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Abstract

A large-scale temperature perturbation has a non-zero correlation with the power spectrum of
B-modes of cosmological origin on short scales while the corresponding correlation is expected
to be zero for B-modes sourced by galactic foregrounds. We thus compute the squeezed limit
of a three-point function in which one correlates the temperature fluctuations at large scales
with two polarization modes at small scales. In the particular case of the B-mode polarization
we obtain a relation that connects the squeezed limit of the TBB three-point function with
the cosmological B-mode power spectrum, which can be used as a consistency relation. This
could in principle help to distinguish a primordial signal from that induced by inter-stellar
dust.

1 Introduction

The recent detection of B-mode polarization pattern in the Cosmic Microwave Background
(CMB) on degree-angular scales by the BICEP2 collaboration [1], has generated a great deal
of excitement in the field. The range of scales and the shape of the spectrum suggest that
it has primordial origin and an outburst of work has followed up focusing on the implication
of the reported signal for early universe physics. If this signal is indeed primordial it will be
a strong argument in favor of inflation. However, it has been shown that this observation
is also consistent with the polarized radiation emitted by the poorly-understood interstel-
lar dust [2, 3]. Nevertheless, these results open the possibility that a detailed observational
study of B-mode polarization is not too far from our technological reach. One may wonder
whether measuring the three-point function in future experiments can help extract informa-
tion contained in the B-mode signal. In particular, a large-scale temperature perturbation
has a non-zero correlation with the power spectrum of B-modes of cosmological origin on
short scales while the corresponding correlation is expected to be zero for B-modes sourced
by galactic foregrounds.

Over the past decade the study of correlation functions of cosmological perturbations
beyond the two-point function has received considerable attention. This interest was spurred
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in part by the fact that one can write consistency relations for primordial perturbations that
relate (n−1)-point functions to n-point functions in the limit in which one of the scales is much
larger than the others (the so-called squeezed limit) [4–11]. The derivation of the consistency
relations is based on the fact that a very long-wavelength mode of the gravitational potential
should have no effect on quantities measured at much smaller scales and its effect is equivalent
to a coordinate transformation. The consistency relations for primordial perturbations are
useful for instance to distinguish whether the primordial perturbations are sourced by a
single or multiple fields. A similar argument can be used also to compute the squeezed limit
of correlation functions involving actual observables, such as the CMB temperature [12–14]
or the dark matter density [15–25].

In this note, we compute the squeezed limit of a three-point function in which one
correlates the temperature fluctuations at large scales with two (E-mode or B-mode) polar-
ization fluctuations at small scales using a method similar to the one used for deriving the
consistency relations (in particular, we extend the approach of [12] to include polarization).
To simplify the calculation, we do the computation in the flat-sky approximation and ignore
late-time effects such as those induced by the late integrated Sachs-Wolfe (ISW) effect. The
main contribution to the squeezed limit of such a correlation function comes from the lensing
induced by the long-wavelength mode, and we estimate this signal to be observable for a
futuristic experiment. This is similar to what happens for the CMB temperature bispectrum
[14, 26]. An interesting feature of this result is that for the case of B-mode polarization we
obtain a relation that connects the squeezed limit of the TBB three-point function with the
primordial tensor power spectrum, which could in principle be used as a consistency relation
for the tensor perturbations. Since the B-mode pattern sourced by inter-stellar dust is not
expected to correlate with the temperature signal sourced at the CMB, this could help in dis-
tinguishing between dust and a primordial signal. It turns out, however, that the observation
of this relation is difficult even for a very futuristic experiment.

It is noteworthy that the full calculation of the temperature bispectrum in the absence
of primordial non-Gaussianity can now be carried out numerically (see e.g. [27]). While
this note was being prepared, an analytical and numerical study of the correlation function
involving E-mode polarization appeared [28] and our results seem to agree with theirs.

We begin in Section 2 by computing the effect of a long-wavelength metric perturbation
on the polarization power spectrum; we do this by closely following the approach of [12]. This
two-point function can then be correlated with a long-wavelength temperature fluctuation
to compute the squeezed limit of the temperature-polarization-polarization (TBB or TEE)
bispectrum, which we perform in Section 3. Finally, in Section 4 we analyze whether such a
bispectrum can be observable in an experiment similar to COrE, PRISM or an ideal noiseless
experiment that probes very small scales. We draw conclusions in Section 5.

2 The effect of the long scalar mode on the polarization power spectrum

In this section, we start by reviewing the effect of a long-wavelength background mode on
the CMB temperature anisotropies as described in [12] (see also [13]) and then extend this
treatment to the polarization field.

The long-wavelength mode acts as a background for the short modes. We take the long
mode to be constant at the scale of the short modes at recombination such that its effect is
equivalent to a coordinate transformation (i.e. it is what Weinberg [29] calls an adiabatic
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mode)

η̃ = η + ε(η) ,

x̃i = xi(1− λ) , (2.1)

where ε is an arbitrary function of time and λ is an arbitrary constant. In the limit of instan-
taneous recombination and considering matter dominance, the observed CMB temperature
anisotropies ignoring the ISW effect1 are given to first order by

Θobs(n̂) ≡ [Θ + Φ + n̂ · ~v] (ηrec, ~xrec) , (2.2)

In this expression, Θ is the intrinsic temperature anisotropy defined as

T (η, xi) = T̄ (η)(1 + Θ(η, xi)) , (2.3)

Φ is the gravitational potential and ~v is the velocity of the photon-baryon fluid. One can
compute the effect of a long mode on the short scale temperature anisotropy by apply-
ing the coordinate transformation given in Eq. (2.1) to each term in Eq. (2.2). During
matter-domination (a ∝ η2), we have ε = η ΦL/3 and λ = 5ΦL/3. Doing the coordinate
transformation explicitly therefore gives

Θobs(n̂) = Θobs,S(n̂) + Θobs,L(n̂) + Θobs,L(n̂)

(
∂

∂ ln ηrec
+ 1− 5 n̂ · ∇n̂

)
Θobs,S(n̂) . (2.4)

Note that this expression is valid when the long mode is taken to be larger than the sound
horizon at recombination but the short modes can be taken to be at arbitrarily small scales,
as it relies only on the fact that a constant gravitational potential has no physical effect
and is therefore equivalent to a coordinate transformation. Also note that this expression
is indeed compatible with the explicit second order calculation performed e.g. in references
[30, 31]. The time derivative in equation (2.4) will be suppressed by ηrec/ηobs and will thus
be subdominant with respect to the rescaling.

The presence of the long-wavelength mode will also change the relation between the
direction of the observation n̂ and the physical position at recombination ~xrec. In the absence
of the long-wavelength mode they are related through the zeroth order geodesic equation,
~xrec = n̂(ηobs− ηrec). In writing Eq. (2.4) this relation is used to rewrite ~xrec ·∇~xrec = n̂ ·∇n̂.
In the presence of the long-wavelength mode the relation between ~x and n̂ is modified as

~x = n̂

[(
1− 1

3
ΦL(xobs)

)
ηobs −

(
1− 1

3
ΦL(xrec)

)
ηrec

]
+ 2n̂

∫ ηobs

ηrec

ΦL(~x)dη − 2

∫ ηobs

ηrec

dη(η − ηrec)~∇⊥ΦL(~x) . (2.5)

This relation is obtained by solving the photon geodesic equation at first order. As described
in [12], only the last term of the above expression, which is the lensing term, will contribute
to the bispectrum. The first term in the square brackets does not contribute since it only

1The early ISW effect due to the evolution of Bardeen’s potentials during the transition from radiation to
matter domination has been taken into account since the standard calculation of the Sachs-Wolfe effect does
not depend on this transition (see the discussion in Ref. [12]). So this approximation only ignores the late
ISW effect due to the evolutions of the potentials in the presence of dark energy.
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depends on the gravitational potential at observation. The second term in the square bracket
changes the distance to the last scattering surface and is suppressed by a factor of ηrec/ηobs.
The second term is also suppressed since the integral of Φ along the line of sight, the so called
Shapiro effect, tends to average out along the line of sight for high enough multipoles.

Therefore the effect of the long-wavelength mode on the short modes reduces to the
lensing induced by the long mode (the last term in Eq. (2.5)) and a stretching perpendicular
to the line of sight (the last term in Eq. (2.4)). From now on for simplicity, we drop the
subscript observed in the temperature anisotropy. The short-wavelength mode, ΘS , in the
presence of long-wavelength mode, ΘL, is modified as

Θ(n̂) = ΘS (n̂+ ~α(n̂)) + ΘL(n̂) (1− 5 n̂ · ∇n̂) ΘS(n̂), (2.6)

where ~α is the deviation due to the lensing term and we dropped the subscript S for the
short modes.

We can similarly find the effect of a long-wavelength temperature mode on the short-
scale polarization mode. In the presence of the long mode, the short-wavelength polarization
field ΘP will be

ΘP (n̂) = ΘP,S(n̂+ ~α(n̂))− 5ΘLn̂ · ∇n̂ΘP,S(n̂), (2.7)

Notice that the constant term in Eq. (2.6), which corresponds to change in the average
temperature of CMB, does not affect the polarization field. This is because it corresponds to
the monopole of the temperature field and the polarization is only sensitive to the quadruple
moment. Using the flat-sky approximation n̂ ∼ (1, ~m) we get the power spectrum of the two
short polarization modes in the presence of a long-wavelength temperature mode

〈ΘP (~m1)ΘP (~m2)〉L = 〈ΘP (~m1)ΘP (~m2)〉+ (αi(~m1)− αi(~m2))∇i〈ΘP (~m1)ΘP (~m2)〉
− 5ΘL ~m · ∇~m〈ΘP (~m1)ΘP (~m2)〉. (2.8)

where we have used the fact that the power spectrum depends only on the distance ~m =
~m1 − ~m2, which is small due to the fact that we are in the flat-sky or distant observer
approximation. From now on we will ignore the first term which does not contribute to the
bispectrum.

Next, by decomposing the polarization field into E and B modes we calculate how the
presence of the long-wavelength temperature mode modifies the polarization power spectrum.
This will then lead us to the calculation of the TBB and TEE bispectra in the next section.
The polarization matrix for linearly polarized radiation is a real spin-2 object parametrized
in terms of Stokes parameters Q and U

P =

(
Q U
U −Q

)
. (2.9)

Under a counterclockwise rotation through an angle φ, the stokes parameters transform as

Q′ = Q cos 2φ+ U sin 2φ,

U ′ = U cos 2φ−Q sin 2φ, (2.10)

or in a more compact form
(Q± iU)′ = e∓2iφ(Q± iU), (2.11)

which indicates that the polarization field ΘP = Q ± iU is a spin-2 quantity. Note that Q
is parity even while U is parity odd. Putting together quantities of the same parity, we can
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construct spin-0 quantities E and B by applying the spin raising and lowering operators on
Q and U . In the flat-sky approximation, where one neglects the curvature of the sphere and
consider it as a plane normal to ez the spin raising and lowering operators reduce to

L± = Lx ± iLy = ∂x ± i∂y. (2.12)

Therefore the spin-0 quantities Ẽ and B̃ can be defined as [32]

Ẽ = −1

2

(
L2

+(Q− iU) + L2
−(Q+ iU)

)
, (2.13)

B̃ =
1

2i

(
L2

+(Q− iU)− L2
−(Q+ iU)

)
, (2.14)

and under a Fourier transform

aẼ(~l) =

∫
d~m l2(Q cos 2φl + U sin 2φl)e

−i~l·~m, (2.15)

aB̃(~l) =

∫
d~m l2(−Q sin 2φl + U cos 2φl)e

−i~l·~m . (2.16)

We will write our final results in terms of a rescaled coefficients a(E,B) = a(Ẽ,B̃)/l
2.

Next we use Eqs. (2.12) and (2.14) to compute the effect of a rescaling on the B modes.
First we consider the last term in Eq. (2.8), putting aside the lensing term for now. Note
that

L2
± ~m · ∇~m = (2 + ~m · ∇~m)L2

± , (2.17)

where we used the fact that L2
± is given simply by a combination of second derivatives.

Therefore the contribution from the last term to the polarization is given by

B̃(~m) 7→B̃(~m)− 5ΘL

[
− iL2

+ ~m · ∇~m(Q− iU) + iL2
− ~m · ∇~m(Q+ iU)

]
= B̃(~m)− 5ΘL(2 + ~m · ∇~m)B̃(~m) (2.18)

and analogously for the E modes

Ẽ(~m) 7→ Ẽ(~m)− 5ΘL(2 + ~m · ∇~m)Ẽ(~m) . (2.19)

Hence its contribution to the polarization power spectrum is given by

〈aX̃(~l1)aX̃(~l2)〉L ⊃−
∫

d~m1d~m2 e
−i(~l1·~m1+~l2·~m2)

× 5ΘL( ~M)(4 +
∑
i

~mi · ∇~mi
)〈X̃(~m1)X̃(~m2)〉, (2.20)

where ~M ≡ (~m1 + ~m2)/2 and X stands for either E or B.
Next, we consider the contribution from the lensing piece, which is given by

ΘP (~m+ ~α(~m)) = (Q± iU)(~m+ ~α(~m))

' (Q± iU)(~m) + αi( ~M)∇im(Q± iU)(~m)

+ (mj −M j)∇jMα
i( ~M)∇im(Q± iU)(~m) , (2.21)
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where in the last line we have assumed that α varies slowly since it is given by the long-
wavelength mode and we have Taylor expanded it around ~M . Since the polarization modes
are combinations of L2

± acting on these objects, let us act on the above equations with the
raising and lowering operators. Also let us focus only on the piece in the last line proportional
to ~m, since it is the only non-trivial one

L2
±m

j∇jMα
i( ~M)∇im(Q± iU)(~m) = mj∇jMα

i( ~M)∇imL2
±(Q± iU)(~m)

+ (L2
±∇2

M + L
(M) 2
± ∇2

m)ψ(M)(Q± iU)(~m) , (2.22)

where we write the derivatives with respect to M in terms of raising and lowering operators

written in terms of the capital coordinates L
(M)
± = ±(∂M1 ± i∂M2) with ~M = (M1,M2). By

putting together Eqs. (2.14, 2.21, 2.22) we get

B̃(~m) 7→
(

1 +∇iMψ( ~M)∇im −M j∇jM∇
i
Mψ( ~M)∇im

+mj∇jM∇
i
Mψ( ~M)∇im +∇2

Mψ( ~M)

)
B̃(~m)

− i

2
L

(M) 2
+ ψ( ~M)∇2

m(Q− iU)(~m) +
i

2
L

(M) 2
− ψ( ~M)∇2

m(Q+ iU)(~m) , (2.23)

where only the second and third line will contribute to the final answer. Using the definitions
of Eqs. (2.13) and (2.14), it’s easy to rewrite the third line as

i

2
L

(M) 2
+ ψ( ~M)

L2
−
∇2
m

(Ẽ − iB̃)(~m)− i

2
L

(M) 2
− ψ( ~M)

L2
+

∇2
m

(Ẽ + iB̃)(~m) . (2.24)

Analogously for the E-modes,

Ẽ(~m) 7→
(

1 +∇iMψ( ~M)∇im −M j∇jM∇
i
Mψ( ~M)∇im

+mj∇jM∇
i
Mψ( ~M)∇im +∇2

Mψ( ~M)

)
Ẽ(~m)

+
1

2
L

(M) 2
+ ψ( ~M)∇2

m(Ẽ − iB̃)(~m) +
1

2
L

(M) 2
− ψ( ~M)∇2

m(Ẽ + iB̃)(~m) . (2.25)

Therefore the contribution of the lensing term to the polarization power spectrum in the
presence of long-wavelength temperature mode is given by

〈aX̃(~l1)aX̃(~l2)〉L ⊃
∫

d~m1d~m2 e
−i(~l1·~m1+~l2·~m2)

×
[
2∇2

M +∇iM∇
j
Mm

i∇jm + L
(M) 2
+ L2

−∇−2
m + L

(M) 2
− L2

+∇−2
m

]
ψ( ~M)〈X̃(~m1)X̃(~m2)〉 . (2.26)

3 The bispectrum in the squeezed limit

Having calculated the polarization power spectrum in the presence of long-wavelength tem-
perature mode given by Eqs. (2.20, 2.26), we can finally calculate the TBB and TEE bispectra
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in the squeezed limit by correlating this power spectrum with the long-wavelength temper-
ature mode. Again let’s first consider only the contribution from the rescaling part. Using
the fact that the two-point function depends only on ~m ≡ ~m1 − ~m2 we get

〈aX̃(~l1)aX̃(~l2)a(~l3)〉
~l3→0
⊃ −

∫
d~md ~Md ~ML e

−i((~l1+~l2)· ~M+~l3· ~ML+(~l1−~l2)·~m/2)

× 5〈Θ( ~ML)ΘL( ~M)〉(4 + ~m · ∇~m)〈X̃(~m1)X̃(~m2)〉

= (2π)2δ(~l1 +~l2 +~l3)5
(
− 2 +~l1 · ∇l1

)
CX̃X̃(l1)C(l3) . (3.1)

Now we want to write the corresponding relation for aX (without the tilda), remembering
that aX = aX̃/l

2, that is

〈aX(~l1)aX(~l2)a(~l3)〉
~l3→0
⊃ (2π)2δ(~l1 +~l2 +~l3)

5

l41

(
− 2 +~l1 · ∇l1

)
(l41C

XX(l1))C(l3)

= (2π)2δ(~l1 +~l2 +~l3)5CXX(l1)C(l3)
d ln

(
l21C

XX(l1)
)

d ln l1
. (3.2)

Next we consider the contribution of lensing term to the bispectrum by correlating
Eq.(2.26) with the long temperature mode. Let’s consider each term in the square parenthesis
separately: the first term in the square parenthesis of Eq. (2.26) is just trivially computed
to be

〈aX̃(~l1)aX̃(~l2)a(~l3)〉
~l3→0
⊃ −(2π)2δ(~l1 +~l2 +~l3)2l23C

X̃X̃(l1)CTψ(l3) . (3.3)

The second term, which has a similar structure to the lensing of the temperature power
spectrum, is

〈aX̃(~l1)aX̃(~l2)a(~l3)〉
~l3→0
⊃
∫

d~md~sd~S e−i((
~l1+~l2+~l3)·~S−(~l1+~l2−~l3)·~s/2+(~l1−~l2)·~m/2)

×mi∇i~s∇
j
~s〈Θ( ~ML)ψ( ~M)〉∇j~m〈X̃(~m1)X̃(~m2)〉

= −(2π)2δ(~l1 +~l2 +~l3)l23C
X̃X̃(l1)CTψ(l3)

×

[
cos(2ϕ)− cos2 ϕ

d ln
(
l21C

X̃X̃(l1)
)

d ln l1

]
, (3.4)

where ϕ is the angle between the vectors ~l1 and ~l3. Finally, the third and fourth terms in the
square parenthesis of Eq. (2.26) have a more complicated structure but their computation is
straightforward

〈aX̃(~l1)aX̃(~l2)a(~l3)〉
~l3→0
⊃ − (2π)2δ(~l1 +~l2 +~l3)CX̃X̃(l1)CTψ(l3)

× 2

l21

[(
(lx3)2 − (ly3)2

)(
(lx1)2 − (ly1)2

)
+ 4lx1 l

y
1l
x
3 l
y
3

]
= −(2π)2δ(~l1 +~l2 +~l3)2l23 cos(2ϕ)CX̃X̃(l1)CTψ(l3) . (3.5)

Putting everything together we obtain the lensing contribution to the bispectrum

〈aX̃(~l1)aX̃(~l2)a(~l3)〉 ⊃ − (2π)2δ(~l1 +~l2 +~l3)l23C
X̃X̃(l1)CTψ(l3)

×

2 + 3 cos(2ϕ)− cos2 ϕ
d ln

(
l21C

X̃X̃(l1)
)

d ln l1

 . (3.6)
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Finally, after changing from X̃ to X, we get

〈aX(~l1)aX(~l2)a(~l3)〉
l3→0
⊃ − (2π)2δ(~l1 +~l2 +~l3)l23C

XX(l1)CTψ(l3)

×

[
cos(2ϕ)− cos2 ϕ

d ln
(
l21C

XX(l1)
)

d ln l1

]
. (3.7)

Adding the rescaling and lensing contributions to the bispectrum given in Eqs. (2.20, 2.26),
we obtain the TBB and TEE bispectrum in the squeezed limit where the temperature mode
has a much longer wavelength than the two polarization modes.

〈aX(~l1)aX(~l2)a(~l3)〉 l3→0
= (2π)2δ(~l1 +~l2 +~l3)l23C

XX(l1)

×

[
CTψ(l3)

(
− cos(2ϕ) + cos2 ϕ

d ln
(
l21C

XX(l1)
)

d ln l1

)

+ 5CTT (l3)
d ln

(
l21C

XX(l1)
)

d ln l1

]
, (3.8)

where X denotes either E or B.
Note that in Eq. (3.8), the logarithmic derivative will be sensitive to the tilt of the

primordial power spectra. In particular, when computing the TBB bispectrum, it will receive
a contribution proportional to the tilt of the tensor power spectrum nT . However, as we will
see in the next section it is difficult, to say the least, to observe this contribution.

4 Signal-to-noise estimation

Similar to the temperature bispectrum [33], for the TBB and TEE bispectra given in Eq.
(3.8), the signal-to-noise is given by(

S

N

)2

=
fsky

π

1

(2π)2

∫∫
d2l1 d2l3

(
BTXX
l1l2l3

)2
Var

, (4.1)

where again X can be either E or B. Assuming l3 < l2 < l1, the variance is given by

Var = 〈ã∗T (l3)ã∗X(l1)ã∗X(l2)ãT (l3)ãX(l1)ãX(l2)〉 ≈ C̃TT (l3)C̃XX(l1)C̃XX(l2). (4.2)

The spectra with a tilde are the theoretical power spectra plus the instrumental noise

C̃Y Yl = CY Yl +NY Y
l , (4.3)

where Y can be T, E or B mode. The noise power spectrum for a multi-frequency experiment
like Planck is given by [34]

NY Y
l =

(∑
c

1

NY Y
l,c

)−1

. (4.4)

The noise in each channel is given by

NY Y
l,c = θ2

fwhmσ
2
Y exp

[
l(l + 1)

θ2
fwhm

8ln2

]
, (4.5)

8



Modes long-mode lensing Planck COrE PRISM Ideal

TBB no 6.7× 10−5 2.4× 10−2 5.0× 10−2 1.1

TBB yes 9.8× 10−4 0.40 0.72 8.7

TEE no 0.16 1.7 2.3 3.1

TEE yes 1.8 14 18 23

Table 1. Bispectrum signal-to-noise.

where θfwhm is the full width at half maximum of the Gaussian beam and σY is the root mean
square of the instrumental noise. Non-diagonal noise terms are supposed to vanish since the
noise contribution from different maps are uncorrelated. In our signal-to-noise estimation we
use the values of θfwhm and σY for three frequency channels of the Planck 14-month mission
[35], seven frequency channels of the COrE 4-year mission [36], five frequency channels of the
PRISM 4-year mission [37] as given in Tables [2-4] of the Appendix and an ideal noiseless
experiment with lmax = 3000. For all four cases we take the sky fraction to be fsky = 0.65.
For the fiducial model, we consider a 6 parameter cosmology with {As = 2.215×10−9, Ωm =
0.1199, Ωb = 0.02205, τ = 0.0925, ns = 0.962, r = 0.1} and nT = −(r/8)(2 − r/8 − ns)
satisfying the single-field inflationary consistency relation. We evaluate the integrals in the
squeezed limit, we choose the long-wavelength mode to be in the range 20 ≤ l3 ≤ 300 and
the two short-wavelength modes to be equal and in the range 10 l3 ≤ l1 ≤ lmax. The power
spectra are computed by the numerical code CLASS [38].

The signal-to-noise of the TBB and TEE bispectra in the squeezed limit for these
three experiments and a zero noise experiment are given in table [1]. We quote two cases:
considering only the rescaling part of Eq. (3.8), and using the full formula. The signal is
dominated by the lensing induced by the long mode. In principle this can be subtracted
from observations; for the TEE correlation the resulting signal would still be observable in
the admittedly far-fetched noiseless experiment, while for the TBB correlation the signal-to-
noise would barely be greater than one even for such a futuristic experiment. In particular,
the contribution to TBB coming from the tilt of the primordial tensor power spectrum is
inaccessible to a direct measurement. The E-modes signal-to-noise is larger as it is also
sourced by temperature anisotropies. Comparing with [28], we get compatible values taking
into account that we have differences in our computations: on the one hand we only include
triangles in the squeezed limit whereas they include all triangles which tends to lower our
signal-to-noise although most of their signal comes form squeezed configurations.

5 Conclusions

We have computed the squeezed limit of the correlation function involving one temperature
and two polarization fluctuations. This has been done by appealing to the fact that a constant
gravitational potential (or metric fluctuation in the Poisson gauge) can have no physical effect
on the local observables. It is worth noting that we do not expect interstellar dust to give
any contribution to Eq. (3.8), since, being within our galaxy, it should not correlate with a
long-wavelength fluctuation at the CMB.

Our results indicate that a direct observation of this squeezed limit for the B-mode
polarization is possible only for very futuristic experiments, while its observation for E-mode
polarization is more plausible. As pointed out in [28], this effect has to be correctly taken
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into account if one is to use the E-mode bispectrum in order to constrain primordial non-
Gaussianity.

One could have hoped to use the B-mode bispectrum to learn something about its the
nature of the primordial universe. An example of this is the dependence of the bispectrum
on the tilt of the primordial tensor power spectrum, which would then be expected to be
compatible with the tilt measured in the B-mode two-point function. However, most of the
signal comes from the lensing induced by the long-wavelength mode, an effect that contains
little information about the shape of the primordial bispectrum. Even if one were to sub-
tract this lensing effect, the contribution of the lensing to the variance would still hamper
observations. An adventurous alternative would be to measure the variation of the B-mode
power spectrum among different small patches in the sky and correlate this with the average
temperature of each patch, similar to what was proposed for the large scale structure in ref.
[39]. One could then attempt to subtract the lensing in each patch using lensing potential
maps in order to reduce the lensing variance. We leave a detailed analysis of such a technique
as future work if it proves interesting.
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A Applying the coordinate transformations directly to BB power spec-
trum

In this appendix we derive the rescaling contribution to the B-mode power spectrum given
in Eq. (2.20), by applying the rescaling directly to the B-mode power spectrum in Fourier
space. We will confirm that that it is given by

Cl 7−→ Cl

(
1 + 5 a(l3)

d ln l2Cl
d ln l

)
, (A.1)

where a(l3) is the multipole moment of the long mode temperature perturbation, which is
related to the gravitational potential by Θ = (T − T̄ )/T̄ = Φ/3. During matter-domination,
the effect of the long-wavelength mode corresponds to a rescaling of the wave vector ~k and
the time coordinate η given by

~k 7−→ ~k e5ΦL/3, η 7−→ η eΦL/3. (A.2)

The BB power spectrum is given by [40]

CBBl =
4π

25
∆η2

rec

∫ ∞
0

d ln k PT (k)h
′2(k, ηrec)

[
l + 2

2l + 1
jl−1(kηobs)−

l − 1

2l + 1
jj+1(kηobs)

]2

(A.3)

10



with primordial tensor power spectrum given by

PT (k) = AT

(
k

k∗

)nT

, (A.4)

and transfer function is

h′(k, ηrec) = −3
j2(kηrec)

ηrec
. (A.5)

The term in the square brackets can be rewritten in terms of the Bessel function and its
derivative. At l� 1 the asymptotic behavior of spherical Bessel function is given by a cosin
function. Therefore since the phase of the Bessel function and its derivative differs by π/2 the
cross term that is proportional to jl · j′l can be neglected. Averaging the oscillating function
of jl and j′l one gets

CBBl ' 36π

25
∆η2

rec

∫ ∞
(l+1/2)/ηobs

d ln k PT (k)
j2
2(kηrec)

η2
rec

[√
(kηobs)2 − (l + 1/2)2

2(kηobs)3

]
. (A.6)

There are some subtleties in applying the above rescaling to the B-mode power spectrum as
the rescaling should be applied on the power spectrum at recombination (primordial power
spectrum times the transfer function) but not on the geometrical projection effect, in this
case given the square brackets in Eq. (A.3). One can also ignore any rescaling of the time
at the observer because it is not observable. Finally, and most importantly, the addition of
a long mode to the gravitational potential locally increases the average temperature as

T̄ → T̄ eΦL/3. (A.7)

Recombination happens however at a fixed physical temperature. In the patch at recombi-
nation where the long mode is present, recombination is therefore delayed to time

ηrec → ηrec e
ΦL/3, (A.8)

which exactly compensates the effect of the time transformation. This amounts to the fact
that we effectively only need to rescale ~k to account for a long-wavelength mode.

We restrict ourselves to the case nT = 0 for now and derive the results in two limits:

• 10 . l . 50: for l < ηobs/ηrec one can extend the lower integral bound to zero and
obtain

CBBl ' 18π

25

(
∆ηrec

ηobs

)2

AT

∫ ∞
0

dy

y3
j2
2(y), (A.9)

where we have made the change of variable y = kηrec. The integral above equals 1/72.
From Eq. (A.1) we deduce that the effect on CBBl is

CBBl → CBBl (1 + (5× 2)a(l3)). (A.10)

On the other hand, by rescaling the power spectrum we obtain

CBBl ' 18π

25
∆η2

rec

∫ ∞
(l+1/2)/ηobs

d ln k AT
j2
2(e5ΦL/3kηrec)

η2
rec

[
1

(kηobs)2

]
=

18π

25

(
∆ηrec

ηobs

)2

AT

∫ ∞
0

dy

y3
j2
2(y)× e10ΦL/3 (A.11)

where we defined y = k e5ΦL/3/ηrec. This produces the same effect at first order as
expected.
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Figure 1. Comparison of the slope of the power spectrum with the analytical approximation for the
derivative as function of nT .

• 50 . l . 103: in this regime, one cannot extend the lower integral bound to zero. The
main contribution to the integral comes from modes k ∼ l/ηobs so kηrec � 1 and we
can use the large argument limit of the transfer function

j2
2(kηrec)

η2
rec

' sin2((kηrec)
2)

η2
rec(kηrec)2

(A.12)

leading to

CBBl ' 36π

25

(
∆ηrec

ηrec

)2

AT

∫ ∞
(l+1/2)/ηobs

d ln k
sin2((kηrec)

2)

(kηrec)2

[√
(kηobs)2 − (l + 1/2)2

2(kηobs)3

]
.

(A.13)
The sine can be averaged and upon defining u = kηobs/(l + 1/2) one obtains

CBBl ' 9π

25
AT

(
∆ηrec

ηrec

)2(ηobs

ηrec

)2 1

(l + 1/2)4

∫ ∞
1

du

u6

√
u2 − 1. (A.14)

The integral equals 2/15. From Eq. (A.1), we deduce that the effect on CBBl is

CBBl → CBBl (1 + (5× (−2))a(l3)), (A.15)

while the rescaling acts only on the transfer function j2 ∝ k−2 which produces

CBBl → CBBl e−10ΦL/3 ' CBBl (1− 10a(l3)). (A.16)

Finally, one can compute the effect for nT 6= 0 from the rescaling easily. Following the same
procedure we obtain

CBBl → CBBl (1 + 10a(l3)) 10 . l . 50, (A.17)

CBBl → CBBl (1 + 5(nT − 2)a(l3)) 50 . l . 103, (A.18)
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which also coincides with the result computed using Eq. (A.1). The above expressions can
be confirmed by numerical evaluations of the logarithmic derivative d ln(l2Cl)/d ln l. Figure
(1) shows a qualitative agreement between the numerical and analytical behavior in the two
regimes, namely d ln(l2Cl)/d ln l = 2 and d ln(l2Cl)/d ln l = (nT − 2) for low and high l
respectively.

B Planck, COrE and PRISM instrumental characteristics

Frequency θfwhm σT σP

(Hz) (arcmin) (µK/K) (µK/K)

100 10 2.5 4.0

143 7.1 2.2 4.2

217 5.0 4.8 9.8

Table 2. Planck (14-month mission)

Frequency θfwhm σT σP

(Hz) (arcmin) (µK) (µK)

105 10 0.268 0.463

135 7.8 0.338 0.583

165 6.4 0.417 0.72

195 5.4 0.487 0.841

225 4.7 0.562 0.972

255 4.1 1.48 2.56

285 3.7 2.73 4.7

Table 3. COrE (4-year mission)

Frequency θfwhm σT σP

(Hz) (arcmin) (µK) (µK)

105 4.8 0.601 0.849

135 3.8 0.682 0.963

160 3.2 0.760 1.074

185 2.8 0.899 1.27

200 2.5 1.03 1.47

Table 4. PRISM (4-year mission)
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[21] P. Creminelli, J. Gleyzes, M. Simonović, and F. Vernizzi, “Single-Field Consistency Relations
of Large Scale Structure. Part II: Resummation and Redshift Space”, JCAP 1402 (2014) 051,

14

http://xxx.lanl.gov/abs/1403.3985
http://xxx.lanl.gov/abs/1405.7351
http://xxx.lanl.gov/abs/1405.5857
http://xxx.lanl.gov/abs/astro-ph/0210603
http://xxx.lanl.gov/abs/astro-ph/0209156
http://xxx.lanl.gov/abs/astro-ph/0407059
http://xxx.lanl.gov/abs/1106.1462
http://xxx.lanl.gov/abs/1203.4595
http://xxx.lanl.gov/abs/1205.1523
http://xxx.lanl.gov/abs/1204.4207
http://xxx.lanl.gov/abs/1304.5527
http://xxx.lanl.gov/abs/1109.1822
http://xxx.lanl.gov/abs/1109.2043
http://xxx.lanl.gov/abs/1204.5018
http://xxx.lanl.gov/abs/1302.0223
http://xxx.lanl.gov/abs/1302.0130
http://xxx.lanl.gov/abs/1309.3557
http://xxx.lanl.gov/abs/1309.3671
http://xxx.lanl.gov/abs/1311.0786
http://xxx.lanl.gov/abs/1311.1236


arXiv:1311.0290.

[22] P. Valageas, “Angular averaged consistency relations of large-scale structures”, Phys.Rev. D89
(2014) 123522, arXiv:1311.4286.

[23] P. Creminelli, J. Gleyzes, L. Hui, M. Simonović, and F. Vernizzi, “Single-Field Consistency
Relations of Large Scale Structure. Part III: Test of the Equivalence Principle”, JCAP 1406
(2014) 009, arXiv:1312.6074.

[24] T. Nishimichi and P. Valageas, “Testing the equal-time angular-averaged consistency relation
of the gravitational dynamics in N-body simulations”, arXiv:1402.3293.

[25] B. Horn, L. Hui, and X. Xiao, “Soft-Pion Theorems for Large Scale Structure”,
arXiv:1406.0842.

[26] L. Boubekeur, P. Creminelli, G. D’Amico, J. Noreña, and F. Vernizzi, “Sachs-Wolfe at second
order: the CMB bispectrum on large angular scales”, JCAP 0908 (2009) 029,
arXiv:0906.0980.

[27] Z. Huang and F. Vernizzi, “The full CMB temperature bispectrum from single-field inflation”,
Phys.Rev. D89 (2014) 021302, arXiv:1311.6105.

[28] G. W. Pettinari, C. Fidler, R. Crittenden, K. Koyama, A. Lewis, et al., “Impact of polarisation
on the intrinsic CMB bispectrum”, arXiv:1406.2981.

[29] S. Weinberg, “Adiabatic modes in cosmology”, Phys.Rev. D67 (2003) 123504,
arXiv:astro-ph/0302326.

[30] N. Bartolo, S. Matarrese, and A. Riotto, “CMB Anisotropies at Second Order I”, JCAP 0606
(2006) 024, arXiv:astro-ph/0604416.

[31] N. Bartolo, S. Matarrese, and A. Riotto, “CMB Anisotropies at Second-Order. 2. Analytical
Approach”, JCAP 0701 (2007) 019, arXiv:astro-ph/0610110.

[32] M. Zaldarriaga and U. Seljak, “An all sky analysis of polarization in the microwave
background”, Phys.Rev. D55 (1997) 1830–1840, arXiv:astro-ph/9609170.

[33] W. Hu, “Weak lensing of the CMB: A harmonic approach”, Phys.Rev. D62 (2000) 043007,
arXiv:astro-ph/0001303.

[34] M. Bowden, A. Taylor, K. Ganga, P. Ade, J. Bock, et al., “Scientific optimization of a ground -
based CMB polarization experiment”, Mon.Not.Roy.Astron.Soc. 349 (2004) 321,
arXiv:astro-ph/0309610.

[35] Planck Collaboration Collaboration, J. Tauber et al., “The Scientific programme of Planck”,
arXiv:astro-ph/0604069.

[36] COrE Collaboration Collaboration, F. Bouchet et al., “COrE (Cosmic Origins Explorer) A
White Paper”, arXiv:1102.2181.

[37] PRISM Collaboration Collaboration, P. Andre et al., “PRISM (Polarized Radiation
Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric
Spectro-Imaging of the Microwave and Far-Infrared Sky”, arXiv:1306.2259.

[38] J. Lesgourgues, “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview”,
arXiv:1104.2932.

[39] C.-T. Chiang, C. Wagner, F. Schmidt, and E. Komatsu, “Position-dependent power spectrum
of the large-scale structure: a novel method to measure the squeezed-limit bispectrum”, JCAP
1405 (2014) 048, arXiv:1403.3411.

[40] D. S. Gorbunov and V. A. Rubakov, “Introduction to the theory of the early universe:
Cosmological perturbations and inflationary theory”, 2011.

15

http://xxx.lanl.gov/abs/1311.0290
http://xxx.lanl.gov/abs/1311.4286
http://xxx.lanl.gov/abs/1312.6074
http://xxx.lanl.gov/abs/1402.3293
http://xxx.lanl.gov/abs/1406.0842
http://xxx.lanl.gov/abs/0906.0980
http://xxx.lanl.gov/abs/1311.6105
http://xxx.lanl.gov/abs/1406.2981
http://xxx.lanl.gov/abs/astro-ph/0302326
http://xxx.lanl.gov/abs/astro-ph/0604416
http://xxx.lanl.gov/abs/astro-ph/0610110
http://xxx.lanl.gov/abs/astro-ph/9609170
http://xxx.lanl.gov/abs/astro-ph/0001303
http://xxx.lanl.gov/abs/astro-ph/0309610
http://xxx.lanl.gov/abs/astro-ph/0604069
http://xxx.lanl.gov/abs/1102.2181
http://xxx.lanl.gov/abs/1306.2259
http://xxx.lanl.gov/abs/1104.2932
http://xxx.lanl.gov/abs/1403.3411

	1 Introduction
	2 The effect of the long scalar mode on the polarization power spectrum
	3 The bispectrum in the squeezed limit
	4 Signal-to-noise estimation
	5 Conclusions
	A  Applying the coordinate transformations directly to BB power spectrum
	B Planck, COrE and PRISM instrumental characteristics

