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ABSTRACT
As with all wireless communication devices, wireless sen-
sor networks (WSNs) are subject to interference from other
users of the radio-frequency (RF) medium. Such interference
is practically never random: originating in applications gen-
erally performing some practical and sensible activities, it
naturally exhibits various regularities amounting to percep-
tible patterns, e.g., regularly-spaced short-duration impulses
that correlate among multiple WSN nodes. If those nodes
can recognize the interference pattern, they can benefit from
steering their transmissions around it. This possibility has
stirred some interest among researchers involved in cogni-
tive radios, where special hardware has been postulated to
circumvent non-random interference. Our goal is to explore
ways of enhancing medium access control (MAC) schemes
operating within the framework of traditional off-the-shelf
RF modules applicable in low-cost WSN motes, such that
they can detect interference patterns in the neighbourhood
and creatively respond to them mitigating their negative im-
pact on the packet reception rate. In this paper, we describe
(a) a method for the post-deployment dynamic characteri-
zation of a channel aimed at identifying spiky interference
patterns, (b) a way to incorporate interference models into
an existing WSN emulator, and (c) the subsequent evalua-
tion of a proof-of-concept MAC technique for circumventing
the interference. We found that an interference-aware MAC
can improve the packet delivery rates in these environments
at the cost of increased latency. Notably, the latter is quite
acceptable in the vast majority of WSN applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; I.5.5 [Pattern Recognition]: Implemen-
tation—special architectures

General Terms
Experimentation, Performance, Measurement, Algorithms

Keywords
Classification, interference, sampling, wireless sensor net-
works, channel modelling, medium access control

1. INTRODUCTION
Wireless sensor networks (WSNs) typically operate in the
industrial, scientific, and medical (ISM) unlicensed radio
bands centred at 433.92 MHz, 915 MHz, and 2.450 GHz.
Their nodes must be particularly resilient to interference
because the ISM bands are heavily used, particularly in
dense urban environments [6]. The users of them are quite
varied, too, with some examples including cordless tele-
phones/headphones, wireless local area networks (WLANs),
and microwave ovens.

Even though external interference is an unfortunate reality
in many environments, few papers explicitly address it. In-
stead, researchers typically base their performance studies
on over-simplistic environmental models assuming that the
only disturbance to the “proper” signal from a transmitting
node at the receiver comes from white Gaussian background
noise plus possible interference from peer devices (members
of the same networked wireless system). The two types of
disturbance have received considerable attention in research
under the umbrellas of channel modelling and MAC pro-
tocol design, respectively. The third type of disturbance,
namely external interference from a different wireless sys-
tem, has been much overlooked. This is unfortunate, con-
sidering that the incessantly growing number of wireless ap-
plications, combined with the limited spectrum available to
them, will make the impact of external interference more
and more pronounced. Based on our experience, external
interference is already the predominant source of commu-
nication problems in many WSN systems, especially those
deployed in densely populated urban areas.

When wirelessly receiving an RF signal, the probability of
misinterpreting it depends on the signal to interference-plus-
noise ratio (SINR) [20]. A higher ratio indicates greater dis-
tinction of the signal from the interfering components and
increased likelihood that the receiver can decode it. Devices
external to the WSN can contribute to the interference com-
ponent and have a significant and detrimental effect on a
receiver’s performance.

The potential effect of external interference became bla-
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Figure 1: The different primary interference classes
identified in our RSSI traces. The middle pattern,
representing frequent impulses of short duration, is
the focus of this work.

tantly obvious to us in our 2008 deployment of the Smart
Condo – a network to passively monitor an independent liv-
ing environment [2, 26]. As soon as its simple transceivers
(RF Monolithics TR8100 [21]) began their operation (at
916.5 MHz), we noticed significant packet losses even over
short distances and with the obvious lack of interference
from peers. Those losses disappeared when the same set
of motes was moved to another environment (several blocks
away) for an in-lab study of their poor performance. Having
thus confirmed that the environment itself was the culprit,
we returned to it with another WSN comprised of 16 motes,
whose intention was to assess the character of the external
interference. We specifically wanted that assessment to be
carried out by a WSN (as opposed to some specialized and
sophisticated spectrum analyzing equipment), because one
of its objectives was to make the network aware of the in-
terference via its own means, such that it could analyze the
problem and respond to it all by itself. The nodes of the
new WSN were equipped with more flexible RF modules,
namely Texas Instruments CC1100 [28], capable of collect-
ing digitized samples of the received signal strength indica-
tor (RSSI) at high rates over varying channels. Using that
network we took an extensive collection of RSSI traces at
5000 Hz on 256 channels ranging from 904 to 954 MHz [4].
After plotting those traces as time series data, we immedi-
ately identified a number of recurrent interference patterns,
including the one that caused our original alarming packet
losses (Figure 1, middle). Reflecting back on that negative
experience, although the TR8100 transmitted at reasonably
powerful levels (10 dBm), it used a very simple encoding
scheme (on-off keying) that is particularly susceptible to in-
terference [29, 17].

Needless to say, it would be highly presumptuous to claim
that any interference patterns that we observed in a partic-
ular environment and on a particular day should be immedi-
ately generalized into blanket rules applicable to all wireless

systems. However, the very fact that we clearly saw a small
number of simple and easily discernible patterns (some of
which, as we argue later, can be circumvented in software
run at the motes) hints at the potential benefits of playing
the same set of tricks in other circumstances. Then, it is
highly unlikely that what we saw was specific to the one
environment. In particular, the spiky patterns, which are
most interesting from the viewpoint of navigating around
them with packet transmissions, are intuitively natural and
expected to occur in many (otherwise unknown) wireless sys-
tems. For one thing, they may be representative of a typical
(generic) WSN operating in the same area. Although un-
likely to be the case in our environment, one can reasonably
predict that an increasing proliferation of WSNs will bring
about spiky interference patterns. Circumventing them can
be viewed as solving a slightly augmented medium access
control problem, whereby a certain subset of “peers” follow
an unknown and presumably non-responsive (but nonethe-
less systematic) schedule of transmissions. Consequently,
the problem appears general and interesting enough to war-
rant further studies.

In this paper, we explore the avoidance of impulsive (spiky)
interference in dense wireless sensor networks (Figure 1, mid-
dle). We first review work related to the general characteri-
zation of channels (Section 2), and then focus on a technique
capable of identifying this particular pattern (Section 3). In
Section 4, we describe the extension of an existing simulator
with this characterization. After modelling the interference,
we incorporate the classifier and a proof-of-concept MAC
into a WSN application (Section 5) and present the results
from simulating it (Section 6). Finally, in Section 7, we
present some concluding remarks.

2. RELATED WORK
When exploring interference, some researchers have focused
on the interaction of specific protocols, e.g., IEEE 802.11b
(WLAN), 802.15.1 (Bluetooth), and 802.15.4 (ZigBee) [24].
Similarly, others have concentrated their efforts on specific
expected interferers, e.g., Chandra [5] used a spectrum ana-
lyzer in a 3-story building to explore the noise generated by
electronic equipment in a workshop, a photocopier, elevator,
and fluorescent tubes. In this section, we describe the small
body of work that addresses interference more generally.

Using sensor platforms, Srinivasan, Dutta, Tavakoli, and
Levis [23] studied packet delivery performance. With nodes
synchronized, they encountered strong, spatially-correlated
impulses (up to -35 dBm or higher) in their traces. Given the
high correlation, they concluded that the spikes originated
externally to the nodes.

Researchers working on closest-fit pattern matching (CPM)
sampled noise in (a) WLAN-enabled buildings, (b) WLAN-
enabled outdoor areas, (c) outdoor quiet areas, and (d) con-
trolled areas [12, 22]. They sampled channels both overlap-
ping and non-overlapping IEEE 802.11b channels and ob-
served three characteristics: (a) spikes sometimes as strong
as 40 dB above the noise floor, (b) many of the spikes were
periodic, and (c) over time, the noise patterns changed. In
their work, they offered little description of the patterns
beyond what we summarize here. Instead of focusing on
specific patterns, they developed a modelling approach that



initially replays the recorded trace and then estimates future
points based on computed probabilities.

More recently, Srinivasan, Dutta, Tavakoli, and Levis [24]
expanded on much of their previous work. With six syn-
chronized nodes, they sampled RSSI values at 128 Hz and
explored the correlation in the noise traces. They observed
802.11b interference as high at 45 dB above the noise floor,
and in their figures, this interference appears as periodic
impulses at roughly 36 Hz.

In our recent work, we explored measurements from a grid
of sixteen nodes in an indoor urban environment [4]. Within
the 80 m2 space, we deployed the grid with 1.83 m spacing
and elevated each node 28 cm off of the floor. We connected
all of the nodes to a single computer using USB and then
proceeded to simultaneously measure each node’s RSSI value
at 5000 Hz.1 Over a period of roughly 2.5 hours, we scanned
the 256 available channels ranging from 904 to 954 MHz.
Upon inspecting our high resolution traces, we identified the
five recurrent patterns that we show in Figure 1.

3. CHARACTERIZATION
As shown by the representatives of the interference classes
in Figure 1, each pattern class has its its own unique char-
acteristics, ranging from fairly benign (the “quiet” pattern)
to difficult to predict (random impulses). We are interested
in putting such a characterization to constructive use, in
particular with respect to how to ensure better packet loss
performance. Some of the patterns, for example those con-
taining relatively rare random impulses, have little effect
on packet loss rates, and therefore warrant little attention.
Other patterns, such as the random shifting-mean pattern
(bottom of Figure 1) with long bursts of continuous inter-
ference, also provide little opportunity for exploitation. The
pattern that appears to lend itself to exploitation is the rapid
and periodic impulses, and coincidentally, this is the pattern
that affected our original network. Towards this end, we first
address the issue of how to properly characterize this partic-
ular class of interference with the limited resources of a WSN
node. Note that a full-blown “machine learning” approach
to classification is prohibitive for the limited processing and
storage available at the nodes, hence we narrow our search
to techniques amenable to small footprint implementations.

3.1 Simplified Periodic Impulsive Interfer-

ence Characterization
To characterize channels with frequent impulsive interfer-
ence, we start with the classic Lomb periodogram method
of least-squares spectral analysis [14, 19] and simplify it to fit
our resource constraints. In the original method, the Lomb
periodogram for N data points is defined by

PN(ω) ≡
1

2σ2
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1To the best of our knowledge, this sampling rate has been
unmatched so far in a WSN framework.

where ω = 2πf , f is the frequency, hj and tj represent the
magnitude and time of sample j (respectively), h̄ and σ2 are
the mean and variance of all the samples (respectively), and
τ is defined by the relation

tan(2ωτ ) =

∑

j sin 2ωtj
∑

j
cos 2ωtj

(2)

Unfortunately, this exact method is inappropriate for di-
rectly implementing on simple microcontrollers because it

1. requires the storage of all the samples to compute the
mean and variance used in 1 and τ used in 2,

2. makes extensive use of the sine and cosine trigonomet-
ric functions,

3. uses floating-point values throughout, and

4. includes many floating-point multiplications and divi-
sions.

Note that in the last case, one integer-float multiplication or
division on the TI MSP430 could use over 400 instruction
cycles, while a register add or shift operation requires only
a single cycle [27]. Given that many microcontrollers have
limited memory and lack of hardware support for floating-
point arithmetic and trigonometric functions, we consider a
suitable approximation.

We aim for constant memory usage regardless of the sample
size, and instead, allow memory use to scale linearly with
the number of analyzed frequencies. This setup allows us
to collect the potentially large number of samples that may
be required, and at the same time, it encourages us to re-
duce the memory footprint by searching only frequencies of
interest. To make the construction of the algorithm feasible
within mote-class devices, we make a number of compro-
mises/approximations:.

• Mean estimation:
The exact case’s use of the mean h̄ and variance σ2

in 1 would require the logging of all samples. Instead
of taking this approach, we (a) precompute an inte-
ger estimate of the mean and (b) calculate the vari-
ance while collecting samples. We evaluated different
sample sizes for the mean calculation and 200 sam-
ples often proved sufficient. To calculate the variance,
we build an integer sum while obtaining samples and
avoid the multiplication by using a look-up table.

The mean plays a very important role in the algorithm,
which assumes a random distribution of non-periodic
samples around the mean. To reduce the risks associ-
ated with deriving the mean from a non-representative
sample, we constantly adjust it: a sample above it in-
creases it by 1 (and vice versa for samples below it).

• τ elimination:
The calculation of τ is another prerequisite for the ex-
act periodogram. Lomb introduced this parameter to
facilitate the statistical description of the least-squares
spectrum [14]. For our approximation, however, we do
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Figure 2: A three-level approximation of the sine
and cosine functions used when calculating the
Lomb periodogram.

not need such rigour, and intuitively, the periodogram
changes little with shifts in time. We confirmed our
suspicion by comparing several periodograms both be-
fore and after the removal of τ : we observed very little
difference between the two cases.

• Sine and cosine quantization:
The sines and cosines are the final problematic compo-
nent of the exact formulation. Given samples normally
distributed about the mean, i.e., samples lacking pe-
riodicity, the sums of the trigonometric products tend
to zero. On the other hand, a pattern with a period
matching either the wave frequency or a harmonic [16]
will tend to a non-zero sum. We make a number of
approximations here that maintain this fundamental
property.

To calculate the contribution of a new sample, we need
to know the value of the sine and cosine waves corre-
sponding to its time-stamp. A näıve approach might
use the modulo operation to determine the offset; in-
stead, we store an array of time-stamps that mark the
start of each wave’s next cycle. By knowing when the
next wave begins for a given frequency, we can per-
form subtractions and additions to identify the offset
into the current wave. The computational overhead
of maintaining these time-stamps amounts to an in-
teger comparison and typically zero or one addition
for each wave, for each new sample. By quantizing
the wave and making the discontinuities occur at op-
portune locations (bit-shifts of the frequency), we can
easily compute the offset into a wave and avoid divi-
sions.

We have adopted a rather crude (but effective) approx-
imations of the sine and cosine functions (Fig. 2) that
allows us to use four comparisons to determine the cor-
rect offset. Given an offset, we need only add/subtract
whole mean-adjusted samples, and we now only en-
counter zero and one in the denominator. In this case,
we only require 4 short integer sums per frequency.

3.2 Simplification Results
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Figure 3: The performance of identifying frequent
periodic impulses using only the Lomb periodogram.
This graph compares using the original Lomb peri-
odogram against the approximation based on our
3-level trigonometric approximation.

From the original 4096 traces (16 nodes× 256 channels), we
randomly sampled 1024 traces and carefully hand-classified
them for the presence of frequent periodic impulses. We
encountered the pattern in 154 of the traces, and some of
these traces contained other patterns as well.

Since each full trace consists of 175 000 points, we evaluate
the two techniques on subsamples of the traces and compare
both even and Poisson subsampling techniques. For each
trace of subsamples, we record whether the periodogram in-
dicates the presence of frequent periodic impulses. To com-
pare the two techniques, we use the φ coefficient, which is
actually a product-moment coefficient of correlation [11] and
is also called the Matthews correlation coefficient [15]. φ,
which ranges from -1 to 1, indicates the association between
two variables. In this case, one variable is the hand classifi-
cation and the other is the automated classification.

Fig. 3 compares the classification accuracy of the original
versus 3-level trigonometric approximation. After four thou-
sand samples, the performance of the original periodogram
continues to slightly increase while the approximation re-
mains constant. Overall, the approximations perform very
well when compared with the exact periodogram. In the
next step we introduce the particular interference behaviour
as detected and classified here in a simulator.

4. SIMULATION
Our choice of network simulator follows from our choice of
WSN operating system (OS). Although the most prominent
OS described in the literature is quite possibly TinyOS [13],
we use a mature and actively developed alternative named
PicOS [1]. The latter has a number of advantages over the
former, most notably:

1. All of the program dynamics available to the program-
mer are captured by PicOS’s threads (finite state ma-
chines) rather than interrupt service routines (or call-
backs). As all threads share the same (global) stack,
PicOS’s stack has absolutely no tendency to grow un-
controllably.



2. PicOS is incomparably more flexible with respect to
memory. Dynamic memory allocation (even within
devices with less than 1 KB of RAM) is its essential
feature.

After the first paper introduced PicOS in 2003, an existing
simulator gained support for simulating PicOS applications.

A locally-developed event-driven discrete-time network sim-
ulator named SIDE [8, 7] predates PicOS. This program
evolved out of work done in the eighties, and over the years,
it has been actively developed. Rather recently, it gained
wireless channel support [9] and the ability to emulate PicOS
applications at the level of their API (application program-
ming interface) using a component named VUE2 [3]. Given
this close relationship between our chosen OS and a mature
simulator, our decision to use SIDE was quite natural.

4.1 Interference Modelling
In this section, we describe the new extension to SIDE that
adds the ability to define external impulsive interference.
The extension consists of (a) a user-specified configuration,
(b) a new “node” type within the simulator, (c) and threads
running on those nodes to produce the specified interference.

Additional tags and attributes added to an existing XML
(extensible markup language) configuration file provide the
user-specified interference configuration. A new interfer-
ers attribute to the network tag indicates the number of
interferers in the environment, e.g.,

<network nodes="40" interferers="3">

The user can use the new <interferers> tag to identify an
interferer-specific block within the configuration akin to the
existing <nodes> tag. Within this new section, the user can
define the parameters for each interferer, e.g.,

<interferer number="0" type="impulsive">
<location type="random">170.0 170.0</location>
<pattern>
R 0.245 s ; random delay
P ; start periodic portion
O 0.0 dBm 3 dB ; on at 0.0 dBm with 3 dB sd
T 0.005 s ; delay
F ; off
T 0.245 s ; delay then implicit jump to P

</pattern>
</interferer>

The attribute and value type="random" for the location
causes SIDE to generate a new location every time the sim-
ulator starts (assuming a new random number generator
seed). It uses the specified coordinates to bound the ran-
dom values.

Internally, each interferer becomes an object within the sim-
ulation, not unlike what already occurs for nodes. For these
new objects, the user can create a library of processes, each
capable of producing a certain class of interference. For
this work, we implemented an Impulsive process to simulate
user-specified impulsive interference.

The body of the <pattern> tag essentially provides the script
for the process Impulsive to follow. When SIDE processes
the XML file, it extracts commands and arguments from the
possibly verbose description of the pattern; it creates two
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Figure 4: An actual trace (top) plotted with a simu-
lated trace (bottom). We used the same application
to collected both traces.

arrays: one for the single-character command and one for
the double-valued argument(s). For an impulsive interferer,
SIDE supports following commands:

R delay for a random duration between 0 and the double
argument (in seconds),

T delay for the specified duration (in seconds),

O generate interference at the specified power level (in dBm)
with the specified standard deviation (in dB),

F stop the generation of interference, and

P mark the start of the periodic portion of the pattern.

Essentially, the Interferer process interprets (in a fetch-
decode-execute style) the command sequence provided in
the specification block. Once the end of the list of com-
mands is reached, an implicit jump occurs to the command
immediately following the P command.

We placed a number of synchronized impulsive interferers
in a virtual environment, and using our earlier sampling ap-
plication [4], collected a number of virtual traces (e.g., Fig-
ure 4). With very little tweaking, we were able to make the
simulated traces match the essence of the real traces. Upon
close inspection, there are slight differences, e.g., the sim-
ulated traces lack some random non-periodic components,
and with a little more work, we could include these in our
model as well. That said, the existing detail suffices for the
classification and medium access control techniques that we
next implement.

5. EXPLOITING INTERFERENCE CLAS-

SIFICATION IN A MAC PROTOCOL
PicOS and its accompanying VUE2-extended SIDE simula-
tor subscribe to a layer-less approach of networking. A cen-
tral driver, named the Virtual NETwork Interface (VNETI),
acts as the mediator between three primary components
(Figure 5):

1. the application programming interface (API),



Figure 5: The Virtual NETwork Interface compo-
nent in PicOS. This component serves as a medi-
ator between the application programming inter-
face (API), protocol plug-ins, and physical device
drivers.

2. network protocol plug-ins, and

3. hardware drivers.

VNETI’s primary responsibility in this framework is buffer
and queue management.

Since what we seek is a cross-layer interaction that involves
classification algorithms at the top, packet queueing, as well
as a particular form of opportunistic medium access control
behaviour, the most appropriate location for implementing
a scheme that combines all those facets within this layer-less
architecture is at the location of an “I/O module” as shown
in Figure 5. This particular location allows access to precise
timing constraints and sampling dependencies, accessing in a
direct non-abstracted fashion the underlying hardware. For
the results presented in this work, we implemented both
components in VUE2’s emulated radio driver, and they both
make full use the PicOS finite-state machine paradigm.

5.1 On-line Classifier
To classify channels with regularly-spaced short-duration
impulsive interference, we implement the approximated
least-squares spectral analysis (LSSA) technique described
in Section 3. In the transceiver’s transmit FSM, we intro-
duce three new states to accommodate the classifier:

CLS_INIT Initializes the variables required for classification
and immediately advances to CLS_MEANEST.

CLS_MEANEST A visit to this state represents the measure-
ment of a single RSSI sample to compute the mean
RSSI estimate. It remains in this state for 200 iter-
ations prior to transitioning to CLS_SAMPLE – a num-
ber of iterations that proved reasonable in our early
tests. The delay between each iteration is uniformly
randomly distributed between 0 and 7 ms.

CLS_SAMPLE A visit to this state represents obtaining a sin-
gle RSSI sample for calculating the LSSA. It remains

in this state for 5000 iterations which span approx-
imately 17.5 s and then transitions to the (regular)
MAC state. The delay between each iteration is uni-
formly randomly distributed between 0 and 7 ms. We
used more iterations than the minimal 4000 identified
earlier simply as a precaution.

The complete classification process lasts just over 18 s dur-
ing which we prevent nodes from communicating. If the
application wishes to transmit packets during the process,
they are simply queued within VNETI until the classifier
completes. It is implied that in a real deployment, the clas-
sification task is to be executed occasionally to assess the
new levels and periods of any periodic impulse interference.

5.2 Pattern-aware Medium Access Control

(PA-MAC)
The output from the classifier indicates the presence of
periodic short-duration impulsive interference at any of
the tested frequencies. Our proof-of-concept pattern-aware
MAC (PA-MAC) then uses this output in its attempt to
steer transmissions around the impulses. In fact, the proto-
col makes a virtue out of interference, because the periodic
interference becomes well-defined time points around which
to anchor transmissions (with some back-off of course as we
will later see). Stretching definitions a bit, the interference
becomes a means for implicit synchronization of the MAC
transmissions across nodes.

In our approach, we make observations about the interfer-
ence at a transmitting node and assume that they also hold
for the receiving node, i.e., we assume a significant amount of
correlation in the interference between nodes. Particularly
in small dense deployments, we have found this assumption
to hold, e.g., we observed significant correlation in the traces
collected in the Smart Condo (Figure 6). Moreover, other
researchers have observed significant correlations in packet
losses [25]. Even in larger environments, this assumption
may hold given either a particularly strong interferer or a
collection of correlated interferers.

To implement PA-MAC, we introduce one further state to
the transceiver’s transmit FSM: MAC_SEARCH with the inten-
tion to use it as a way to track the impulse instants. Ini-
tially after the classification, and then again regularly after
each transmission window, the process will enter this state
to sample the channel to track the next impulse. Success-
fully finding an impulse causes the thread to (a) set a timer
to mark the end of the next transmission window, i.e., the
expected arrival of the next impulse and (b) delay for the
expected duration of the currently identified impulse and
then transition to the thread’s preexisting primary state
(XM_LOOP). Once in the main loop, the driver will retrieve
outgoing packets from VNETI as they become available and
transmit them until the expiration of the first timer. At that
point, the process reenters MAC_SEARCH where it attempts to
track the next impulse.

The existing PicOS MAC listens before transmitting (LBT)
and resolves contention by using a random back-off. Given
multiple transmitting nodes, this approach leaves little op-
portunity for them to synchronize – the random back-offs
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Figure 6: Traces collected on channel 61
(916.197 MHz) from 16 different locations simulta-
neously. Note that the impulses occur at all of the
receivers.

effectively resolve contention. With PA-MAC, however, our
regular tracking of the interference introduces a new op-
portunity for nodes to synchronize, which could ultimately
cause a number of nodes to transmit at the same time.

In our initial experiments with PA-MAC, we overlooked this
possibility and experienced high packet loss rates. Upon in-
vestigating those losses, the reason became blatantly obvi-
ous: a number of nodes would transmit immediately after
an impulse, all at the same time. We eliminated this point
of contention by introducing an additional random back-off,
and we immediately saw the benefits in our results.

6. RESULTS
We evaluated the pattern-aware MAC within the
interference-generating SIDE simulator. We used its
built-in shadowing channel model, and we tweaked the
simulator’s parameters to represent our physical hardware.

We include results for both single- and multi-hop random
topologies. For a given configuration, we average the mea-
surements from 100 different topologies, each with its own
traffic pattern, and plot the results with 95% confidence in-
tervals.

6.1 Single-hop
The single-hop configurations consist of 19 source nodes,
one destination node, and two interferers, and the simulator

places them all randomly within an 18 m×18 m field. Since
the model neither includes obstructions nor considers radio
irregularly [30], these dimensions guarantee that the desti-
nation is within the transmission range of every source node.
Each node transmits at a rate of 10 kbps and a transmission
power of -20 dBm. The interferers introduce 5 ms pulses of
impulsive interference at 4 Hz and -30 dBm.

We first evaluated the effect of varying the packet length
(Figure 7) on the packet reception rates (PRRs) and la-
tency. Note that the destination node does not acknowledge
received packets and nodes make no attempt to retransmit
lost packets. We measure latency from the application per-
spective: the time that elapses between VNETI receiving the
packet from the application (at the transmitter) and the ap-
plication receiving the packet from VNETI (at the receiver).
Note that the effect of varying the packet length should be
seen relative to the frequency of impulsive interference. Al-
ternatively, we could have kept the packet length the same
and change the interference’s period. We chose the former
approach. In these tests, nodes generated new packets ac-
cording to an exponential distribution with mean 50 s to
reduce (if not practically eliminate) the effect of congestion.
For each run of the simulation, we generate 500 s of input
and allow the simulator to run for 600 s (in case of delayed
packets).
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Figure 7: In a dense single-hop network, the effect
of the packet length on the packet reception ratio
and the latency.

When increasing the length, the PRR decreases for all con-
figurations and the latency increases (as expected). In terms
of PRRs, PA-MAC performs similarly to the quiet configura-
tion because it successfully steers the transmissions around
the interference. To obtain these PRRs, it ends up delaying
transmissions that may collide with the interference, and the
latency graph reflects this behaviour. The traditional LBT
MAC’s PRRs suffer at a greater rate than the other two con-
figurations as more packets are lost to collisions than simply
the non-zero bit error rate. The traditional LBTMAC shows
higher latency than what is achieved by the quiet channel,
demonstrating that the LBT MAC yields also occasionally
to interference because it senses the medium as being busy.



We also evaluated the effect of varying the packet generation
rate (Figure 8) on the PRRs and latency. In these experi-
ments, we set the packet length to its maximum (60 bytes)
in order to accentuate the variable’s effect.
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Figure 8: In a dense single-hop network, the effect
of the mean latency between per-transmitter packet
introductions on the packet reception ratio and the
latency.

Under high congestion (mean packet inter-arrival time at
each node µ < 2 s), the packet reception rates drop sig-
nificantly for all methods in this dense network, and the
LBT MAC and PA-MAC perform very similarly. Since all
nodes are within range of each other, all transmissions will
generate interference, but that interference may not be suf-
ficiently strong for a node to recognize the medium as busy.
The PRRs are lower for both of the interference configura-
tions because the MACs will sometimes yield to the inter-
ference, leaving less of a window for data transmission. At
lower levels of congestion, the PA-MAC tends towards the
performance of the quiet configuration.

6.2 Multi-hop
The multi-hop configurations consist of 39 source nodes, one
destination node, and three interferers, and the simulator
places them all randomly within a 170 m × 170 m field. As
with the single-hop scenario, nodes transmit at a rate of
10 kbps and with transmission power -20 dBm. In this case,
the three interferers produce a similar interference pattern
to the single-hop case, but transmit at 0 dBm rather than
-30 dBm. Given the larger field, we made this change to
ensure the visibility of interferers across the network.

The transmitting nodes use the tiny ad hoc routing proto-
col, TARP [18], to deliver packets to the destination. TARP
is a light-weight on-demand routing protocol that quickly
converges to the shortest path in static networks. Because
it lacks explicit control packets (minimal control informa-
tion is present in the packet header) it does not inflate the
overall traffic needed to support it. Although the applica-
tion only demands one-way communication, the destination
sends short 14-byte replies to each source node for the ben-
efit of the routing protocol. Note that communication con-

tinues to be unacknowledged, and nodes make no attempt
to retransmit lost packets.

Given random node locations, we need to take precautions to
ensure that each source node has a path to the destination
node. Immediately after generating a random layout, the
simulator will search for a path from every source to the
single destination while ensuring that each hop is less than
the maximum transmission range. If the procedure finds a
disconnected node, the simulator will generates a completely
new node placement until such a path exists.

Like in the single-hop case, we first evaluate the effect on
varying the packet length on the PRRs and latency (Fig-
ure 9). To reduce congestion in the multi-hop environment
given the high initial number of retransmissions, we lower
the packet generation rate to follow an exponential distribu-
tion with mean of 200 s. Given the lower packet generation
rate, we generate 2000 s of input and allow the simulator to
run for 2100 s.
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Figure 9: In a connected multi-hop network, the
effect of the packet length on the packet reception
ratio and the latency.

As with the single-hop case, we notice decreasing PRRs and
increasing latencies as the length increases, and PA-MAC
again follows the PRR of the quiet configuration. However,
unlike in the single-hop case, we notice that the quiet config-
uration no longer provides the baseline for delay. To explore
this phenomenon, we investigate the hop lengths compared
to packet lengths (Figure 10).

Since the network is static, we would expect little change
in the the expected number of hops as the packet length
increases. However, we notice that the expected number
of hops decreases for the LBT MAC as the packet length
increases. The significant number of packet losses cause this
behaviour: packets are more likely to be lost on the long
paths, and these lost packets will not factor into the latency
calculations.

Our final graph shows the effect of varying the packet gen-
eration rate on the PRRs and latency (Figure 11). In these
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experiments, we set the packet length to its maximum (60
bytes) in order to accentuate the variable’s effect.
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Figure 11: In a connected multi-hop network, the
effect of the mean latency between per-transmitter
packet introductions on the packet reception ratio
and the latency.

Here, the PRR rate follows a similar trend to the single-hop
case just at significantly lower levels. Unlike with the single-
hop case, the latency curve again increases as we slow the
rate of packet generation. As with the packet lengths, less
congestion results in an increased number of the long paths
succeeding which subsequently increase the latency.

In summary, the results demonstrate the benefits of using
interference in a constructive manner. The benefits are evi-
dent even if used to augment a trivial MAC protocol, such as
a rudimentary LBT. Naturally, more elaborate schemes can
be devised. Suffice is to say that the impulse interference is
the basis of synchronization around which a self-organizing
TDMA-like MAC protocol could eventually be constructed.

7. CONCLUSION
In this paper, we first described a simplification of the Lomb
periodogram for the post-deployment identification of fre-
quent impulsive interference. Estimating the mean, calcu-

lating the variance at run-time, and eliminating τ reduced
its memory requirements enough to fit in a typical WSN-
node. Quantizing its trigonometric functions then reduced
its computational complexity to a suitable level. Finally,
we compared the exact periodogram with the simplification,
and given enough samples, the latter performed well.

We then extended the SIDE simulator with a flexible inter-
face for the production of impulsive interference. By using
its existing configuration files, we outlined new syntax that
will allow users to describe their desired patterns.

Finally, we incorporated the classifier and a proof-of-concept
pattern-aware MAC (PA-MAC) into SIDE’s emulated radio
driver. After simulating a variety of different configurations,
we found that PA-MAC could improve the packet reception
rates in both single- and multi-hop environments at the cost
of increased latency.

In terms of future work, we plan to explore protocols that
would allow nodes to come to a consensus about the channel
classification. An immediate result from this would be the
weakening of our correlation assumption. Moreover, such
a protocol would allow nodes to join the network without
pausing communication while the evaluation occurs.

Many practical WSNs consist of nodes of different types with
different power budgets. The simplest generic representative
of such a system is the so-called Tags and Pegs involving a
semi-infrastructure of immobile Pegs (possibly connected to
power outlets) communicating with mobile Tags (powered
from batteries) [10]. In such a network it may make sense
to delegate the task of channel sampling solely to the Pegs
(which can afford more wasteful duty cycles) providing for
some way of disseminating the information about interfer-
ence patterns to the Tags. Generally, the problem of opti-
mal collaborative identification of interference patterns and
selective dissemination of knowledge (not all nodes need to
receive the same information) appears as an interesting topic
for a further study.
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