
A Framework for Context-Aware Services Using
Service Customizer

Mehran Najafi, Kamran Sartipi
Department of Computing and Software, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

najafm@mcmaster.ca, sartipi@mcmaster.ca

Abstract— In order to call a context-aware service, a service
requester has to reveal his contextual information to a service
provider or a context manager, which may jeopardize his privacy
and security. Moreover, if the client's context changes over time, a
context-aware web service must be called frequently with the
updated context values. In this paper, we propose a service
customizer agent at the client's side and a service provider that
generates general service responses and service customization
knowledge. The customizer agent uses the knowledge to
personalize the general service response based on the client's
context. In addition to offering innovative context-aware services,
the proposed approach improves the privacy and security features of
web services.

Keywords: Service-Oriented Architecture (SOA); Context-
Aware Services; Software Agent; Knowledge Management;
Service Customizer.

I. INTRODUCTION
Service-Oriented Architecture (SOA) [1] is a high-level

and technology-independent concept that provides
architectural blueprints for enterprise systems. SOA based
architectures focus on dividing the enterprise application
layer, where its components (as services) have a direct
relationship with the business functionality of the enterprise.
Web service, which is based on message-exchange, is the
most widely adopted SOA technology.

In service provisioning, context [2] refers to any
information that can be used to characterize the situation of a
service requester or provider such as client’s identity,
location, and resources, as well as service time. Context-
aware services [3] are services that can adapt the provided
results to changing context information. Since mobile
devices (such as PDA and cell phones) have become more
powerful, it is extremely important to include user’s context
in the service provisioning. Moreover, clients would like
having personalized services such as adviser services that
take client information and give proper advice.

Traditional context-aware frameworks include a context
manager component that acquires contextual information
from the service requesters and provides them to the service
providers. Then, in order to receive personalized services, a
service client has to reveal his context. Traditional

approaches have several limitations to develop context-aware
services such as follows.

• When a client’s context is modified, a context-aware

service must be called with the updated contextual
information. Then, if the context is changing
continuously (such as location), the service must be
called several times that increases the network traffic as
well as the cost of using the service.

• If a client’s context is sensitive or confidential (e.g.,
client’s personal information), sending them to a
context manager (or a service provider) may violate
user’s privacy and security.

• When the requested contextual information is large,
sending them to a context manager requires large
messages.

Therefore, if a client does not want to (or can not) send his

contextual information, the traditional approaches fail. To deal
with this limitation, we propose a framework that allows clients
to keep their context local and still receive personalized
services. In this framework, there is a customizer agent at the
client’s side that has access to the client’s contexts and
customizes service responses based on them. In order to
employ the service customizer, a service provider needs to
generate general service responses as well as customization
knowledge.

The organization of this paper is as follows. Previous work
is discussed in Section 2. The proposed framework and its
details are discussed in Section 3. A case study in the business
domain is explained in Section 4. Finally, conclusions and
future work are discussed in Section 5.

II. PREVIOUS WORK
A generic architecture for context-aware services is

introduced in [4] (Figure 1). The specified architecture has four
layers as follows. Physical entities layer includes a set of
sensors and input devices to capture the context from the
environment. Then, it classifies this information to allow the
services to request context information. Finally, the context
management layer stores the classified context in a database.
The service-provisioning layer is responsible for the service

discovery, composition and execution based on the
contextual information. The forth layer is application layer
that supports users to develop context-aware services.

Based on the generic architecture, several context-aware
service frameworks have been proposed. The Akogrimo
framework [5] provides data, knowledge, and computational
services for mobile users on the Grid. Based on a context
model, CA-SOA [6] proposes different components to
support context-aware discovery and access Web services. In
[7], a framework that supports the development of context-
aware adaptable Web services is introduced by separating
clients/web services from the context framework.

Figure 1. Generic architecture for context-aware service provisioning [4]

While security and privacy issues are highly related topics
in context-aware systems, these issues have not been well
addressed in context-aware Web services [8]. These issues
are important when the context information is stored in
centralized data store. Akogrimo and CA-SOA support
security (based on authentication and authorization
techniques), and limited privacy (privacy policy is used to
indicate which consumer may require which types of
contextual information). However most context-aware
systems (e.g., CoWSAMI [9] and ESCAPE [10]) lack the
security and privacy enforcement.

A software agent [13] is a piece of software that acts on
behalf of an agency for a user. Software agents have been
employed to facilitate developing context-aware services.
ACAI [14] is an infrastructure that allows context
information to be collected, processed, inferred, and
disseminated by integrating software agents into context-
aware services layer. The context management agent, the
coordinator agent and the ontology agent are considered as
the core of ACAI’s multi-agent system. BerlinTainment [11]
and AmbieAgents [12] are the other agent-based service
frameworks proposed for context-aware service provisioning.

The discussed frameworks are based on context managers
that reside outside service clients (i.e., context provider). As
the result, they may violate client’s privacy and security. In

the proposed framework, we use a software agent that resides at
the client’s side to provide personalized services.

III. PROPOSED FRAMEWROK
The proposed approach works as follows: based on a

received client’s request, a service provider generates a general
service response (i.e., not specific to a particular context) and
relevant service customization knowledge. This information is
sent to a service customizer agent at the client’s side that has
access to client’s local data including client’s contexts. Then,
the customizer agent personalizes the service response based on
the customization knowledge. The proposed framework whose
components is specified in the following subsections is
illustrated in Figure 3

A. Service Requester
Each service requester consists of a client application and a

communication channel as follows.
Client application. It is a traditional client application that

generates and sends request messages to service providers,
where the request message does not include client’s contextual
information.

Communication channel. It allows the service customizer
to access to the client’s contextual information. In this
framework, service providers should specify the required
contextual information for their services, in the service registry.
This channel consists of a number of ports, which are
connection links to internal resources in the client application.
In fact, a requester grants permission to the customizer agent to
read/write a number of its resources through this channel. The
ports can be input, output, or input/output. The agent sensors
can read input ports and output ports can be written by the
agent effectors. One instance of this channel is shown in Figure
2.

Figure 2. Example of communication channel

B. Service Provider

In contrast to existing SOA-based systems whose response
messages have only one segment, the proposed model
introduces service responses with two segments: general
response and customization knowledge. Accordingly, the
service provider consists of two layers that are designed to
work independently and each layer is responsible for providing
one segment of the response message.

Functional layer. It receives the request message; then the

business engine, which applies business related functions on
the business data (stored in the business data base), generates a
general service response for the request. It should be mentioned
that the proposed approach is useful in cases where the general
service response (i.e., customizable based on a client’s context)
can be generated efficiently.

Figure 3. Proposed architecture: the client application sends a request message to the service provider; the service provider employs the service

customizer to personalize its general service responses for the client.

Customization layer. It generates required customization

knowledge for a service customizer agent to personalize the
generated general service response. Customization
knowledge is defined as a set of knowledge sentences where
each sentence defines how a number of client’s contextual
information modifies the general service response. Different
types of knowledge sentences can be used such as rule based,
(if-then statements) and model based (mining-model
parameters). For example, a rule-based knowledge sentence
can be defined as:

If condition (context)
Then response’ = modify (response, context)

This knowledge sentence states that if the defined

condition among a number of contextual information
(context) is true, the personalized response (response’) is
obtained by applying the modification function on the
general service response (response) and the client’s context.
In this case, the customization knowledge defines the
condition and the modification function. As another example:

 If relation (response, context)

 Then response’ = modify (response)

Similarly, it states that if a relation is true between general

response and the contextual information, the modification
function gives the customized service response. Finally, the
generated knowledge sentences are put in the customization

knowledge segment of the response message (in a defined order)
and the message is sent to the service customizer.

C. Service Customizer
Service customizer is a software agent that has a one-way

connection with the service provider, then it cannot transfer
client’s context and client’s privacy is maintained. It has the
following components.

Sensors and Effectors. Sensors provide client’s context for
the service customizer by reading the communication channel
and effectors return the customized service response to the
client application by writing into the communication channel.
They will be connected to the corresponding ports, based on the
channel description published in the service registry.

Knowledge Base. It receives and stores the customization
knowledge segment of the response message to relive the
service provider to send the knowledge in future calls. The
customization engine retrieves its required knowledge from the
knowledge base.

Customization Engine. It takes each received knowledge
sentence (in the defined order) as well as the relevant client’s
context and then modifies the general service response. The
final modified service response is returned to the client
application as the personalized service response. For each type
of knowledge sentences, one customization engine can be
developed. For example, to work with the rule-based sentences,
the customization engine must know how to take and apply if-
then statements or model-based sentences can be applied by
constructing the corresponding mining models in the
customization engine.

Table 1. Customizing knowledge for personalizing general advice

Customization Knowledge
1 If Advcice . Type = Buy ∧ Advice . Price > Client.Budget

Then Advice . Valid=False
2 If Advcice . Type = Sell ∧ Advice . Stock ∉ Client.Portfolio.Stocks

Then Advice . Valid = False
3 If Advcice . Confidence < Client . RiskPreference

Then Advice . Valid = False

IV. CASE STUDY
In this section, we present a case of financial adviser in the

context of stock market. To give proper advice, a financial
adviser usually asks for personal information from their
clients (e.g., client's portfolio or budget). By employing a
service customizer to personalize general advice, a client
does not have to reveal his personal information and hence
his privacy is maintained.

We implemented a prototype system of such a financial
adviser, as follows. A client sends a request (without
providing any personal information) to receive financial
advice. The adviser's response contains two parts as follows.

• General financial advice
• Customization knowledge to personalize the general

financial advice based on the client's personal
information

A. Case Study Specification
The process of generating financial advice could be very

complicated and is out of scope of our discussion. In this
case study, we are interested only in the personalization
procedure, as below.

Each general financial advice is in the form of a tuple with
three elements <Buy/Sell, Stock-name, Confidence-level>
where Confidence level is in the range [0.0 ... 1.0]. Also,
related contextual information include: client's portfolio,
client's budget, and client's risk preference, where the risk
preference can be A, B, C, or D such that A and D represent
client's maximum and minimum risks. The service
customizer can modify the general financial advice for the
client as follows.

• Eliminate a Sell advice whose corresponding Stock

name is not available in the client's portfolio.
• Eliminate a Buy advice that requires more funds than

the client's budget.
• Eliminate any advice whose Confidence level

violates the maximum risk tolerance of the client.

B. Service Requester
The client application sends a request to receive financial

advice. Moreover, it puts its contextual information and
stocks price into the communication channel (Figure 4),
based on the communication channel description published

in the service registry. There is also a port to receive
customized financial advice from the customizer agent.

Figure 4. Communication channel in the financial adviser

C. Service Provider
Functional layer is either an automated system or a financial

expert who generates financial advice in the specified format of
a tuple discussed in Subsection A. Moreover, a flag (valid) is
considered for each general advice to show whether the advice
is in the final set of personalized advice. This flag is initially set
to true. These advice is put into the general response segment
of the service response message. Customization layer puts the
customization knowledge sentences (represented in table I) into
the knowledge segment of the response message where their
order is determined based on their number.

D. Service Customizer
Sensors are connected to the ‘read’ ports to provide client’s

contexts and resources as inputs for the customizer engine. The
customizer engine takes the if-then rules (in the specified order)
and applies to the received general advice. Then, it modifies the
“valid” field of general advice. After applying the third rule,
the agent’s effectors writes advice whose ‘valid’ field is true to
the customized advice port of the communication channel as
the final service response.

E. Implementation Notes
We implemented a prototype of the financial adviser via

NetBeans IDE 6.5, which uses GlassFish V2 as application
server, and J2EE 1.4 to develop web services. The XML
schema of messages, which are exchanged between the service
requester and the service provider, are illustrated in Figures 5
and 6.

The request message is short and just contains the request
message without including any contextual information. The
response message contains both general advice and
customization knowledge tags. By using these schemas, WSDL
description of the web service was developed. In addition to
providing a secure financial adviser, the implemented service
customizer can be used by different service providers to offer
other context-aware services when they provide customization
knowledge in a well-defined format that is supported by the
customization engine.

Figure 5. The request message schema

Figure 6. The response message schema

V. CONCLUSIONS AND FUTURE WORK
As opposed to using external context manager, the

proposed framework keeps the client’s context at the client
side. Moreover, in contrast with the existing
implementations of SOA services that require sending the
entire agent (e.g., by using serialization techniques in
mobile agents) to the requester site, our approach requires a
short message with a minimum amount of knowledge to
customize the service responses.

For future work, we will apply the proposed framework
on more dynamic contextual information (e.g., location)
while we are concentrating on mobile devices as service
clients. We are also working to provide a formal model for
the proposed service customizer. And finally, in addition to
improve privacy and security features of services, the
proposed idea introduces innovative context-aware services
that finding and developing them will bring more
opportunities for e-services to be used by enterprise
companies.

REFERENCES
[1] D. Krafzig, K.Banke, and D.Slama. “Enterprise SOA: service

oriented architecture best practices,” Prentice-Hall, 2005.
[2] A. Dey and G. Abowd, “Toward a better understanding of context

and context- awareness,” Technical Report, Georgia Institute of
Technology, 1999.

[3] G. Kapitsaki, G. Prezerakos, N. Tselikas, and I. Venieris, “Context-
aware service engineering: A survey”, Journal of Systems and
Software, vol 82, Issue 8, pp. 1285-1297, 2009.

[4] S. Mostafaoui, and B. Hirsbrunner, “Context-aware service
provisioning,” IEEE/ACS International Conference on Pervasive
Services, pp. 71-80, 2004.

[5] F. Solsvik. “D4.2.3: Final integrated services design and
implementation report Akogrimo”, .http://www.akogrimo.org,
2006.

[6] I. Chen, S. Yang, and J. Zhang, “Ubiquitous provision of context
aware web services”. Proceedings of the IEEE international
Conference on Services Computing, pp. 60-68, 2006.

[7] M. Keidl, and A. Kemper, “A framework for context-aware
adaptable web services”. Advances in Database Technology -
EDBT 2004, pp. 826-829, 2004.

[8] S. Dustdar, and H. Truong, “A survey on context-aware web
service systems”, International Journal of Web Information
Systems. Vol. 5, no. 1, pp. 5-31. 2009.

[9] H. Truong, L. Juszczyk, A. Manzoor, and S. Dustdar, “ESCAPE -
an adaptive framework for managing and providing context
information in emergency situations,” Second European
Conference on Smart Sensing and Context, pp. 207-222, 2007.

[10] D. Athanasopoulos, A. Zarras, V. Issarny, E. Pitoura, and P.
Vassiliadis, “CoWSAMI: Interface-aware context gathering in
ambient intelligence environments,” Pervasive Mobile Computing,
Vol 4, no 3, pp. 360-389, 2008.

[11] J. Wohltorf, R. Cissee, A. Rieger, and H. Scheunemann,
“BerlinTainment - an agent-based serviceware framework for
context-aware services,” 1st International Symposium on Wireless
Communication Systems, pp. 245-249, 2004.

[12] T. Lech, and L. Wienhofen, “AmbieAgents: a scalable
infrastructure for mobile and context-aware information services,”
In Proceedings of the Fourth international Joint Conference on
Autonomous Agents and Multiagent Systems, Netherlands, pp.
625-631, 2005.

[13] H. Nwana. “Software agents: an overview”, Knowledge
Engineering Review, Vol 11, no 3, pp. 205-244,1996.

[14] M. Khedr, and A. Karmouch, “ACAI: agent-based context-aware
infrastructure for spontaneous applications,” Journal of Network
and Computer Applications, Vol. 28, no 1, pp. 19-44, 2005.

