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Abstract

Decision makers faced with uncertain information often experience regret upon learning that an alternative action

would have been preferable to the one actually selected. Models that minimize the maximum regret can be useful in such

situations, especially when decisions are subject to ex post review. Of particular interest are those decision problems that

can be modeled as linear programs with interval objective function coe�cients. The minimax regret solution for these

formulations can be found using an algorithm that, at each iteration, solves ®rst a linear program to obtain a candidate

solution and then a mixed integer program (MIP) to maximize the corresponding regret. The exact solution of the MIP

is computationally expensive and becomes impractical as the problem size increases. In this paper, we develop a

heuristic for the MIP and investigate its performance both alone and in combination with exact procedures. The

heuristic is shown to be e�ective for problems that are signi®cantly larger than those previously reported in the liter-

ature. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In an increasingly volatile business environment, managers are often faced with uncertain or imperfect
information when making decisions. Since decisions based on models that ignore variability in key input
data can have devastating consequences, models that can deliver plans that will perform well regardless of
future eventualities are appealing. Furthermore, when decisions are subject to ex post review, managers
may want to avoid being viewed as having exercised poor judgement. The maximum possible regret (i.e.,
the distance from optimality once uncertainty resolves) is a useful criterion for evaluating decisions in such
cases. Regret can be measured in an absolute or relative sense. The former is simply the di�erence between
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the actual and best possible outcomes, while the latter expresses this di�erence on a percentage basis. In this
paper, we present a heuristic method to minimize maximum absolute regret for linear programs with in-
terval objective function coe�cients. An instance of such a problem might arise when constructing an
investment portfolio to maximize its future value and uncertain stock prices are assumed to lie between
speci®ed upper and lower limits.

Empirical evidence suggests that the anticipation of regret can in¯uence the choices of decision makers
(see, for example, Loomes and Sugden, 1987; Ritov, 1996; Zeelenberg et al., 1996). Bell (1985) and Si-
monson (1992) described actual marketing strategies that targeted regret on the part of consumers. Formal
theories of regret (Bell, 1982; Loomes and Sugden, 1982) have been advanced to explain observed violations
of expected utility theory. Thus, while the regret criterion may be di�cult to justify from a normative sense,
the fact remains that regret avoidance is a demonstrated concern of decision makers and, therefore, war-
rants further consideration.

In the mathematical programming literature, regret has often been associated with the idea of ro-
bustness. Gupta and Rosenhead (1968) and Rosenhead et al. (1972) proposed the concepts of robustness
and stability for evaluating sequential decisions made under uncertainty. Robustness referred to the
¯exibility a�orded by the current choice of action, in terms of its likelihood of resulting in a desirable end-
state, while stability considered performance relative to the best possible outcome (i.e., regret). Subsequent
work has somewhat blurred the distinction between these two terms, removing the focus on sequential
decisions, while maintaining the relevance of regret as a measure of performance. In solving a plant layout
problem, Rosenblatt and Lee (1987) measured a solution's robustness by the number of demand scenarios
for which the solution was within a speci®ed percentage of optimal (i.e., preferred solutions were those
most likely to satisfy some relative regret threshold). Similarly, Kouvelis et al. (1992) found robust plant
layouts that were within a speci®ed percentage of optimal for all scenarios. The requirement that a robust
solution satis®es some worst-case percentage deviation from optimality was also used by Gutierrez and
Kouvelis (1995) in their design of international sourcing networks. Mulvey et al. (1995) have used the
term robust optimization to describe a general model for stochastic programming, that explicitly trades o�
the con¯icting objectives of remaining close to feasible (model robustness) and close to optimal (solution
robustness) across multiple scenarios. Another interesting example of a regret criterion in stochastic
optimization is due to Barlow and Glover (1987), who introduced a variable scaling factor for relative
regret.

The aforementioned research assumed that uncertainty was represented by a ®nite set of scenarios.
Alternatively, one can replace scenarios by uncertainty intervals, which simply specify an upper and lower
bound for each uncertain quantity. This model has been examined by Daniels and Kouvelis (1995) in the
context of production scheduling. Their procedure ®nds the minimax absolute regret schedule, in terms of
total ¯ow time, for a set of jobs with uncertain, bounded processing times.

Inuiguchi and Sakawa (1995) considered minimizing maximum absolute regret for general linear pro-
grams with interval objective function coe�cients (for brevity, we will refer to objective function coe�cients
simply as costs). Their approach was based on an iterative relaxation procedure developed for min±max
problems by Shimizu and Aiyoshi (1980). Speci®cally, at each iteration, the algorithm ®rst solves a relaxed
linear program to obtain a candidate solution and then ®nds the cost vector that maximizes regret for the
candidate, thereby generating a new constraint for the linear program. Obtaining the regret-maximizing
costs required ®nding optimal solutions for all extremal cost vectors (i.e., those in which all uncertain costs
are at a bound). Since a problem with n uncertain costs can have up to 2n such solutions, this task quickly
becomes computationally intractable. Their approach was re®ned by Inuiguchi and Sakawa (1996) and
Mausser and Laguna (1997), who used mathematical programming to obtain the regret-maximizing costs.
The complexity of the resulting mixed integer programs severely limits the size of problems that can be
addressed. For example, previous work has considered problems with up to 36 uncertain costs, and a
maximum size of approximately 100 variables and 100 constraints (Mausser and Laguna, 1997). Thus,
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heuristics for ®nding the regret-maximizing costs are expected to play an important role in extending the
applicability of the minimax regret criterion within the context of uncertain cost coe�cients. In this paper
we undertake to develop such a heuristic and investigate its performance, both alone and in combination
with exact methods, for problems signi®cantly larger and more di�cult than those previously reported in
the literature.

In Section 2, we ®rst give a formal statement of the problem and review the iterative minimax regret
algorithm. We then focus on the mixed integer programming formulation of Mausser and Laguna (1997)
and derive a heuristic solution procedure in Section 3. Section 4 describes our computational experiments,
and conclusions and possible extensions are presented in Section 5.

2. An iterative procedure to minimax regret

Consider the linear program

max cx
s:t: x 2 X;

�1�

where X is a non-empty, bounded polyhedron, and let the optimal solution to (1) be xc. Suppose that costs
are uncertain and that c 2 C � fc j ci6 ci6 �ci; i � 1; . . . ; ng; where ci and �ci are known constants. The re-
sulting problem is a so-called linear program with interval objective function coe�cients. Our objective is to
®nd an x 2 X that minimizes the maximum absolute deviation from optimality (i.e., the regret) over all
possible costs.

For any x, the maximum regret associated with cost vector c is R�c; x� � maxy2X�cy ÿ cx�. Let Rmax�x� �
maxc2CfR�c; x�g be the maximum regret for x over all possible costs. We want to ®nd x� satisfying
Rmax�x��6Rmax�x� for all x 2 X. That is, x� is the optimal solution to the minimax regret problem (MMR):

minx fmaxc;y cy ÿ cxg
s:t: x; y 2 X;

c 2 C:
�2�

Our assumption that X and c are bounded implies that Rmax�x�� is ®nite.
MMR is a min±max problem that can be solved by an iterative relaxation procedure (Shimizu and

Aiyoshi, 1980). Consider the relaxed linear program (MMR0) obtained by replacing c 2 C with a ®nite set
of cost vectors, or scenarios, C � fc1; c2; . . . ; cmg:

min r
s:t: ckx� r P ckxck ; 8ck 2 C;

x 2 X;
r P 0:

�3�

We refer to each constraint ckx� r P ckxck associated with an element of C as a regret cut. Let the
solution to MMR0 be x̂, with corresponding regret Ĉ. Note that Ĉ6Rmax�x�� is a lower bound for the
minimax regret and this lower bound is non-decreasing as more regret cuts are added to MMR0. Since
MMR0 contains (n + 1) variables, an optimal (non-degenerate) basic solution has (n + 1) binding con-
straints, and it follows that at most (n + 1) regret cuts are actually necessary to determine the optimal
solution to MMR. However, ®nding the minimal set of necessary regret cuts is not a trivial task, and
therefore we can typically expect MMR0 to contain a number of non-binding regret cuts.

The set C of cost scenarios can be constructed iteratively. Given any candidate solution x̂ to MMR0, the
cost scenario that maximizes regret can be found by solving the following candidate maximum regret
problem (CMR):
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Rmax�x̂� � max cxÿ cx̂

s:t: x 2 X;

c 2 C:

�4�

Note that Rmax�x̂�P Rmax�x�� is an upper bound for MMR. Thus, using MMR0 and CMR to generate
candidate solutions and regret cuts, respectively, yields the following algorithm to minimize the maximum
regret.

X is a non-empty, compact set de®ned by linear constraints. Also, cy ÿ cx is continuous in x and y, and
has continuous partial derivatives. Thus, it follows from Theorem 3 of Shimizu and Aiyoshi (1980) that the
above algorithm terminates in a ®nite number of iterations.

Solving CMR in Step 1 is the most computationally demanding part of the algorithm. Since CMR is an
inde®nite quadratic program, previous work has sought to exploit properties of the regret maximizing
solution in order to solve CMR e�ciently. Inuiguchi and Sakawa (1995) identi®ed two such properties that
are particularly relevant for our approach.

First, they showed that in (4), x can be restricted to those vertices of X that are optimal for some c 2 C,
or so-called possibly optimal solutions. We will refer to this property as x-optimality and note that it follows
from the fact that for any c 2 C and x̂ 2 X; R�c; x̂� � maxx 2 X�cxÿ cx̂� � �maxx 2 X cx� ÿ cx̂ implies x� xc.
Second, c can be chosen from among extremal cost vectors. Furthermore, the regret-maximizing cost vector
ĉ satis®es the following condition, which we call c-consistency:

ĉi �
ci if �xĉ�i < x̂i;

�ci if �xĉ�i > x̂i:

(
The method of Inuiguchi and Sakawa (1995) ®rst constructs the set E of all possibly optimal solutions.

Then, to solve CMR for a given x̂, c-consistency is used to quickly calculate the regret for each element of
E�Rmax�x̂� is simply the largest of these values). The di�culty with this approach is that ®nding all possibly
optimal solutions is intractable, even for problems of moderate size.

Subsequently, Inuiguchi and Sakawa (1996) formulated CMR to explicitly enforce x-optimality, thereby
eliminating the need to construct the set E. They developed a branch and bound method to solve the re-
sulting mathematical program. More recently, Mausser and Laguna (1997) exploited c-consistency to
obtain the following mixed integer programming formulation of CMR, where Mi is an upper bound for xi:

Rmax�x̂� � max �czÿ cy

s:t: x 2 X;

x� y ÿ z � x̂;

yi ÿ x̂ibi6 0 for i � 1; . . . ; n;

zi ÿ �Mi ÿ x̂i��1ÿ bi�6 0 for i � 1; . . . ; n;

y; z P 0;

b 2 f0; 1g:

�5�

Step 0. (Initialization). Set LB� 0 and choose x̂ 2 X.
Step 1. (Solve CMR). Find ĉ and Rmax�x̂�. If Rmax�x̂�6LB, then go to Step 4.
Step 2. (Add cut). Add the cut ĉx� r P ĉx̂� Rmax�x̂� to MMR0.
Step 3. (Solve MMR0). Find Ĉ and x̂. Set LB � Ĉ: Go to Step 1.
Step 4. (End). STOP (x̂ minimizes maximum regret).
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This formulation requires one integer variable (bi) for each uncertain cost. The regret-maximizing costs are
given by ĉi � �ci � bi�ci ÿ �ci�.

3. A heuristic method for CMR

Previous attempts to minimize maximum regret have concentrated on ®nding the optimal solution to
CMR in Step 1 of the algorithm. Clearly, the termination criterion requires that Rmax�x̂� be an upper bound
for MMR (which can only be guaranteed by solving CMR to optimality). However, any R�c; x̂� > LB gives
rise to a regret cut for MMR0 that can increase the lower bound and allow the algorithm to continue.
Mausser (1997) investigated accepting the ®rst branch and bound solution whose regret exceeded the lower
bound. While this reduced the processing time per iteration, it also generated so many additional ``weak''
regret cuts (i.e., for which R�c; x̂� < Rmax�x��) that the overall processing time increased.

A heuristic method, able to quickly ®nd a good solution for CMR, may be an attractive alternative to
simply accepting the ®rst valid branch and bound solution. When the heuristic solution does not exceed the
lower bound, solving CMR as a mixed integer program will either generate a regret cut or satisfy the
termination condition. A heuristic approach may also represent the only alternative for problems whose
size makes impractical the solution of CMR as a mixed integer program.

3.1. A greedy procedure

The x-optimality and c-consistency conditions motivate the following greedy search procedure for
CMR. Let (c0, x0) be an initial candidate solution, where without loss of generality we assume that x-
optimality is satis®ed. If c0 is c-consistent, we are done. Otherwise, choose a new cost vector c1 that is c-
consistent with x0, and ®nd x1 that is x-optimal. Note that c1�x1 ÿ x̂�P c1�x0 ÿ x̂� > c0�x0 ÿ x̂�, and so (c1,
x1) is an improved solution. If (c1, x1) is c-consistent, we are done, otherwise we repeat the above procedure
to ®nd an improved solution (c1, x1) and continue as necessary. The procedure returns a solution that is
both x-optimal and c-consistent, though not necessarily the optimal solution �ĉ; xĉ�.

Note that ci can attain either bound when xi � x̂i without violating c-consistency. In this case, we select
the one that is most likely to be valid should xi change. That is, if x̂i > Mi=2 we will require ci � ci, and ci �
�ci otherwise.

In practice, many feasible solutions to CMR are both x-optimal and c-consistent, and so they can only
be viewed as possessing a certain ``local optimality''. Thus, performance of the heuristic may bene®t from a
good initial solution (c0, x0) as well as mechanisms to diversify the search after ®nding a locally optimal
solution. We consider these issues in the following sections.

3.2. Finding an initial solution

Our goal is to choose an initial cost vector c0 so that the resulting linear program yields a good initial
candidate solution x0. Mausser and Laguna (1997) showed that CMR can be formulated as a linear
program with convex piecewise-linear costs. Speci®cally, each cost consists of two segments with slope ci

(for xi < x̂i) and �ci (for xi > x̂i). We ®rst consider constructing c0 as a linear approximation to these costs.
Suppose that the true cost

c �
c for 06 x6 x̂;

�c for x̂ < x6M ;

(
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is to be approximated by k (Fig. 1). We are interested only in the slope k and not in the intercept of the
approximation (the intercept represents a constant term that is irrelevant for optimization purposes). Note
that if x̂ � 0 or M, then the true cost is in fact linear. Four possible approximations, and the corresponding
values of k, are as follows (see Mausser, 1997, for details):
· Connecting the endpoints �0;ÿcx̂� and �M ; �c�M ÿ x̂��,

k � �c� x̂
M

cÿ �c
� �

:

· A least squares ®t using the points �0;ÿcx̂�; �x̂; 0�; and �M ; c�M ÿ x̂��;

k �
3Mc M ÿ x̂

� �
ÿ x̂�M
� �

�c M ÿ x̂
� �

ÿ cx̂
� �

3 x̂2 �M2

� �
ÿ x̂�M
� �2

:

· Minimizing the squared error over the entire interval,

k � �cÿ x̂
M

 !2

3ÿ 2x̂
M

 !
�cÿ c
� �

:

Fig. 1. Linear cost approximation.
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· Minimizing the error over the entire interval (i.e., the area between the true costs and the linear approx-
imation should be as small as possible),

k �

c if x̂6 M
4
;

2

M
c

3M
4
ÿ x̂

� �
� c x̂ÿM

4

� �� �
if

M
4
< x̂ <

3M
4
;

c if x̂ P
3M
4
:

8>>>>>><>>>>>>:
Instead of a linear cost approximation, one can also solve the linear programming relaxation of (5) to

obtain x0. By replacing the integrality requirement for the b-variables with 06 b6 1, we can obtain both
yi > 0 and zi > 0 for some i. The solution given by x0 � x̂ÿ y � z satis®es x0 2 X while c0 is a weighted
average of the bounds c and �c:

3.3. Search diversi®cation

Recall that a solution (ck, xk) satisfying x-optimality and c-consistency can be viewed as being locally
optimal. The bene®ts of accepting non-improving moves to escape local optimality are well established, and
form the basis for techniques such as tabu search (Glover and Laguna, 1997) and simulated annealing
(Kirkpatrick et al., 1983). We propose to diversify the search as follows. After obtaining a locally optimal
solution (ck, xk), which becomes the incumbent, we ``¯ip'' one of the costs to its opposite bound, thereby
violating c-consistency. We then ®nd xk�1 that is x-optimal for the new cost vector ck�1 and continue with
the greedy search until a new local optimum is found. If the regret of this new solution exceeds that of the
incumbent, the incumbent is replaced and we diversify the search in the neighborhood of this new local
optimum. Otherwise, we continue searching the neighborhood of the incumbent until all costs have been
¯ipped without improving the solution. Note that if x̂i � 0 or Mi, then there is no need to ¯ip ci since the
cost is �ci or ci, respectively, for all values of xi.

The objective of diversi®cation is to obtain an x far enough away from the current local optimum so that
the greedy search does not simply return to the incumbent solution. It is reasonable to assume that the
larger the magnitude of the cost change, the greater the chance of obtaining a signi®cantly di�erent x. Thus,
we propose to order costs by decreasing uncertainty interval size, and select ¯ips based on this list. One
possibility is to initiate each search by ¯ipping the cost with the largest uncertainty interval. In other words,
as each new incumbent is found, we proceed from the beginning of the list so that the most promising costs
are ¯ipped ®rst. A potential drawback of this strategy is that the same costs are ¯ipped repeatedly, while
those with small uncertainty intervals are selected only if previous ¯ips did not improve the solution. An
alternative is to treat the list as circular and begin each new search with the next cost immediately after the
last one used. We will investigate both options in our computational experiments.

3.4. Formal description

We now give a complete description of the heuristic procedure for CMR, assuming there are n uncertain
costs. In the following, k is the iteration counter, f is the cost ¯ip counter, g gives the index of the cost to be
¯ipped, and d speci®es the ®nal cost ¯ip.

Inputs: A set of costs C � fc j ci6 ci6 ci; i � 1; . . . ; ng; a candidate minimax regret solution x̂, a non-
empty, bounded polyhedron X.

Outputs: A set of regret maximizing costs cI ; the maximum regret R.
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4. Computational experiments

Our computational experiments have two primary goals. First, we evaluate the heuristic as a stand-alone
method for solving CMR and investigate the e�ects that initialization, ¯ip type, and level of uncertainty
have on the quality of the ®nal minimax regret solution. Second, we combine the heuristic approach with
exact methods to determine whether such a strategy is more e�cient than one that relies exclusively on
mixed integer programming to solve CMR.

As a performance measure, we have chosen the percentage gap between the regret r̂ of the ®nal MMR0

solution and the maximum regret Rmax�x̂� of the ®nal candidate x̂, which respectively represent lower and
upper bounds for the optimal minimax regret. The percentage gap is calculated as �Rmax�x̂� ÿ r̂�=r̂: Rmax�x̂� is
obtained by solving CMR exactly (i.e., using (5)) for the ®nal candidate x̂. Note that this is the CMR
problem for which the heuristic could not ®nd a cost scenario whose regret exceeded r̂ , thereby terminating
the algorithm. Since �Rmax�x̂� ÿ r̂� represents the amount by which the true maximum regret of x̂ has been
underestimated, we will refer to the percentage gap as error.

Instead of arbitrarily generating random test problems, we followed the controlled randomization ap-
proach (Greenberg, 1990). As described below, we selected problems from the NETLIB collection (Gay,
1985) and generated uncertainty intervals of various sizes for a random subset of the cost coe�cients.

We used the GNU Project C compiler (V 2.6) with maximum code optimization to implement the al-
gorithm on a DEC Alpha 2000 running DEC OSF/1 V3.2. All mathematical programs were solved by the
CPLEX Version 3.0 runtime library routines using the parameter values listed in Fig. 2. To account for
rounding errors, we used a tolerance of 10ÿ6 where applicable (e.g., when testing for the equality of Rmax�x̂�
and r̂, xi and x̂i; etc.). The initial candidate x̂ was found by solving the original linear program (1) with costs
ci � ci if ÿ ci P ci and ci � ci if ci > ÿci.

Step 0. (Initialization). Choose c0 2 C. Construct a list r that orders the costs by decreasing
uncertainty interval size (i.e., r�i� � h; where ch ÿ ch P cr�j� ÿ cr�j� for i < j6 n�: Set k � 0;
f � 0; R � 0:

Step 1. (x-optimality). Find xk 2 X maximizing ckx.
Step 2. (c-consistency). If ck is c-consistent then go to Step 3. Otherwise, set

ck�1
i � ci if xk

i < x̂i or xk
i � x̂i > Mi=2;

ci if xk
i > x̂i or xk

i � x̂i6Mi=2:

(
Set k � k � 1 and go to Step 1.

Step 3. (local optimality). If R�ck; xk� > R then set R � R�ck; xk�; xI � xk; cI � ck; and go to Step 4.
Otherwise, go to Step 5.

Step 4. (diversify search). If circular ¯ips are being used then set d � f � n: Otherwise, set f � 0; d � n.
Go to Step 6.

Step 5. (re-install incumbent). If f < d then set ck � cI and go to Step 6. Otherwise go to Step 7.
Step 6. (¯ip cost). Set f � f � 1; g � f . If g > n then set g � g ÿ n. If x̂r�g� � 0 or x̂r�g� � Mr�g� then go

to Step 5. Set

ck�1
r�g� �

cr�g� if cI
r�g� � cr�g�;

cr�g� if cI
r�g� � cr�g�:

(
Set k � k � 1 and go to Step 1.

Step 7. (terminate). STOP. �cI ; xI� is the best solution found for CMR, with regret R.
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4.1. Sample problems

We selected nine problems from the NETLIB dataset that were su�ciently large to make their solution
by the exact method (i.e., solving (5) optimally in each iteration, which we will refer to as OPTCUT)
impractical. The need for solving the ®nal CMR to calculate the percentage gap for evaluation purposes
limited the number of uncertain costs that could be handled. We therefore restricted uncertainty to some
random subset of the cost coe�cients. Speci®cally, for each problem we speci®ed a target value P for the
proportion of costs to be made uncertain. For each non-zero cost in turn, a uniform (0, 1) variate was
generated and if it was less than or equal to P, the cost was made uncertain. The value P was obtained by
experimentation to yield problems of an appropriate level of di�culty. In general, our goal was to generate
problems that could not be solved by the exact approach within one hour of processing time, yet that still
allowed the ®nal CMR to be solved in a reasonable amount of time. We selected uncertainty intervals of
plus-or-minus 10%, 80%, and 150%.

Since none of the problems contained upper bounds for the decision variables, it was necessary to
provide this information in order to guarantee a ®nite minimax regret. In actual practice, appropriate
bounds typically may be deduced from the underlying problem. However, lacking su�cient background
knowledge of the test problems and to avoid arbitrarily large values (which can increase the time required
to solve (5)), we elected to set the upper bounds based on the optimal solution �xD� of the original de-
terministic problem. Speci®cally, if �xD is the average of all optimal solution values, we set the upper bound
for xi to the greater of 2�xD�i and �xD=4.

Table 1 summarizes the problem characteristics. The di�culty of each problem can be assessed from
Table 2, which reports the results of solving CMR with the OPTCUT approach. We imposed a time limit
of one hour, but allowed the iteration in progress at that time to ®nish (hence the total time often ex-
ceeded 3600 s). The optimal minimax regret solution was found and veri®ed within the one-hour limit for
BEACONFD (�80%), SCAGR7 (�150%), and SCORPION (�150%). In two other instances (BEA-
CONFD (�10%) and SCAGR7 (�10%)), optimality was veri®ed during the evaluation phase. The
problems E226 (�10%), ISRAEL (�10%), and SCORPION (�10%, �80%) presented particular di�culty
for OPTCUT.

Although the results were not obtained as part of a rigorous statistical experiment, we choose to
comment on two seemingly apparent relationships. The average error suggests that the performance of
OPTCUT improves as the uncertainty level increases. However, disregarding SCORPION results in av-
erage errors of 6.8%, 3.4%, and 5.8% for uncertainty levels of �10%, �80%, and �150%, respectively. Thus,
evidence of a relationship between performance and uncertainty level is less than conclusive. The uncer-

Fig. 2. CPLEX parameter values.
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tainty level does appear to in¯uence the time required to solve a single instance of CMR. One might
speculate that a greater di�erence between the upper and lower limits for each cost improves the ability of
branch-and-bound to fathom partial solutions.

4.2. Stand-alone heuristic

In this section, we investigate the performance of the heuristic under various operating conditions. In
addition to establishing the general quality of heuristic solutions, we also want to determine if a certain
initialization method or search strategy consistently yields the best results. A three-factor randomized
complete block experimental design (see, for example, Ch. 5 in Anderson and McLean (1974)) and an analysis
of variance was used to examine these issues. We elected to test hypotheses at a signi®cance level of p� 0.05.

4.2.1. Experimental design
The ®xed factors and their corresponding treatments include initialization type (endpoint connect, least

squares, minimum squared error, minimum error, LP relaxation, and random), method of ¯ipping costs
(linear, circular), and uncertainty level (�10%, �80%, �150%). We include random initialization, which sets
c0

i � ci or �ci with equal probability, to provide a benchmark for the other treatments. The nine sample
problems are blocks, with each block receiving all treatment combinations. Since we want our results to be
valid for all possible problems, not just for this particular sample, we allow the blocks to be random instead
of ®xed. For practical reasons, all nine problems are solved in sequence for each treatment combination.
This randomization restriction precludes testing any observations that might be time-dependent, such as
processing time in our multi-user computing environment.

Let Qi be the e�ect of the ith initialization type, Fj be the e�ect of the jth ¯ip method, Uk be the e�ect of
the kth uncertainty level, and Nl be the e�ect due to the lth problem (block). The linear statistical model is

yijkl � l� Qi � Fj � Uk � Nl � QFij � QUik � QNil � FUjk � FNjl � UNkl � QFUijk

� QFNijl � QUNikl � FUNjkl � QFUNijkl � ��ijkl�h;

where the subscript h denotes replication. Note that the block and block interaction e�ects are random and
mixed, respectively.

The appropriate test statistic (i.e., the ratio of mean squares that determines the F-value) is determined
by the expected mean squares. To derive the expected mean squares in Table 3, we used the approach
described by Montgomery (1976). Note that lower case letters represent the number of treatments, or levels
of the corresponding factor.

Table 1

Sample problems

Problem Variables Constraints Uncertain costs Average half interval

�10% �80% �150%

ADLITTLE 97 56 53 70.29 562.29 1054.29

AGG 163 488 72 4.25 34.01 63.76

BANDM 472 305 23 0.32 2.56 4.80

BEACONFD 262 173 36 0.65 5.18 9.71

E226 282 223 45 0.19 1.52 2.85

ISRAEL 142 174 53 16.64 133.15 249.65

SCAGR7 140 129 22 16.71 133.64 250.57

SCORPION 358 388 28 2.35 18.77 35.19

SCTAP1 480 300 50 1.87 14.98 28.08
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4.2.2. Experimental results
During our computational experiments, special action was sometimes necessary to solve and evaluate

certain problems. We found that poor scaling occasionally resulted in an ``unscaled infeasibilities'' message
(CPLEX, 1994) while solving CMR heuristically. In such cases, the solution was simply ignored and the
heuristic allowed to continue. Evaluating several instances of SCORPION (�80%) and BANDM (�150%)
caused CPLEX to terminate with insu�cient memory. When necessary, these problems were re-evaluated
after changing the following CPLEX parameters, which reduced memory requirements at the expense of
execution time: ADVANCE� 0, BACKTRACK� 5, PRESOLVE� 1.

Table 4 shows the analysis of variance for solution error. There is strong evidence that the initialization
method a�ects performance, but no other main or interaction e�ects are signi®cant. Since the data indicated
that random initialization performed relatively poorly, we conducted a second ANOVA that included only
the other ®ve initialization treatments (Table 5). In this case, there is no evidence that the initialization
method, the ¯ip type, or the uncertainty level in¯uence the performance of the algorithm. Thus, while
obtaining a good initial candidate does improve the performance of the heuristic, there is no clearly pre-
ferred approach among those strategies described in Section 3.2.

When the random initialization results were included, the overall mean error was 5.70%. This was re-
duced to 5.34% when these results were excluded. For the nine sample problems, obtaining an initial
candidate from the LP relaxation and using circular ¯ips for diversi®cation gave the best results, with
average and worst-case errors of 5.0% and 14.1%, respectively (Table 6). These results compare favorably
to those of Table 2. Solution quality was signi®cantly improved for the four di�cult problems mentioned
earlier, with the heuristic algorithm actually ®nding the optimal solution for SCORPION (�10%), in a
fraction of the time allotted to the OPTCUT approach.

As mentioned previously, our experimental design does not allow us to draw conclusions about treat-
ment e�ects on processing time. However, it is notable that the time needed to solve each instance of CMR

Table 3

Degrees of freedom and expected mean squares

Term Degrees of freedom (F) (F) (F) (R) (R) Expected mean square

q f u n 1

i j k l h

Qj (qÿ1) 0 f u n 1 �fun
P

Q2
i �= qÿ 1� � � fur2

QN � r2

Fj (fÿ1) q 0 u n 1 �qun
P

F 2
j �= f ÿ 1� � � qur2

FN � r2

Uk (uÿ1) q f 0 n 1 �qfn
P

U 2
k �= uÿ 1� � � qf r2

UN � r2

Nl (nÿ1) q f u l 1 qfur2
N � r2

QFij (qÿ1) (fÿ1) 0 0 u n 1 unr2
QF � ur2

QFN � r2

QUik (qÿ1) (uÿ1) 0 f 0 n 1 fnr2
QU � f r2

QUN � r2

QNil (qÿ1) (nÿ1) 0 f u 1 1 fur2
QN � r2

FUjk (fÿ1) (uÿ1) q 0 0 n 1 qnr2
FU � qr2

FUN � r2

FNjl (fÿ1) (nÿ1) q 0 u 1 1 qur2
FN � r2

UNkl (uÿ1) (nÿ1) q f 0 1 1 qf r2
UN � r2

QFUijk (qÿ1) (fÿ1) (uÿ1) 0 0 0 n 1 nr2
QFU � r2

QFUN � r2

QFNijl (qÿ1) (fÿ1) (nÿ1) 0 0 u 1 1 ur2
QFN � r2

QUNikl (qÿ1) (uÿ1) (nÿ1) 0 f 0 1 1 f r2
QUN � r2

FUNjkl (fÿ1) (uÿ1) (nÿ1) q 0 0 1 1 qr2
FUN � r2

QFUNijkl (qÿ1) (fÿ1) (uÿ1) (nÿ1) 0 0 0 1 1 r2
QFUN � r2

��ijkl�h 0 1 1 1 1 1 r2(no estimate)
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using a circular list was approximately half that required by the alternative method. We speculate that this
is due in part to the reduced number of (non-improving) cost ¯ips that are immediately reversed.

4.3. Combined heuristic ± MIP approach

We now consider using the heuristic approach in conjunction with mixed integer programming. Spe-
ci®cally, whenever the heuristic is unable to ®nd a solution to CMR that exceeds the current lower bound,
the algorithm solves CMR as a mixed integer program to either generate a regret cut or verify optimality.

Table 4

Analysis of variance for error (including random initialization)

Source of variation Sum of squares Degrees of freedom Mean square F p-value

Q 0.0209 5 0.0042 7.9054 0.000030

F 0.0000 1 0.0000 0.1688 0.691957

U 0.0221 2 0.0110 0.6287 0.545964

N 0.3291 8 0.0411

QF 0.0011 5 0.0002 1.4930 0.213754

QU 0.0065 10 0.0007 1.3028 0.243415

QN 0.0212 40 0.0005

FU 0.0004 2 0.0002 0.8053 0.464263

FN 0.0012 8 0.0001

UN 0.2808 16 0.0175

QFU 0.0017 10 0.0002 1.0104 0.442204

QFN 0.0057 40 0.0001

QUN 0.0400 80 0.0005

FUN 0.0044 16 0.0003

QFUN 0.0133 80 0.0002

Total 0.7483 323

Table 5

Analysis of variance for error (excluding random initialization)

Source of variation Sum of squares Degrees of freedom Mean square F p-value

Q 0.0006 4 0.0002 1.9504 0.126071

F 0.0000 1 0.0000 0.1024 0.757174

U 0.0159 2 0.0079 0.5627 0.580552

N 0.2479 8 0.0310

QF 0.0011 4 0.0003 1.6101 0.195753

QU 0.0015 8 0.0002 1.7238 0.109891

QN 0.0026 32 0.0001

FU 0.0005 2 0.0003 1.1117 0.232020

FN 0.0009 8 0.0001

UN 0.2255 16 0.0141

QFU 0.0016 8 0.0002 1.1097 0.367438

QFN 0.0052 32 0.0002

QUN 0.0072 64 0.0001

FUN 0.0026 16 0.0002

QFUN 0.0112 64 0.0002

Total 0.5242 269

H.E. Mausser, M. Laguna / European Journal of Operational Research 117 (1999) 157±174 169



T
a

b
le

6

E
rr

o
r

a
n

d
p

ro
ce

ss
in

g
ti

m
es

(s
)

fo
r

h
eu

ri
st

ic
w

it
h

L
P

re
la

x
a
ti

o
n

in
it

ia
li

za
ti

o
n

a
n

d
ci

rc
u

la
r

d
iv

er
si

®
ca

ti
o

n

P
ro

b
le

m
�

1
0

%
�

8
0
%

�
1
5
0
%

E
rr

o
r

T
o

ta
l

ti
m

e

P
er

C
M

R
E

v
a
l

ti
m

e
E

rr
o

r
T

o
ta

l

ti
m

e

P
er

C
M

R
E

v
a
l

ti
m

e
E

rr
o

r
T

o
ta

l

ti
m

e

P
er

C
M

R
E

v
a
l

ti
m

e

A
D

L
IT

T
L

E
0

.0
9

5
1

9
0

.3
3

1
6
2

0
.0

8
5

8
8

0
.6

4
9
4

0
.0

6
8

1
2
8

0
.7

5
1
1
0

A
G

G
0

.0
8

3
2

1
0

.2
7

3
8
4

0
.0

7
1

3
4

0
.5

3
1
2
4

0
.1

4
1

7
3

0
.6

3
7
7

B
A

N
D

M
0

.0
4

1
4

4
1

.8
9

4
8
7

0
.0

0
8

1
0
2

2
.5

4
2
8
9
6
8

0
.0

0
7

1
5
4

3
.0

0
4
9
7
3
1

a

B
E

A
C

O
N

F
D

0
.0

7
5

1
0

0
.3

0
8
6
2

0
.0

0
4

1
1

0
.3

2
6
2
5

0
.0

0
8

1
5

0
.3

0
5
7
0

E
2

2
6

0
.0

4
5

6
3

1
.3

2
1
7
8
9
4

0
.0

2
4

1
9
4

2
.2

9
1
2
7
9

0
.0

3
1

2
5
1

2
.7

9
8
7
8

IS
R

A
E

L
0

.0
7

1
3

2
0

.8
5

2
8
7

0
.1

0
2

8
4

1
.9

1
9
0

0
.0

7
9

2
7
9

2
.1

6
3
5

S
C

A
G

R
7

0
.0

0
0

4
0

.1
6

2
9
5
1

0
.0

0
1

7
0
.2

2
5
8
7

0
.0

5
5

7
0
.2

7
6

S
C

O
R

P
IO

N
2

8
0

.3
9

2
6
2
4
8

0
.0

0
5

3
1

0
.3

9
1
4
2
7
1

0
.0

8
5

3
1

0
.6

0
2
8

S
C

T
A

P
1

0
.1

0
1

5
1

0
.9

3
8
2

0
.0

2
1

3
4
2

2
.0

3
2
0
1
2

0
.0

3
5

5
0
0

2
.6

0
2
1
7

A
v

er
a

g
e

0
.0

5
7

3
0

0
.7

2
5
4
8
4

0
.0

3
6

9
9

1
.2

1
5
3
3
9

0
.0

5
7

2
1
9

1
.4

6
5
7
3
9

a
M

o
d

i®
ed

C
P

L
E

X
p

a
ra

m
et

er
s

fo
r

ev
a

lu
a
ti

o
n

.

170 H.E. Mausser, M. Laguna / European Journal of Operational Research 117 (1999) 157±174



We will consider ®nding the optimal solution to CMR (OPTCUT strategy) as well as ®nding the ®rst
solution whose regret exceeds the current lower bound (FIRSTCUT strategy). We solve the LP relaxation
of CMR to obtain an initial candidate and employ circular ¯ips for diversi®cation, based on our previous
experimental results. Our primary interest is to determine if the combined heuristic/OPTCUT or heuristic/
FIRSTCUT approaches yield better solutions than a pure OPTCUT or FIRSTCUT strategy in a com-
parable amount of time.

4.3.1. Experimental design
Table 6 shows that, in most cases, the time spent obtaining and evaluating a heuristic solution was still

less than the one hour allotted to the OPTCUT method. Thus we decided to impose an identical time limit
on the combined and FIRSTCUT approaches (again allowing any iteration in progress after one hour to
®nish). In all ®ve cases where the evaluation time exceeded one hour, the stand-alone heuristic solution was
already better than that of OPTCUT and so we did not apply the heuristic/OPTCUT approach to these
problems. Since our control of processing time is somewhat imprecise, both because of the multi-user
computing environment and our allowing the ®nal iteration to ®nish, we feel that a formal statistical
analysis of the results is not appropriate in this case.

4.3.2. Experimental results
Table 7 shows the errors for the combined and FIRSTCUT approaches. FIRSTCUT recorded the best

solution for problem E226 (�10%) only, although the solution found by the heuristic/FIRSTCUT method
could not be evaluated for this problem and may in fact be superior. In all other cases, one of the combined
approaches matched or exceeded the solution quality of OPTCUT (see Table 2) and FIRSTCUT.

To provide a more meaningful comparison that takes into account di�erences in processing time, we
subtracted the error and total processing time for the OPTCUT method in Table 2 from the respective
values for each method in Tables 6 and 7. The results are plotted in Fig. 3. Any point in the lower left
quadrant signi®es a clear domination of OPTCUT (i.e., smaller error and shorter processing time) while
points in the upper right quadrant indicate clearly inferior performance. Based on these results, the
combined approaches appear to be viable alternatives to both OPTCUT and FIRSTCUT. However, more
detailed experimentation is required to ascertain which, if any, of the combined approaches is superior.

Table 7

Errors FIRSTCUT (F), Heuristic/OPTCUT (H/O), and Heuristic/FIRSTCUT (H/F) approaches

�10% �80% �150%

Problem F H/O H/F F H/O H/F F H/O H/F

ADLITTLE 0.052 0.020 0.036 0.058 0.026 0.012 0.112 0.015 0.027

AGG 0.001 0.007 0.001 0.032 n/a e 0.003 n/a e

BANDM 0.018 0.002 0.085 n/a a 0.007 0.081 n/a a n/a c

BEACONF 0.297 0.569 0.805 0.000 0.002

E226 0.026 n/a a n/a c 0.112 0.011 0.006 0.093 0.013 0.015

ISRAEL 0.055 0.044 b n/a c 0.041 0.058 0.031 0.055 0.029 0.032

SCAGR7 0.001

SCORPION n/a a n/a d n/a a n/a d

SCTAP1 0.042 0.012 0.085 0.004 0.005 0.067 0.025 0.027

a Not attempted.
b Stopped after 43 cuts (total time exceeded 24 h).
c Evaluation failed.
d MIP failed during heuristic.
e Unscaled infeasibilities in MMR0.
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5. Conclusions and extensions

The minimax regret solution for a linear program with interval objective function coe�cients can be
found using an iterative algorithm that solves a mixed integer program (CMR) to generate cuts for a linear
program (MMR0). This paper has presented a heuristic method for solving CMR, based on a greedy search
that derives from satisfying the conditions of x-optimality and c-consistency. We proposed several tech-
niques for ®nding a good initial solution for the greedy search, along with a simple diversi®cation strategy
to extend the search beyond a local optimum.

The purpose of our computational experiments was twofold. First, we showed that when the heuristic
was used as a stand-alone procedure for CMR, the iterative algorithm found solutions that were within
5% of optimal on average. These results compare favorably with those of the exact method, and were
obtained in a fraction of the processing time allotted to OPTCUT. While a good initial solution had a
signi®cant a�ect on ®nal solution quality, we did not detect a clear preference among the proposed
techniques. Neither the level of uncertainty nor the variant of our diversi®cation strategy had an impact
on solution quality.

Second, we investigated a combined approach that used the heuristic solution to CMR whenever pos-
sible and solved the corresponding mixed integer program only when necessary. Under a similar one-hour
time allotment, the combined approach outperformed both OPTCUT and FIRSTCUT. Our results suggest
that the trade-o� between ®nding the strongest cuts (by solving CMR optimally) and generating a larger
number of possibly weaker cuts (by solving CMR heuristically) can be manipulated to coincide with the
available processing time, or to match limitations imposed by the size of the problem.

The heuristic described in this paper extends the usefulness of the minimax regret criterion in practice by
allowing larger problems to be addressed. The heuristic was shown to be e�ective for problems containing
several hundred variables and constraints, and up to 72 uncertain costs. In particular, as the number of

Fig. 3. Di�erences from OPTCUT.
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uncertain costs increases, the ability to solve CMR as a mixed integer program diminishes and the stand-
alone heuristic procedure remains the only available option.

A useful topic for future research relates to strengthening our diversi®cation procedure, which is ex-
tremely simple in light of the powerful local search techniques currently available. We feel that a tabu
search procedure can signi®cantly improve the quality of CMR solutions and as a result, allow the
heuristic to generate more cuts before terminating or invoking mixed integer programming in a combined
approach.
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