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Abstract

Various formulations of constructive type theories have been pro-
posed to serve as the basis for machine-assisted proof and as a theoret-
ical basis for studying programming languages. Many of these calculi
include a cumulative hierarchy of “universes,” each a type of types
closed under a collection of type-forming operations. Universes are of
interest for a variety of reasons, some philosophical (predicative vs.
impredicative type theories), some theoretical (limitations on the clo-
sure properties of type theories), and some practical (to achieve some
of the advantages of a type of all types without sacrificing consistency.)
The Generalized Calculus of Constructions (CC¥ ) is a formal theory
of types that includes such a hierarchy of universes. Although essential
to the formalization of constructive mathematics, universes are tedious
to use in practice, for one is required to make specific choices of uni-
verse levels and to ensure that all choices are consistent. In this paper
we study several problems associated with type checking in the pres-
ence of universes in the context of CC¥. First, we consider the basic
type checking and well-typedness problems for this calculus. Second,
we consider a formulation of Russell and Whitehead’s “typical am-
biguity” convention whereby universe levels may be elided, provided
that some consistent assignment of levels leads to a correct deriva-
tion. Third, we consider the introduction of definitions to both the
basic calculus and the calculus with typical ambiguity. This extension
leads to a notion of “universe polymorphism” analogous to the type
polymorphism of ML. Although our study is conducted for CC¥, we
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expect that our methods will apply to other variants of the Calculus
of Constructions and to type theories such as Constable’s V3.

1 Introduction

A number of formulations of intuitionistic type theory have been considered
as a basis for studying machine-assisted formal proof development, and as a
theoretical foundation for the study of programming languages (see, for ex-
ample, [16, 46, 34, 36, 37,9, 10, 11, 14, 2, 4, 19], to name but a few.) One such
system, the Calculus of Constructions (CC), was introduced by Coquand and
Huet as a comprehensive basis for the formalization of constructive math-
ematics. [11, 14]. CC may be viewed as the A-calculus associated, via the
propositions-as-types principle [24], with natural deduction proofs in an ex-
tension of Church’s higher-order logic [6]. The system has been proved both
proof-theoretically [11] and model-theoretically [29, 17, 27] consistent, and
the type checking problem has been proved decidable [14, 11].

Although CC is an exceedingly rich formalism for expressing mathemat-
ical constructions, a variety of extensions to the calculus have been con-
sidered [12, 30, 31]. These extensions are motivated by a variety of con-
cerns, ranging from the desire to delineate the space of consistent exten-
sions to the calculus, to the practical needs of formal proof and program
development. One such consideration is the representation of mathemati-
cal structures such as algebras, automata, and ordered sets. It is by now
widely recognized [36, 10] that the appropriate type-theoretic representation
of mathematical structures is as elements of “strong sum” types' introduced
by Martin-Lof [35, 36, 37] and Howard [24]. Strong sums have also been used
to model modularity constructs in programming languages [33, 41, 2, 4].

Unfortunately, strong sums are, in a sense, incompatible with impredica-
tivity [12, 23, 41]. As a result, it is necessary to extend the calculus with
a level of types, and to postulate the closure of this additional level under
the formation of strong sums. Mathematical structures are then represented
as elements of types of this higher level. Having made this extension, one
immediately sees that this process may be iterated, and that yet higher lev-

! Also known in the literature as “dependent products” and “generalized sums.” These
are not to be confused with the “weak sums” (or “existential types”) introduced in con-
nection with data abstraction [43].



els are needed for the formalization of such notions as the “category of all
small categories.” In recognition of this fact, Coquand introduced the “gen-
eralized” Calculus of Constructions [12] (CC*¥) which includes a cumulative
hierarchy of universes. A universe is a type that is closed under the type-
forming operations of the calculus: the formation of products and strong
sums indexed by a type of that universe level. Cumulative hierarchies of this
kind arise in many formal systems for mathematics; they arise in various
guises in Principia Mathematica [44, 47] and in many contemporary type
theories [35, 36, 37, 8, 9, 10].

Universe hierarchies are tedious to use in practice. Many workers have
attempted to avoid the complications of such a hierarchy by assuming that
there is a type of all types [34, 2, 38, 4]. This assumption destroys the
normalization property of the calculus [35, 38, 25]. As a result, every type
is inhabited by some closed term, and the interpretation of propositions as
types, central to many applications, is lost. In the context of type systems
for programming languages, the merits and demerits of the “type:type” as-
sumption are the subject of ongoing research [38, 3, 41, 22].

An alternative approach to dealing with stratification in formal systems
was introduced by Russell and Whitehead in Principia Mathematica. They
introduced an informal convention, called “typical ambiguity,” in which uni-
verse levels are not explicitly mentioned, and in which it is tacitly asserted
that there exists an assignment of levels such that the resulting proof is cor-
rect with respect to the predicativity requirements of the logic of Principia
Mathematica. Moreover, they observed that in practice the exact choice
of universe levels is unimportant; what matters is the relationship between
choices of levels at different points within a proof. From the modern perspec-
tive, typical ambiguity can be described as a way to achieve the flexibility
of having a type of all types without sacrificing the logical consistency of
the theory. At the level of the concrete syntax, the user can work without
explicit mention of universe levels, leaving it to the proof checker to ensure
that there is always a choice of levels that yields a type-correct term in the
underlying calculus with explicitly stratified universes.

In this paper we study the type checking and well-typedness problems for
four variants of CC*. The type checking problem for a calculus is to decide,
given a context, term, and candidate type whether or not that term has that
type in the given context. The well-typedness problem is to decide, given
a context and a term, whether or not there exists a type such that that



term has that type in the given context. In each case the solution to these
problems is obtained by a reduction to a type synthesis algorithm that yields,
given a context and term, a description of the set of all possible types for
that term in that context. Of course, the exact definitions of “context” and
“term” will vary for each of the calculi that we consider, but the general
pattern remains the same.

This paper is organized as follows. In Section 2 we define the system CC",
and state some of its important properties. In Section 3 we introduce an “op-
erational presentation” of CC* | following [46, 21, 20, 42, 18] (among others.)
The significance of the operational presentation is that it provides a normal
form for typing derivations that is exploited by the type synthesis algorithm.
In Section 4 we present a type synthesis and conversion algorithm for CC*
in the “natural semantics” style of [7]. This form of presentation facilitates
the proofs of correctness of the algorithm and makes especially evident the
relationship between it and the operational rules. In Section 5 we extend the
calculus to include an “anonymous” universe as a means of implementing
the “typical ambiguity” convention. Explicit universe levels may be omitted
by using instead the anonymous universe, with the understanding that such
an “ambiguous” term stands for some consistent replacement of the anony-
mous by specific universes. In Section 6 we extend both the basic calculus
and the calculus with anonymous universes to admit definitions in the form
of é-reductions. The failure of type unicity induced by the cumulativity of
the universe hierarchy leads to a form of “universe polymorphism” similar to
the “type polymorphism” of ML. The combination of anonymous universes
with definitions leads to a particularly flexible calculus for exploiting typical
ambiguity. Finally, in Section 7 we discuss related research.
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and GR/F 78487) and the U.S. Defense Advanced Research Projects Agency
(contract number 5404).



2 The Definition of CC”

2.1 Syntax

The Generalized Calculus of Constructions [12] (CC¥) is obtained by ex-
tending the basic Calculus of Constructions with a full cumulative hierarchy
of type universes. Let z, y, z range over some infinite set of variables, and ¢,
J, k range over the natural numbers. We use syntax given by the following

grammar:
k == Prop| Type, kinds
M = a|k|[eMM|{aM}M| MM terms
' == e]|T[z:M] contexts

The metavariables A, B, K, L, M, N, and P range over terms; k ranges
over kinds. The terms Type, are called universes. The pair z: M in a context
I' is a declaration, and declares x. We only consider contexts in which no
variable is declared more than once. Dom(I') is the set of variables declared
in I'. We write I' = T'_[2:A]T'" to mean that the declaration z:A occurs in T',
in the indicated position. The notions of free and bound variable are defined
as usual. FV(M) is the set of free variables of M. We sometimes use the
notation A— B for {2:A}B when z doesn’t occurr free in B.

2.2 Reduction and Conversion

In this setting, a f-redex has the form ([z:A]M)N, and its contractum is
[N/x]M. The relations — (one step f-reduction), - (F-reduction), and ~
(-conversion) are defined as usual. The Church-Rosser property holds for 3
conversion:

Theorem 2.1 (CR) If My ~ M, then there exists M such that My - M
and My - M.
Proof See [34] or [46]. O

A term is strongly normalizing (SN) if every reduction sequence starting from
that term is finite.
The relation “% (one step weak head reduction) is defined by the rules of

Table 1. % (weak-head-reduction) is the transitive, reflexive closure of wh
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M (-contracts to NV
MY N

M A
MNYMN

Table 1: One step weak head reduction

M is in weak head normal form (whnf) if it does not weak head reduce to
any term except itself. Clearly, every term not in whnf is either a f-redex,
or an application M N where M is not in whnf. Thus, a term in weak head

normal form has one of the shapes z, k, {x:A}B, [v:A]B,or M N where M

is itself a weak head normal form of shape other than [z:A]B.

2.3 The Type System

CC" is a formal system for deriving assertions of the form I' = M : A, read
as “M has type A in the context of type assumptions I'”. The axioms and
rules of derivation for CC* are given in Table 2. We often write ' - M : A to
mean that the indicated assertion is derivable in the formal system, omitting
explicit mention of I' when it is the empty context.

A brief summary of the rules of CC* may be helpful. Rules vaLIl
and VALI2 define the valid contexts to be those consisting of a sequence
of declarations assigning to a variable either a proposition or a type (of arbi-
trary universe level). The rules VALE1 and VALE2 introduce the constants
Prop and Type;, and rule VALE3 governs typing of variables. The rules P1F'1,
PIF2, and PIF3 encode the fundamental closure conditions of CC“. The
class of propositions is closed under universal quantification over any type,
including any proposition, the class of propositions, and the types at any uni-
verse level (rule P1F1). Each universe is closed under products indexed by
either a proposition, or a type of that level (rules PIF2 and P1F3). Rules P1l
and PIE govern lambda abstraction and application. Rule CONV asserts the
invariance of typing under conversion of type expression, and rule CUM as-
serts the cumulativity of the hierarchy of universes, a property that plays a
central role in this paper.



vaLll

VALI2

vaLE1l

VALE?2

vALE3

PIF1

PIF2

PIF3

P1l

PIE

CONV

CUM

o valid
I'FA:x ¢ Dom(l)
[[a:A] valid
I' valid
I' = Prop : Type,
I' valid
I' = Type; : Type; 4
[, [2:A]T" valid
L [w: AT Fa: A
[[x:A] = B : Prop
'+ {x:A}B : Prop
' A:Prop T[z:A]lF B: Type,;
' {x:A}B : Type,;
' A:Type; TD[a:A]F B: Type,

' {x:A}B : Type,;
[[a:A]F M : B
I'F[a:AIM : {z:A} B
'-M:{a:A}B TTEN:A
I'-MN :[N/z|B
''-M:A I'EB:x A~B
'-M:B
' M : Type,
I'=M: Type;

Table 2: Definition of CC”



Theorem 2.2 (Luo) (Some properties of CC* )

o Any derivation of I'[x:A]l" = M : B has a subderivation of I - A : &

for some kind k.
o Any derivation of ' = M : A has a subderivation of I' valid.
o IfT'FM:Athen ' Ak for some kind k.
o (Subject Reduction) If '+ M : A and M - N, then 't N : A.
o (Strong Normalization) If ' M : A, then M is SN.
Proof See [30, 31] O

3 Operational Presentation

As a step towards the presentation of a type checking algorithm for CC¥ | it is
helpful to give a syntax-directed, or operational presentation of the calculus
with the property that at most one rule of inference applies to a term. We
begin with such a presentation of the conversion relation.

3.1 Conversion

The relation M | N is defined by the rules of Table 3. Informally, M | N
holds iff M and N reduce by a standard reduction sequence to a common
term. Thus if M | N, then M and N are convertible in the usual sense.
The converse fails, for if a standard reduction sequence of M fails to yield a
normal form, then M [/ M. However, if we restrict attention to well-typed
terms, these relations coincide, and, moreover, the relation | is decidable.

Theorem 3.1 (Conversion algorithm)
(Soundness) If M | N, then M ~ N.
(Completeness) If M ~ N and M and N are SN, then M | N.

(Decidability) It is decidable for SN M and N whether or not M | N.



K “ Type, L “ Type,;

OC-TYPE

K| L
M% e N%q K%Prop L%Prop
M| N K| L

AL {2:4,}4, B > {e:Bi}B, A | By Ay | B,
Al B

M 5 [v:A4]M;, N K [w:Ap)My Ay | Ay My | M,

M| N

M5 M M, NS N N, M| N, M,]|N,
M| N

Table 3: g-Conversion Algorithm



Proof A derivation of M | N essentially specifies reduction sequences from
M and N to the same term. Thus soundness is proved by induction on the
definition of |.

For completeness, suppose that M and N are SN and that M ~ N. Then
M and N have unique weak head normal forms, M, and N, respectively,
with My ~ M ~ N ~ N,. Proceed by induction on the structure of M,. For
example, if My = M, M, (where M, is not of shape [x:A]B), then we must
have Ny = Ny N, with M; ~ N; (i =1,2). By induction hypothesis M; | N;,
hence M | N. The other cases are similar.

Decidability follows from the fact that the requisite weak head normal
forms exist. a

3.2 Operational Presentation of CC”

The inference rules defining the relation I' F M : A are not completely
syntax-directed since the rules CONV and CUM are applicable to any term.
The operational presentation of CC* is a syntax-directed formal system for
CC" that admits only limited applications of these rules, without sacrificing
completeness (in a sense to be made precise below). The operational presen-
tation is given in Table 4; an assertion of the form I' - M = A is intended
to mean “A is a type for M in I'”.

The operational presentation differs from the basic definition of CC* in
several respects. One important difference is in the handling of contexts: con-
text validity is assumed, rather than enforced. As a result, the rules 0-GEN
and 0-ABS explicitly check the validity of the type of the bound variable in
order to maintain this assumption. This formulation of the rules is closer to a
practical implementation since it avoids the overhead of repeatedly checking
context validity for each atomic term.

Another important difference is in the use of type conversion. In par-
ticular, rules 0O-GEN and 0-ABS use only weak head reduction, rather than
conversion, since, in the presence of the Church-Rosser property, a term
is convertible to a kind only if it may be weak head-reduced to it. The
rule O-APP uses the operational definition of conversion discussed above to
match the domain and argument types.

Having limited the uses of conversion, some care must be taken to ensure
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O-PROP I' - Prop = Type, (1>0)
O-TYPE I' - Type; = Type, (i>5>0)
O-VAR [, [2:A]T" F 2 = cum(A, 1) (1>0)

TFA=K K& xé¢Dom(l)

wh
[[z:Al]F B=L L >k, .
- >
O-GEN I'FA{x:A}B = &y 1; Ky (120)

TFA=K K%& 2¢Dom(l) T[[w:AlFM= B

O7ABS ' [a:AM = {x:A}B

THFM=A A% {z:4}4,

I'EN=B B|A /
_ >
O-APP ' MN = cum([N/x]A,, 1) =

where cum and | are defined by:

. wh
cum(A, i) = Type;y; of A= Type;
’ A otherwise
Prop if k4 = Prop
Ky ]y Ry = Typej_l_i Zf = Prop, ry = Typej
TYPenax(iiy+i U K1 = Type;, ko = Typey,

Table 4: Operational Presentation of CC”
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that all potential uses of cumulativity are accounted for. For example

[2:([y:Typey] Type,) Prop] - 2 : Type,

because ([y:Typey| Typey) Prop ~ Type,, and cumulativity then applies. Sim-
ilarly

[z:{ f:Type,—Type, }(f Prop)] =z ([y:Typeg| Typey) : Type,

These two examples illustrate the need for the function cum in rules 0-vARr
and O-APP: the result type may be convertible to a universe, and hence
cumulativity may apply at that point. Similarly, rule 0-GEN is defined in
terms of the auxiliary function | to account for potential cumulativity. The
following lemma shows that Table 4 indeed has “enough cumulativity”.

Lemma 3.2 [f ' M = A and A “ Type,, then forall j > ¢, ' F M =

Type;.
Proof By inspection of the rules of Table /. a

The main theorem of this section establishes the relationship between
CC” and its operational presentation:

Theorem 3.3 (The operational presentation of CC")
(Soundness) [If ' is a valid context and ' M = A, then ' M : A.

(Completeness) If ' M : A, then there exists B such that '+ M = B
and B ~ A.

Proof We use Theorem 2.2 without further mention.

(Soundness) Let ¢ be a derivation of ' = M = A. We build a derivation
of ' M : A by induction on height 6. In the base case ¢ is O-PROP (re-
spectively O-TYPE, O-VAR), and the result follows from VALEL, (respectively
VALE2, VALE3), and cuM. In the induction case, the root node of 6 is one
of O-GEN, O-ABS, or O-APP. Suppose, for example, it is O-ABS, so for some
A, K, M, and B, ¢ is

TFA=K K%k 2¢Dom(l') T[w:AlFM= B
' [a:AM = {x:A}B

12



By induction hypothesis, we have I' F A : K. Since K %k (and Kk is
necessarily well-typed), CONV and VALI2 give I'[x: A] valid. Thus by induction
hypothesis U'la: Al F M : B, and P1l shows I' F [a:A]M : {z:A} B.

It is also interesting to consider the case where the root of 6 is O-APP.

For some M, N, A, B, andt >0, 6 is

TFM=A A% {x:A)A, THN=B B|A
' MN = cum([N/x]A,, 1)

By Theorem 3.1 B ~ A,. By induction hypothesis, we have ' = M : A and
I'EN:B. Thus A is well-typed, and by subject reduction, so is {x:A;}A,.
Byconv I'E M : {a:A} A, so by PIE and cuM, ' MN : cum([N/xz]A,, 1)
as required. The other cases are similar.

(Completeness) Let 6 be a derivation of I' = M : A, and build a deriva-
tion of ' W M = B (for some B) by induction on height 6. Consider the
possible cases for the root node of 6. If 6 ends with CONV (respectively CUM ),
the result is immediate by induction (respectively Lemma 3.2). All other cases

follow directly from the induction hypothesis. a

The operational presentation is “syntax directed” in the sense that the
structure of a derivation of I' F M = A is determined by the structure of
M. However, the relation I' F M = A is not a partial function of I' and
M, due to the cumulativity of the universe hierarchy. In fact, this is the
only source of variation: two derivations for a given term and context differ
only in the choice of universe index parameters of the operational rules.
The choice of these parameters is sometimes constrained by context. For
example, when deriving a type for the term ([@:Type,)a) Prop, the universe
level of the sole occurrence of Prop is constrained to be 0, 1, or 2 by the
fact that it occurs as the argument to a function with domain Type,. On
the other hand, any universe level greater than 2 is admissible as the type
of Type, itself. It is important to realize that the range of possible types
for a term is determined by the structure of the term itself, and not by
its type. For example = [2:Prop|Prop = {a:Prop}Type, for all « > 0, but
[y:{z:Prop}Type,] F y = {x:Prop}Type; is only derivable for ¢ = 0. Thus,
although cumulativity may be thought of as a form of type containment, it
should be distinguished sharply from type systems that impose an upward
closure condition on typing with respect to some pre-order on types.

13



In order to produce a deterministic algorithm based on the operational
presentation, we remove the indeterminacy by postponing decisions: a choice
of several possible outcomes is replaced by a single schematic outcome. To
this end, we introduce notions of schematic term and constraint in the next
section, and uniformly schematize the operational presentation. In fact, this
approach allows us, in later sections, to formalize (operationally) and imple-
ment (algorithmically) notions of “typical ambiguity” and “universe poly-
morphism”.

4 Decision Problems for CC~

In this section we present a schematic type synthesis algorithm that, given a
valid context I' and a term M, yields a schematic description of the set of
possible types for M relative to I'. This algorithm makes use of an algorithm
for testing convertibility of schematic terms, which we also present. Solutions
to the well-typedness and type checking problems for CC” are easily derived
from these algorithms.

4.1 Schematic Terms

Let «a, 3, and ~ range over some infinite set of level variables, and let A and
p range over the level expressions, consisting of level variables and natural
numbers. The schematic terms, ranged over by X, Y, and Z, are terms
that may involve universe schemes of the form Type,. Universe schemes are
regarded as kinds; we still use & to range over this extended notion of kinds.

Thus:

t= | a level expressions
k == Prop| Type, kinds
X = z|s| ][ XX [{zX}X | XX terms

LV(X) is the set of level variables occurring in X.

A constraint set is a finite set of inequalities of the form A > p or A > p.
We sometimes write A = p for the pair of constraints A > pu,u > A. The
metavariables C, D, £, F, G range over constraint sets. LV(C) is the set of
level variables occurring in constraint set C.

14



A level assignment is a partial function assigning natural numbers to
a finite set of level variables. The metavariables ¢ and 7 range over level
assignments. Dom(o) is the set of level variables o assigns to; i.e. its domain
as a function. A level assignment o satisfies a constraint set C, written
o = C, iff Dom(o) O LV(C) and each of the inequalities in C is true under
the assignment o. A constraint set is satisfiable, or consistent if there is some
level assignment that satisfies it. The following result is due to Chan [5]:

Theorem 4.1 (Chan) There is a polynomial time algorithm to determine
whether or not there exists a level assignment satisfying a given constraint
set.

In fact the running time of this algorithm is bounded by O(m, n3), where m
is the number of constraints and n is the number of level variables.

Level assignments are extended to schematic terms in the obvious way:
o X is the schematic term obtained from X by replacing all occurrences of
Type,,, where o € Dom(c), by Type,(,). The term o X is called an instance
of X. Notice that an instance of X may still contain level variables. Level
assignments are written explicitly as [aq — 74, ..., ) — 1;]. We write o[a —
i] for the level assignment that assigns ¢ to «, and otherwise behaves like o.

Lemma 4.2 (Reduction and Schematic Terms)

1. 0 X s SN iff X is SN.
2. 07 % Type, iff Z “ Type, with oA =p

3. 07 % {e: X} X, iff 7 “5 {x:2,}Z, for some Z; and Z, such that

4. Similar to 3. for cases: (a) Z “ [©:7,] 7y, (b) Z 4 Zy 2y,

Proof Let 0 be a subterm occurrence of X (see [1]). Since level assignment
completely respects the structure of terms, we may abuse notation to say that
o is a bijection between subterm occurrences in X and subterm occurrences
in 0 X. Since reduction is defined without regard to universe levels, it is clear
that 0 is a redex in X iff 00 is a redex in 0 X. Also, 0 X 2y (contracting

redex 00 in o X produces Y ) iff X L ZandoZ =Y. By induction, we get a

15



X% Type, Y “ Type,

e XY ([(V=u))

X% V% X%Prop YﬂgProp

XY (D) XY (D)

X5 eX)X, Y5 @Y, X, 1Y (C) X, 1Y, (C)
XY (G UG

X5 eX]X, V5 Y]Y, X 1Y (G) X% ()
XY (€,00)

X5X X, YBYY, X, |Y(C) X |Y(C)
X 1Y (C,UCy)

Table 5: Schematic S-Conversion Algorithm

similar result for arbitrary reduction sequences. Thus o can also be thought
of as a bijection between the reduction sequences from X and those from o X,
that preserves the bijection of subterm occurrences. This proves all parts of
the lemma. O

Table 5 defines a conversion algorithm for schematic terms that, given
schematic terms X and Y, yields the weakest constraint set C such that if
o EC, then 0 X | Y. The precise characterization of this relation is given
by the following theorem:

Theorem 4.3 (Conversion algorithm for schematic terms)

(Soundness) If X | Y (C) and o =C, then 0 X | oY

16



(Completeness) If o X | oY, then there exists C such that X | Y (C) and
ol=C.

(Decidability) It is decidable, given strongly normalizing schematic terms
X and Y, whether or not there exists a constraint set C such that X |
Y (C) is derivable.

Proof (Soundness) Let ¢ be a derivation of X | Y (C). The hypothesis
o |= C guarantees that o6 is a derivation of 0 X | oY (proved by induction
on the height of 6, using Lemma 4.2).

(Completeness) Let 6 be a derivation of o X | oY . By induction on
height 6 we construct a derivation of X | Y (C) such that o = C. For
example, suppose 6 is an instance of OC-TYPE:

oX % Type, oY “ Type,;
cX | oY

By Lemma 4.2, X “ Type, with cA =1, and Y “ Type, with oy =1, so by
SC-TYPE, X | Y({A=p}), ando |={ X =p}. The other cases are similar.
(Decidability) Since X and Y are SN, all the required weak head normal

forms exist. a

4.2 Schematic Type Synthesis

An algorithm for schematic type synthesis is given by the rules of Table 6. It
is a system for deriving judgements of the form I' - M = X,C. Intuitively,
X,C schematically represent the set of types for M in I'. The algorithm
makes use of two auxiliary functions, CUM and {}, defined in Table 6. These
functions are analogous to the functions cum and | of Table 4, and are
characterized by the following lemmas.

Lemma 4.4 Suppose CUM(X,C) = (Y, D) (respectively ry {i¢ £y = (£, D)).

1. If o =D, then there exists t > 0 such that oY = cum(c X, 1)
(respectively ok = oky |; oKy ).

2. If o EC, Dom(o)NLV(D) = LV(C), and i > 0, there exists
T extending o such that 7 =D, Dom(7) = Dom(o)ULV(D),
and 7Y = cum(7 X, ) (respectively Tk = Tk |; TRy).

17



A-PROP I' - Prop = Type,,{a >0} (o new)
A-TYPE I'+ Type; = Type,,{a > j} (o new)
A-VAR [, [x: AT F o = CUM(A, ()

'tA=X,C X 4 ky ¢ Dom(I') C consistent

Te:AlF B=Y,D Y %,

A-GER I'FA{x:A}B = &1 feup Ko

'tA=X,C X Bk ow ¢ Dom(I') C consistent
[a:A]lF M =Y,D

ATABS I'F[z:AlM = {2:A}Y,CUD

TFM=X,C X% {z:X,}X,
TFN=Y,D X, |Y(&)

AAPE ['F MN = CUM([N/2]X,,CUDUE)

where CUM and ) are defined by the following (where o is a new lvar):

CUM(X,C) := { Type,,CU{a >} ifXﬂgTypeA
X,C otherwise
Prop,C if ko = Prop
k1 fle Ky = { Type,,CU{a> )} if kK, = Prop,ry = Type,
Type,,CU{a> A a>pu} if £ = Type,, r, = Type,

Table 6: Type Synthesis Algorithm for CC¥
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Proof We prove the CUM clauses; the other parts are similar.

L IFX S Type, then D = CU{a > \}, and Y = Type,. So o X 5

Type, ,, and, since o =D, we may take it = ca — oA > 0 to obtain

cum(o X, i) = TypegA_I_( = Type,, = o¥.

ca—al)
If X ;U& Type, for any A, then o X ;U& Type; for any j, so for any i

cum(c X, i) =cX =0V

2. If o X “ Type,, then X “ Type, for some A with oA = j. Hence
D=CU{a> A} for some a & IV(C), Y = Type,, and cum(cX,1) =
Type, ;. Lel 7 be o extended with o j +i. If o X ;U& Type; for any
7, then X ;U& Type, for any A, so take 7 = 0. a

The rules of Table 6 make use of an informal convention whereby level
variables are required to be “new”. This means that the level variable cho-
sen at that rule occurrence is unique to that occurrence, and different from
that associated with any occurrence of any other rule in the derivation un-
der consideration. This convention can be made precise, at the expense of
considerable technical complication, by introducing a set of “used” level vari-
ables, and requiring that a be chosen apart from this “used” set. (See [40]
for a careful treatment of a similar problem.)

Theorem 4.5 (Type synthesis algorithm for CC*)
(Soundness) I[fI'F M = X,C, then

1. IV(X) CLV(C) and IV (C) is a set of “new” level variables.
2. IfoEC, then T'HFM = oX.

(Completeness) If '+ M = A, then there exists X, C, and o, such that

I.TFM= X/,
2. 04 EC, and Dom(c,) =1LV(C)
3. O'AX:A.
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(Decidability) It is decidable, given a wvalid context T' and a term M,
whether or not there exists a schematic term X and consistent con-
straint set C such that ' = M = X,C is derivable.

Proof (Soundness) The first property is proved by inspection of the rules of
Table 6. For the second property, consider a derivation 6 of ' M = X,C.
Roughly speaking, the constraint set C is sufficient to ensure that “cd” is a
valid derivation of I' H M = oX. More precisely, we build a derivation of
' M = oX by induction on the height of 6. The induction proceeds by
case analysis of the root node of 6 based on the rules of Table 6. The most
interesting case is when the root of 6 is an instance of rule (A-APP). Then ¢
has the form:

TFM=27F Z%{t:2)Z, THEN=Y,D Z |Y()
TFMN = X,C

where (X,C) = CUM([N/x]Z,, FUDUE). By definition of CUM, FUDUE C
C,sooEF, oD, andoEE. ThusT'F M = oZ and ' - N = oY by
induction hypothesis. Also o/ “5 {e:0Z}oZy (by Lemma 4.2), and o7, |
oY (by Theorem 4.3). We have shown the hypotheses of rule (O-APP) are
satisfied, and conclude:

' MN = cum([N/z|oZ,,1) (for any ¢ >0).

Finally, by Lemma 4.4, there is some 1 > 0 such that o X = cum([N/x]|oZ,,1)
as required. The other cases are handled similarly.

(Completeness) Let 6 be a derivation of I' F M = A. By induction
on height 6 we build a derivation of ' M = X,C (for some X,C), and an
assignment 4. As in the Soundness proof, proceed by case analysis of the
root node of 6 based on the rules of Table /. We consider two cases; the rest
are handled similarly.

If & is an instance of the axiom (O-TYPE) (this is a base case):

I'+ Type; = Type, (some 1,7, with i > j)

we have rule (A-TYPE) I' - Type; = Type,,{a > j }, and oype, = {1 }.
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If the root of & is an instance of rule (O-APP):

TFM=A A% {x:A)A, THFN=B B|A
' MN = cum([N/x]A,, 1)

(some ¢ > 0)

By induction hypothesis there exist Z,,E4 and o4 such that:
I'EM= 74,84, oaEEL, Dom(oy)=LV(E,), ouZy=A
and by Lemma 4.2:
2y S {02} 7, where 0,7, = A, and 0,7, = A,.
Similarly there exist Zg,Ep and og such that:
I'EN= 756 o5kEE Dom(og)=1V(Ez), oZg=~H

By the “new” convention LV(E4) and LV(Eg) are disjoint, so let 045 =
oy Uog. Now

oaply =047 = A, | B=oply=04575
and by Theorem {.3:
7| Zg(F)  with  oup=TF
We have shown the hypotheses of rule (A-APP) are satisfied:
ThM= 2,8, Zy%{w:2}7Zy,, THN= 25, 7| Zg(F)
so we have
T'FMN = W,G where W,G = CUM([N/2]Zy,E4 U Ep U F)

Now Lemma 4.4 applies to extend o4 5 to the required ocym(n/u)as.i)-
(Decidability) The proof is by induction on the structure of M, keeping

in mind that the rules of Table 6 are syntax-directed. The base cases (Prop,

Type;, and variables) are all trivial: for the case of a variable x, we need
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only check that x is declared in the context. (The constraint set is clearly
satisfiable.)

For the induction, consider the case of an application, MN. We are to
show that we can decide whether or not there exists a schematic term Z and
a consistent constraint set F such that ' F MN = Z,F. If any such 7
and F exist, then the required derivation must end with an application of
rule A-APP. By the induction hypothesis it is decidable whether or not there
exists X,C and Y, D such that ' M = X,C and ' = N = Y, D are both
derivable, and such that both C and D are consistent. If not, then fail, for
otherwise no derivation of the required form can exist. To see this, note that
even if both subderivations exist, but with either C or D inconsistent, then
the only possible choice of F is also inconsistent. Otherwise, by soundness,

Theorem 3.3, Lemma 4.2, and Theorem 2.2, both X and Y are strongly

normalizing. Hence, we may effectively test whether or not X “ {z: X1} X,
and, by Theorem 4.3, whether or not there exists £ such that Xy | Y (€). If
either of these conditions fail, then there can be no derivation of the required
form. Otherwise, we may apply Chan’s algorithm to test whether or not the
constraint set CUDUE is consistent. If so, succeed with 7 = [N/x] X, and
F=CUDUE, and fail otherwise (there is no other choice of Z and F.)
For the remaining cases we have only to note that the check for consistency
of the constraint set C is rules A-GEN and A-ABS ensures (by soundness) that
the validity of the context is preserved. a

Corollary 4.6 The well-typedness and type checking problems for CC¥ are
effectively solvable.

Proof Let I' be a valid context, and let M be a term. By the theorem we
can effectively decide whether or not there exvists a schematic term X and
consistent constraint set C such that ' F M = X,C. By soundness and
completeness, such X and C exist iff M is well-typed in I'. To check whether
A is a valid type for M in ', we may effectively check (by Theorem 4.3)
whether or not there exists D such that X | A(D), and whether or not
(by Theorem 4.1) C U D is consistent. If so, then by the soundness of the
conversion and type synthesis algorithms, A is a valid type for I'. If not,
then by the completeness of the conversion and type synthesis algorithms, A
cannot be a valid type for M in I a
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5 Anonymous Universes

In this section we consider the well-typedness and type checking problems for
the extension of CCY with an anonymous universe, Type. This extension is
intended to model Russell and Whitehead’s “typical ambiguity” convention.
The idea is that in a proof explicit universe levels may be soundly omitted,
provided that some consistent assignment of levels exists. Moreover, every
consistent assignment results in a valid proof: it is not the absolute values of
the universe levels that matters, only their relation to one another.

5.1 Extending the Operational Presentation

Let @, R, S, and T range over ambiguous terms which may contain occur-
rences of the anonymous universe, Type. An ambiguous term, (), is to be
understood as a convenient shorthand for some reading obtained by replacing
each occurrence of Type in ) by a specific universe Type,. From an algorith-
mic point of view, the ambiguity in a term is resolved during type checking,
with the choice of reading constrained by the context of the occurrence. For
example, in the term ([x:Type,]x) Type the anonymous universe may be read
as standing for either Type, or Type,, but not as Type, or any higher universe.
Similarly, in the term ([x:Type]xz) Typey, the type of the bound variable x can
be read as standing for Type; only for : > 2 due to the application to Type,.

Table 7 is an operational presentation of the typing rules for CC* with
anonymous universes. These rules specify the derivability conditions for
judgements of the form I' b @ = M, A, where I' is a context (as defined
in Section 2), () is an ambiguous term, and M and A are ordinary terms.
This judgement is to be understood as expressing that M is a reading of @),
and A is a type for M. It is important to stress that the context I' cannot
contain ambiguous terms: the type of a variable is fixed when it is put into
the context (see, for example, rule 0-A-ABS in Table 7.)

The fundamental properties of the system of Table 7 are summarized by
the following theorem.

Theorem 5.1
(Soundness) I[fI'FQ = M, A, then M is a reading of Q) and I' - M = A.

(Completeness) If M is a reading of QQ and I' = M = A, then I' - Q =
M, A.
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O-A-PROP

O-A-TYPE

O-A-ANON

O-A-VAR

O-A-GEN

O-A-ABS

O-A-APP

I' = Prop = Prop, Type,

I' - Type; = Type;, Type;

I' = Type = Type,, Type;

[, [z: AT F o = 2, cum(A, )

TFQ=AK K&

x ¢ Dom(I)

Te:AlF R= B,.L L%,

I'F{x:Q}R = {x:A}B, Ky |; ks

TFQ=AK K%«

x ¢ Dom(I)

[e:A]lF R= M,B

I'F[2:Q]R = [v:AIM,{x:A}B

TFQ=MA A% {w:A}A,
I'R=N,B B|A

I'FQR= MN,cum([N/x]Ay,1)

where cum and | are as in Table 4.

(i>j=0)

(i>j=0)

(i>0)

Table 7: Operational Presentation of CC* with Anonymous Universes

24



Proof

(Soundness) The proof is by induction on the height of a derivation ¢ of
'@ = M A, with a case analysis on the last rule used in 6. For
example, suppose that 6 has the form

TFQ=MA A% {:A)A, THFR=N,B B|A
I'FQR= MN,cum([N/x]A,,1)

Then, by induction, M is a reading of ), N s a reading of R, I' -
M= A, and ' F N = B. The result follows by rule 0O-APP and by
noting that MN is a reading of QR. The remaining cases are handled
similarly.

(Completeness) The proof is by induction on the height of a derivation 6
of ' - M = A where M is a reading of an ambiguous term (). For
example, if ) = Type, M = Type,, and ¢ is an instance of O-TYPE,
deriving I' = Type, = Type; for some j > i, then by rule O-ANON,
we obtain T' = Type = Type,, Type;, as desired. The remaining cases
follow easily by induction.

5.2 Type Checking with Anonymous Universes

Decision procedures for the type checking and well-typedness problems are
once again based on a reduction to schematic type synthesis. Level variables
are used in two distinct ways: to encode the flexibility due to cumulativity in
the type of a term (as before), and to govern the set of possible readings of
an ambiguous term. This second use of level variables must also be regulated
by constraint sets since the set of correct readings for an ambiguous term is
constrained by the context in which that term occurs.

The type synthesis algorithm is presented in Table 8 as a set of rules for
deriving assertions of the form ®,C F @ = X,Y,D. The pair (®,C) is a
schematic context, where ® is a context built from declarations of the form
2:X where X is a schematic term such that LV(X) C LV(C). Anonymous
universes may not occur in any declaration in ®. If (®,C) is a schematic
context and o = C, then o® is the ordinary context obtained by replacing
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A-A-PROP ®,C - Prop = Prop, Type,,{a >0} (o new)

A-A-TYPE ®,C + Type; = Type;, Type,,{a > j } (o new)
A-A-ANON ®,C I Type = Types, Type,, {a >3 >0} (ar, B new)
A-A-VAR O, [2:X]9".C F 2 = 2z, CUM(X, ()

o CHQ=UX,D Xﬂiﬁ;l C U D consistent
O[x:U],CUDFR= VY. E Yﬂ;ﬁzz x & Dom(®)

ATATGER O, CH{z:Q}R = {x:U}V, ky Ipue Ko
OCHQ=UXD X Yk CUD consistent
A ABS O[z:U,CUDFR= VY. ¢ Dom(®)
O,CF [:Q]R= [v:U]V,{x:U}Y,DUE
DCHQ=UX.D X% {z:X,}X,
¢,CHFR=VY,E X, |Y(F)
A-A-APP

¢,CHQR=UV,CUM([V/x]X,,DUEUF)
where CUM and {) are as in Table 6.

Table 8: Type Synthesis Algorithm for CC* with Anonymous Universes
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each declaration x:X in ® by the declaration x:0X. A schematic context
(®,C) is said to be valid iff C is consistent and for every o |=C, o® is valid.

Theorem 5.2 (Soundness) [f®,CF Q= X, Y, D, then
1. IV(X) C LV(D), LV(Y) € LV(C U D), and LV(D) \ LV(C) is a

set of “new” level variables.

2. Ifo ECUD, then c® Q) = o X,0Y.

(Completeness) If o = C with Dom(o) = LV(C) and 0® F Q = M, A,
then there exists X,Y,D, and 7 such that

1. ®,CFQ= X,Y,D,
2. 7 extends o, 7 =D, Dom(r) = LV(CUD), and
3. 71X =M, and 7Y = A.

(Decidability) [t is decidable, given valid schematic context (®,C) and am-
biguous term (), whether or not there exists schematic terms X and Y,
and constraint set D such that ®,C - Q) = X, Y. D and CU D is con-
sistent.

Proof

(Soundness) The proof is by induction on the height of a derivation ¢ of
. CHQ = X,Y,D. The conditions on the level variables are all proved
by inspection of the rules of Table 8, keeping in mind the conventions
about “new” level variables. For the second claim consider, for example,
the case in which 6 has the form

O.CHQ=U,X.D &CFR=VY,E
3.CFrQR=UV,Z,G

where X % {2 : X,}X,, X, | Y(F), and Z,G = CUM([V/2]X,,D U
EUF). Since DUEUF C G and o ECUG, we have by induction

ot Q =oclU,0X and ot R= oV, oY.

27



By Lemma /.2, c X “5 {z:0 X }o X, and by Theorem /.3 0 X, | oY,
and hence by O-A-APP,

o®FQR=cUocV,cum([oV/z|c X,,1)

foranyi > 0. NowolUcoV =o(UV), and [oV/z]o X, = o[V/x]X,, and
so by Lemma 4.4, there exists ¢ such that oZ = cum([ocV/z]o X,, 1), as
desired.

(Completeness) The proof is by induction on the height of a derivation 6
of c® F Q = M, A where o = C. Suppose that § is an instance of
O-A-ANON; i.e., o® I Type = Type,, Type; where i > j. Choose X =
Typey, Y = Type,, and D ={a > 3 >0} (where a and 8 are “new”
to obtain the required derivation, and choose T = ola — 1, 3 — j| as the
required level assignment. It is easy to see that 7 = CUD, 7.X = Type;,
and 7Y = Type,, as required.

Now suppose that 6 is a derivation of the form

cd Q= MA cb-R=N,B
o®F QR= MN,cum([N/z]A,,1)

where ¢+ > 0, A “5 {2:A1}A,, and B | Ay. By induction there exists U,

X, D, and an extension 74 of o such that
q),CFQjU,X,D TA |:D TAU:M TAX:A.

Stmilarly, by induction there exists V', Y, €, and an extension 75 of o
such that

q),CFR:>V,Y,g B |:g TBV:N TBYZB.

Now by the “new” convention, LV(D)NLV(E) C LV(C), and by the
conditions on 74 and Tg, we may form the level assignment 7,5 =
TAUTp with the properties thal 7, g is an extension of o, 74 p = DUE,
TaglU = M, 748V = N, typX = A, and 74 5Y = B. Hence, by

Lemma 4.2, there exists X; and X, such that X “ {z: X} X, with
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TapX; = A; (1 =1,2), and by Theorem 4.3, there exists F such that
X, | Y(F) and 74 p = F. Therefore by A-A-APP we have

O.CHQR=UV,ZG.

where 7,G = CUM([V/z]X,,D U & U F). Now [N/z]A, =
[TasV/xlTapXy = 74p[V/2]Xy, and so by Lemma 4.4, there ex-
ists T = G extending T4 p such that 77 = cum(7[V/x]X,y,1) =
cum([N/x]|A,, 1), which completes the proof.

(Decidability) Similar to the proof of Theorem 4.5. O

6 Definitions

In this section we treat the extension of the two calculi (CC* and CC* with
anonymous universes) to admit defined identifiers. We take as a fundamental
principle the eliminability of definitions: a defined identifier is indistinguish-
able from its definition. This principle leads to the notion of universe poly-
morphism, whereby a defined identifier may take on any of some constrained
set of types determined by its definition. Since this form of polymorphism
is associated with definitions, it is very similar to the form of polymorphism
found in ML [39, 15, 40]. For the sake of simplicity we omit consideration of
local definitions (which would be introduced using a form of let expression).
However, we expect that the methods described below can be extended to
handle this case.

6.1 Definitions in CC”¥

A definitional context A is a finite sequence of declarations of the form x:A
and definitions of the form =M subject to the following conditions. First, no
variable may be declared or defined more than once, nor may any variable be
both declared and defined. Thus a definitional context A has a well-defined
domain given by Dom(A) = Def(A) U Dec(A) where Def(A) is the set of
defined variables in A, and Dec(A) is its set of declared variables. Second,
it A = A [e:M]A", or A = A [x=M]A”, then FV(M) € Dom(A,). (In
the only interesting case, valid contexts, this is no restriction at all.) Third,
as a matter of technical convenience, we require that no defined variables
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occur in the right-hand side of a definition. This convention avoids certain
complications in the proofs arising from the possibility of “definition chains”
whereby an identifier = is defined to be y, itself a defined identifier.

In order to give expression to the eliminability of definitions, we shall
need the expansion function defined by induction on the structure of terms
as follows:

M if A=A Jr=M]A®

x  otherwise

Alz) = {

A(k) = &
A{zA)B) = {e:ACAA(B) if = ¢ Def(A)
A([e:AIM) = [e:A(A)JA(M) if @ ¢ Def(A)
A(MN) = A(M)A(N)

(We assume that bound variables are chosen so as to avoid conflicts, as
necessary.) Expansion is extended to definitional contexts as follows:

o] = o
Al = [Al[AA)]
A=M]| = |A]

Define A = M | N (A-conversion) to hold iff A(M) | A(N). Since
definition expansion is always terminating, this relation is decidable if A(M)
and A(N) are strongly normalizing (as will be the case for well-typed terms).
A direct definition of this relation could be given by taking a defined identifier
to be convertible to its definition, along with the usual -conversion axiom.

The relation A - M % N (A-weak head reduction) is defined similarly
to M5 N (see Section 2.2), taking

A Je=M]A"F 22 M
as an added axiom in Table 1. Thus a term in A-weak head normal form has
one of the shapes @ (where = ¢ Def(A)), k, {e:A} B, [v:A]B, or M N where
M is itself a A-weak head normal form of shape other than [2:A]B.
Lemma 6.1

1 IFAF M5 N, then A(M) % A(N).
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O-D-PROP A Prop = Type, (1>0)

O-D-TYPE A+ Type; = Type, (t>7>0)
0-D-VAR ALz AJA" F @ = cumy (A, 1) (: >0)
A b M= A

O-D-DEF

AJe=MA"Fz= A

L~ wh

AFA=K AFK >k a¢&Dom(A)

wh
Alx:AlF B=L AF L&, .
D- >
O-D-GEN AF (AIB = 1y |: g (#20)

AbA=K AFK% s z¢Dom(A)
Alz:AlF M =B
AF [w:AIM = {x:A}B

O-D-ABS

AFM=A AFAS {2:A)A,

o AFN=B AFB]| A, (i 0)
e AT MN = cumy ([N/z]A,,7) r=

where | is as in Table 4 and cum, is defined by cumy(A,7) = cum(A(A), 7).

Table 9: Operational Presentation of CC” with Definitions
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2. If A(M) “ N, then there exists P such that A+ M “ P and A(P) =
N.

An extension of CC” to admit definitions is presented in operational style
in Table 9. This system is essentially Table 4 extended with the rule 0-D-DEF.
This rule expresses the eliminability of definitions principle, and introduces
the notion of universe polymorphism. For example, the following assertion
is derivable in the system of Table 9:

[=[y:Prop]Prop| i ([z:Prop—Type,|[w:Prop—Type,|Prop) = x = Type,

In this derivation the two instances of x are given the distinct types
Prop—Type, and Prop—Type;, both of which are correct types for
[y:Prop]Prop. Notice that no single type for = will do.

The soundness of the operational system with definitions (Table 9) with
respect to the basic operational system (Table 4) is expressed by the following
theorem.

Theorem 6.2 [f A+ M = A, then |A|FA(M) = A(A).
Proof The proof is by induction on the height of a derivation 6 of AF M =
A. Suppose that 6 is a derivation of the form

A EM=A
AJe=MA"Fz= A

By induction hypothesis we have

[Aul = AL(M) = A(A).
Now FV(A) C Dom(A), and so A, (A) = A(A). By the conditions on defi-
nitional contexts, A(M) = A (M), and by the definition of | — |, |A] is an
extension of |A,|. It is easy to see that derivability is closed under context

extension, and therefore we may derive |A|F A(x) = A(A), as desired.
Suppose, now, that 6 is a derivation of the form

AFM=A AFN=B
AF MN = cump([N/x] Ay, 1)
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where 1 > 0, A F A “5 {x:A1} Ay, and A+ B | Ay. By the conventions on

bound variables, we may assume that x & Def(A). By induction we obtain
IAIFA(M) = A(A) and |AlFA(N) = A(B).
wh

By Lemma 6.1, A(A) -» A({ax:A;}Ay) = {a:A(A)TA(A,).  Moreover
A(B) | A(A)) by the definition of |, so by rule O-APP we obtain

[A[F A(M)A(N) = cum([A(N)/2]A(A,), ),

and the result follows easily from the definition of cumy. The remaining
cases are handled similarly. a

A converse to this theorem may also be proved, yielding as a corollary
the decidability of the system with definitions. We prefer, however, to give
a direct presentation of a type synthesis algorithm that avoids unnecessary
expansion of definitions. The idea is to adapt the methods of [15], and
associate with a definition a type scheme summarizing the set of all possible
types for the definiens. Under suitable assumptions about the associated
type scheme, we obtain a sound and complete type synthesis algorithm for
CC” with definitions.

A generic definitional context © is defined similarly to a definitional con-
text, except that definitions have the form x=M:X, G, where X is a schematic
term, and G is a constraint set such that LV(X) C LV(G). By abuse of nota-
tion, we use O in situations where a definitional context is expected, under
the convention that the stored schematic type information is to be ignored.
When it is important to stress the distinction, we write O for the underlying
definitional context of ©.

A-conversion and A-weak head reduction are extended to schematic terms
in the obvious way, following the pattern of Section 4.1.

A definitional context A is walid iff for each x such that A = A [z:A]A",

there exists some K such that A, - A= K with AF K = &, and for each
x such that A = A [z = M]A” there exists some A such that A, F M = A.
Thus types in declarations must indeed be types, and the definiens of a
definition must be well-formed. A generic definitional context O is valid iff
O is valid and for each & such that © = 0,[r=M:X,G]O", the constraint set
G is satisfiable, and ©_ F M = X whenever o = G (that is, (X,G) must
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have an instance, and all instances must be valid types for M). Conversely,
O is principal iff it is valid, and whenever @ = O [z=M:X,G]O" and 6, F
M = A, then there exists o |= G such that 0 X = A (that is, the type scheme
(X, G) must capture all valid types for M). It is worth remarking that these
conditions are naturally preserved under the extension of the system with
local definitions.

The type synthesis algorithm for CC* with definitions is given in Table 10.
The rule A-D-DEF makes use of an operation vy, mapping level variables in
the set V to “new” level variables (i.e., that do not otherwise appear in the
derivation.) This operation is extended to schematic terms and constraint
sets in the obvious way. The properties of the type synthesis algorithm are
give by the following theorem:

Theorem 6.3
(Soundness) I[fOF M = X,C for some valid definitional context ©, then

1. IV(X) CLV(C) and IV (C) is a set of “new” level variables.
2. IfoEC, then OF M = oX.

(Completeness) IfOF M = A for some principal definitional context ©,
then there exists X, C, and o such that
1I.OF M= X,C,
2. 0 =C, and Dom(o) = LV(C)
3. cX = A.
(Decidability) It is decidable, given valid definitional context © and term

M, whether or not there exists schematic term X and consistent con-

straint set C such that © W M = X,C.

Proof The proof is essentially the same as that of Theorem 4.5; the assump-
tions on O suffice for defined identifiers. a
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A-D-PROP O + Prop = Type,,{a >0} (o new)

A-D-TYPE O + Type; = Type,, {a >} (o new)
A-D-VAR 0,[2:A]0" F 2 = CUMg_ (A, 1)
A-D-DEF O,[z=M:X,G]0" F = = v1yg(X,6)

OFA=X,C @"Xﬂglﬁ x ¢ Dom(0©) C consistent

Ol:AlF B=Y,D OrY % &,
OF {z:A}B = &y fleup K2

A-D-GEN

OFA=X,C OFX %k x ¢ Dom(0©) C consistent
Ole:A]F M =Y, D

A-D-ABS OF [2:A]M = {x:A}Y,CUD

OFM=X,C OFX% {z:X,1X,
OFN=VY,D OFX,|Y()

ATD-APP OF MN = CUMg([N/2]X,,CUDUE)

where vy, assigns “new” level variables to each of the level variables in V, )

is as in Table 6, and CUMg is defined by CUMg(X,C) = CUM(O(X),C).

Table 10: Type Synthesis Algorithm for CC* with Definitions
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6.2 Definitions with Anonymous Universes

The final extension of CC“ that we shall consider is the combination of
universe polymorphism and typical ambiguity. As we have seen, definitions
introduce a form of polymorphism induced by the cumulativity of the uni-
verse hierarchy. “Ambiguous” definitions allow for further flexibility since the
definiens is “re-read” on each use of the definition. For example, if f is de-
fined to be the term [2:Type]x, then both f Prop and f Type, are well-formed,
as is f Type, since in each case the ambiguous definition of f receives a read-
ing appropriate to the context. Moreover, each of these terms could occur as
subterms of a single term: the principle of eliminability implies that defined
identifiers are “polymorphic” in that each occurrence corresponds to a dis-
tinct “reading” of the definition. An interesting example is self-application
of the polymorphic identity function. With the definition

I=[t:Type][z:t]x

the term

I ({t:Type}t—t) I

is well typed; the two instances of I receive two distinct readings, and are
assigned two distinct types.

It is also important to realize that this notion of polymorphism does not
extend to declarations A declaration x:A or x: X assigns a single, perhaps un-
derdetermined, type for @. Thus (referring back to the polymorphic identity
example above) if .J is declared by

J:{t:Typeli—t

then
J ({t:Type}t—t) J

should not be well typed®. This is as it should be, for there is no reading of
the type of J such that the above term is well-typed in CC¥.

These considerations are formalized in an operational presentation in Ta-
ble 11. The rules of Table 11 are essentially a combination of those of Tables 7
and 9. Note that the type of variables receive a fixed “reading” before being

*We thank Gérard Huet for this example
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O-AD-PROP A+ Prop = Prop, Type, (1>0)
O-AD-TYPE A+ Type; = Type;, Type; (i>5>0)
O-AD-ANON A+ Type = Type;, Type, (i>5>0)
O-AD-VAR A, [2:A]JA" F 2 = 2, cum(A, 1) (: >0)
0-AD-DEF A FQ=MA
e A [z=QIA"Fz= M, A
AFQ=AK K3k «¢Dom(A)
wh
Alz:AlF R= B,L L —» &, .
_AD- >
O-AD-GEN AF{z:QIR = {x:A} B, Ky |; Ky (120)
AFQ=AK K%k z¢Dom(A)
0-AD.ABS Alx:AlF R= M, B
e AF [2:Q]R = [v:AIM, {x:A}B
AFQ=MA A% {244,
- AFR=N,B B|A i 0)

AFQR= MN,cum([N/z]A,,1)

where cum and | are as in Table 4

Table 11: Operational Presentation of Anonymous Universes and Definitions
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added to the context, so that declarations are always unambiguous. Defini-
tions, on the other hand, may be ambiguous, and receive a fresh “reading”
on each use. In order to ensure that declared identifiers remain unambigu-
ous even in the presence of definitions, we require that no defined identifiers
occur in the type of any declared variable. This restriction is preserved by
rules O-AD-GEN and 0-AD-ABS, since the reading of a term has all defined
identifiers eliminated.

The soundness of this system with respect to the operational presentation
of anonymous universes (Table 7) is expressed by the following theorem.

Theorem 6.4 [fAFQ = M, A, then |A|FA(Q) = M, A.
Proof The proof is by induction on the height of a derivation 6 of AF Q) =
M, A. The most interesting case is when 6 has the form:

AFQ= M A
A e=QIA"F = = M, A

By induction, |A,| F A(Q) = M,A. Clearly |A[r=Q]A"| is an exten-
sion of |A,] and A (Q) = A(x), so |Al - A(x) = M, A, as required. The

remaining cases are similar. O

Once again, a converse to this theorem could be proved, with decidability
following as a corollary. However, we prefer to give a direct presentation of
a type synthesis algorithm for the system with ambiguous terms and defini-
tions.

A schematic, generic definitional context (sgd-context) is a pair (V,C)
where W is a context built from declarations of the form x:X with LV(X) C
LV(C), and definitions of the form x=X:Y, G where LV(X) C LV(G) \ LV(C)
and LV(Y) C LV(CUG). Note that the anonymous universe cannot occur in
schematic terms: X and Y in the foregoing are unambiguous. The conditions
regarding well-formedness of definitional contexts apply to sgd-contexts as
well.

The type synthesis algorithm for anonymous universes and definitions is
given in Table 12.

To state the soundness and completeness of the type synthesis algorithm,
it is necessary to introduce some additional terminology. If X is a schematic
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A-AD-PROP V. C + Prop = Prop, Type,,{a >0} (o new)

A-AD-TYPE U, C + Type; = Type,, Type,, {a >} (o new)
A-AD-ANON U, C - Type = Typegs, Type,,{a >3 >0} (ar, B new)
A-AD-VAR U, [2: XU, C F 2= 2, CUM(X, ()

A-AD-DEF \I}x[[E:XY, g]\I/x, C Fx = VLV(Q)\LV(C)(X7 Y, g)

VCFQ=UX,D Xﬂiﬁ;l C U D consistent
Uz:U],CUDF R=V,Y,E Yﬂ;ﬁzz z & Dom(W)

ATAD-GEN U .CHA{x:Q}R = {x:U}V, &y pue K2
VCFQ=UX,D X “ & CUD consistent
Ulz:U],CUDFR=V,Y.E z¢ Dom(¥)
A-AD-ABS
U.CE[w:Q|R= [«:UV,{x:U}Y,DUE
U.CFQ=U,X,D X% {z:X,}X,
UV.CFR=VY,E X, |Y(F)
A-AD-APP

U.CFQR=UV,.CUM([V/2]X,,DUE UF)
where ) and CUM are as defined in Table 6, and vy is as defined in Table 10.

Table 12: Algorithm for Anonymous Universes and Definitions
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term, let X denote the ambiguous term resulting from replacing all occur-
rences of Type, by the anonymous universe Type. If (¥,C) is an sgd-context
and o = C, then oW denotes the definitional context obtained by

1. replacing each declaration x:X by the declaration z:0 X, and
2. replacing each definition +=X:Y, G by the definition v=X.

The idea is that the constraint set C governs the possible readings of of each
of the declarations in ¥, and that in each definition x=X:Y, G, the level
variables in X result from a schematic reading of some ambiguous term, and
hence are erased in passing to the underlying definitional context. The type
information associated with a definition is, as before, simply erased.

An sgd-context (V,C) is valid iff C is satisfiable, and if o = C, then
Lo if U =W, [2:X]U") then oV, FoX = oX, K for some K 4 K,

2. U = U [z=X:Y,G]¥", then for all variants (Y*,G") =
vivonwve) (Y5 6),

(a) oG is satisfiable,

(b) if 7 is an extension of & such that 7 = G, then oW, - X =
X, 7Y.

Intuitively, in a definition x=X:Y, G the constraint set ¢ is to govern both
the set of possible readings for X and the set of possible types Y for each
reading. Since X may mention variables declared earlier in the context, the
type Y might involve level variables in the constraint set C.

Conversely, (U,C) is principal iff it is valid and if o = C with Dom(o) =
LV(C), then for each = such that ¥ = ¥ _[z=X:Y,G]¥", if oV, F X = M, A,
then for each variant (Y7,G7) = viygpiv(e)(Y;G), there exists an extension
7 of o such that 7 = G", 7X = M, and 7Y = A. The idea is that every
possible reading, and every possible type for each reading, of X is obtainable
as an instance of the schematic definition and stored type information.

Theorem 6.5

(Soundness) Let (U,C) be a valid sgd-context. If W,CF Q = X,Y,D, then
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1. IV(X) CLV(D)\LV(C), LV(Y) C LV(CUD), and LV(D)\ LV(C)
is a set of “new” level variables.

2. lfoECUD, then oV Q = o X,0Y.
(Completeness) Let (V,C) be a principal sgd-context. If o |= C with
Dom(o) = LV(C), and oW + Q = M, A, then there exists X, Y,

D, and T such that
1.V, CHQ = X,Y,D,
2. 7 extends o, 7 =D, Dom(r) = LV(CUD), and
3. 71X =N, and 7Y = A.

(Decidability) It is decidable, given valid sgd-context W,C and ambiguous
term (), whether or not there exist schematic terms X and Y, and

constraint set D such that V,C - Q = X, Y. D and CUD is consistent.

Proof
(Soundness) The proof is by induction on the height of a derivation ¢ of
UV.CFQ = X,Y,D. We consider here only the rule A-AD-DEF. Sup-

pose that 6 is a derivation of

U [z=X:Y,GI¥",CF z = viygpve)( X, Y, G)
Writing ¥ = U, [¢=X:Y,G]U" and (X, Y",G7) = viygpwvie)(X, Y, 6),
we have o |:/QUQ*,AthEby the validity of (V,C), oV, = X = o X,0Y.
But oW = oV [x=X]oWU*, and so, by 0-AD-DEF, V¥ F 2 = o X, oY,
as desired.

(Completeness) The proof is by induction on the height of a derivation ¢
of oW = Q = M, A, under the conditions stated in the theorem. The

most interesting case is when 6 is of the form

cU_FX = MA
oVt o= MA

where U = U [x=X:Y,G|¥". Therefore by A-AD-DEF, ¥ F z =
X5Y7,G7 where (X7,Y7,G7) = viygnve)(X,Y,G). By principality
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of (V,C), there exists T extending o such that 7 =G, 7X" = M, and
7Y™ = A, as desired.

(Decidability) Similar to the proof of Theorem 4.5. O

7 Related Work

Huet, in an unpublished manuscript [26], has independently developed an
algorithm for handling universes in the Calculus of Constructions. His ap-
proach is to drop the assumption that the universes form a linearly-ordered
cumulative hierarchy indexed by the natural numbers, and to consider in-
stead a family of calculi in which there is some well-founded partial ordering
of universes. The input language is correspondingly restricted so that spe-
cific universes are disallowed; only the anonymous universe Type may be
used. The principal advantage of this approach over the one considered here
is that the consistency checking algorithm is significantly more efficient than
Chan’s algorithm, reducing to an acyclicity check in a dependency graph of
universe levels. Efficiency considerations aside, this approach is equivalent
to ours for the restricted language that Huet considers because any count-
able well-founded partial ordering can be embedded in a countable linear
ordering. However, our method has the advantage that we can, for example,
easily restrict the type checker to terms that check within, say, one universe,
or any fixed bound. This can be of use for calibrating the strength of the
proof-theory needed to formalize an argument. Moreover, “local” constraints
can be imposed in a proof simply by using a specific, rather than anonymous,
universe.

In response to our observation that cumulativity entails flexibility in the
type of a term that is not determined by the shape of type alone (see the
discussion following Theorem 3.3), Luo [31] developed an alternative formu-
lation of a cumulative hierarchy of universes (called “fully cumulative”) that
eliminates the need for schematic type expressions in the basic type checking
algorithm for CC*. The idea is to introduce a partial ordering on type ex-
pressions with the property that a type of the form {z,:A;}--- {z,: A, } Type,
is less than, in this ordering, to a type of the form {wx;:A;}---{x,:A4,} Type;
whenever ¢ < j. (In addition, Prop is taken to be less than Typeg,, but
this does not effect the type checking algorithm.) The types of a term are
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then required to form an upward-closed set in this ordering. In this way
the need for schematic terms and constraint sets in the basic type synthesis
algorithm is replaced by a more complex application rule. Of course, every
derivation in our system is a valid derivation in this extended sense, but the
converse fails. Nevertheless, the resulting system is consistent and decid-
able, as demonstrated in [31]. It should be stressed that our methods for
handling definitions and anonymous universes extend directly to Luo’s cal-
culus. However, the implementation of definitions and anonymous universes
in Luo’s calculus can be significantly more efficient than for CC* since con-
straints are generated only in connection with typical ambiguity and universe
polymorphism, and not as part of the basic type checking algorithm.

We know of two machine implementations of CC¥. Gérard Huet and co-
workers are developing an implementation of CC* [13] that supports Huet’s
variant of typical ambiguity discussed above. The second author has imple-
mented the algorithms of this paper in the Lego proof checker [32]. Lego
supports several type theories, including CC* and Luo’s variation on it, ex-
tended with typical ambiguity and universe polymorphism.
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