeting the SLA/QoS requirements.

A storage resource can be a complete storage system
like Disk Array (DA) or Hierarchical Storage Manage-
ment (HSM) system, as well a simpler one like HDD
(hard disk drive). In order to simplify the monitor-
ing of different kinds of storage resources a common
model for representing the storage resource state from
a performance point of view is needed. Such a model,
the C2SM model, has been developed as part of the
OntoStor project [17]. The model consists of a set of
performance related parameters and state transition al-
gorithms allowing for future performance evaluation.
A simplified version of the C2SM model is shown in
Fig. 1. The model has been developed as an extension
to CIM (Common Information Model) [3], which is
used to model IT components with the goal of infor-
mation management.

The model defines a generic storage system (AGH_
StorageSystem) and two more specific types of stor-
age systems: HSM systems and disk-based systems.
The disk-based systems are represented by disk arrays,
cluster filesystems (e.g., Lustre) and local disks. It is
essential in the model that it defines common perfor-
mance attributes for various storage systems, which al-
lows for unifying the view of a storage system from the
performance related aspects.

The monitoring system consists of sensors and a
monitoring service (see Fig. 2). The sensors are in-
stalled on the storage access nodes which are attached
to the storage resources. They are specialized for the
given type of storage resource and send monitoring
data to the monitoring service. The interface for ac-
cessing monitoring data is common and specified by
the C2SM model. This greatly simplifies extending the
monitoring systems since only the storage system de-
pendent sensors, which are rather simple ones, need to
be added.

The storage systems can differ in terms of the meth-
ods of retrieving of performance related data. That is
why the common model and the appropriate interface
based on it for representing storage performance re-
lated parameters are important. Based on the model
and the current state of a given storage system repre-
sented by values of the parameters defined in the model
it is possible to estimate the data access time. The

72 R. Słota / Storage QoS provisioning for execution programming of data-intensive applications

Fig. 1. C2SM model.

C2SM model allows to create accurate estimators, even
for complex storage systems such as HSM [7]. The

values of the essential performance parameters coming
from the monitoring as well as the ones produced by

R. Słota / Storage QoS provisioning for execution programming of data-intensive applications 73

Fig. 2. Monitoring system with estimation capabilities. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2012-0339.)

the estimators (Monitoring and Prediction System in
Fig. 2) are used for efficient storage resource manage-
ment (see for example [14]).

Based on C2SM a relevant semantic model and two
ontologies allowing for semantic description of storage
resources [10], storage QoS metrics and SQoS moni-
toring systems [13] were built.

4. Storage management with QoS

The SQoS provisioning can be realized by an appro-
priate storage resource management, which takes into
account the past, current and predicted performance of
a storage system.

The idea of storage management with QoS using a
storage resources monitoring and prediction system is
presented in Fig. 3, in which a part of the distributed
storage system is shown. The proposed architecture
consists of:

• monitoring and prediction system, mentioned in
the previous section,

• storage performance manager, which analyzes
the performance and prediction data and taking
into account the given SQoS requirements pro-
vides the resource broker with hints about the
effective use of managed storage resources. The
hints also depend on the current management pol-
icy. There can be defined multiple policies em-
phasizing certain performance attributes.

Fig. 3. Idea of data management with storage resources monitoring
for SQoS provisioning. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-2012-0339.)

• resource broker, which schedules client requests
assigning storage resources. The broker takes into
account the hints received from the performance
manager.

• SQoS watcher, which monitors the specified
SQoS metrics. The SQoS metrics are calculated
based on the values of the low level parameters
provided by the monitoring system.

• SLA monitoring, which periodically verifies for
SLA violations and sends alerts to the stor-
age performance manager. This allows for auto-
mated performance management for the purpose
of keeping the SLA fulfilled. The SLA monitoring
keeps a history of SQoS metrics, which allows to
calculate the percentage of the requests with un-
satisfied SQoS. In this way the SLA monitoring
can check if the given SLO (Service Level Objec-
tive) is fulfilled over a given time period.

The presented approach allows for storage resource
performance management for fulfilling the required
SQoS for a given client request. The performance man-
agement makes use of such techniques like data repli-
cation, prefetching, partitioning/stripping, parallel data
transfers.

Data replication is a common technique for increas-
ing the data availability and performance. In a dis-
tributed environment there can be many locations (stor-
age nodes), where a new replica can be created when
needed. Automation of optimal replica placement is
a challenging task since it depends on many factors,
some of which are hardly predictable, e.g., the users
activity in the near future. Another decision to be made
concerns data reading when multiple replicas are avail-

74 R. Słota / Storage QoS provisioning for execution programming of data-intensive applications

able. In this case the most appropriate replicas need to
be selected.

Prefetching is a speculative copying of data in ad-
vance to a location where the data can be accessed
faster. This (the faster location) can be the disk cache
of an HSM system, a storage node with better network
connection to the client or just the local clients’ stor-
age. The problem in this case is to predict which client
will request which data and when.

With the data partitioning the data parts are dis-
tributed to more nodes for successive parallel data
transfers, which allows for higher throughput.

Depending on the purposes of storage resource man-
agement, appropriate management strategies are ap-
plied. These strategies called policies provide SQoS as
the “best efforts” or by the appropriate queuing and re-
source reservation to guarantee the delivery of SQoS
(even in the form of SLA contracts).

The next section gives a description of how the pro-
posed method has been applied in the implementa-
tion of a toolkit for storage QoS provisioning called
QStorMan.

5. The QStorMan toolkit

The QStorMan (Quality Storage Management) tool-
kit is an example of a set of tools for providing stor-
age QoS. The main objective of the QStorMan toolkit
is to manage the data coming from data-intensive ap-
plications in distributed environments. The toolkit al-
lows users to define non-functional requirements for
storage resources explicitly. SQoS provisioning of the
QStorMan toolkit is possible due to: (1) semantic de-
scriptions of storage resources and user requirements
exploitation, (2) information from storage monitoring
system and knowledge base usage to find the most
suitable storage system compliant with the defined re-
quirements.

In order to show how QStorMan provides storage
QoS the QStorMan architecture and its interfaces are
presented below.

5.1. QStorMan architecture

The architecture of the QStorMan toolkit is depicted
in Fig. 4. There are the SES (Storage Element Selec-
tion) service and libraries, the GOM (Grid Organiza-
tional Memory) knowledge base, and the SMED (Se-
mantic Monitoring and Estimation System) monitoring
system.

Fig. 4. QStorMan architecture.

The SES service finds the most suitable storage node
(SN) according to the user defined requirements and
current storage resources workload using policies. The
SES service cooperates with the SES libraries. The li-
braries consist of two separate elements. The first is a
programming library which is explicitly used by appli-
cation developers by calling an exposed API in an ap-
plication code. The second is a system library which
resides on a server where an application is running.
This library is responsible for intercepting open file
system calls made by the application and for redirect-
ing these calls to the most suitable storage system.

The GOM knowledge base stores semantic descrip-
tions of the configuration of the storage resources
along with defined non-functional requirements from
the users. It cooperates with the SES service delivering
relevant knowledge.

The SMED monitoring system monitors storage re-
sources and provides information about the current or
average values of various SQoS parameters through the
defined relevant SQoS metrics.

The basic use case for the QStorMan toolkit is as
follows (see Fig. 5). The SES library communicates
with the SES service sending a query for selecting the
storage node, which should be used for I/O operation
by the clients’ application. The SES service queries the
GOM about the available storage resources and next
queries the SMED monitoring system about the val-
ues of the relevant SQoS metrics. Based on the appli-
cation’s SQoS requirements and the feedback from the
SMED system, the SES service chooses the appropri-
ate SN.

If an application is executed in a grid environment,
there are two use cases of its execution using the
QStorMan toolkit: (1) global selection of computing
center, (2) local acceleration of the application execu-
tion. The QStorMan interfaces allow the user to select
the mode of QStorMan support.

R. Słota / Storage QoS provisioning for execution programming of data-intensive applications 75

Fig. 5. Cooperation between the main modules of QStorMan for choosing the most suitable storage node.

5.2. QStorMan interfaces

The QStorMan toolkit provides interfaces for defin-
ing non-functional requirements. Using these inter-
faces the end user can influence the distribution of data
produced by his/her application by specifying only
SQoS high-level requirements.

There are two QStorMan interfaces for defining non-
functional requirements: a web-interface and an Appli-
cation Programming Interface (API).

The QStorMan web-interface is used to define non-
functional requirements, which are stored to the GOM
knowledge base. These requirements are used to accel-
erate application execution on a selected CN (by the
user or by QStorMan). In this case the requirements are
defined once per application run time.

The QStorMan API is used to define requirements
from an application code. Using the API it is possible
to change the requirements at application run time.

The QStorMan API allows for creating, opening
and closing files and changing a storage policy (pre-
defined strategy for assigning SN for I/O operations).
The C++ API contains the following functions:

• _createFile(fileName:char*,
policy:StoragePolicy*) : int

• _openFile(fileName:char*) : int
• _closeFile(fileName:char*) : void
• _changeStoragePolicy(fileName:char*,

policy:StoragePolicy*) : void

The policies define methods of data application
management. According to the user SQoS require-
ments and the chosen policy, an appropriate SN is as-
signed for the incoming I/O operations. The SMED
monitoring system provides the current values of SQoS
parameters based on the defined SQoS metrics. The
proposed polices are:

• Best Storage Node (BSN): the current SQoS met-
ric value (CV) for SN has to accomplish the fol-
lowing requirement: CV > α× RV , where RV is a
requested metric value and α is an experimentally
chosen coefficient (α > 1). SN with the greatest
value of the difference CV − RV is chosen.

• Round Robin with Monitoring (RRM): those SNs
which have the current SQoS metric value greater
than the required one are taken into account, and
they are assigned in round robin fashion.

• Strict QoS (SQ): the SQ policy is implemented
by scheduling the applications’ data transfers in
such a way that no more than Nmax concurrent
transfers per SN are performed.

76 R. Słota / Storage QoS provisioning for execution programming of data-intensive applications

• QoS with Monitoring (QM): the QM policy is im-
plemented by scheduling only those transfers for
which there is an available bandwidth to meet the
SQoS requirements. The available bandwidth is
obtained from the monitoring system just before
the scheduling. The following heuristic is used:

snload

np + 1
> rb × k,

where snload is the current storage node load, np is
the number of scheduled active data transfers, rb
is the requested bandwidth and k is the overhead
coefficient.

• Round Robin (RR): SNs are assigned in round
robin fashion, no information from the SMED
monitoring system is taken into account; RR pol-
icy is defined for testing purposes.

In the next section usage of the above described
QStorMan toolkit for the programming of data-inten-
sive applications is shown.

6. Programming of execution of data-intensive
application

The execution time of data-intensive application de-
pends among others on the number of I/O operations.
The overall execution time for such applications can
be lowered via reducing the time consumed by I/O,
e.g., with selecting the most appropriate storage system
which can meet the given requirements.

The ability of specifying the storage QoS require-
ments as well as the ability of meeting them are the
necessary conditions for reducing the execution time.
In the previous sections we showed a method for SQoS
provisioning and its implementation in form of the
QStorMan toolkit. In this section we show examples of
execution programming of data-intensive application
conditioned by the mentioned SQoS provisioning.

We distinguish two types of applications. The first
type represents the applications for which the SQoS re-
quirements are defined once, before the application ex-
ecution, and they do not change during run time. The
second type relates to more demanding applications
which change their SQoS requirements during execu-
tion. These changes are needed, e.g., due to changes to
the amount of data being read or written. Such require-
ments may also take into consideration the cost of data
access.

The SES libraries of the QStorMan toolkit allow the
execution programming of the above mentioned two

types of data-intensive applications. Each of the SES
libraries is used in different use cases:

• The system library supports the applications
which are not aware of the library existence.
These include legacy code applications which
cannot by modified anymore or applications
whose SQoS requirements are not complex and
can be defined once for all I/O operations before
the application is executed.

• The programming library supports development
of new applications which require special treat-
ment of the processed data.

Two use cases of the SES libraries for programming
of execution data-intensive application in distributed
environments are described below. The first one de-
scribes the usage of the system library for computa-
tional node selection and I/O operation acceleration.
The second one, which uses the QStorMan API, relates
to the possibility of making dynamic changes to SQoS
requirements during the execution of the application.

6.1. Computational node selection and I/O
acceleration

An example of execution programming of data-
intensive application in Grid environments is the
QosCosGrid (QCG) [19] execution environment. This
environment is intended for executing large jobs,
which need thousands of cores geographically dis-
tributed across some number of computer centers.
The QosCosGrid environment allows for reservation
of such an amount of resources. There is a possibil-
ity for speeding-up of data-intensive applications by
selecting the appropriate storage system at the com-
puting site level. The acceleration is provided by the
QStorMan toolkit, which is integrated with QCG. The
current version of the QCG software allows for speci-
fying that the application is data-intensive. In this case
the QStorMan system libraries are started (correspond-
ing system variable is set) and storage resources are as-
signed according to some pre-defined policy, for exam-
ple assigning the currently least loaded resources.

Acceleration of the application execution at runtime
directly with the SES system library is also feasible. In
this case the user should:

• declare the non-functional requirements in the
GOM knowledge base (it can be done with the
QStorMan portlet),

• export LD_PRELOAD=<path_to_libses_
wrapper_library>.

R. Słota / Storage QoS provisioning for execution programming of data-intensive applications 77

The execution programming of data-intensive appli-
cation can also be realized via the QStorMan web in-
terface. The web interface is integrated with a portal
which is used for placing the users’ requirements into
the GOM. Through the portal the QStorMan toolkit
proposes a computing site which can meet the applica-
tions’ SQoS requirements. Using the proposed site en-
sures more efficient application execution (see the test
results in Section 7). When using the portal for such a
use case the user should do the following three steps:

• declare the non-functional requirements in the
QStorMan portlet,

• copy and paste the returned text from the portlet
to the JDL file,

• send the job with the application to the grid envi-
ronment.

It is possible to use the both use cases at the same
time: the selection of computing nodes and the local
acceleration by the SES system library.

6.2. Use of QStorMan API for dynamic changes in
QoS requirements

In this case the execution programming of data-
intensive applications takes place through changing the
SQoS applications’ requirements from the application
code.

The QStorMan API allows for specifying the SQoS
requirements in the application source code. So it is
possible to change the SQoS requirements during run-
time according to the applications’ control flow. The
API is similar to the standard file-related API known
from the standard C++ library. The most important
deference is an additional parameter, called Storage-
Policy. The parameter holds non-functional SQoS re-
quirements for a new file. The storage policy is con-
figured by setting various attributes of the policy. An
example of use of the C++ programming library is
shown in Fig. 6.

The following attributes of the standard policy are
set up: file size and average write transfer rate require-
ments, both being dependent on the file size predicted
under the next computational step of simulation.

7. Test examples

For verification of the proposed execution program-
ming method the following tests of the QStorMan
toolkit were carried out, using the real test environment
provided by the PL-Grid [18].

(1) Test set I (TS1) – computing nodes selection tests
in a distributed Grid environment,

(2) Test set II (TS2) – data-intensive application ac-
celeration tests in a given computing site,

(3) Test set III (TS3) – QStorMan policy tests for
SLA/QoS requirement fulfillment.

The purpose of the TS1 was to verify the selection of
a computing site for executing the given data-intensive
application in compliance with SQoS requirements.
The selected site should be able to meet the SQoS ap-
plications’ requirements. After the selection, the appli-
cation is sent to the job queue of the proposed site. On
the contrary, the same application, but without use of
the QStorMan functionality, is sent to the next site in
round robin fashion for each iteration of the test. As we
can see in Fig. 7 the time decrease may be significant.

The tests from TS2 are focused on the execution
time of the application, which is run in one site. The
site, in which the tests were carried out, uses the Lus-
tre [16] filesystem for storing the application data. The
Lustre filesystem provides disk pools allowing for bet-
ter control/allocating of the Lustre disk resources. The
pool to be used for I/O by the application is recom-
mended by the QStorMan toolkit (using a policy which
balances the load for the pools – the BSN policy in
Section 5.2). These tests simulate the storage activity
for a certain number of users running the same simu-
lating data-intensive applications on the Grid. Only a
part of the users makes use of the QStorMan toolkit.
The algorithm of the simulating application is shown
below.

1 sleep(t_start);
2 for (int i = 0; i < N; i++) {
3 writeData(amount);
4 sleep(t_cont);
5 }

The sample test results for 10 simultaneous users of
the mentioned application, with N = 10 and amount =
50 GB, are depicted in Fig. 8. In general, the average
execution time decrease, in the local site, gains about
20–50% during the tests.

The tests from TS3 concern the ability of the
QStorMan policies to meet SQoS requirements. The
only storage QoS requirements for these tests is that
the average I/O bandwidth measured for each appli-
cation (data transfer) should be greater than 10 MB/s.
The results for selected policies (SQ and QM, see Sec-
tion 5.2) are shown in Figs 9 and 10. For these tests
additional background storage load is applied. We can

78 R. Słota / Storage QoS provisioning for execution programming of data-intensive applications

1 #include <LustreManager.h>
2 #include <StoragePolicyFactory.h>
3 using namespace lustre_api_library;
4 LustreManager manager;
5 StoragePolicy policy;
6 int file_size, descriptor;
7 void *buf;
8
9 for (int i=0; i<MAX_STEP; i++) {
10 file_size = computational_step ();
11 // setting the file size requirement, depending on the computation results
12 policy.setCapacity(file_size);
13 //setting the average write transfer rate, depending on the file size
14 if (file_size < 4000)
15 policy.setAverageWriteTransferRate(50);
16 else policy.setAverageWriteTransferRate(100);
17
18 descriptor = manager.createFile(file_name, &policy);
19 for (int j=0; j< MAX_DATA; j++) {
20 buf = data_block(j);
21 write(descriptor, buf, BLOCK_SIZE);
22 }
23 manager.closeFile (file_name);
24 }

Fig. 6. Usage of QStorMan API – example.

Fig. 7. TS1 – time decrease of data-intensive application due to
choosing the appropriate computing node.

see that the policy, which uses monitoring – QM has
better SQoS fulfillment. Even though for some of the
transfers the SQoS requirements are not met, they are
still very close to target rate.

It should be noted that the additional load of the
QStorMan toolkit posed to the Grid environment was
thoroughly studied. The elements, which influenced
the storage performance most, were the monitoring
sensors doing active storage performance measure-

Fig. 8. TS2 – time decrease of data-intensive application due to the
local storage load balancing.

ments of the SNs. Due to proper configuring of the sen-
sors the introduced monitoring overhead to the Lustre
filesystem was less than 5%.

8. Conclusion

Most of the applications solving the present scien-
tific challenges under the e-Science paradigm need to
access large amount of data. That is why the research

R. Słota / Storage QoS provisioning for execution programming of data-intensive applications 79

Fig. 9. TS3 – SLA/QoS fulfillment: test results for the SQ policy.

Fig. 10. TS3 – SLA/QoS fulfillment: test results for the QM policy.

in the field of execution programming of data-intensive
application is important. For this purpose the research
in the field of storage including the quality of storage
services is essential.

The ability to specify storage QoS requirements for
data-intensive applications can influence the way, in
which their data are stored and retrieved, in the envi-
ronments which support SQoS. Applying SQoS using
the best effort model allows for storage performance-
related load balancing and better chances for meeting
QoS demands. Enriching this model with the appro-
priate policies of storage resource management using
scheduling and resource reservation enables the deliv-
ery of a high level SQoS and fulfillment of SLA.

The management of storage resources is compli-
cated given the complexity and heterogeneity of stor-
age systems. The storage related management can ap-
pear at any level of IT system – the storage hard-
ware, the storage system itself, the operating system,

the filesystem, cache management, etc., which addi-
tionally raise the level of non-triviality.

A concept of SQoS provisioning and its implemen-
tation in form of the QStorMan toolkit has been pre-
sented in this paper. We have shown a method of using
these tools for the goal of execution programming of
data-intensive applications. The presented tests prove
the usability/validity of the proposed approach.

The presented examples of using the QStorMan
toolkit for execution programming of data intensive ap-
plications assume that a certain storage access pattern
occurs when the application is doing I/O operations.
This pattern is defined by such attributes like frequency
of I/O operations, file size, number of files. We believe
that the design of the QStorMan toolkit focused on its
flexibility concerning the monitoring of heterogeneous
storage systems, the creation of new QoS metrics, as
well as the creation of new storage resource manage-
ment methods, gives the possibility to adopt the toolkit
for other I/O patterns. Tests for another type of applica-
tion are still in progress. This application is an out-of-
core application requiring access to many small files.
The preliminary tests showed that a 15% speedup can
be expected when switching to a newly developed pol-
icy.

The implementation of such a sophisticated toolkit
is not a trivial task. Its main assumption is that perfor-
mance monitoring of storage resources allows for bet-
ter management of these resources. The implementa-
tion of such monitoring should take into account the
heterogeneity of storage resources and should not in-
troduce significant overhead. In the case of QStorMan
and the SMED monitoring system the success lies on
the using of C2SM model, which allows for unify-
ing the access to the monitored resources and easy
distributing of the monitoring system (see [12]). Us-
ing of unified SQoS metrics allows for easy construc-
tion of the upper system layers (e.g., storage perfor-
mance manager, resource broker). The role of seman-
tic technologies is very essential here. The ontologies
have been used for resources description and moni-
toring metrics description. The developed ontologies
and their usage for resource description, SQoS require-
ments specification, SLA monitoring and policies real-
ization can be found in [9,11,13,15].

The QStorMan toolkit is an example of implement-
ing SQoS provisioning for the goal of execution pro-
gramming of data intensive applications, which are
supposed to be the dominating type of applications in
the era of the 4th paradigm of science [4].

80 R. Słota / Storage QoS provisioning for execution programming of data-intensive applications

Acknowledgements

This work is partially supported by PL-Grid project
POIG.02.03.00-00-007/08-00 and AGH-UST grant
11.11.120.865. Thanks go to D. Nikolow and J. Ki-
towski for scientific cooperation; to the PL-Grid team,
the QStorMan team and especially to D. Król,
K. Skałkowski and M. Orzechowski for technical sup-
port. This research used resources of the PL-Grid
project.

References

[1] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham
and R. Ross, Understanding and improving computational
science storage access through continuous characterization,
Trans. Storage 7 (2011), 8:1–8:26.

[2] H. Ching-Hsien, C. Tai-Lung and L. Kun-Ho, QoS based par-
allel file transfer for grid economics, in: International Con-
ference on Multimedia Information Networking and Security,
MINES’09, Vol. 1, IEEE Computer Society, Los Alamitos, CA,
USA, 2009, pp. 653–657.

[3] Common Information Model (CIM) Standards, available at:
http://www.dmtf.org/standards/cim/.

[4] T. Hey, S. Tansley and K. Tolle (eds), The Fourth Paradigm –
Data Intensive Scientific Discovery, Microsoft Research, 2009.

[5] T. Kim, Y. Won, D. Kim, K. Koh and Y. H. Shin, Apollon:
file system level support for QoS augmented I/O, in: Advances
in Multimedia Information Processing – PCM 2005, Lecture
Notes in Computer Science, Vol. 3768, Springer, Berlin, 2005,
pp. 59–70.

[6] D. Król, R. Słota and W. Funika, Behaviour-inspired data man-
agement in the cloud, in: Proceedings of Cloud Computing
2010 the First International Conference on Cloud Computing,
GRIDs, and Virtualization, Lisbon, Portugal, November 2010,
IARIA, pp. 98–103.

[7] M. Kuta, D. Nikolow, R. Słota and J. Kitowski, Data access
time estimation for the CASTOR HSM system, in: Parallel
Processing and Applied Mathematics: 6th International Con-
ference, PPAM 2005, R. Wyrzykowski, J. Dongarra, N. Meyer
and J. Waśniewski, eds, Poznan, Poland, September 11–14,
2005, Revised Selected Papers, Lecture Notes in Computer
Science, Vol. 3911, Springer, Berlin, 2006, pp. 148–155.

[8] S. Mendez, D. Rexachs and E. Luque, Methodology for perfor-
mance evaluation of the input/output system on computer clus-
ters, in: 2011 IEEE International Conference on Cluster Com-
puting (CLUSTER), September 2011, IEEE Computer Society,
Los Alamitos, CA, USA, pp. 474–483.

[9] D. Nikolow, R. Słota and J. Kitowski, Storage QoS aspects
in distributed virtualized environment, in: Proceedings of
Cloud Computing 2010 the First International Conference on

Cloud Computing, GRIDs, and Virtualization, Lisbon, Portu-
gal, November 2010, IARIA, 2010, pp. 110–115.

[10] S. Polak, D. Nikolow, R. Słota and J. Kitowski, Modeling stor-
age system performance for data management in cloud en-
vironment using ontology, in: Proceedings of 2011 Interna-
tional Workshop on Semantic Interoperability. In conjunction

with ICAART 2011, S. Pileggi, ed., Rome, Italy, January 2011,
SciTePress, 2011, pp. 54–63.

[11] S. Polak and R. Słota, Organization of Quality-Oriented Data
Access in Modern Distributed Environments Based on Seman-
tic Interoperability of Services and Systems, River, 2012, to ap-
pear.

[12] K. Skałkowski, J. Sendor, R. Słota and J. Kitowski, Appli-
cation of the ESB architecture for distributed monitoring of
the SLA requirements, in: Ninth International Symposium on
Parallel and Distributed Computing, ISPDC 2010, Instanbul,
July 2010, IEEE Computer Society, Los Alamitos, CA, USA,
pp. 203–210.

[13] R. Słota, D. Nikolow, P. Młocek and J. Kitowski, Semantic-
based SLA monitoring of storage resources, in: Proceedings
of Parallel Processing and Applied Mathematics – PPAM
2011, 9th International Conference, Torun, Poland, September
2011, Lecture Notes in Computer Science, Vol. 7204, Springer,
Berlin, 2012.

[14] R. Słota, D. Nikolow, S. Polak, M. Kuta, M. Kapanowski,
K. Skałkowski, M. Pogoda and J. Kitowski, Prediction and
load balancing system for distributed storage, Scalable Com-
puting Practice and Experience 2(11) (2010), 121–130, Spe-
cial Issue: Grid and Cloud Computing and their Application.

[15] R. Słota, D. Nikolow, K. Skałkowski and J. Kitowski, Manage-
ment of data access with quality of service in PL-Grid environ-
ment, Computing and Informatics 1 (2012).

[16] The Lustre filesystem web site, available at: http://www.lustre.
org/.

[17] The OntoStor project web site, available at: http://www.icsr.
agh.edu.pl/ontostor/.

[18] The PL-Grid project web site, available at: http://www.plgrid.
pl/en.

[19] The QoSCosGrid middleware web site, available at: http://
www.qoscosgrid.org/.

[20] S. Venugopal, R. Buyya and K. Ramamohanarao, A taxonomy
of Data Grids for distributed data sharing, management, and
processing, ACM Comput. Surv. 38(1) (2006).

[21] Y. Won, H. Chang, J. Ryu, Y. Kim and J. Shim, Intelligent
storage: Cross-layer optimization for soft real-time workload,
Trans. Storage 2 (2006), 255–282.

[22] J.C. Wu and S.A. Brandt, Providing quality of service support
in object-based file system, in: Proceedings of the 24th IEEE
Conference on Mass Storage Systems and Technologies, Wash-
ington, DC, USA, IEEE Computer Society, Los Alamitos, CA,
USA, 2007, pp. 157–170.

[23] X. Zhang, Y. Xu and S. Jiang, YouChoose: Choosing your stor-
age device as a performance interface to consolidated I/O ser-
vice, Trans. Storage 7 (2011), 9:1–9:18.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

