
Washington University in St. Louis
Washington University Open Scholarship

All Computer Science and Engineering Research Computer Science and Engineering

Report Number: wucse-2009-2

2009

Enhanced Coordination in Sensor Networks
through Flexible Service Provisioning
Authors: Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Heterogeneous wireless sensor networks represent a challenging programming environment. Servilla
addresses this by offering a new middleware framework that provides service provisioning. Using Servilla,
developers can construct platform-independent applications over a dynamic set of devices with diverse
computational resources and sensors. A salient feature of Servilla is its support for dynamic discovery and
binding to local and remote services, which enables flexible and energy-efficient in-network collaboration
among heterogeneous devices. Furthermore, Servilla provides a modular middleware architecture that can be
easily tailored for devices with a wide range of resources, allowing resource-constrained devices to provide
services while leveraging the capabilities of more powerful devices. Servilla has been implemented on TinyOS
for two representative hardware platforms (Imote2 and TelosB) with drastically different amounts of
resources. Microbenchmarks demonstrate the efficiency of Servilla's implementation, while an application
case study on structural health monitoring demonstrates the efficacy of its coordination model for integrating
heterogeneous devices.
... Read complete abstract on page 2.

Follow this and additional works at: http://openscholarship.wustl.edu/cse_research

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

Recommended Citation
Fok, Chien-Liang; Roman, Gruia-Catalin; and Lu, Chenyang, "Enhanced Coordination in Sensor Networks through Flexible Service
Provisioning" Report Number: wucse-2009-2 (2009). All Computer Science and Engineering Research.
http://openscholarship.wustl.edu/cse_research/10

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse_research/10?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Enhanced Coordination in Sensor Networks through Flexible Service
Provisioning

Complete Abstract:

Heterogeneous wireless sensor networks represent a challenging programming environment. Servilla
addresses this by offering a new middleware framework that provides service provisioning. Using Servilla,
developers can construct platform-independent applications over a dynamic set of devices with diverse
computational resources and sensors. A salient feature of Servilla is its support for dynamic discovery and
binding to local and remote services, which enables flexible and energy-efficient in-network collaboration
among heterogeneous devices. Furthermore, Servilla provides a modular middleware architecture that can be
easily tailored for devices with a wide range of resources, allowing resource-constrained devices to provide
services while leveraging the capabilities of more powerful devices. Servilla has been implemented on TinyOS
for two representative hardware platforms (Imote2 and TelosB) with drastically different amounts of
resources. Microbenchmarks demonstrate the efficiency of Servilla's implementation, while an application
case study on structural health monitoring demonstrates the efficacy of its coordination model for integrating
heterogeneous devices.

This technical report is available at Washington University Open Scholarship: http://openscholarship.wustl.edu/cse_research/10

http://openscholarship.wustl.edu/cse_research/10?utm_source=openscholarship.wustl.edu%2Fcse_research%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2009-2

Enhanced Coordination in Sensor Networks through Flexible Service
Provisioning

Authors: Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Corresponding Author: liangfok@wustl.edu

Web Page: http://mobilab.cse.wustl.edu/projects/servilla/

Abstract: Heterogeneous wireless sensor networks represent a challenging programming environment. Servilla
addresses this by offering a new middleware framework that provides service provisioning. Using Servilla,
developers can construct platform-independent applications over a dynamic set of devices with diverse
computational resources and sensors. A salient feature of Servilla is its support for dynamic discovery and
binding to local and remote services, which enables flexible and energy-efficient in-network collaboration among
heterogeneous devices. Furthermore, Servilla provides a modular middleware architecture that can be easily
tailored for devices with a wide range of resources, allowing resource-constrained devices to provide services
while leveraging the capabilities of more powerful devices. Servilla has been implemented on TinyOS for two
representative hardware platforms (Imote2 and TelosB) with drastically different amounts of resources.
Microbenchmarks demonstrate the efficiency of Servilla's implementation, while an application case study on
structural health monitoring demonstrates the efficacy of its coordination model for integrating heterogeneous
devices.

Notes:
This is currently under submission to Coordination 2009.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Enhanced Coordination in Sensor Networks through
Flexible Service Provisioning

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Dept. of Computer Science and Engineering
Washington University in St. Louis

Saint Louis, MO, 63105, USA
[liang, roman, lu]@cse.wustl.edu

Abstract. Heterogeneous wireless sensor networks represent a challenging pro-
gramming environment. Servilla addresses this by offering a new middleware
framework that provides service provisioning. Using Servilla, developers can
construct platform-independent applications over a dynamic set of devices with
diverse computational resources and sensors. A salient feature of Servilla is its
support for dynamic discovery and binding to local and remote services, which
enables flexible and energy-efficient in-network collaboration among heteroge-
neous devices. Furthermore, Servilla provides a modular middleware architecture
that can be easily tailored for devices with a wide range of resources, allowing
resource-constrained devices to provide services while leveraging the capabili-
ties of more powerful devices. Servilla has been implemented on TinyOS for two
representative hardware platforms (Imote2 and TelosB) with drastically different
amounts of resources. Microbenchmarks demonstrate the efficiency of Servilla’s
implementation, while an application case study on structural health monitoring
demonstrates the efficacy of its coordination model for integrating heterogeneous
devices.

1 Introduction

Wireless sensor networks (WSNs) [18] are becoming increasingly heterogeneous both
in terms of computational power and sensor types. This is due to two primary reasons.
First, network heterogeneity allows a network to be both computationally powerful and
deployed in high densities. Powerful nodes can perform complex operations like data
analysis, but incurs higher cost and power consumption. Conversely, low power WSN
nodes can provide higher deployment densities and increase network lifetime. By in-
tegrating both types of nodes, a heterogeneous WSN can combine the best features of
each, i.e., high levels of computational power, network densities and lifetimes. Second,
network heterogeneity follows from the natural evolution of WSNs. WSN nodes are
embedded in the environment and remain for a long period of time. During this time,
new nodes and sensors are developed and deployed, resulting in a heterogeneous WSN.

Network heterogeneity presents a formidable problem for application developers.
Since the target platform is no longer well defined, the application must be platform-
independent to avoid having to custom-tailor it to each platform. Yet, the application
must still be able to access platform-specific capabilities like sensing and computing to

make full use of the underlying hardware. Furthermore, the application must accom-
modate an extremely diverse set of node capabilities and resources. These seemingly
contradictory requirements complicate application development and motivates the need
for a new programming model.

To address the challenges in programming heterogeneous WSNs, we developed
Servilla, a novel middleware framework that supports a novel coordination model.
Servilla advances coordination models for WSNs in three important ways. First, Servilla
structures applications in terms of platform-independent tasks and expose platform-
specific capabilities as services. This ensures that applications remain platform-independent,
which is critical as WSNs become increasingly heterogeneous. It also enables applica-
tions to access resources on a node without having active processes, or agents, on the
node. This reduces the system’s minimum resource requirements, increasing the range
of devices that can be supported. Second, Servilla provides a specialized service de-
scription language, which enable application tasks to selectively but flexibly access
services that exploit the capabilities of the hardware available at a particular time and
place. This allows better adaptation to network heterogeneity, and facilitates in-network
collaboration between heterogeneous WSN nodes, achieving higher levels of efficiency
and flexibility. Finally, Servilla provides a modularized middleware architecture and
enables asymmetry in the middleware among WSN nodes. This widens the scope of
hardware devices that can be integrated.

Servilla’s coordination model is inspired by the concept of Service-oriented com-
puting (SOC) [52], which provides loose and flexible coupling between application
components. It is used on the Internet and has recently been explored in the context of
WSNs. Two systems in particular are Tiny Web Services (TWS) [54] and PhyNetTM [6].
TWS implements an HTTP server on each node and enables applications to invoke ser-
vices using HTTP requests. PhyNetTMprovides a central gateway that exposes WSN
capabilities as web services. Unlike these systems, Servilla uniquely takes the SOC
programming model inside a WSN. It exploits the loose coupling between service con-
sumers and providers to separate application-level platform-independent logic from the
low-level software components that exploit platform-specific capabilities. Furthermore,
by allowing application logic to execute inside a WSN, higher levels of efficiency are
obtainable via in-network processing [33]. For example, in a structural health monitor-
ing application, a low-power node may use a simple threshold-based algorithm to detect
potentially damage-inducing shocks, and only activate more powerful nodes that per-
form the complex operations to localize damage when necessary [28]. Or, in a surveil-
lance application, low-power nodes may sense vibrations from an intruder and activate
more powerful nodes with cameras [31]. The ability to support collaboration among
heterogeneous devices inside a WSN is a key feature that distinguishes this work from
existing SOC middleware for WSNs.

The remainder of the paper is organized as follows. Section 2 presents Servilla’s
programming model. Section 3 presents Servilla’s programming languages. Section 4
presents Servilla’s middleware architecture and implementation. Section 5 presents an
empirical evaluation on two representative sensor platforms with diverse resources. Sec-
tion 6 evaluates the efficacy of Servilla by using it to implement a structural health mon-

WSN Node (MicaZ)

Task

service service

WSN Node (Stargate)

Task

service service

WSN Node (Imote2)

Task

service service

WSN Node (TelosB)

Task

service service

WSN Node (Imote2)

Task

service service

Remote
Invoke

Local
Invoke

bind

bind

Fig. 1. Servilla targets heterogeneous and dynamic WSNs in which nodes provide services that
are used by application tasks either locally or remotely. Services are platform-specific while tasks
are platform-independent.

itoring application. Section 7 presents related work. The paper ends with conclusions
in section 8.

2 Programming Model

An overview of a WSN using Servilla is shown in Figure 1. Servilla is meant for hetero-
geneous networks that integrate resource-poor nodes with resource-rich ones. Resource-
poor nodes are less costly, more energy efficient, and can be deployed in greater num-
bers and at higher densities, enabling finer and more frequent sensing. Resource-rich
nodes are more expensive but offer computational power and advanced sensing capa-
bilities. Servilla is designed for heterogeneous WSNs with different classes of nodes; it
is not meant for flat WSNs composed entirely of resource-poor nodes.

Applications are implemented as tasks that invoke services through a service pro-
visioning framework supported by Servilla. Tasks are platform-independent applica-
tion processes that contain code, state, and service specifications. To ensure platform-
independence, the code cannot contain instructions that access platform-specific capa-
bilities like sensors. Instead, these capabilities are revealed as services that are accessed
through a service provisioning framework. The service provisioning framework takes
a task’s service specifications and finds services that match them. The service specifi-
cations describe both the service’s interface and non-functional properties, such as the
energy consumed by a service. This enables tasks, for example, to bind to the most
energy efficient services.

Services expose platform-specific capabilities, are implemented natively, and can,
thus, be fine-tuned for maximum efficiency. They provide a description that can be
compared with a task’s service specification. Services are able to maintain state, pro-
vide multiple methods, and have their own thread of control, enabling them to operate in
parallel with tasks. This enables higher degrees of concurrency and efficiency. For ex-
ample, in a structural health monitoring application, a service provided by a low-power
node can continuously monitor an accelerometer and set a flag if the vibrations exceed
a threshold. A task executing on a more powerful node can remain asleep the majority

of the time, and only periodically wake up to check this flag to determine whether there
is potential damage.

For brevity, the mechanism by which tasks communicate are not shown in Figure 1
since service provisioning is the focus and main contribution of this paper. Tasks com-
municate via localized tuple spaces that are structured in the same manner as that in
Agilla [23]. Tuple space coordination facilitates decoupled communication, allowing
better adaptation to a changing network. They serve as a flexible means of communi-
cation between application processes and are orthogonal to service provisioning. While
service provisioning messages could be sent using tuple spaces, they are sent in an
RPC-like [19] fashion in the current implementation.

Tasks remain platform-independent by delegating all platform-specific operations to
services. There are two essential steps for this to occur: binding and invocation. Binding
is the process of discovering and establishing a connection to the service. Invocation is
the process of accessing a service.

Service binding consists of a three-step process: discovery, matching, and selec-
tion. Discovery consists of finding services that are available to a given task. In many
traditional SOC frameworks, it involves querying a centralized service registry located
somewhere in the network. While this is sufficient in traditional networks, and may
serve as a fall back mechanism for allowing Servilla tasks to discover distant services,
it is usually not appropriate in WSNs. First, most WSN nodes operate on batteries and
accessing a distant registry is not energy efficient and can unacceptably reduce net-
work lifetime. Moreover, the spatial aspect of WSNs are relevant in that closer services
are usually preferred over distant ones, e.g., if a task wants to know the temperature,
it usually wants to know the ambient temperature rather than a distant location’s. For
these reasons, Servilla is optimized for localized coordination and does not rely on a
centralized service registry. Instead, each node has its own registry containing only the
services that it provides.

During the service discovery process, the local registry is initially checked for a
match. If no match is found, the registries on single hop neighboring nodes are checked.
This increases a network’s flexibility by allowing tasks to run on nodes that only par-
tially satisfy the service requirements, since missing services can be provided by neigh-
boring nodes. Furthermore, although accessing a remote service requires wireless com-
munication, energy efficiency can be increased overall by allowing high-power nodes
to use low-power ones, enabling the high-power nodes to remain asleep a larger per-
centage of the time.

Service matching involves finding a service that fulfills a task’s requirements. Re-
call that tasks include specifications that can be compared to descriptions provided by
services. The matching process must be flexible since the service and tasks are usually
developed separately. Yet, it must be semantically correct to ensure that the service be-
haves in a predictable manner. A service can be minimally described by its interface.
Ideally, the names of the methods, the order, number, and types of their parameters, and
even the return types should not require an exact match for service binding, since that
would enable maximum flexibility. To achieve this, large amounts of meta-data must
be included in the specification that describe the method names, input parameters, and
return values in great detail. Unfortunately, such a specification is verbose and requires

a complex parser, both of which consume sizable computational resources that are not
available on many WSN nodes. To account for this, Servilla compromises by divid-
ing specifications into functional and non-functional properties. Functional properties
include the interface and require an exact match. Nonfunctional properties describe
attributes like power consumption and do not require an exact match. For example,
suppose an FFT-calculating service has a non-functional attribute specifying that it is
version 5. Such a service can be bound to a task that specifies it requires at least version
4. By enforcing an exact match between functional properties and an inexact match
between non-functional ones, Servilla provides a degree of service binding flexibility
while still maintaining reasonable resource requirements.

Once a matching service is found, the binding process is completed by selecting
it. Selection consists of informing the task of the chosen service, and is accomplished
by saving the provider’s network address in the task’s state. Once saved, the task is
able to access the service by invoking it. Note that this address is hidden from the
application developer, who is able to invoke the service based on its name, a process
that is described next.

Service invocations are analogous to remote procedure calls (RPCs) [19]. The task
provides the name of the service, the method to execute, and the input parameters. After
the service executes, return results are given to the task. Since the task and service may
be located on different nodes, the process may fail, e.g., due to message loss. To account
for this, Servilla provides a mechanism that notifies a task when and why an invocation
fails. This is necessary because service invocations may fail in many ways depending
on whether the service is local or remote, and tasks may want to handle various error
conditions differently. For example, local invocations may fail because the service is
busy, in which case the task may try again later, while remote invocations may fail due
to disconnection, in which case the task may want to abort.

3 Programming Language

Servilla provides two light-weight programming languages tailored to support service
provisioning in WSNs. The first, ServillaSpec, is used to create service specifications
and descriptions that enable flexible matching between tasks and services. The second,
ServillaScript, is used to create tasks and compiled into bytecode that runs on a Virtual
Machine. Services are implemented in NesC [25] on TinyOS [32] and compiled into
native binary code for run-time efficiency. Each of Servilla’s specialized languages are
now described.

3.1 ServillaSpec

ServillaSpec is used to describe services and is needed to match services required by
tasks to those provided by nodes. To support resource-constrained nodes, the service
specification language must be compact and should not require an overly complex
matching algorithm. As such, standard specification languages using on the Internet like
WSDL [56] are avoided due to their relative verboseness and highly complex parsers.

NAME = fft
METHOD = fft-real
INPUT = {int dir, int numSamples, float[] data}
OUTPUT = float[]
ATTRIBUTE Version = 5.0
ATTRIBUTE MaxSamples = 5000
ATTRIBUTE Power = 10

Fig. 2. A specification describing a FFT service

1. uses Temperature; // declare required service
2.
3. void main() {
4. int count = 0; float temp;
5. bind(Temperature, 2); // bind service within 2 hops
6. while(count++ < 10) {
7. temp = invoke(Temperature, “get”); // invoke service
8. send(temp);
9. }
10. unbind(Temperature);
11. }

Fig. 3. A task that invokes a temperature sensing service 10 times

ServillaSpec avoids verbose syntax and limits the types of properties that can be in-
cluded in a service specification. An example is shown in Figure 2. The first line spec-
ifies the name of the service. It is followed by three-line segments each specifying the
name, input parameters, and output results of a method provided by the service. The
remainder of the specification is a list of attributes that specify non-functional proper-
ties of the service. They enable flexibility in matching by defining a name, relation, and
value. Using attributes, a task can, for example, require a floating point FFT service that
consumes at most 50mW. Such a specification would match a service whose description
is shown in Figure 2.

By limiting the property types to be only the five shown in Figure 2 (i.e., NAME,
METHOD, INPUT, OUTPUT, and ATTRIBUTE), and arranging them to always be in the
same order, the specification can be greatly compressed. For example, since the ser-
vice’s NAME property always appears first, the property’s identifier, NAME, can be omit-
ted. Thus, the NAME property in the specification shown in Figure 2 can be compressed
to just 4 bytes, “fft” followed by a null terminator. This compression saves memory and
enables greater matching efficiency.

3.2 ServillaScript

ServillaScript is used to create application tasks. Its syntax is similar to other high
level languages like JavaScript [22], but with key extensions for service provisioning.
An example, shown Figure 3, implements an application that periodically takes the
temperature and sends the reading to the base station. It declares the name of the file
containing the specification of the required service on line 1, which in this case is a

Servilla Middleware

Virtual
Machine

Service Provisioning Framework

Consumer Provider

Fig. 4. Servilla’s middleware consists of a virtual machine and a service provisioning framework
(SPF). The SPF consists of a consumer and provider.

temperature sensing service. The task initiates the service binding process on line 5. In
this case, registries within two hops are searched. The task then loops ten times invoking
the service on line 7 and sending the temperature to the base station on line 8. The task
ends by disconnecting from the service on line 10.

The example above illustrates how ServillaScript enables tasks to 1) indicate which
services are needed, 2) initiate the service discovery process, 3) invoke services, and
4) disconnect from services. Aspects not shown for brevity include checking whether
a service is bound, and, if so, how many hops away the service is located. This will
allow the task to throttle how often it invokes the service based on its distance. Another
aspect not shown is error handling code. If an error occurs due to a service becoming
unavailable, the invocation will return an error indicating the cause, as discussed in
Section 2.

4 Middleware

Servilla’s middleware architecture, as shown in Figure 4, consists of a virtual machine
(VM) and a service provisioning framework (SPF). The VM is responsible for executing
application tasks. The SPF consists of a consumer (SPF-Consumer) that discovers and
accesses services, and provider (SPF-Provider) that advertises and executes services.

A VM is used because WSN nodes contain processors that span a wide range of
instruction sets. Application tasks are compiled into the VM’s instruction set, which is
uniform across all hardware platforms, ensuring that tasks are platform-independent.
Furthermore, the VM provides the dynamic deployment of application tasks, justifying
the need for dynamic service binding. The VM is based on Agilla [23] though with ma-
jor extensions to support services and the SPF. Specifically, whenever a task performs
an operation involving a service, the VM passes the task to the SPF-Consumer, which
is described next.

4.1 SPF-Consumer

The SPF-Consumer is responsible for discovering, matching, and invoking services on
behalf of tasks. As shown in Figure 5 the SPF-Consumer consists of a Service Finder,
Binding Table, and Service Scheduler. The Service Finder is responsible for finding
services that match a task’s specifications. It first searches locally and, if no matches

Service Provisioning Framework

Service Registry
Service
Finder

Matchmaker

Service
Scheduler

Remote
Invocator

Services

Network Stack

Operating
System

Sensor
Drivers

Storage
Drivers

Platform-Specific
Services

Service
Discovery

Binding Table

SPF-Provider

SPF-
Consumer

Fig. 5. The detailed architecture of the Service Provisioning Framework.

are found, searches one hop neighbors. Note that while this increases the likelihood of
selecting a local service, it does not necessarily select the most energy efficient provider.
If a task wanted to bind to an energy efficient provider, it can include an energy attribute
in its service specification, thus enabling energy efficient service provisioning. When a
provider is selected, its address is stored in the Binding Table. The Binding Table maps
the task’s service specification to the provider that will perform the service. It is updated
when the Service Finder discovers a better provider and when a task explicitly unbinds
from a service. A task can query a Binding Table to determine whether it has access to
a particular service.

The Service Scheduler carries out the actual invocation. It takes the input parameters
provided by the task, sends them to the provider, and waits for the results to arrive. Once
the results arrive, it passes them to the task which can then resume executing. If the
results do not arrive within a certain time, the Service Scheduler aborts the operation
and notifies the task of the error.

4.2 SPF-Provider

The SPF-Provider is responsible for providing and executing services. Its architecture,
shown in Figure 5, consists of a Service Registry, Matchmaker, Remote Invocator,
and Service Discovery component. The Service Registry contains the specifications
of all locally-provided services. The Matchmaker is used to determine whether a ser-
vice meets the requirements of a task. When the SPF-Consumer tries to find a service,
the Matchmaker is used to determine whether a matching service exists. Note that in
this architecture, the task’s specification must be sent from the SPF-Consumer to the
SPF-Provider. This is because the Matchmaker is located on the SPF-Provider. Alter-
natively, the Matchmaker can be moved onto the SPF-Consumer to reduce the footprint
of the SPF-Provider. However, this requires that all specifications be sent to the SPF-
Consumer, a process that may incur higher communication cost.

TelosB Imote2
Processor 8MHz 16-bit TI MSP430 13-416MHz 32-bit Intel PXA271 XScale
Radio IEEE 802.15.4 IEEE 802.15.4
Memory 48KB Code, 10KB Data 32MB Shared
Price $99 $299

Table 1. WSN nodes vary widely in computational resources.

4.3 Middleware Modularity

WSNs are becoming extremely diverse with resources that differ by several orders of
magnitude [53, 16]. To accommodate the wide range of resource availability, Servilla’s
middleware is modularized and configurable such that a node does not need to imple-
ment every module to participate in the network. For example, the middleware can be
configured in the following ways:

– VM + SPF: The full Servilla framework.
– VM + SPF-Consumer: Executes tasks and provides access to remote services only.
– SPF-Provider: Provides services for neighboring tasks to use.

A detailed analysis of the memory consumed by each configuration is given in Sec-
tion 5.1. The configuration containing only the SPF-Provider is particularly interesting
because it allows resource-weak but energy efficient nodes to provide services to more
powerful nodes. This can result in greater overall energy efficiency and, assuming the
weak nodes are less costly and more numerous, increase sensing density while achiev-
ing greater sensing coverage.

It is important that, while Servilla allows different configurations to support hetero-
geneous platforms, the different configurations are transparent to applications tasks due
to the decoupled nature of the SOC model. For example, a task need not know whether
there is a local SPF-Provider. If a task requires a service, it will be coincidentally be
bound to a remote provider.

4.4 Implementation

Servilla has been implemented on TinyOS 1.0 and two representative hardware plat-
forms shown in Table 1. It is divided into two levels as shown in Figure 6: a lower
level consisting of shared components and a higher level consisting of Servilla’s VM
and SPF. This section first discusses the lower level followed by the upper level. It ends
with a discussion of Servilla’s programming languages.

The shared components implement low-level mechanisms needed by most high-
level components. The dynamic memory manager makes more efficient use of memory.
This is important because Servilla has several components that require varying amounts
of memory over time. The dynamic memory manager provides just enough memory
for each higher-level component to complete their function and reclaims the memory
when it is no longer needed. It is shared by most components in Servilla’s middleware,
maximizing the flexibility of memory allocation. To aid in debugging, Servilla provides

Service
Scheduler

Service
Registry

Binding
Table

Service
Finder

Service
Matchmaker

Services

Code
Manager

Stack
Manager

Error Manager

Gateway
Manager

Neighbor
List

Script
Manager

Receiver Sender

Script Migration

Script Execution

Script
Scheduler

Context
Discovery

VM

SPF-Consumer SPF-Provider

SPF

Shared Components

Dynamic Memory Manager

Specification
Table

Services

Fig. 6. Servilla’s middleware components.

an error manager that detects and sends summaries of problems to the base station. The
error manager is shared by all other components in Servilla’s middleware.

The SPF is implemented natively using NesC and is divided into two modules, the
SPF-Consumer and SPF-Provider, as shown in Figure 6. In the SPF-Consumer, the im-
plementation of the Service Scheduler is simplified by serializing service invocations.
This has the added benefit of avoiding saturating the wireless channel. To increase en-
ergy efficiency, the Service Finder first searches the local Service Repository, if one is
available, before searching one-hop neighbors. In the SPF-Provider, the Service Reg-
istry is able to support up to 256 local services.

Servilla’s compiler can compile ServillaScript and ServillaSpec into a compact bi-
nary format. For example, the task shown in Figure 3 is compiled into 181 bytes of code
and 30 bytes of specifications, and the specification shown in Figure 2 is compiled into
just 64 bytes. Both the Servilla middleware and compiler have been released as open-
source software at http://mobilab.wustl.edu/projects/servilla/.

5 Evaluation

This section presents empirical measurement of the code size and performance over-
head of Servilla on both the TelosB [53] and Imote2 [16] platforms. The efficacy of the
Servilla programming model is demonstrated through an application case study in the
next section.

5.1 Memory Footprint

An Imote2 has sufficient memory (32MB) to hold the entire Servilla middleware. Com-
piled for the Imote2, the total size of the middleware without services is a mere 318KB.
This is only about 1% of the total, leaving plenty for services. In contrast, TelosB nodes
only have 48KB of code memory. While TelosB does not have enough memory to hold
all the components of Servilla, it can support the SPF-consumer configuration which

Node CPU Speed Bus Speed Sig. Attr. 1 Attr. 2 Attr. 3 Other Total Units
TelosB 8MHz 8MHz 18 14 24 29 8 92 ms

Imote2 13MHz 13MHz 1569 1421 2642 3272 784 9688 µs

Imote2 104MHz 104MHz 198 180 330 408 94 1209 µs

Imote2 208MHz 208MHz 99 89 165 204 47 604 µs

Imote2 416MHz 208MHz 71 62 113 136 31 413 µs

Table 2. Service matching latency when comparing two FFT-real service specifications

only consumes 32 KB of code memory. This capability allows TelosB to join and con-
tribute to a WSN as service providers to more powerful nodes. As shown in previous
work [26] and our case study presented in Section 6, effective integration of resource-
constrained nodes and more powerful nodes can combine the advantages of pervasive
low-power sensing and computational resources and enhance energy efficiency. This
example shows how Servilla’s modular architecture enables it to support diverse hard-
ware platforms.

5.2 Efficiency of Service Binding

Service binding consists of three parts: discovery, matching, and selection. This study
first focuses on discovery followed by matching and selection. Recall that the current
implementation requires the Service Finder to query each neighbor individually for a
match. This is because Servilla uses a reliable network interface that does not support
wireless broadcasts. To optimize the selection, the Service Finder first searches locally
before remotely. Since the latency of a local search is negligible, we evaluate the latency
of a remote search.

The latency of a remote search depends on the number of neighbors, the percentage
of them that provide a matching service, and the order in which they are queried. At a
minimum, one neighbor will be queried. Since each additional query will proportion-
ately increase the latency, this study evaluates only a single query. An Imote2 is used
to query a TelosB to determine whether the TelosB provides a particular service. In
this case, the service being queried is FFT and the specification is shown in Figure 2.
It is compiled into 64 bytes, which must be sent from the Imote2 to the TelosB. Due
to various bookkeeping variables, the size of the query message is 72 bytes, and the
reply message is 16 bytes. The time between sending the query to receiving a reply is
measured by toggling a general I/O pin before and after the query, and capturing the
time between toggles using an oscilloscope. Averaged over 100 trials, the latency and
90% confidence interval is 245.6 ± 1ms. This latency is acceptable to many WSN ap-
plications. Moreover, it may be amortized over multiple invocations of the same service
after it is bound to the task.

To evaluate the efficiency of service matching, the Matchmaker is used to compare
two copies of FFT, shown in Figure 2. This incurs the worst-case latency since ev-
ery property within the specification must be compared. Each experiment is repeated
twenty times on both TelosB and Imote2 platforms running at all possible CPU speeds

0

10

20

30

40

50

60

70

80

90

100

15 20 25 30 35 40 45 50 55 60 65

La
te

n
cy

 (
m

s)

Specification Size (Bytes)

Imote2 13MHz TelosB

Fig. 7. The latency of comparing a specification vs. its size.

and the average latency is calculated. The results are shown in Table 2.1 They indicate
that the TelosB takes about 92ms to perform a match, while the Imote2 is at least ten
times faster. The latencies are small compared to the execution times of certain VM in-
structions. Note that while service matchmaking does introduce overhead, it is usually
done infrequently relative to service invocation.

To determine how the specification’s size affects matching latency, FFT is compared
to versions of itself with one, two, and all three of its attributes removed. The matching
latencies is plotted against their sizes and the results are shown in Figure 7. For brevity,
only the Imote2 running at 13MHz is shown. The latency when the Imote2 is running at
higher frequencies is significantly lower. The results indicate that the latency is roughly
proportional to its size. It is not exactly proportional because of the additional over-
head incurred with the addition of each attribute, as indicated by the “other” column in
Table 2.

6 Application Case Study

This section evaluates Servilla using an application case study, specifically one designed
to localize damage in structures (e.g., a bridge). This application enables real-time
evaluation of a structure’s integrity, reducing manual inspection costs while increas-
ing safety. WSNs have recently been used to successfully localize damage to exper-
imental structures using a homogeneous network of Imote2 nodes [28]. In this case,
the algorithm, called Damage Localization Assurance Criterion (DLAC), was written
using NesC specifically for the Imote2. The implementation using Servilla generalizes
and improves upon the original by making it platform-independent and increasing its
overall energy efficiency by exploiting network heterogeneity.

The heterogeneous WSN used in this study consists of TelosB and Imote2 nodes.
DLAC can only run on the Imote2 due to insufficient memory on the TelosB. However,

1 The confidence intervals are negligible since the experiment runs locally and the measurements
exhibit very low variance.

NAME = AccelTrigger

METHOD = start

INPUT =

OUTPUT =

METHOD = stop

INPUT =

OUTPUT =

METHOD = check

INPUT =

OUTPUT =

ATTRIBUTE power = ...

Interface

Attributes

Name

(a) The specification of service
AccelTrigger provided by Imote2
and TelosB nodes. The power attribute
specifies the amount of power the service
consumes. It is 145mW on the Imote2,
and 9mW on the TelosB.

NAME = AccelTrigger

...

ATTRIBUTE power < 50
Interface
Attributes

Name

(b) The specification of a low-power ver-
sion of service AccelTrigger, which
is provided by the application task. Its in-
terface is omitted since it is the same as
the one in Figure 8(a). A high-power ver-
sion has attribute power ≥ 50 mW.

NAME = DLAC

METHOD = find

INPUT =

OUTPUT = float[25]

Interface

Name

(c) The specification of service DLAC
provided by Imote2 nodes.

Fig. 8. The services used by the damage localization application

Imote2 nodes consume more energy than TelosB nodes. Our new structural health mon-
itoring application combines the advantages of both platforms by keeping the Imote2
nodes idle as much as possible, and using the TelosB nodes to monitor the ambient vi-
bration levels. The Imote2 nodes are only activated when the TelosB nodes detect that
the ambient vibration levels exceed a certain threshold, at which time they perform the
DLAC algorithm. The dual-level nature of this configuration is common to other appli-
cations such as surveillance [30], and is essential for conserving energy and ensuring
network longevity.

The Servilla implementation relies on two services: AccelTrigger and DLAC.
Ambient vibrations are monitored by AccelTrigger, which sets a flag when a thresh-
old is exceeded. Its specification is shown in Figure 8(a). The service has three methods:
start, stop, and check. Methods start and stop control when the service mon-
itors the local accelerometer. The status of the flag is obtained by invoking check. Both
the Imote2 and TelosB nodes provide AccelTrigger. They differ in their power at-
tribute, since the Imote2 consumes more power than the TelosB (145mW vs. 9mW).

The specification of service DLAC is shown in Figure 8(c). It contains a single
method, find, that takes no parameters and returns an array of floating-point num-
bers that are used to localize damage to the bridge [28].

The application’s task is shown in Figure 9. The first three lines specify the names of
the files containing the required service specifications. The content of AccelTriggerLP
is shown in Figure 8(b), and the content of DLAC is shown in Figure 8(c). Notice
that AccelTriggerLP matches the TelosB version of the AccelTrigger service
shown in Figure 8(a) because its power attribute is less than 50mW. AccelTriggerHP
contains the same specification as AccelTriggerLP except its power attribute is
≥ 50 mW, which matches the service provided by the Imote2.

1. uses AccelTiggerHP;
2. uses AccelTiggerLP;
3. uses DLAC;
4.
5. void main() {
6. bind(DLAC, 0); // bind DLAC service
7. if(!isBound(DLAC)) exit(); // failed to bind DLAC
8. bind(AccelTriggerLP, 1); // bind low-power AccelTrigger service
9. if(isBound(AccelTriggerLP)) {
10. invoke(AccelTriggerLP, “start”);
11. waitForTrigger(1);
12. } else {
13. bind(AccelTriggerHP);
14. if(isBound(AccelTriggerHP)) {
15. invoke(AccelTriggerHP, “start”);
16. waitForTrigger(0);
17. }
18. }
19. }
20.
21. void waitForTrigger(int useLowPower) {
22. while(true) {
23. int vibration;
24. if (useLowPower)
25. vibration = invoke(AccelTriggerLP, “check”);
26. else
27. vibration = invoke(AccelTriggerHP, “check”);
28. if (vibration == 1) {
29. if (useLowPower)
30. invoke(AccelTriggerLP, “stop”);
31. else
32. invoke(AccelTriggerHP, “stop”);
33. doDLAC();
34. }
35. sleep(1024*60*5); // sleep for 5 minutes
36. }
37. }
38.
39. void doDLAC() {
40. float[25] dlac data;
41. dlac data = invoke(DLAC, “find”);
42. send(dlac data); // send DLAC data to base station
43. }

Fig. 9. The damage localization application task

The application attempts to reduce energy consumption by preferentially binding to
an Acceltrigger service that consumes less power. It does this by first attempting
to bind using the specification within AccelTriggerLP on line 8, before using the
specification within AccelTriggerHP on line 13. Once an AccelTrigger service
is bound, the task periodically queries it to determine if the acceleration readings are
above a certain threshold (lines 21-37). If it is, DLAC is invoked and the results are sent
to the base station (lines 41-42).

To evaluate the benefit of exploiting network heterogeneity on Servilla, the task
shown in Figure 9 is injected into two WSNs: a homogeneous network consisting
of only Imote2 devices, and a heterogeneous network consisting of both Imote2 and
TelosB devices. Since the application is written using Servilla, it is able to run on both
types of networks without modification. In both cases, DLAC is executed by the Imote2,
meaning the power consumption of performing damage localization is constant. How-
ever, the power consumption of AccelTrigger does vary. This is because Servilla’s

0 5 10 15 20 25 30 35
30

35

40

45

50

55

Service invocation period (minutes)

P
ow

er
 s

av
in

gs
 (

pe
rc

en
t)

55Hz Sensing
35Hz Sensing
15Hz Sensing

Fig. 10. Percent power savings of heterogeneous vs. homogeneous WSN.

service provisioning framework enables an application to exploit more energy-efficient
services when possible in a platform-independent and declarative fashion. Specifically,
if TelosB nodes are present, the service will be executed on a TelosB node since its
AccelTrigger service consumes less power, otherwise it will be executed on the
Imote2. We compare the power consumption of invoking AccelTrigger in different
network configurations.

Since invoking AccelTrigger on the TelosB requires a remote invocation, the
amount of energy saved depends on the invocation and sensing frequencies. If the ser-
vice is invoked too often, more energy will be spent on wireless communication. Like-
wise, if the sensor is accessed very infrequently, the benefits of the TelosB is dimin-
ished since the nodes will remain asleep a larger percentage of the time. To determine
how much energy savings is possible, an oscilloscope is used to measure the time each
platform spends computing, communicating wirelessly, and sensing, in both a homo-
geneous and heterogeneous network. The sensing frequency is varied between 15Hz
and 55Hz (the maximum sampling frequency of the TelosB), and the service invocation
frequency is varied between 50 seconds to 35 minutes. The percent savings of using a
heterogeneous network relative to a homogeneous network is then calculated and the
results are shown in Figure 10.

The results show that the heterogeneous implementation using Servilla achieves as
much as 52% power savings, and the savings increase with sensing frequency. The re-
sults also show that invoking the service too frequently will reduce the amount of power
saved since doing so incurs more network overhead. There is a limit to the amount of
energy that can be saved as the service invocation period increases since it approaches
the difference between the sensing energy consumed by the Imote2 versus the TelosB.

This case study demonstrates how Servilla enables the development of platform-
independent applications that operate over a heterogeneous WSN, and how Servilla
facilitates in-network collaboration between different types of nodes to attain higher
energy efficiency. Moreover, it demonstrates that Servilla enables an application to bind
to a more energy-efficient service through service specification.

7 Related Work

SOC has long been used on the Internet to enable independently-developed appli-
cations to interoperate. There are many SOC systems including SLP [35], Jini [36],
CORBA [51], Salutation [14], and Web Services [2]. They provide technologies that
enable language-independent communication, which is essential for interoperability.
Some of these include SOAP [20], RPC [19], DCOM [20], and WCF [45]. Servilla
has three salient features that distinguish it from general-purpose SOC frameworks.
First, it focuses on how service-provisioning language and middleware can be made
lightweight. This is necessary due to the limited resources available on some WSN
nodes. Second, Servilla is specifically designed for localized service binding which is
a common coordination model for WSNs. Moreover, Servilla provides a modular mid-
dleware architecture that can be configured for diverse sensor network platforms with
an extremely wide range of resources.

SOC is a topic of interest in the coordination community. For example, new lan-
guages have been developed that enable formal reasoning about complex service inter-
actions and compositions [8, 1, 43, 3]. Calculi have been developed to model sessions
and multi-party dynamic interactions between service users and providers [44, 13]. New
ways of specifying quality-of-service requirements and achieving higher levels of reli-
ability have been proposed [4, 10, 12, 49, 9]. SOC has even been used in non-traditional
environments like mobile ad hoc networks [29]. Recently, there has been increased in-
terest in context-aware applications [50, 24, 17]. WSNs, being embedded and able to
sense the environment, are inherently context-aware. This paper takes the natural next
step of applying SOC principles to WSNs. The key distinguishing feature of Servilla
lies in its capability to support both resource-constrained nodes and more powerful
nodes, and its light-weight language and middleware tailored for in-network coordina-
tion among sensors.

There are some efforts to port traditional SOC technologies into the WSN domain.
They include Tiny Web Services [54] and Arch Rock’s PhyNetTM [6]. Both optimize
traditional Internet protocols to function under the severe resource constraints of WSNs.
Unlike Servilla, they do not provide a mechanism for service discovery or the flexible
matching between service users and consumers within the WSN. Instead, they focus
on how to enable language-independent communication between services inside the
WSN and applications outside of the WSN. Servilla is complementary to these efforts;
Servilla may leverage off of these systems to expose WSN services to applications ex-
ternal to the WSN, while these systems may rely on Servilla to bring the full capabilities
of SOC inside the WSN itself.

In addition to SOC, Servilla shares the common approach of using scripts in a WSN,
though for different reasons. Some scripting systems, including Maté [39], ASVM [40],
SwissQM [48], and Agilla [23], enable reprogramming. Other systems, including Melete [58]
and SensorWare [11], enable multiple applications to share a WSN. All of these systems
come with different scripting languages [38, 21, 27, 42, 57]. Servilla differs by focus-
ing on challenges due to network heterogeneity and dynamics. Unlike other systems,
Servilla allows scripts to remain platform-independent and dynamically find and access
platform-specific services. One scripting system, DVM [7], explores the similar idea of
integrating platform-independent scripts with native services. It features a dynamically

extensible virtual machine in which services can register extensions. While this enables
tuning the boundary between interpreted and native code, DVM does not support flexi-
ble matching between scripts and services.

Servilla introduces the idea of a modular and configurable platform in which ex-
tremely resource-poor nodes only implement a fraction of the entire framework. This
enables a hierarchy in which weak nodes serve more powerful nodes. The idea of hav-
ing a hierarchy within a WSN is not new. Tenet [26] promotes this idea by creating a
two-tired WSN in which the lower tier consists of resource-poor nodes that can accept
tasks from higher-tier nodes. It differs from Servilla in that it does not support SOC
which enables flexible discovery and binding between different nodes. SONGS [41] is
an architecture for WSNs that allows users to issue queries that are automatically de-
composed into graphs of services which are mapped onto actual nodes. SONG does not
provide flexible service binding among heterogeneous nodes.

8 Conclusions

The increasing difficulty of developing applications for heterogeneous and dynamic
WSNs demands a new coordination model. Servilla provides this by introducing a
novel service provisioning model that enables application components to communicate
in a dynamic network, while service provisioning enables applications to be platform-
independent while still able to access platform-specific services. A specialized service
description language is introduced that enables flexible matching between applications
and services, which may reside on different nodes. Servilla provides a modular middle-
ware architecture to enable resource-poor nodes to contribute services, facilitating in-
network collaboration among a wide range of devices. The efficiency of Servilla’s im-
plementation is established via microbenchmarks on two representative classes of hard-
ware platforms. The effectiveness of Servilla’s programming model is demonstrated by
a structural health monitoring application case study.

Acknowledgment

This work is funded by the National Science Foundation under grants CNS-0520220,
CNS-0627126, and CNS-0708460.

References

1. ABREU, J., AND FIADEIRO, J. L. A coordination model for service-oriented interactions.
In Lea and Zavattaro [37], pp. 1–16.

2. ALONSO, G., CASATI, F., KUNO, H., AND MACHIRAJU, V. Web Services. Springer, 2003.
3. ANKOLEKAR, A., HUCH, F., AND SYCARA, K. P. Concurrent semantics for the web ser-

vices specification language daml-s. In Arbab and Talcott [5], pp. 14–21.
4. ARBAB, F., CHOTHIA, T., MENG, S., AND MOON, Y.-J. Component connectors with qos

guarantees. In Murphy and Vitek [46], pp. 286–304.
5. ARBAB, F., AND TALCOTT, C. L., Eds. Coordination Models and Languages, 5th Inter-

national Conference, COORDINATION 2002, YORK, UK, April 8-11, 2002, Proceedings
(2002), vol. 2315 of Lecture Notes in Computer Science, Springer.

6. ARCH ROCK. Arch Rock PhyNetTM. http://www.archrock.com/product/.
7. BALANI, R., HAN, C.-C., RENGASWAMY, R. K., TSIGKOGIANNIS, I., AND SRIVASTAVA,

M. Multi-level software reconfiguration for sensor networks. In EMSOFT’06 (New York,
NY, USA, 2006), ACM Press, pp. 112–121.

8. BETTINI, L., NICOLA, R. D., AND LORETI, M. Implementing session centered calculi. In
Lea and Zavattaro [37], pp. 17–32.

9. BOCCHI, L., CIANCARINI, P., AND ROSSI, D. Transactional aspects in semantic based
discovery of services. In Jacquet and Picco [34], pp. 283–297.

10. BOCCHI, L., AND LUCCHI, R. Atomic commit and negotiation in service oriented comput-
ing. In Ciancarini and Wiklicky [15], pp. 16–27.

11. BOULIS, A., HAN, C.-C., AND SRIVASTAVA, M. Design and implementation of a frame-
work for efficient and programmable sensor networks. In MobiSys’03 (May 2003), USENIX,
pp. 187–200.

12. BRAVETTI, M., AND ZAVATTARO, G. A theory for strong service compliance. In Murphy
and Vitek [46], pp. 96–112.

13. BRUNI, R., LANESE, I., MELGRATTI, H. C., AND TUOSTO, E. Multiparty sessions in soc.
In Lea and Zavattaro [37], pp. 67–82.

14. CHAKRABORTY, D., AND CHEN, H. Service discovery in the future for mobile commerce.
Crossroads 7, 2 (2000), 18–24.

15. CIANCARINI, P., AND WIKLICKY, H., Eds. Coordination Models and Languages, 8th Inter-
national Conference, COORDINATION 2006, Bologna, Italy, June 14-16, 2006, Proceedings
(2006), vol. 4038 of Lecture Notes in Computer Science, Springer.

16. CROSSBOW TECHNOLOGIES. Imote2 datasheet. http://tinyurl.com/5jrw85.
17. CUBO, J., SALAÜN, G., CÁMARA, J., CANAL, C., AND PIMENTEL, E. Context-based

adaptation of component behavioural interfaces. In Murphy and Vitek [46], pp. 305–323.
18. CULLER, D., ESTRIN, D., AND SRIVASTAVA, M. Overview of sensor networks. IEEE

Computer 37, 8 (2004), 41–49.
19. DAVE MARSHALL. Remote procedure calls (rpc). http://www.cs.cf.ac.uk/

Dave/C/node33.html.
20. DAVIS, A., AND ZHANG, D. A comparative study of soap and dcom. J. Syst. Softw. 76, 2

(2005), 157–169.
21. DUNKELS, A. A low-overhead script language for tiny networked embedded systems. Tech.

Rep. T2006:15, Swedish Institute of Computer Science, Sept. 2006.
22. FLANAGAN, D. JavaScript: The Definitive Guide, 4th Ed. O’REILLY, Inc., 2001.
23. FOK, C.-L., ROMAN, G.-C., AND LU, C. Rapid development and flexible deployment of

adaptive wireless sensor network applications. In ICDCS’05 (June 2005), IEEE, pp. 653–
662.

24. FREY, D., AND ROMAN, G.-C. Context-aware publish subscribe in mobile ad hoc networks.
In Murphy and Vitek [46], pp. 37–55.

25. GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. The
nesc language: A holistic approach to networked embedded systems. In PLDI’03 (New York,
NY, USA, 2003), ACM, pp. 1–11.

26. GNAWALI, O., JANG, K.-Y., PAEK, J., VIEIRA, M., GOVINDAN, R., GREENSTEIN, B.,
JOKI, A., ESTRIN, D., AND KOHLER, E. The tenet architecture for tiered sensor networks.
In SenSys’06 (New York, NY, USA, 2006), ACM Press, pp. 153–166.

27. GREENSTEIN, B., KOHLER, E., AND ESTRIN, D. A sensor network application construc-
tion kit (snack). In SenSys’04 (New York, NY, USA, 2004), ACM, pp. 69–80.

28. HACKMANN, G., SUN, F., CASTANEDA, N., LU, C., AND DYKE, S. A holistic approach
to decentralized structural damage localization using wireless sensor networks. In RTSS’08
(11 2008), IEEE.

29. HANDOREAN, R., AND ROMAN, G.-C. Service provision in ad hoc networks. In Arbab
and Talcott [5], pp. 207–219.

30. HE, T., KRISHNAMURTHY, S., LUO, L., YAN, T., GU, L., STOLERU, R., ZHOU, G.,
CAO, Q., VICAIRE, P., STANKOVIC, J. A., ABDELZAHER, T. F., HUI, J., AND KROGH,
B. Vigilnet: An integrated sensor network system for energy-efficient surveillance. ACM
Trans. Sen. Netw. 2, 1 (2006), 1–38.

31. HE, T., KRISHNAMURTHY, S., STANKOVIC, J. A., ABDELZAHER, T., LUO, L., STOLERU,
R., YAN, T., GU, L., ZHOU, G., HUI, J., AND KROGH, B. Vigilnet:an integrated sensor
network system for energy-efficient surveillance. ACM Transactions on Sensor Networks
(under submission) (2004).

32. HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D., AND PISTER, K. System
architecture directions for networked sensors. In Architectural Support for Programming
Languages and Operating Systems (2000), pp. 93–104.

33. INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In MobiCom ’00: Proceedings of
the 6th annual international conference on Mobile computing and networking (New York,
NY, USA, 2000), ACM, pp. 56–67.

34. JACQUET, J.-M., AND PICCO, G. P., Eds. Coordination Models and Languages, 7th Inter-
national Conference, COORDINATION 2005, Namur, Belgium, April 20-23, 2005, Proceed-
ings (2005), vol. 3454 of Lecture Notes in Computer Science, Springer.

35. KEMPF, J., AND PIERRE, P. S. Service location protocol for enterprise networks: imple-
menting and deploying a dynamic service finder. John Wiley & Sons, Inc., New York, NY,
USA, 1999.

36. KUMARAN, I., AND KUMARAN, S. I. Jini Technology: An Overview. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001.

37. LEA, D., AND ZAVATTARO, G., Eds. Coordination Models and Languages, 10th Inter-
national Conference, COORDINATION 2008, Oslo, Norway, June 4-6, 2008. Proceedings
(2008), vol. 5052 of Lecture Notes in Computer Science, Springer.

38. LEVIS, P. The TinyScript Manual. http://tinyurl.com/57kycj, July 2004.
39. LEVIS, P., AND CULLER, D. Maté: a tiny virtual machine for sensor networks. In ASP-

LOS’02 (New York, NY, USA, 2002), ACM Press, pp. 85–95.
40. LEVIS, P., GAY, D., AND CULLER, D. Active sensor networks. In NSDI’05 (May 2005).
41. LIU, J., AND ZHAO, F. Towards semantic services for sensor-rich information systems. In

2nd Int. Conf. on Broadband Networks (2005), pp. 44–51.
42. MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. Tag: a tiny aggre-

gation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, SI (2002), 131–146.
43. MAZZARA, M., AND GOVONI, S. A case study of web services orchestration. In Jacquet

and Picco [34], pp. 1–16.
44. MEZZINA, L. G. How to infer finite session types in a calculus of services and sessions. In

Lea and Zavattaro [37], pp. 216–231.
45. MICROSOFT. Windows communication foundation. http://msdn2.microsoft.

com/en-us/library/ms735119.aspx.
46. MURPHY, A. L., AND VITEK, J., Eds. Coordination Models and Languages, 9th Interna-

tional Conference, COORDINATION 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings
(2007), vol. 4467 of Lecture Notes in Computer Science, Springer.

47. MURTY, R., GOSAIN, A., TIERNEY, M., BRODY, A., FAHAD, A., BERS, J., AND WELSH,
M. Citysense: A vision for an urban-scale wireless networking testbed. Tech. Rep. 13-07,
Harvard University, 2007.

48. MLLER, R., ALONSO, G., AND KOSSMANN, D. A virtual machine for sensor networks. In
EuroSys 2007 (March 2007).

49. NORES, M. L., DUQUE, J. G., AND ARIAS, J. J. P. Managing ad-hoc networks through the
formal specification of service requirements. In Ciancarini and Wiklicky [15], pp. 164–178.

50. NÚÑEZ, A., AND NOYÉ, J. An event-based coordination model for context-aware applica-
tions. In Lea and Zavattaro [37], pp. 232–248.

51. OBJECT MANAGEMENT GROUP. Corba basics. http://www.omg.org/
gettingstarted/corbafaq.htm.

52. PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., AND LEYMANN, F. Service-oriented
computing: State of the art and research challenges. Computer 40, 11 (2007), 38–45.

53. POLASTRE, J., SZEWCZYK, R., AND CULLER, D. Telos: enabling ultra-low power wireless
research. In IPSN’05 (Piscataway, NJ, USA, 2005), IEEE Press, p. 48.

54. PRIYANTHA, N., KANSAL, A., GORACZKO, M., AND ZHAO, F. Design and implementa-
tion of an evolutionary sensor network. In SenSys’08 (New York, NY, USA, 2008), ACM.

55. STREELINE. Parking management. http://www.streetlinenetworks.com.
56. W3C. Web services description language (wsdl). http://www.w3.org/TR/wsdl.
57. YAO, Y., AND GEHRKE, J. The cougar approach to in-network query processing in sensor

networks. SIGMOD Rec. 31, 3 (2002), 9–18.
58. YU, Y., RITTLE, L. J., BHANDARI, V., AND LEBRUN, J. B. Supporting concurrent appli-

cations in wireless sensor networks. In SenSys’06 (New York, NY, USA, 2006), ACM Press,
pp. 139–152.

	Washington University in St. Louis
	Washington University Open Scholarship
	Report Number: wucse-2009-2
	2009

	Enhanced Coordination in Sensor Networks through Flexible Service Provisioning
	Recommended Citation
	Enhanced Coordination in Sensor Networks through Flexible Service Provisioning

	tmp.1415131658.pdf.KyCtC

