
Type Checking with UniversesRobert Harper� Robert PollackyAbstractVarious formulations of constructive type theories have been pro-posed to serve as the basis for machine-assisted proof and as a theoret-ical basis for studying programming languages. Many of these calculiinclude a cumulative hierarchy of \universes," each a type of typesclosed under a collection of type-forming operations. Universes are ofinterest for a variety of reasons, some philosophical (predicative vs.impredicative type theories), some theoretical (limitations on the clo-sure properties of type theories), and some practical (to achieve someof the advantages of a type of all types without sacri�cing consistency.)The Generalized Calculus of Constructions (CC! ) is a formal theoryof types that includes such a hierarchy of universes. Although essentialto the formalization of constructive mathematics, universes are tediousto use in practice, for one is required to make speci�c choices of uni-verse levels and to ensure that all choices are consistent. In this paperwe study several problems associated with type checking in the pres-ence of universes in the context of CC! . First, we consider the basictype checking and well-typedness problems for this calculus. Second,we consider a formulation of Russell and Whitehead's \typical am-biguity" convention whereby universe levels may be elided, providedthat some consistent assignment of levels leads to a correct deriva-tion. Third, we consider the introduction of de�nitions to both thebasic calculus and the calculus with typical ambiguity. This extensionleads to a notion of \universe polymorphism" analogous to the typepolymorphism of ML. Although our study is conducted for CC! , we�School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890yLaboratory for Foundations of Computer Science, University of Edinburgh, EdinburghEH9 3JZ 1



expect that our methods will apply to other variants of the Calculusof Constructions and to type theories such as Constable's V3.1 IntroductionA number of formulations of intuitionistic type theory have been consideredas a basis for studying machine-assisted formal proof development, and as atheoretical foundation for the study of programming languages (see, for ex-ample, [16, 46, 34, 36, 37, 9, 10, 11, 14, 2, 4, 19], to name but a few.) One suchsystem, the Calculus of Constructions (CC), was introduced by Coquand andHuet as a comprehensive basis for the formalization of constructive math-ematics. [11, 14]. CC may be viewed as the �-calculus associated, via thepropositions-as-types principle [24], with natural deduction proofs in an ex-tension of Church's higher-order logic [6]. The system has been proved bothproof-theoretically [11] and model-theoretically [29, 17, 27] consistent, andthe type checking problem has been proved decidable [14, 11].Although CC is an exceedingly rich formalism for expressing mathemat-ical constructions, a variety of extensions to the calculus have been con-sidered [12, 30, 31]. These extensions are motivated by a variety of con-cerns, ranging from the desire to delineate the space of consistent exten-sions to the calculus, to the practical needs of formal proof and programdevelopment. One such consideration is the representation of mathemati-cal structures such as algebras, automata, and ordered sets. It is by nowwidely recognized [36, 10] that the appropriate type-theoretic representationof mathematical structures is as elements of \strong sum" types1 introducedby Martin-L�of [35, 36, 37] and Howard [24]. Strong sums have also been usedto model modularity constructs in programming languages [33, 41, 2, 4].Unfortunately, strong sums are, in a sense, incompatible with impredica-tivity [12, 23, 41]. As a result, it is necessary to extend the calculus witha level of types, and to postulate the closure of this additional level underthe formation of strong sums. Mathematical structures are then representedas elements of types of this higher level. Having made this extension, oneimmediately sees that this process may be iterated, and that yet higher lev-1Also known in the literature as \dependent products" and \generalized sums." Theseare not to be confused with the \weak sums" (or \existential types") introduced in con-nection with data abstraction [43]. 2



els are needed for the formalization of such notions as the \category of allsmall categories." In recognition of this fact, Coquand introduced the \gen-eralized" Calculus of Constructions [12] (CC! ) which includes a cumulativehierarchy of universes. A universe is a type that is closed under the type-forming operations of the calculus: the formation of products and strongsums indexed by a type of that universe level. Cumulative hierarchies of thiskind arise in many formal systems for mathematics; they arise in variousguises in Principia Mathematica [44, 47] and in many contemporary typetheories [35, 36, 37, 8, 9, 10].Universe hierarchies are tedious to use in practice. Many workers haveattempted to avoid the complications of such a hierarchy by assuming thatthere is a type of all types [34, 2, 38, 4]. This assumption destroys thenormalization property of the calculus [35, 38, 25]. As a result, every typeis inhabited by some closed term, and the interpretation of propositions astypes, central to many applications, is lost. In the context of type systemsfor programming languages, the merits and demerits of the \type:type" as-sumption are the subject of ongoing research [38, 3, 41, 22].An alternative approach to dealing with strati�cation in formal systemswas introduced by Russell and Whitehead in Principia Mathematica. Theyintroduced an informal convention, called \typical ambiguity," in which uni-verse levels are not explicitly mentioned, and in which it is tacitly assertedthat there exists an assignment of levels such that the resulting proof is cor-rect with respect to the predicativity requirements of the logic of PrincipiaMathematica. Moreover, they observed that in practice the exact choiceof universe levels is unimportant; what matters is the relationship betweenchoices of levels at di�erent points within a proof. From the modern perspec-tive, typical ambiguity can be described as a way to achieve the 
exibilityof having a type of all types without sacri�cing the logical consistency ofthe theory. At the level of the concrete syntax, the user can work withoutexplicit mention of universe levels, leaving it to the proof checker to ensurethat there is always a choice of levels that yields a type-correct term in theunderlying calculus with explicitly strati�ed universes.In this paper we study the type checking and well-typedness problems forfour variants of CC! . The type checking problem for a calculus is to decide,given a context, term, and candidate type whether or not that term has thattype in the given context. The well-typedness problem is to decide, givena context and a term, whether or not there exists a type such that that3



term has that type in the given context. In each case the solution to theseproblems is obtained by a reduction to a type synthesis algorithm that yields,given a context and term, a description of the set of all possible types forthat term in that context. Of course, the exact de�nitions of \context" and\term" will vary for each of the calculi that we consider, but the generalpattern remains the same.This paper is organized as follows. In Section 2 we de�ne the system CC! ,and state some of its important properties. In Section 3 we introduce an \op-erational presentation" of CC! , following [46, 21, 20, 42, 18] (among others.)The signi�cance of the operational presentation is that it provides a normalform for typing derivations that is exploited by the type synthesis algorithm.In Section 4 we present a type synthesis and conversion algorithm for CC!in the \natural semantics" style of [7]. This form of presentation facilitatesthe proofs of correctness of the algorithm and makes especially evident therelationship between it and the operational rules. In Section 5 we extend thecalculus to include an \anonymous" universe as a means of implementingthe \typical ambiguity" convention. Explicit universe levels may be omittedby using instead the anonymous universe, with the understanding that suchan \ambiguous" term stands for some consistent replacement of the anony-mous by speci�c universes. In Section 6 we extend both the basic calculusand the calculus with anonymous universes to admit de�nitions in the formof �-reductions. The failure of type unicity induced by the cumulativity ofthe universe hierarchy leads to a form of \universe polymorphism" similar tothe \type polymorphism" of ML. The combination of anonymous universeswith de�nitions leads to a particularly 
exible calculus for exploiting typicalambiguity. Finally, in Section 7 we discuss related research.We are grateful to Rod Burstall, Thierry Coquand, Jo�elle Despeyroux,SusumuHayashi, G�erard Huet, Gilles Kahn, Zhaohui Luo, and an anonymousreferee for their insightful comments. This research was supported by grantsfrom the British Science and Engineering Research Council (GR/D 64612and GR/F 78487) and the U.S. Defense Advanced Research Projects Agency(contract number 5404). 4



2 The De�nition of CC!2.1 SyntaxThe Generalized Calculus of Constructions [12] (CC! ) is obtained by ex-tending the basic Calculus of Constructions with a full cumulative hierarchyof type universes. Let x, y, z range over some in�nite set of variables, and i,j, k range over the natural numbers. We use syntax given by the followinggrammar: � ::= Prop j Typei kindsM ::= x j � j [x:M ]M j fx:MgM jMM terms� ::= � j �[x:M ] contextsThe metavariables A, B, K, L, M , N , and P range over terms; � rangesover kinds. The terms Typei are called universes. The pair x:M in a context� is a declaration, and declares x. We only consider contexts in which novariable is declared more than once. Dom(�) is the set of variables declaredin �. We write � = �x[x:A]�x to mean that the declaration x:A occurs in �,in the indicated position. The notions of free and bound variable are de�nedas usual. FV(M) is the set of free variables of M . We sometimes use thenotation A!B for fx:AgB when x doesn't occurr free in B.2.2 Reduction and ConversionIn this setting, a �-redex has the form ([x:A]M)N , and its contractum is[N=x]M . The relations ! (one step �-reduction), � (�-reduction), and '(�-conversion) are de�ned as usual. The Church-Rosser property holds for �conversion:Theorem 2.1 (CR) If M1 ' M2 then there exists M such that M1 � Mand M2�M .Proof See [34] or [46]. 2A term is strongly normalizing (SN) if every reduction sequence starting fromthat term is �nite.The relation wh! (one step weak head reduction) is de�ned by the rules ofTable 1. wh� (weak-head-reduction) is the transitive, re
exive closure of wh!.5



M �-contracts to NM wh! NM wh!M 0M N wh!M 0 NTable 1: One step weak head reductionM is in weak head normal form (whnf) if it does not weak head reduce toany term except itself. Clearly, every term not in whnf is either a �-redex,or an application M N where M is not in whnf. Thus, a term in weak headnormal form has one of the shapes x, �, fx:AgB, [x:A]B, or M N where Mis itself a weak head normal form of shape other than [x:A]B.2.3 The Type SystemCC! is a formal system for deriving assertions of the form � ` M : A, readas \M has type A in the context of type assumptions �". The axioms andrules of derivation for CC! are given in Table 2. We often write � `M : A tomean that the indicated assertion is derivable in the formal system, omittingexplicit mention of � when it is the empty context.A brief summary of the rules of CC! may be helpful. Rules valI1and valI2 de�ne the valid contexts to be those consisting of a sequenceof declarations assigning to a variable either a proposition or a type (of arbi-trary universe level). The rules valE1 and valE2 introduce the constantsProp and Typei, and rule valE3 governs typing of variables. The rules piF1,piF2, and piF3 encode the fundamental closure conditions of CC! . Theclass of propositions is closed under universal quanti�cation over any type,including any proposition, the class of propositions, and the types at any uni-verse level (rule piF1). Each universe is closed under products indexed byeither a proposition, or a type of that level (rules piF2 and piF3). Rules PiIand piE govern lambda abstraction and application. Rule conv asserts theinvariance of typing under conversion of type expression, and rule cum as-serts the cumulativity of the hierarchy of universes, a property that plays acentral role in this paper. 6



valI1 � validvalI2 � ` A : � x 62 Dom(�)�[x:A] validvalE1 � valid� ` Prop : Type0valE2 � valid� ` Typei : Typei+1valE3 �x[x:A]�x valid�x[x:A]�x ` x : ApiF1 �[x:A] ` B : Prop� ` fx:AgB : ProppiF2 � ` A : Prop �[x:A] ` B : Typei� ` fx:AgB : TypeipiF3 � ` A : Typei �[x:A] ` B : Typei� ` fx:AgB : TypeipiI �[x:A] `M : B� ` [x:A]M : fx:AgBpiE � `M : fx:AgB � ` N : A� `MN : [N=x]Bconv � `M : A � ` B : � A ' B� `M : Bcum � `M : Typei� `M : Typei+1Table 2: De�nition of CC!7



Theorem 2.2 (Luo) (Some properties of CC! .)� Any derivation of �[x:A]�0 ` M : B has a subderivation of � ` A : �for some kind �.� Any derivation of � `M : A has a subderivation of � valid.� If � `M : A then � ` A : � for some kind �.� (Subject Reduction) If � `M : A and M � N , then � ` N : A.� (Strong Normalization) If � `M : A, then M is SN.Proof See [30, 31] 23 Operational PresentationAs a step towards the presentation of a type checking algorithm for CC! , it ishelpful to give a syntax-directed, or operational presentation of the calculuswith the property that at most one rule of inference applies to a term. Webegin with such a presentation of the conversion relation.3.1 ConversionThe relation M # N is de�ned by the rules of Table 3. Informally, M # Nholds i� M and N reduce by a standard reduction sequence to a commonterm. Thus if M # N , then M and N are convertible in the usual sense.The converse fails, for if a standard reduction sequence of M fails to yield anormal form, then M 6# M . However, if we restrict attention to well-typedterms, these relations coincide, and, moreover, the relation # is decidable.Theorem 3.1 (Conversion algorithm)(Soundness) If M # N , then M ' N .(Completeness) If M ' N and M and N are SN, then M # N .(Decidability) It is decidable for SN M and N whether or not M # N .8



oc-type K wh� Typei L wh� TypeiK # LM wh� x N wh� xM # N K wh� Prop L wh� PropK # LA wh� fx:A1gA2 B wh� fx:B1gB2 A1 # B1 A2 # B2A # BM wh� [x:A1]M1 N wh� [x:A2]M2 A1 # A2 M1 #M2M # NM wh�M1 M2 N wh� N1 N2 M1 # N1 M2 # N2M # NTable 3: �-Conversion Algorithm
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Proof A derivation of M # N essentially speci�es reduction sequences fromM and N to the same term. Thus soundness is proved by induction on thede�nition of #.For completeness, suppose that M and N are SN and that M ' N . ThenM and N have unique weak head normal forms, M0 and N0 respectively,with M0 'M ' N ' N0. Proceed by induction on the structure of M0. Forexample, if M0 = M1 M2 (where M1 is not of shape [x:A]B), then we musthave N0 = N1 N2 with Mi ' Ni (i = 1; 2). By induction hypothesis Mi # Ni,hence M # N . The other cases are similar.Decidability follows from the fact that the requisite weak head normalforms exist. 23.2 Operational Presentation of CC!The inference rules de�ning the relation � ` M : A are not completelysyntax-directed since the rules conv and cum are applicable to any term.The operational presentation of CC! is a syntax-directed formal system forCC! that admits only limited applications of these rules, without sacri�cingcompleteness (in a sense to be made precise below). The operational presen-tation is given in Table 4; an assertion of the form � ` M ) A is intendedto mean \A is a type for M in �".The operational presentation di�ers from the basic de�nition of CC! inseveral respects. One important di�erence is in the handling of contexts: con-text validity is assumed, rather than enforced. As a result, the rules o-genand o-abs explicitly check the validity of the type of the bound variable inorder to maintain this assumption. This formulation of the rules is closer to apractical implementation since it avoids the overhead of repeatedly checkingcontext validity for each atomic term.Another important di�erence is in the use of type conversion. In par-ticular, rules o-gen and o-abs use only weak head reduction, rather thanconversion, since, in the presence of the Church-Rosser property, a termis convertible to a kind only if it may be weak head-reduced to it. Therule o-app uses the operational de�nition of conversion discussed above tomatch the domain and argument types.Having limited the uses of conversion, some care must be taken to ensure10



o-prop � ` Prop) Typei (i � 0)o-type � ` Typej ) Typei (i > j � 0)o-var �x[x:A]�x ` x) cum(A; i) (i � 0)o-gen � ` A) K K wh� �1 x 62 Dom(�)�[x:A] ` B ) L L wh� �2� ` fx:AgB ) �1 "i �2 (i � 0)o-abs � ` A) K K wh� � x 62 Dom(�) �[x:A] `M ) B� ` [x:A]M ) fx:AgBo-app � `M ) A A wh� fx:A1gA2� ` N ) B B # A1� `MN ) cum([N=x]A2; i) (i � 0)where cum and " are de�ned by:cum(A; i) := ( Typej+i if A wh� TypejA otherwise�1 "i �2 := 8><>: Prop if �2 = PropTypej+i if �1 = Prop; �2 = TypejTypemax(j;k)+i if �1 = Typej; �2 = TypekTable 4: Operational Presentation of CC!11



that all potential uses of cumulativity are accounted for. For example[x:([y:Type0]Type0)Prop] ` x : Type2because ([y:Type0]Type0)Prop ' Type0, and cumulativity then applies. Sim-ilarly [x:ff :Type0!Type1g(f Prop)] ` x ([y:Type0]Type0) : Type2These two examples illustrate the need for the function cum in rules o-varand o-app: the result type may be convertible to a universe, and hencecumulativity may apply at that point. Similarly, rule o-gen is de�ned interms of the auxiliary function " to account for potential cumulativity. Thefollowing lemma shows that Table 4 indeed has \enough cumulativity".Lemma 3.2 If � ` M ) A and A wh� Typei, then for all j � i, � ` M )Typej.Proof By inspection of the rules of Table 4. 2The main theorem of this section establishes the relationship betweenCC! and its operational presentation:Theorem 3.3 (The operational presentation of CC! )(Soundness) If � is a valid context and � `M ) A, then � `M : A.(Completeness) If � ` M : A, then there exists B such that � ` M ) Band B ' A.Proof We use Theorem 2.2 without further mention.(Soundness) Let � be a derivation of � `M ) A. We build a derivationof � ` M : A by induction on height �. In the base case � is o-prop (re-spectively o-type, o-var), and the result follows from valE1, (respectivelyvalE2, valE3), and cum. In the induction case, the root node of � is oneof o-gen, o-abs, or o-app. Suppose, for example, it is o-abs, so for someA, K, M , and B, � is...� ` A) K K wh� � x 62 Dom(�) ...�[x:A] `M ) B� ` [x:A]M ) fx:AgB12



By induction hypothesis, we have � ` A : K. Since K wh� � (and � isnecessarily well-typed), conv and valI2 give �[x:A] valid. Thus by inductionhypothesis �[x:A] `M : B, and piI shows � ` [x:A]M : fx:AgB.It is also interesting to consider the case where the root of � is o-app.For some M , N , A, B, and i � 0, � is...� `M ) A A wh� fx:A1gA2 ...� ` N ) B B # A1� `MN ) cum([N=x]A2; i)By Theorem 3.1 B ' A1. By induction hypothesis, we have � ` M : A and� ` N : B. Thus A is well-typed, and by subject reduction, so is fx:A1gA2.By conv � `M : fx:A1gA2, so by piE and cum, � `MN : cum([N=x]A2; i)as required. The other cases are similar.(Completeness) Let � be a derivation of � `M : A, and build a deriva-tion of � ` M ) B (for some B) by induction on height �. Consider thepossible cases for the root node of �. If � ends with conv (respectively cum),the result is immediate by induction (respectively Lemma 3.2). All other casesfollow directly from the induction hypothesis. 2The operational presentation is \syntax directed" in the sense that thestructure of a derivation of � ` M ) A is determined by the structure ofM . However, the relation � ` M ) A is not a partial function of � andM , due to the cumulativity of the universe hierarchy. In fact, this is theonly source of variation: two derivations for a given term and context di�eronly in the choice of universe index parameters of the operational rules.The choice of these parameters is sometimes constrained by context. Forexample, when deriving a type for the term ([x:Type2]x)Prop, the universelevel of the sole occurrence of Prop is constrained to be 0, 1, or 2 by thefact that it occurs as the argument to a function with domain Type2. Onthe other hand, any universe level greater than 2 is admissible as the typeof Type2 itself. It is important to realize that the range of possible typesfor a term is determined by the structure of the term itself, and not byits type. For example ` [x:Prop]Prop ) fx:PropgTypei for all i � 0, but[y:fx:PropgType0] ` y ) fx:PropgTypei is only derivable for i = 0. Thus,although cumulativity may be thought of as a form of type containment, itshould be distinguished sharply from type systems that impose an upwardclosure condition on typing with respect to some pre-order on types.13



In order to produce a deterministic algorithm based on the operationalpresentation, we remove the indeterminacy by postponing decisions: a choiceof several possible outcomes is replaced by a single schematic outcome. Tothis end, we introduce notions of schematic term and constraint in the nextsection, and uniformly schematize the operational presentation. In fact, thisapproach allows us, in later sections, to formalize (operationally) and imple-ment (algorithmically) notions of \typical ambiguity" and \universe poly-morphism".4 Decision Problems for CC!In this section we present a schematic type synthesis algorithm that, given avalid context � and a term M , yields a schematic description of the set ofpossible types forM relative to �. This algorithm makes use of an algorithmfor testing convertibility of schematic terms, which we also present. Solutionsto the well-typedness and type checking problems for CC! are easily derivedfrom these algorithms.4.1 Schematic TermsLet �, �, and 
 range over some in�nite set of level variables, and let � and� range over the level expressions, consisting of level variables and naturalnumbers. The schematic terms, ranged over by X, Y , and Z, are termsthat may involve universe schemes of the form Type�. Universe schemes areregarded as kinds; we still use � to range over this extended notion of kinds.Thus: � ::= i j � level expressions� ::= Prop j Type� kindsX ::= x j � j [x:X]X j fx:XgX j XX termsLV(X) is the set of level variables occurring in X.A constraint set is a �nite set of inequalities of the form � � � or � > �.We sometimes write � = � for the pair of constraints � � �; � � �. Themetavariables C, D, E , F , G range over constraint sets. LV(C) is the set oflevel variables occurring in constraint set C.14



A level assignment is a partial function assigning natural numbers toa �nite set of level variables. The metavariables � and � range over levelassignments. Dom(�) is the set of level variables � assigns to; i.e. its domainas a function. A level assignment � satis�es a constraint set C, written� j= C, i� Dom(�) � LV(C) and each of the inequalities in C is true underthe assignment �. A constraint set is satis�able, or consistent if there is somelevel assignment that satis�es it. The following result is due to Chan [5]:Theorem 4.1 (Chan) There is a polynomial time algorithm to determinewhether or not there exists a level assignment satisfying a given constraintset.In fact the running time of this algorithm is bounded by O(m;n3), where mis the number of constraints and n is the number of level variables.Level assignments are extended to schematic terms in the obvious way:�X is the schematic term obtained from X by replacing all occurrences ofType�, where � 2 Dom(�), by Type�(�). The term �X is called an instanceof X. Notice that an instance of X may still contain level variables. Levelassignments are written explicitly as [�1 7! i1; : : : ; �k 7! ik]. We write �[� 7!i] for the level assignment that assigns i to �, and otherwise behaves like �.Lemma 4.2 (Reduction and Schematic Terms)1. �X is SN i� X is SN.2. �Z wh� Type� i� Z wh� Type� with �� = �3. �Z wh� fx:X1gX2 i� Z wh� fx:Z1gZ2 for some Z1 and Z2 such that�Z1 = X1 and �Z2 = X2:4. Similar to 3. for cases: (a) Z wh� [x:Z1]Z2, (b) Z wh� Z1 Z2.Proof Let @ be a subterm occurrence of X (see [1]). Since level assignmentcompletely respects the structure of terms, we may abuse notation to say that� is a bijection between subterm occurrences in X and subterm occurrencesin �X. Since reduction is de�ned without regard to universe levels, it is clearthat @ is a redex in X i� �@ is a redex in �X. Also, �X �@! Y (contractingredex �@ in �X produces Y ) i� X @! Z and �Z = Y . By induction, we get a15



sc-type X wh� Type� Y wh� Type�X # Y (f� = � g)X wh� x Y wh� xX # Y (;) X wh� Prop Y wh� PropX # Y (;)X wh� fx:X1gX2 Y wh� fx:Y1gY2 X1 # Y1 (C1) X2 # Y2 (C2)X # Y (C1 [ C2)X wh� [x:X1]X2 Y wh� [x:Y1]Y2 X1 # Y1 (C1) X2 # Y2 (C2)X # Y (C1 [ C2)X wh� X1 X2 Y wh� Y1 Y2 X1 # Y1 (C1) X2 # Y2 (C2)X # Y (C1 [ C2)Table 5: Schematic �-Conversion Algorithmsimilar result for arbitrary reduction sequences. Thus � can also be thoughtof as a bijection between the reduction sequences from X and those from �X,that preserves the bijection of subterm occurrences. This proves all parts ofthe lemma. 2Table 5 de�nes a conversion algorithm for schematic terms that, givenschematic terms X and Y , yields the weakest constraint set C such that if� j= C, then �X # �Y . The precise characterization of this relation is givenby the following theorem:Theorem 4.3 (Conversion algorithm for schematic terms)(Soundness) If X # Y (C) and � j= C, then �X # �Y .16



(Completeness) If �X # �Y , then there exists C such that X # Y (C) and� j= C.(Decidability) It is decidable, given strongly normalizing schematic termsX and Y , whether or not there exists a constraint set C such that X #Y (C) is derivable.Proof (Soundness) Let � be a derivation of X # Y (C). The hypothesis� j= C guarantees that �� is a derivation of �X # �Y (proved by inductionon the height of �, using Lemma 4.2).(Completeness) Let � be a derivation of �X # �Y . By induction onheight � we construct a derivation of X # Y (C) such that � j= C. Forexample, suppose � is an instance of oc-type:�X wh� Typei �Y wh� Typei�X # �YBy Lemma 4.2, X wh� Type� with �� = i, and Y wh� Type� with �� = i, so bysc-type, X # Y (f� = � g), and � j= f� = � g. The other cases are similar.(Decidability) Since X and Y are SN, all the required weak head normalforms exist. 24.2 Schematic Type SynthesisAn algorithm for schematic type synthesis is given by the rules of Table 6. Itis a system for deriving judgements of the form � ` M ) X; C. Intuitively,X; C schematically represent the set of types for M in �. The algorithmmakes use of two auxiliary functions, CUM and *, de�ned in Table 6. Thesefunctions are analogous to the functions cum and " of Table 4, and arecharacterized by the following lemmas.Lemma 4.4 Suppose CUM(X; C) = (Y;D) (respectively �1 *C �2 = (�;D)).1. If � j= D, then there exists i � 0 such that �Y = cum(�X; i)(respectively �� = ��1 "i ��2).2. If � j= C, Dom(�)\ LV(D) = LV(C), and i � 0, there exists� extending � such that � j= D, Dom(� ) = Dom(�)[LV(D),and �Y = cum(�X; i) (respectively �� = ��1 "i ��2).17



a-prop � ` Prop) Type�; f� � 0 g (� new )a-type � ` Typej ) Type�; f� > j g (� new )a-var �x[x:A]�x ` x) CUM(A; ;)a-gen � ` A) X; C X wh� �1 x 62 Dom(�) C consistent�[x:A] ` B ) Y;D Y wh� �2� ` fx:AgB ) �1 *C[D �2a-abs � ` A) X; C X wh� � x 62 Dom(�) C consistent�[x:A] `M ) Y;D� ` [x:A]M ) fx:AgY; C [Da-app � `M ) X; C X wh� fx : X1gX2� ` N ) Y;D X1 # Y (E)� `MN ) CUM([N=x]X2; C [D [ E)where CUM and * are de�ned by the following (where � is a new lvar):CUM(X; C) := ( Type�; C [ f� � � g if X wh� Type�X; C otherwise�1 *C �2 := 8><>: Prop; C if �2 = PropType�; C [ f� � � g if �1 = Prop; �2 = Type�Type�; C [ f� � �; � � � g if �1 = Type�; �2 = Type�Table 6: Type Synthesis Algorithm for CC!18



Proof We prove the CUM clauses; the other parts are similar.1. If X wh� Type� then D = C [ f� � � g, and Y = Type�. So �X wh�Type��, and, since � j= D, we may take i = ��� �� � 0 to obtaincum(�X; i) = Type��+(�����) = Type�� = �Y:If X 6wh� Type� for any �, then �X 6wh� Typej for any j, so for any icum(�X; i) = �X = �Y2. If �X wh� Typej , then X wh� Type� for some � with �� = j. HenceD = C [ f� � � g for some � 62 LV(C), Y = Type�, and cum(�X; i) =Typej+i. Let � be � extended with � 7! j + i. If �X 6wh� Typej for anyj, then X 6wh� Type� for any �, so take � = �. 2The rules of Table 6 make use of an informal convention whereby levelvariables are required to be \new". This means that the level variable cho-sen at that rule occurrence is unique to that occurrence, and di�erent fromthat associated with any occurrence of any other rule in the derivation un-der consideration. This convention can be made precise, at the expense ofconsiderable technical complication, by introducing a set of \used" level vari-ables, and requiring that � be chosen apart from this \used" set. (See [40]for a careful treatment of a similar problem.)Theorem 4.5 (Type synthesis algorithm for CC! )(Soundness) If � `M ) X; C, then1. LV(X) � LV(C) and LV(C) is a set of \new" level variables.2. If � j= C, then � `M ) �X.(Completeness) If � `M ) A, then there exists X, C, and �A such that1. � `M ) X; C,2. �A j= C, and Dom(�A) = LV(C)3. �AX = A. 19



(Decidability) It is decidable, given a valid context � and a term M ,whether or not there exists a schematic term X and consistent con-straint set C such that � `M ) X; C is derivable.Proof (Soundness) The �rst property is proved by inspection of the rules ofTable 6. For the second property, consider a derivation � of � `M ) X; C.Roughly speaking, the constraint set C is su�cient to ensure that \��" is avalid derivation of � ` M ) �X. More precisely, we build a derivation of� ` M ) �X by induction on the height of �. The induction proceeds bycase analysis of the root node of � based on the rules of Table 6. The mostinteresting case is when the root of � is an instance of rule (a-app). Then �has the form:...� `M ) Z;F Z wh� fx : Z1gZ2 ...� ` N ) Y;D Z1 # Y (E)� `MN ) X; Cwhere (X; C) = CUM([N=x]Z2;F[D[E). By de�nition of CUM, F[D[E �C, so � j= F , � j= D, and � j= E . Thus � ` M ) �Z and � ` N ) �Y byinduction hypothesis. Also �Z wh� fx:�Z1g�Z2 (by Lemma 4.2), and �Z1 #�Y (by Theorem 4.3). We have shown the hypotheses of rule (o-app) aresatis�ed, and conclude:� `MN ) cum([N=x]�Z2; i) (for any i � 0):Finally, by Lemma 4.4, there is some i � 0 such that �X = cum([N=x]�Z2; i)as required. The other cases are handled similarly.(Completeness) Let � be a derivation of � ` M ) A. By inductionon height � we build a derivation of � `M ) X; C (for some X; C), and anassignment �A. As in the Soundness proof, proceed by case analysis of theroot node of � based on the rules of Table 4. We consider two cases; the restare handled similarly.If � is an instance of the axiom (o-type) (this is a base case):� ` Typej ) Typei (some i,j, with i > j)we have rule (a-type) � ` Typej ) Type�; f� > j g, and �Typei = f� 7! i g.20



If the root of � is an instance of rule (o-app):...� `M ) A A wh� fx:A1gA2 ...� ` N ) B B # A1� `MN ) cum([N=x]A2; i) (some i � 0)By induction hypothesis there exist ZA; EA and �A such that:� `M ) ZA; EA; �A j= EA; Dom(�A) = LV(EA); �AZA = Aand by Lemma 4.2:ZA wh� fx:Z1gZ2 where �AZ1 = A1 and �AZ2 = A2:Similarly there exist ZB; EB and �B such that:� ` N ) ZB; EB; �B j= EB; Dom(�B) = LV(EB); �BZB = BBy the \new" convention LV (EA) and LV(EB) are disjoint, so let �A;B =�A [ �B. Now �A;BZ1 = �AZ1 = A1 # B = �BZB = �A;BZBand by Theorem 4.3:Z1 # ZB (F) with �A;B j= FWe have shown the hypotheses of rule (a-app) are satis�ed:� `M ) ZA; EA; ZA wh� fx:Z1gZ2; � ` N ) ZB; EB; Z1 # ZB (F)so we have� `MN )W;G where W;G = CUM([N=x]Z2; EA [ EB [ F)Now Lemma 4.4 applies to extend �A;B to the required �cum([N=x]A2;i).(Decidability) The proof is by induction on the structure of M , keepingin mind that the rules of Table 6 are syntax-directed. The base cases (Prop,Typei, and variables) are all trivial: for the case of a variable x, we need21



only check that x is declared in the context. (The constraint set is clearlysatis�able.)For the induction, consider the case of an application, MN . We are toshow that we can decide whether or not there exists a schematic term Z anda consistent constraint set F such that � ` MN ) Z;F . If any such Zand F exist, then the required derivation must end with an application ofrule a-app. By the induction hypothesis it is decidable whether or not thereexists X; C and Y;D such that � ` M ) X; C and � ` N ) Y;D are bothderivable, and such that both C and D are consistent. If not, then fail, forotherwise no derivation of the required form can exist. To see this, note thateven if both subderivations exist, but with either C or D inconsistent, thenthe only possible choice of F is also inconsistent. Otherwise, by soundness,Theorem 3.3, Lemma 4.2, and Theorem 2.2, both X and Y are stronglynormalizing. Hence, we may e�ectively test whether or not X wh� fx:X1gX2and, by Theorem 4.3, whether or not there exists E such that X1 # Y (E). Ifeither of these conditions fail, then there can be no derivation of the requiredform. Otherwise, we may apply Chan's algorithm to test whether or not theconstraint set C [ D [ E is consistent. If so, succeed with Z = [N=x]X2 andF = C [D [ E , and fail otherwise (there is no other choice of Z and F .)For the remaining cases we have only to note that the check for consistencyof the constraint set C is rules a-gen and a-abs ensures (by soundness) thatthe validity of the context is preserved. 2Corollary 4.6 The well-typedness and type checking problems for CC! aree�ectively solvable.Proof Let � be a valid context, and let M be a term. By the theorem wecan e�ectively decide whether or not there exists a schematic term X andconsistent constraint set C such that � ` M ) X; C. By soundness andcompleteness, such X and C exist i� M is well-typed in �. To check whetherA is a valid type for M in �, we may e�ectively check (by Theorem 4.3)whether or not there exists D such that X # A (D), and whether or not(by Theorem 4.1) C [ D is consistent. If so, then by the soundness of theconversion and type synthesis algorithms, A is a valid type for �. If not,then by the completeness of the conversion and type synthesis algorithms, Acannot be a valid type for M in �. 222



5 Anonymous UniversesIn this section we consider the well-typedness and type checking problems forthe extension of CC! with an anonymous universe, Type. This extension isintended to model Russell and Whitehead's \typical ambiguity" convention.The idea is that in a proof explicit universe levels may be soundly omitted,provided that some consistent assignment of levels exists. Moreover, everyconsistent assignment results in a valid proof: it is not the absolute values ofthe universe levels that matters, only their relation to one another.5.1 Extending the Operational PresentationLet Q, R, S, and T range over ambiguous terms which may contain occur-rences of the anonymous universe, Type. An ambiguous term, Q, is to beunderstood as a convenient shorthand for some reading obtained by replacingeach occurrence of Type in Q by a speci�c universe Typei. From an algorith-mic point of view, the ambiguity in a term is resolved during type checking,with the choice of reading constrained by the context of the occurrence. Forexample, in the term ([x:Type2]x)Type the anonymous universe may be readas standing for either Type0 or Type1, but not as Type2 or any higher universe.Similarly, in the term ([x:Type]x)Type1, the type of the bound variable x canbe read as standing for Typei only for i � 2 due to the application to Type1.Table 7 is an operational presentation of the typing rules for CC! withanonymous universes. These rules specify the derivability conditions forjudgements of the form � ` Q ) M;A, where � is a context (as de�nedin Section 2), Q is an ambiguous term, and M and A are ordinary terms.This judgement is to be understood as expressing that M is a reading of Q,and A is a type for M . It is important to stress that the context � cannotcontain ambiguous terms: the type of a variable is �xed when it is put intothe context (see, for example, rule o-a-abs in Table 7.)The fundamental properties of the system of Table 7 are summarized bythe following theorem.Theorem 5.1(Soundness) If � ` Q)M;A, then M is a reading of Q and � `M ) A.(Completeness) If M is a reading of Q and � ` M ) A, then � ` Q )M;A. 23



o-a-prop � ` Prop) Prop;Typei (i � 0)o-a-type � ` Typej ) Typej;Typei (i > j � 0)o-a-anon � ` Type) Typej;Typei (i > j � 0)o-a-var �x[x:A]�x ` x) x; cum(A; i) (i � 0)o-a-gen � ` Q) A;K K wh� �1 x 62 Dom(�)�[x:A] ` R) B;L L wh� �2� ` fx:QgR) fx:AgB;�1 "i �2 (i � 0)o-a-abs � ` Q) A;K K wh� � x 62 Dom(�)�[x:A] ` R )M;B� ` [x:Q]R) [x:A]M; fx:AgBo-a-app � ` Q)M;A A wh� fx:A1gA2� ` R) N;B B # A1� ` QR)MN; cum([N=x]A2; i) (i � 0)where cum and " are as in Table 4.Table 7: Operational Presentation of CC! with Anonymous Universes24



Proof(Soundness) The proof is by induction on the height of a derivation � of� ` Q ) M;A, with a case analysis on the last rule used in �. Forexample, suppose that � has the form...� ` Q)M;A A wh� fx:A1gA2 ...� ` R) N;B B # A1� ` QR)MN; cum([N=x]A2; i)Then, by induction, M is a reading of Q, N is a reading of R, � `M ) A, and � ` N ) B. The result follows by rule o-app and bynoting that MN is a reading of QR. The remaining cases are handledsimilarly.(Completeness) The proof is by induction on the height of a derivation �of � ` M ) A where M is a reading of an ambiguous term Q. Forexample, if Q = Type, M = Typei, and � is an instance of o-type,deriving � ` Typei ) Typej for some j > i, then by rule o-anon,we obtain � ` Type ) Typei;Typej , as desired. The remaining casesfollow easily by induction.5.2 Type Checking with Anonymous UniversesDecision procedures for the type checking and well-typedness problems areonce again based on a reduction to schematic type synthesis. Level variablesare used in two distinct ways: to encode the 
exibility due to cumulativity inthe type of a term (as before), and to govern the set of possible readings ofan ambiguous term. This second use of level variables must also be regulatedby constraint sets since the set of correct readings for an ambiguous term isconstrained by the context in which that term occurs.The type synthesis algorithm is presented in Table 8 as a set of rules forderiving assertions of the form �; C ` Q ) X;Y;D. The pair (�; C) is aschematic context, where � is a context built from declarations of the formx:X where X is a schematic term such that LV(X) � LV(C). Anonymousuniverses may not occur in any declaration in �. If (�; C) is a schematiccontext and � j= C, then �� is the ordinary context obtained by replacing25



a-a-prop �; C ` Prop) Prop;Type�; f� � 0 g (� new )a-a-type �; C ` Typej ) Typej;Type�; f� > j g (� new )a-a-anon �; C ` Type) Type�;Type�; f� > � � 0 g (�; � new )a-a-var �x[x:X]�x; C ` x) x;CUM(X; ;)a-a-gen �; C ` Q) U;X;D X wh� �1 C [D consistent�[x:U ]; C [D ` R) V; Y; E Y wh� �2 x 62 Dom(�)�; C ` fx:QgR) fx:UgV; �1 *D[E �2a-a-abs �; C ` Q) U;X;D X wh� � C [D consistent�[x:U ]; C [D ` R) V; Y; E x 62 Dom(�)�; C ` [x:Q]R) [x:U ]V; fx:UgY;D[ Ea-a-app �; C ` Q) U;X;D X wh� fx : X1gX2�; C ` R) V; Y; E X1 # Y (F)�; C ` QR) UV;CUM([V=x]X2;D [ E [ F)where CUM and * are as in Table 6.Table 8: Type Synthesis Algorithm for CC! with Anonymous Universes26



each declaration x:X in � by the declaration x:�X. A schematic context(�; C) is said to be valid i� C is consistent and for every � j= C, �� is valid.Theorem 5.2 (Soundness) If �; C ` Q) X;Y;D, then1. LV(X) � LV(D), LV(Y ) � LV(C [ D), and LV(D) n LV(C) is aset of \new" level variables.2. If � j= C [D, then �� ` Q) �X; �Y .(Completeness) If � j= C with Dom(�) = LV(C) and �� ` Q ) M;A,then there exists X;Y;D, and � such that1. �; C ` Q) X;Y;D,2. � extends �, � j= D, Dom(� ) = LV(C [D), and3. �X =M , and �Y = A.(Decidability) It is decidable, given valid schematic context (�; C) and am-biguous term Q, whether or not there exists schematic terms X and Y ,and constraint set D such that �; C ` Q ) X;Y;D and C [ D is con-sistent.Proof(Soundness) The proof is by induction on the height of a derivation � of�; C ` Q) X;Y;D. The conditions on the level variables are all provedby inspection of the rules of Table 8, keeping in mind the conventionsabout \new" level variables. For the second claim consider, for example,the case in which � has the form...�; C ` Q) U;X;D ...�; C ` R) V; Y; E�; C ` QR) UV;Z;Gwhere X wh� fx : X1gX2, X1 # Y (F), and Z;G = CUM([V=x]X2;D [E [F). Since D [ E [ F � G and � j= C [ G, we have by induction�� ` Q) �U; �X and �� ` R) �V; �Y:27



By Lemma 4.2, �X wh� fx:�X1g�X2 and by Theorem 4.3 �X1 # �Y ,and hence by o-a-app,�� ` QR) �U �V; cum([�V=x]�X2; i)for any i � 0. Now �U �V = �(UV ), and [�V=x]�X2 = �[V=x]X2, andso by Lemma 4.4, there exists i such that �Z = cum([�V=x]�X2; i), asdesired.(Completeness) The proof is by induction on the height of a derivation �of �� ` Q ) M;A where � j= C. Suppose that � is an instance ofo-a-anon; i.e., �� ` Type ) Typej;Typei where i > j. Choose X =Type�, Y = Type�, and D = f� > � � 0 g (where � and � are \new")to obtain the required derivation, and choose � = �[� 7! i; � 7! j] as therequired level assignment. It is easy to see that � j= C[D, �X = Typej,and �Y = Typei, as required.Now suppose that � is a derivation of the form...�� ` Q)M;A ...�� ` R) N;B�� ` QR)MN; cum([N=x]A2; i)where i � 0, A wh� fx:A1gA2, and B # A1. By induction there exists U ,X, D, and an extension �A of � such that�; C ` Q) U;X;D �A j= D �AU =M �AX = A:Similarly, by induction there exists V , Y , E , and an extension �B of �such that�; C ` R) V; Y; E �B j= E �BV = N �BY = B:Now by the \new" convention, LV(D) \ LV(E) � LV(C), and by theconditions on �A and �B, we may form the level assignment �A;B =�A[�B with the properties that �A;B is an extension of �, �A;B j= D[E ,�A;BU = M , �A;BV = N , �A;BX = A, and �A;BY = B. Hence, byLemma 4.2, there exists X1 and X2 such that X wh� fx:X1gX2 with28



�A;BXi = Ai (i = 1; 2), and by Theorem 4.3, there exists F such thatX1 # Y (F) and �A;B j= F . Therefore by a-a-app we have�; C ` QR) UV;Z;G:where Z;G = CUM([V=x]X2;D [ E [ F): Now [N=x]A2 =[�A;BV=x]�A;BX2 = �A;B[V=x]X2, and so by Lemma 4.4, there ex-ists � j= G extending �A;B such that �Z = cum(� [V=x]X2; i) =cum([N=x]A2; i), which completes the proof.(Decidability) Similar to the proof of Theorem 4.5. 26 De�nitionsIn this section we treat the extension of the two calculi (CC! and CC! withanonymous universes) to admit de�ned identi�ers. We take as a fundamentalprinciple the eliminability of de�nitions: a de�ned identi�er is indistinguish-able from its de�nition. This principle leads to the notion of universe poly-morphism, whereby a de�ned identi�er may take on any of some constrainedset of types determined by its de�nition. Since this form of polymorphismis associated with de�nitions, it is very similar to the form of polymorphismfound in ML [39, 15, 40]. For the sake of simplicity we omit consideration oflocal de�nitions (which would be introduced using a form of let expression).However, we expect that the methods described below can be extended tohandle this case.6.1 De�nitions in CC!A de�nitional context � is a �nite sequence of declarations of the form x:Aand de�nitions of the form x=M subject to the following conditions. First, novariable may be declared or de�ned more than once, nor may any variable beboth declared and de�ned. Thus a de�nitional context � has a well-de�neddomain given by Dom(�) = Def(�) [ Dec(�) where Def(�) is the set ofde�ned variables in �, and Dec(�) is its set of declared variables. Second,if � = �x[x:M ]�x, or � = �x[x=M ]�x, then FV(M) � Dom(�x). (Inthe only interesting case, valid contexts, this is no restriction at all.) Third,as a matter of technical convenience, we require that no de�ned variables29



occur in the right-hand side of a de�nition. This convention avoids certaincomplications in the proofs arising from the possibility of \de�nition chains"whereby an identi�er x is de�ned to be y, itself a de�ned identi�er.In order to give expression to the eliminability of de�nitions, we shallneed the expansion function de�ned by induction on the structure of termsas follows: �(x) := ( M if � = �x[x=M ]�xx otherwise�(�) := ��(fx:AgB) := fx:�(A)g�(B) if x 62 Def(�)�([x:A]M) := [x:�(A)]�(M) if x 62 Def(�)�(M N) := �(M) �(N)(We assume that bound variables are chosen so as to avoid con
icts, asnecessary.) Expansion is extended to de�nitional contexts as follows:j � j := �j�[x:A]j := j�j[x:�(A)]j�[x=M ]j := j�jDe�ne � ` M # N (�-conversion) to hold i� �(M) # �(N). Sincede�nition expansion is always terminating, this relation is decidable if �(M)and �(N) are strongly normalizing (as will be the case for well-typed terms).A direct de�nition of this relation could be given by taking a de�ned identi�erto be convertible to its de�nition, along with the usual �-conversion axiom.The relation � ` M wh� N (�-weak head reduction) is de�ned similarlyto M wh� N (see Section 2.2), taking�x[x=M ]�x ` x wh!Mas an added axiom in Table 1. Thus a term in �-weak head normal form hasone of the shapes x (where x 62 Def(�)), �, fx:AgB, [x:A]B, or M N whereM is itself a �-weak head normal form of shape other than [x:A]B.Lemma 6.11. If � `M wh� N , then �(M) wh� �(N).30



o-d-prop � ` Prop) Typei (i � 0)o-d-type � ` Typej ) Typei (i > j � 0)o-d-var �x[x:A]�x ` x) cum�x(A; i) (i � 0)o-d-def �x `M ) A�x[x=M ]�x ` x) Ao-d-gen � ` A) K � ` K wh� �1 x 62 Dom(�)�[x:A] ` B ) L � ` L wh� �2� ` fx:AgB ) �1 "i �2 (i � 0)o-d-abs � ` A) K � ` K wh� � x 62 Dom(�)�[x:A] `M ) B� ` [x:A]M ) fx:AgBo-d-app � `M ) A � ` A wh� fx:A1gA2� ` N ) B � ` B # A1� `MN ) cum�([N=x]A2; i) (i � 0)where " is as in Table 4 and cum� is de�ned by cum�(A; i) = cum(�(A); i).Table 9: Operational Presentation of CC! with De�nitions31



2. If �(M) wh� N , then there exists P such that � `M wh� P and �(P ) =N .An extension of CC! to admit de�nitions is presented in operational stylein Table 9. This system is essentially Table 4 extended with the rule o-d-def.This rule expresses the eliminability of de�nitions principle, and introducesthe notion of universe polymorphism. For example, the following assertionis derivable in the system of Table 9:[x=[y:Prop]Prop] ` ([z:Prop!Type0][w:Prop!Type1]Prop) x x) Type0In this derivation the two instances of x are given the distinct typesProp!Type0 and Prop!Type1, both of which are correct types for[y:Prop]Prop. Notice that no single type for x will do.The soundness of the operational system with de�nitions (Table 9) withrespect to the basic operational system (Table 4) is expressed by the followingtheorem.Theorem 6.2 If � `M ) A, then j�j ` �(M)) �(A).Proof The proof is by induction on the height of a derivation � of � `M )A. Suppose that � is a derivation of the form...�x `M ) A�x[x=M ]�x ` x) ABy induction hypothesis we havej�xj ` �x(M)) �x(A):Now FV(A) � Dom(�), and so �x(A) = �(A). By the conditions on de�-nitional contexts, �(M) = �x(M), and by the de�nition of j � j, j�j is anextension of j�xj. It is easy to see that derivability is closed under contextextension, and therefore we may derive j�j ` �(x)) �(A), as desired.Suppose, now, that � is a derivation of the form...� `M ) A ...� ` N ) B� `MN ) cum�([N=x]A2; i)32



where i � 0, � ` A wh� fx:A1gA2, and � ` B # A1. By the conventions onbound variables, we may assume that x 62 Def(�). By induction we obtainj�j ` �(M)) �(A) and j�j ` �(N)) �(B):By Lemma 6.1, �(A) wh� �(fx:A1gA2) = fx:�(A1)g�(A2). Moreover�(B) # �(A1) by the de�nition of #, so by rule o-app we obtainj�j ` �(M)�(N)) cum([�(N)=x]�(A2); i);and the result follows easily from the de�nition of cum�. The remainingcases are handled similarly. 2A converse to this theorem may also be proved, yielding as a corollarythe decidability of the system with de�nitions. We prefer, however, to givea direct presentation of a type synthesis algorithm that avoids unnecessaryexpansion of de�nitions. The idea is to adapt the methods of [15], andassociate with a de�nition a type scheme summarizing the set of all possibletypes for the de�niens. Under suitable assumptions about the associatedtype scheme, we obtain a sound and complete type synthesis algorithm forCC! with de�nitions.A generic de�nitional context � is de�ned similarly to a de�nitional con-text, except that de�nitions have the form x=M :X;G, whereX is a schematicterm, and G is a constraint set such that LV(X) � LV(G). By abuse of nota-tion, we use � in situations where a de�nitional context is expected, underthe convention that the stored schematic type information is to be ignored.When it is important to stress the distinction, we write �̂ for the underlyingde�nitional context of �.�-conversion and �-weak head reduction are extended to schematic termsin the obvious way, following the pattern of Section 4.1.A de�nitional context � is valid i� for each x such that � = �x[x:A]�x,there exists some K such that �x ` A) K with � ` K wh� �, and for eachx such that � = �x[x =M ]�x there exists some A such that �x `M ) A.Thus types in declarations must indeed be types, and the de�niens of ade�nition must be well-formed. A generic de�nitional context � is valid i��̂ is valid and for each x such that � = �x[x=M :X;G]�x, the constraint setG is satis�able, and �̂x ` M ) �X whenever � j= G (that is, (X;G) must33



have an instance, and all instances must be valid types for M). Conversely,� is principal i� it is valid, and whenever � = �x[x=M :X;G]�x and �̂x `M ) A, then there exists � j= G such that �X = A (that is, the type scheme(X;G) must capture all valid types for M). It is worth remarking that theseconditions are naturally preserved under the extension of the system withlocal de�nitions.The type synthesis algorithm for CC! with de�nitions is given in Table 10.The rule a-d-def makes use of an operation �V mapping level variables inthe set V to \new" level variables (i.e., that do not otherwise appear in thederivation.) This operation is extended to schematic terms and constraintsets in the obvious way. The properties of the type synthesis algorithm aregive by the following theorem:Theorem 6.3(Soundness) If � `M ) X; C for some valid de�nitional context �, then1. LV(X) � LV(C) and LV(C) is a set of \new" level variables.2. If � j= C, then �̂ `M ) �X.(Completeness) If �̂ `M ) A for some principal de�nitional context �,then there exists X, C, and � such that1. � `M ) X; C,2. � j= C, and Dom(�) = LV(C)3. �X = A.(Decidability) It is decidable, given valid de�nitional context � and termM , whether or not there exists schematic term X and consistent con-straint set C such that � `M ) X; C.Proof The proof is essentially the same as that of Theorem 4.5; the assump-tions on � su�ce for de�ned identi�ers. 234



a-d-prop � ` Prop) Type�; f� � 0 g (� new )a-d-type � ` Typei ) Type�; f� > i g (� new )a-d-var �x[x:A]�x ` x) CUM�x(A; ;)a-d-def �x[x=M :X;G]�x ` x) �LV(G)(X;G)a-d-gen� ` A) X; C � ` X wh� �1 x 62 Dom(�) C consistent�[x:A] ` B ) Y;D � ` Y wh� �2� ` fx:AgB ) �1 *C[D �2a-d-abs � ` A) X; C � ` X wh� � x 62 Dom(�) C consistent�[x:A] `M ) Y;D� ` [x:A]M ) fx:AgY; C [Da-d-app � `M ) X; C � ` X wh� fx : X1gX2� ` N ) Y;D � ` X1 # Y (E)� `MN ) CUM�([N=x]X2; C [ D [ E)where �V assigns \new" level variables to each of the level variables in V, *is as in Table 6, and CUM� is de�ned by CUM�(X; C) = CUM(�(X); C).Table 10: Type Synthesis Algorithm for CC! with De�nitions35



6.2 De�nitions with Anonymous UniversesThe �nal extension of CC! that we shall consider is the combination ofuniverse polymorphism and typical ambiguity. As we have seen, de�nitionsintroduce a form of polymorphism induced by the cumulativity of the uni-verse hierarchy. \Ambiguous" de�nitions allow for further 
exibility since thede�niens is \re-read" on each use of the de�nition. For example, if f is de-�ned to be the term [x:Type]x, then both f Prop and f Type0 are well-formed,as is f Type, since in each case the ambiguous de�nition of f receives a read-ing appropriate to the context. Moreover, each of these terms could occur assubterms of a single term: the principle of eliminability implies that de�nedidenti�ers are \polymorphic" in that each occurrence corresponds to a dis-tinct \reading" of the de�nition. An interesting example is self-applicationof the polymorphic identity function. With the de�nitionI=[t:Type][x:t]xthe term I (ft:Typegt!t) Iis well typed; the two instances of I receive two distinct readings, and areassigned two distinct types.It is also important to realize that this notion of polymorphism does notextend to declarations A declaration x:A or x:X assigns a single, perhaps un-derdetermined, type for x. Thus (referring back to the polymorphic identityexample above) if J is declared byJ :ft:Typegt!tthen J (ft:Typegt!t) Jshould not be well typed2. This is as it should be, for there is no reading ofthe type of J such that the above term is well-typed in CC! .These considerations are formalized in an operational presentation in Ta-ble 11. The rules of Table 11 are essentially a combination of those of Tables 7and 9. Note that the type of variables receive a �xed \reading" before being2We thank G�erard Huet for this example36



o-ad-prop � ` Prop) Prop;Typei (i � 0)o-ad-type � ` Typej ) Typej;Typei (i > j � 0)o-ad-anon � ` Type) Typej;Typei (i > j � 0)o-ad-var �x[x:A]�x ` x) x; cum(A; i) (i � 0)o-ad-def �x ` Q)M;A�x[x=Q]�x ` x)M;Ao-ad-gen � ` Q) A;K K wh� �1 x 62 Dom(�)�[x:A] ` R ) B;L L wh� �2� ` fx:QgR) fx:AgB;�1 "i �2 (i � 0)o-ad-abs � ` Q) A;K K wh� � x 62 Dom(�)�[x:A] ` R)M;B� ` [x:Q]R) [x:A]M; fx:AgBo-ad-app � ` Q)M;A A wh� fx:A1gA2� ` R) N;B B # A1� ` QR)MN; cum([N=x]A2; i) (i � 0)where cum and " are as in Table 4Table 11: Operational Presentation of Anonymous Universes and De�nitions37



added to the context, so that declarations are always unambiguous. De�ni-tions, on the other hand, may be ambiguous, and receive a fresh \reading"on each use. In order to ensure that declared identi�ers remain unambigu-ous even in the presence of de�nitions, we require that no de�ned identi�ersoccur in the type of any declared variable. This restriction is preserved byrules o-ad-gen and o-ad-abs, since the reading of a term has all de�nedidenti�ers eliminated.The soundness of this system with respect to the operational presentationof anonymous universes (Table 7) is expressed by the following theorem.Theorem 6.4 If � ` Q)M;A, then j�j ` �(Q))M;A.Proof The proof is by induction on the height of a derivation � of � ` Q)M;A. The most interesting case is when � has the form:...�x ` Q)M;A�x[x=Q]�x ` x)M;ABy induction, j�xj ` �x(Q) ) M;A. Clearly j�x[x=Q]�xj is an exten-sion of j�xj and �x(Q) = �(x), so j�j ` �(x) ) M;A, as required. Theremaining cases are similar. 2Once again, a converse to this theorem could be proved, with decidabilityfollowing as a corollary. However, we prefer to give a direct presentation ofa type synthesis algorithm for the system with ambiguous terms and de�ni-tions.A schematic, generic de�nitional context (sgd-context) is a pair (	; C)where 	 is a context built from declarations of the form x:X with LV(X) �LV(C), and de�nitions of the form x=X:Y;G where LV(X) � LV(G) n LV(C)and LV(Y ) � LV(C [G). Note that the anonymous universe cannot occur inschematic terms: X and Y in the foregoing are unambiguous. The conditionsregarding well-formedness of de�nitional contexts apply to sgd-contexts aswell.The type synthesis algorithm for anonymous universes and de�nitions isgiven in Table 12.To state the soundness and completeness of the type synthesis algorithm,it is necessary to introduce some additional terminology. If X is a schematic38



a-ad-prop 	; C ` Prop) Prop;Type�; f� � 0 g (� new )a-ad-type 	; C ` Typej ) Typej ;Type�; f� > j g (� new )a-ad-anon 	; C ` Type) Type�;Type�; f� > � � 0 g (�; � new )a-ad-var 	x[x:X]	x; C ` x) x;CUM(X; ;)a-ad-def 	x[x=X:Y;G]	x; C ` x) �LV(G)nLV(C)(X;Y;G)a-ad-gen 	; C ` Q) U;X;D X wh� �1 C [ D consistent	[x:U ]; C [D ` R) V; Y; E Y wh� �2 x 62 Dom(	)	; C ` fx:QgR) fx:UgV; �1 *D[E �2a-ad-abs 	; C ` Q) U;X;D X wh� � C [ D consistent	[x:U ]; C [D ` R) V; Y; E x 62 Dom(	)	; C ` [x:Q]R) [x:U ]V; fx:UgY;D [ Ea-ad-app 	; C ` Q) U;X;D X wh� fx : X1gX2	; C ` R) V; Y; E X1 # Y (F)	; C ` QR) UV;CUM([V=x]X2;D [ E [F)where * and CUM are as de�ned in Table 6, and �V is as de�ned in Table 10.Table 12: Algorithm for Anonymous Universes and De�nitions39



term, let X̂ denote the ambiguous term resulting from replacing all occur-rences of Type� by the anonymous universe Type. If (	; C) is an sgd-contextand � j= C, then d�	 denotes the de�nitional context obtained by1. replacing each declaration x:X by the declaration x:�X, and2. replacing each de�nition x=X:Y;G by the de�nition x=X̂.The idea is that the constraint set C governs the possible readings of of eachof the declarations in 	, and that in each de�nition x=X:Y;G, the levelvariables in X result from a schematic reading of some ambiguous term, andhence are erased in passing to the underlying de�nitional context. The typeinformation associated with a de�nition is, as before, simply erased.An sgd-context (	; C) is valid i� C is satis�able, and if � j= C, then1. if 	 = 	x[x:X]	x, then d�	x ` �X ) �X;K for some K wh� �,2. if 	 = 	x[x=X:Y;G]	x, then for all variants (Y �;G�) =�LV(G)nLV(C)(Y;G),(a) �G� is satis�able,(b) if � is an extension of � such that � j= G�, then d�	x ` X̂ )�X; �Y .Intuitively, in a de�nition x=X:Y;G the constraint set G is to govern boththe set of possible readings for X and the set of possible types Y for eachreading. Since X may mention variables declared earlier in the context, thetype Y might involve level variables in the constraint set C.Conversely, (	; C) is principal i� it is valid and if � j= C with Dom(�) =LV(C), then for each x such that 	 = 	x[x=X:Y;G]	x, if d�	x ` X̂ )M;A,then for each variant (Y �;G�) = �LV(G)nLV(C)(Y;G), there exists an extension� of � such that � j= G�, �X = M , and �Y = A. The idea is that everypossible reading, and every possible type for each reading, of X̂ is obtainableas an instance of the schematic de�nition and stored type information.Theorem 6.5(Soundness) Let (	; C) be a valid sgd-context. If 	; C ` Q) X;Y;D, then40



1. LV(X) � LV(D)nLV(C), LV(Y ) � LV(C [D), and LV(D)nLV(C)is a set of \new" level variables.2. If � j= C [D, then d�	 ` Q) �X; �Y .(Completeness) Let (	; C) be a principal sgd-context. If � j= C withDom(�) = LV(C), and d�	 ` Q ) M;A, then there exists X, Y ,D, and � such that1. 	; C ` Q) X;Y;D,2. � extends �, � j= D, Dom(� ) = LV(C [D), and3. �X = N , and �Y = A.(Decidability) It is decidable, given valid sgd-context 	; C and ambiguousterm Q, whether or not there exist schematic terms X and Y , andconstraint set D such that 	; C ` Q) X;Y;D and C [D is consistent.Proof(Soundness) The proof is by induction on the height of a derivation � of	; C ` Q ) X;Y;D. We consider here only the rule a-ad-def. Sup-pose that � is a derivation of	x[x=X:Y;G]	x; C ` x) �LV(G)nLV(C)(X;Y;G)Writing 	 = 	x[x=X:Y;G]	x and (X�; Y �;G�) = �LV(G)nLV(C)(X;Y;G),we have � j= C[G�, thus by the validity of (	; C), d�	x ` X̂ ) �X; �Y .But d�	 = d�	x[x=X̂]d�	x, and so, by o-ad-def, d�	 ` x ) �X; �Y ,as desired.(Completeness) The proof is by induction on the height of a derivation �of d�	 ` Q ) M;A, under the conditions stated in the theorem. Themost interesting case is when � is of the form...d�	x ` X̂ )M;Ad�	 ` x)M;Awhere 	 = 	x[x=X:Y;G]	x. Therefore by a-ad-def, 	 ` x )X�; Y �;G� where (X�; Y �;G�) = �LV(G)nLV(C)(X;Y;G). By principality41



of (	; C), there exists � extending � such that � j= G�, �X� =M , and�Y � = A, as desired.(Decidability) Similar to the proof of Theorem 4.5. 27 Related WorkHuet, in an unpublished manuscript [26], has independently developed analgorithm for handling universes in the Calculus of Constructions. His ap-proach is to drop the assumption that the universes form a linearly-orderedcumulative hierarchy indexed by the natural numbers, and to consider in-stead a family of calculi in which there is some well-founded partial orderingof universes. The input language is correspondingly restricted so that spe-ci�c universes are disallowed; only the anonymous universe Type may beused. The principal advantage of this approach over the one considered hereis that the consistency checking algorithm is signi�cantly more e�cient thanChan's algorithm, reducing to an acyclicity check in a dependency graph ofuniverse levels. E�ciency considerations aside, this approach is equivalentto ours for the restricted language that Huet considers because any count-able well-founded partial ordering can be embedded in a countable linearordering. However, our method has the advantage that we can, for example,easily restrict the type checker to terms that check within, say, one universe,or any �xed bound. This can be of use for calibrating the strength of theproof-theory needed to formalize an argument. Moreover, \local" constraintscan be imposed in a proof simply by using a speci�c, rather than anonymous,universe.In response to our observation that cumulativity entails 
exibility in thetype of a term that is not determined by the shape of type alone (see thediscussion following Theorem 3.3), Luo [31] developed an alternative formu-lation of a cumulative hierarchy of universes (called \fully cumulative") thateliminates the need for schematic type expressions in the basic type checkingalgorithm for CC! . The idea is to introduce a partial ordering on type ex-pressions with the property that a type of the form fx1:A1g � � � fxn:AngTypeiis less than, in this ordering, to a type of the form fx1:A1g � � � fxn:AngTypejwhenever i � j. (In addition, Prop is taken to be less than Type0, butthis does not e�ect the type checking algorithm.) The types of a term are42



then required to form an upward-closed set in this ordering. In this waythe need for schematic terms and constraint sets in the basic type synthesisalgorithm is replaced by a more complex application rule. Of course, everyderivation in our system is a valid derivation in this extended sense, but theconverse fails. Nevertheless, the resulting system is consistent and decid-able, as demonstrated in [31]. It should be stressed that our methods forhandling de�nitions and anonymous universes extend directly to Luo's cal-culus. However, the implementation of de�nitions and anonymous universesin Luo's calculus can be signi�cantly more e�cient than for CC! since con-straints are generated only in connection with typical ambiguity and universepolymorphism, and not as part of the basic type checking algorithm.We know of two machine implementations of CC! . G�erard Huet and co-workers are developing an implementation of CC! [13] that supports Huet'svariant of typical ambiguity discussed above. The second author has imple-mented the algorithms of this paper in the Lego proof checker [32]. Legosupports several type theories, including CC! and Luo's variation on it, ex-tended with typical ambiguity and universe polymorphism.References[1] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics,volume 103 of Studies in Logic and the Foundations of Mathematics.North-Holland, revised edition, 1984.[2] Rod Burstall and Butler Lampson. A kernel language for abstract datatypes and modules. In Kahn et al. [28], pages 1{50.[3] Luca Cardelli. Phase distinctions in type theory. unpublishedmanuscript.[4] Luca Cardelli. A polymorphic �-calculus with Type:Type. Technicalreport, DEC SRC, 1986.[5] Tat-Hung Chan. An algorithm for checking PL/CV arithmetical infer-ences. Technical Report 77{236, Computer Science Department, CornellUniversity, Ithaca, New York, 1977.43
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