
ACYCLIC COLOURINGS OF PLANAR GRAPHS WITH
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A

A proper vertex-colouring of a graph is acyclic if there are no 2-coloured cycles. It is known that every
planar graph is acyclically 5-colourable, and that there are planar graphs with acyclic chromatic number
χ
a
¯ 5 and girth g¯ 4. It is proved here that a planar graph satisfies χ

a
% 4 if g& 5 and χ

a
% 3 if g& 7.

1. Introduction

An acyclic colouring of a graph G is a proper vertex-colouring of G such that every

union of two colour classes induces an acyclic subgraph of G, and χ
a
¯ χ

a
(G) denotes

the smallest number of colours in an acyclic colouring of G. Clearly χ
a
(C )¯ 3 if C is

a cycle and χ
a
(F )% 2 if F is a forest, with equality unless F is edgeless.

For a planar graph G, Gru$ nbaum [5] conjectured that χ
a
(G)% 5 and proved that

χ
a
(G)% 9. This bound was sharpened by Mitchem [9] to 8, by Albertson and Berman

[1] to 7, by Kostochka [7] to 6, and by Borodin [3, 4] to 5, which is best possible since

the double 5-wheel C
&
­Ka

#
is planar and (it is easy to see) has χ

a
¯ 5.

The girth g¯ g(G) of a graph G is the length of its shortest cycle. The purpose of

the present paper is to prove the following two results, which were partly inspired by

J. Nes) etr) il telling us of Fact 4 (below).

T 1. If G is planar with girth g& 5 then χ
a
% 4.

T 2. If G is planar with girth g& 7 then χ
a
% 3.

Kostochka and Melnikov [8] have constructed planar 2-degenerate bipartite

graphs, necessarily with girth g¯ 4, having χ
a
¯ 5. (For example, in C

&
­Ka

#
, replace

each edge u� of C
&
by a copy of K

#,%
with u, � as the vertices of degree 4.) Thus our

condition g& 5 is best possible to imply χ
a
% 4. However, we do not know whether

χ
a
% 3 whenever g& 6 (or even g& 5).

Theorems 1 and 2 have several corollaries, in view of the following facts.
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F 1 (obvious). If χ
a
(G)%k then G contains an induced forest on at least 2}k

of its vertices.

F 2 (S. L. Hakimi, J. Mitchem and E. S. Schmeichel (see [6])). If χ
a
(G)%k

then E(G) can be partitioned into k ‘ star forests ’ (forests in which each component

is a star).

F 3 (Gru$ nbaum [5]). If χ
a
(G)%k then the star chromatic number χ

s
(G)%

k[2k−".

F 4 (Raspaud and Sopena [10]). If χ
a
(G)%k then the oriented chromatic

number χ
o
(G)%k[2k−".

By Fact 2, Borodin’s 5-colour theorem implies the truth of the conjecture of Algor

and Alon [2] that the edges of every planar graph can be partitioned into five star

forests. By Facts 3 and 4, it also implies that χ
s
(G)% 80 and χ

o
(G)% 80 for every

planar graph G ; these bounds remain the best known. For girth g& 5, Theorem 1

gives χ
s
(G)% 32 and χ

o
(G)% 32; for g& 7, Theorem 2 gives χ

s
(G)% 12 and χ

o
(G)%

12.

2. Preliminaries

The proofs of the two theorems have a similar structure. In each case we let G be

a smallest counterexample to the theorem, which we assume is already embedded in

the plane, and we note that clearly G is 2-connected. Our proof uses an application

of Euler’s formula (Lemma 1) and some structural information derived from the

minimality of G (Lemmas 2–5) ; we then use the method of redistribution of charge

in order to obtain a contradiction.

Throughout, G has n vertices, m edges and r faces, the sets of which are denoted

by V, E and F respectively. The degree of vertex � is denoted by d(�), a d-�ertex is a

vertex � with d(�)¯ d, and a d(b)-�ertex is a d-vertex that is adjacent to exactly b

vertices of degree 2. The number of edges incident to face f is denoted by r( f ), and

an r-face or "r-face is a face f with r( f )¯ r or r( f )" r, respectively. An (alternating)

i, j-path is a path whose vertices are coloured alternately i and j. A cycle C separates

two vertices if one of the vertices is inside C and the other is outside C, and a

separating cycle is a cycle that separates some two vertices. The following lemma

holds for every connected planar graph.

L 1.

(i) 3
v`V

(3d(�)®10)­3
f`F

(2r( f )®10)¯®20.

(ii) 3
v`V

(5d(�)®14)­3
f`F

(2r( f )®14)¯®28.

Proof. Euler’s formula n®m­r¯ 2 can be rewritten in the form

(6m®10n)­(4m®10r)¯®20, which implies (i), and in the form

(10m®14n)­(4m®14r)¯®28, which implies (ii). *

3. Proof of Theorem 1 (g& 5)

Let G be a smallest counterexample to Theorem 1. As noted above, G is 2-

connected and so has minimum degree at least 2.



346 . . , . .   . . 

L 2. (i) No 2-�ertex is adjacent to a 2-�ertex or 3-�ertex.

(ii) G contains no d(d )-�ertices (2% d% 15), no d(d®1)-�ertices (2% d% 9) and

no d(d®2)-�ertices (3% d% 4).

(iii) If w is a 5(3)-�ertex, then the three 2-�ertices occur consecuti�ely in cyclic order

round w, and both of the two faces between consecuti�e 2-�ertices are "5-faces.

(iv) If a 5(2)-�ertex is adjacent to three 3-�ertices, then it is incident to at least one

"5-face.

(v) A 5(3) or 6(4)-�ertex is not adjacent to any 3-�ertices.

Proof. (i) : (i) follows immediately from (ii). In proving (ii)–(v), we assume

throughout that w is a d(b)-vertex with neighbours �
"
,… , �

b
, z

"
,… , z

d−b
where �

"
,… ,

�
b
have degree 2 and are adjacent to u

"
,… , u

b
respectively. The neighbours of z

i
other

than w will be referred to as the outer neighbours of z
i

(1% i% d®b). By the

minimality of G, we may suppose that G®�
"
has an acyclic 4-colouring c :Vc²�

"
´MN

²1, 2, 3, 4´ in which without loss of generality c(w)¯ 1. If we can convert this into an

acyclic 4-colouring of G by colouring �
"

(perhaps after first recolouring some other

vertices), then this contradiction will complete the proof. Note that if c(u
i
)1 c(w)

then we can give �
i
either of the other colours since no 2-coloured cycle can possibly

use �
i
. Thus we may suppose that c(u

"
)¯ 1, and that for j¯ 2, 3, 4 there is an

alternating 1, j-path connecting u
"

to w (since otherwise we could set c(�
"
)¯ j).

(ii) and (iii) : If b¯ d! 4#, then choose a colour j that appears on at most three

of u
"
,… , u

b
. Set c(w)¯ j, give the intervening �

i
distinct colours not equal to j, and

give the remaining �
i
any proper colours ; this colouring is clearly acyclic.

If b¯ d®1! 3#, then choose a colour j1 c(z
"
) that appears on at most two of

u
"
,… , u

b
. Set c(w)¯ j, and proceed as before. If b¯ d®2! 2#, then the same trick

works provided that c(z
"
)1 c(z

#
), but if c(z

"
)¯ c(z

#
) then we dare not recolour w for

fear of creating a 2-coloured cycle. However, if at most two of u
"
,… , u

b
have colour

1, which must be the case if d®2% 2, then we can colour the corresponding �
i
with

distinct colours not in ²1, c(z
"
)´. This proves (ii), and it also shows that in proving (iii)

we may assume that c(z
"
)¯ c(z

#
)¯ 2, say, and that c(u

i
)¯ 1 for all i. Hence if �

i
, �

j

occur consecutively in cyclic order round w, then there is a "5-face between them

(otherwise u
i
u
j
`E ).

If the �
i
are not consecutive in cyclic order round w, assume that �

"
is between z

"

and z
#
. Because of the 1,4-path connecting u

"
to w, there can be no 2,3-path from z

"

to z
#
. Thus we may give w colour 3 and the �

i
any proper colours. This proves (iii).

(iv) : Suppose that (d, b)¯ (5, 2), d(z
i
)¯ 3 (i¯ 1, 2, 3) and w is incident to five 5-

faces. If c(u
#
)¯ 1 then, because of the 5-faces, �

"
and �

#
are not consecutive in cyclic

order round w, and at most one of z
"
, z

#
, z

$
has an outer neighbour coloured 1, but

this contradicts the existence of the three 1, j-paths connecting u
"

to w, so we may

suppose that c(u
#
)1 1. Then without loss of generality c(z

i
)¯ i­1 and z

i
has an outer

neighbour coloured 1 (because of the 1, (i­1)-path, i¯ 1, 2, 3). Choose a colour

j ¡ ²1, c(u
#
)´ that occurs on at most one of the outer neighbours of z

"
, z

#
and z

$
, set

c(w)¯ j and give z
j−"

, �
"

and �
#

any proper colours.

(v) : Suppose that (d, b)¯ (5, 3) or (6, 4) and d(z
"
)¯ 3. First suppose that c(z

"
)¯

c(z
#
). If the two outer neighbours of z

"
have the same colour j, we may choose

c(w) ¡ ² j, c(z
"
)´ such that c(w) occurs on at most two of u

"
,… , u

b
; the �

i
are now easily

coloured. If the two outer neighbours of z
"
have distinct colours, we may recolour first

z
"

and then w, and so we may assume from now on that c(z
"
)1 c(z

#
), without loss

of generality c(z
i
)¯ i­2 (i¯ 1, 2). If c(u

i
)¯ 1 for at most one i, put c(w)¯ 1 and



        347

c(�
i
)¯ 2. The same works with 1 and 2 interchanged, and so we may suppose that

(d, b)¯ (6, 4), c(u
"
)¯ c(u

#
)¯ 1 and c(u

$
)¯ c(u

%
)¯ 2. If z

"
has no outer neighbour

coloured 1, we may put c(w)¯ 1, c(�
"
)¯ 2, c(�

#
)¯ 3. The same again works with 1

and 2 interchanged, and so we may suppose that z
"
has outer neighbours coloured 1

and 2. Now put c(z
"
)¯ 4, c(w)¯ 3 and give �

"
,… , �

%
any proper colours. *

By a weak vertex we mean a vertex of degree 2 or 3 or a 4-vertex that is adjacent

to both a 2-vertex and a 3-vertex.

L 3. Each 3-�ertex is adjacent to at most one weak �ertex

Proof. Let w be a 3-vertex adjacent to x, y, z where x, y are weak, with degree 3

or 4 (by Lemma 2(i)). Let the outer neighbours of x (that is, its neighbours other than

w) be x
"
,x

#
and, if d(x)¯ 4, x

$
, where d(x

$
)¯ 2 and the other neighbour of x

$
is x!

$
.

To avoid referring to non-existent vertices, if d(x)¯ 3 add isolated vertices x
$
,x!

$
to

G. Deal with y analogously. Let c be an acyclic 4-colouring of G®²w,x
$
, y

$
´. In what

follows, whenever we describe how to colour x
$
, we assume implicitly that c(x!

$
)¯

c(x), since if c(x!

$
)1 c(x) then we can use either of the other colours for c(x

$
) with

impunity ; similarly with y
$
. Assume that c(z)¯ 1. By interchanging x, y and

permuting the other colours if necessary, we have only four cases to consider.

Case 1: c(x)¯ 2, c(y)¯ 3. Set c(w)¯ 4, choose c(x
$
) ¡ ²c(x), c(x

"
), c(x

#
)´, and

colour y
$

similarly.

Case 2: c(x)¯ c(y)¯ 2. If c(x
"
)1 c(x

#
) and ²c(x

"
), c(x

#
)´1 ²3, 4´, then change c(x)

to get case 1. Hence we may assume that c(x
"
)¯ c(x

#
) or ²c(x

"
), c(x

#
)´¯ ²3, 4´, and

similarly for y
"
, y

#
. If there is no 2, 3-path connecting x to y, set c(w)¯ 3, if c(x

"
)¯

c(x
#
) choose c(x

$
) ¡ ²c(x), c(x

"
), c(w)´, if ²c(x

"
), c(x

#
)´¯ ²3, 4´ set c(x

$
)¯ 1, and colour

y
$
similarly. We can do the same if there is no 2,4-path connecting x to y ; hence we

may suppose that both paths exist and c(x
"
)¯ c(y

"
)¯ 3, c(x

#
)¯ c(y

#
)¯ 4. Now,

either the 2,3-path (completed to a cycle through w) separates x
#

from z or the 2,4-

path (similarly completed) separates x
"
from z. Suppose the former, so that there is

no 1,4-path connecting x
#

to z ; set c(w)¯ 4, c(x)¯ 1, c(x
$
)¯ 2 and c(y

$
)¯ 1.

Case 3: c(x)¯ 1, c(y)¯ 2. If c(x
"
)1 c(x

#
) we can change c(x) to get case 1 or

case 2. Hence assume that c(x
"
)¯ c(x

#
)1 3 and choose c(w)¯ 3, c(x

$
) ¡ ²c(w), c(x),

c(x
"
)´, c(y

$
) ¡ ²c(y), c(y

"
), c(y

#
)´.

Case 4: c(x)¯ c(y)¯ 1. As in case 3, we may suppose that c(x
"
)¯ c(x

#
), and

similarly c(y
"
)¯ c(y

#
). Choose c(w) ¡ (1, c(x

"
), c(y

"
)´, c(x

$
) ¡ ²c(w), c(x), c(x

"
)´ and

c(y
$
) ¡ ²c(w), c(y), c(y

"
)´. *

We now show that Lemmas 2 and 3 contradict the supposition that g& 5. Assign

a ‘charge’ of 3d(�)®10 units to each vertex � of G and of 2r( f )®10 units to each face

f of G. By Lemma 1(i), the total charge assigned is negative. We now redistribute the

charge, without changing its sum, in such a way that the sum is provably non-

negative, and this contradiction will prove the theorem. Note that the charge on each

face is non-negative, by the supposition that r( f )& g& 5, and vertices of degree 2,

3, 4, 5,… start with charge ®4,®1, 2, 5,….
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The rules for redistribution are as follows:

(R1) Each 2-vertex receives 2 from each adjacent vertex.

(R2) Each 3-vertex receives "

#
from each adjacent non-weak vertex.

(R3) Each face f with r( f )" 5 and bounding cycle �
"
�
#
…�

r( f )
�
"

gives "

#
to each

vertex �
i
for which d(�

i−"
)% 3 and d(�

i+"
)% 3 (subscripts modulo r( f )).

It is easy to see that the charge on each face f is still non-negative: by Lemmas 2(i)

and 3, the boundary of f cannot contain three consecutive vertices with degree % 3,

and so f cannot contribute "

#
to two adjacent vertices in its boundary; thus f gives

up at most "

%
r( f ), whereas its initial charge was 2r( f )®10" "

%
r( f ) if r( f )" 5.

It remains to prove that the charge on each vertex � is also non-negative. If

d(�)¯ 2 then � started with charge ®4 and has gained 4, and so now has charge 0. If

d(�)¯ 3 then � started with ®1 and has gained at least 1 by Lemma 3, and so it now

has non-negative charge. Suppose that d(�)¯ 4, so that � started with charge 2. By

Lemma 2(ii) and the definition of a weak vertex, if � is adjacent to a 2-vertex then it

gave 2 to only one 2-vertex and nothing to 3-vertices ; otherwise it gave "

#
to at most

four 3-vertices. In either case its charge is still non-negative.

Suppose that d(�)¯ 5, so that � is a 5(b)-vertex where b% 3 by Lemma 2(ii). If

b¯ 3 then, by Lemma 2(iii) and (v), � received "

#
from two "5-faces, between pairs

of 2-vertices, and gave nothing to 3-vertices ; thus � started with charge 5, gave 6 to

three 2-vertices, received 1 from faces, and now has 0. If b¯ 2 then � gave 4 to 2-

vertices and, by Lemma 2(iv), it either gave at most 1 to 3-vertices or gave 1"

#
to 3-

vertices and received "

#
from a "5-face. If b% 1 then � gave at most 2 to a 2-vertex

plus 2 to four 3-vertices.

If d(�)¯ 6 then � started with 8 and, by Lemma 2(ii) and (v), gave at most 8, either

to four 2-vertices, or to at most three 2-vertices and three 3-vertices. If 7% d(�)% 9

then, by Lemma 2(ii), � gave to at most d(�)®2 2-vertices and two 3-vertices, making

a total of at most 2d(�)®3% 3d(�)®10. Finally, if d(�)& 10 then � gave at most 2d(�)

% 3d(�)®10. Thus every vertex now has non-negative charge, and this contradiction

completes the proof of Theorem 1. *

4. Proof of Theorem 2 (g& 7)

Let G be a smallest counterexample to Theorem 2; G is 2-connected, with

minimum degree at least 2.

L 4. (i) G does not contain two adjacent 2-�ertices.

(ii) G contains no d(d )-�ertices (2% d% 8) or d(d®1)-�ertices (2% d% 4).

(iii) No 3-�ertex is adjacent to three 3(1)-�ertices.

(iv) No 3(1)-�ertex is adjacent to two 3(1)-�ertices.

Proof. (i) and (ii) : With the terminology of Lemma 2, if b¯ d! 3# then choose

a colour j that occurs on at most two of u
"
,… , u

b
. If b¯ d®1! 2# then choose a

colour j1 c(z
"
) that occurs on at most one of u

"
,… , u

b
. In each case, set c(w)¯ j and

proceed as in Lemma 2(ii). This proves (ii), and (i) immediately follows.

(iii) : For i¯ 1, 2, 3, let G contain paths wx
i
�
i
u
i
where d(w)¯ 3, d(�

i
)¯ 2, x

i
has

another neighbour y
i
, and distinct labels denote distinct vertices. Let c be an acyclic

3-colouring of G®²w, �
"
, �

#
, �

$
,x

"
,x

#
,x

$
´.
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Suppose that we colour w. If c(w)1 c(y
i
), say c(w)¯ 1 and c(y

i
)¯ 2, we can

colour the path wx
i
�
i
u
i
either 1321 or 1312 or 1313 depending on the colour of u

i
, and

only in the last case is there an alternating path through x
i
; this is a c(w), c(u

i
)-path

and requires w, y
i
and u

i
to have three different colours. If c(w)¯ c(y

i
) then, by

choosing c(�
i
)1 c(w) if c(x

i
)¯ c(u

i
), we can ensure that there is only the inevitable

c(w), c(x
i
)-path through c(x

i
) ; this works for either of the two possible choices for

c(x
i
).

We now colour w as follows; in each case, by the above remarks, we can colour

the x
i
and �

i
so as to create no 2-coloured cycles. If c(y

i
)¯ 1, say, for each i, let c(w)

be whichever of 2, 3 occurs on more of the u
i
(so that the other occurs on at most

one u
i
). If c(y

"
)¯ c(y

#
)¯ 1 and c(y

$
)¯ 2, set c(w)¯ 3 unless c(u

"
)¯ c(u

#
)¯ 2, in

which case set c(w)¯ 2. If c(y
i
)¯ i for each i, set c(w)¯ j where j is chosen so that

² j, c(y
i
), c(u

i
)´¯ ²1, 2, 3´ for at most one i, and choose c(x

j
)1 c(u

i
) if there is

such an i.

(iv) : This is essentially the same as (iii) with u
$
, �

$
removed and c(u

$
) interpreted

as 1, say, whenever it occurs in the above argument. *

Recall that G has girth g(G)¯ g& 7. An r-cycle, %r-cycle or !r-cycle is a cycle

with length l¯ r, l% r or l! r, respectively. A *-cycle is a separating r-cycle, where

r¯ 7 or 8. If G contains a *-cycle, then let S be a *-cycle with as few vertices as

possible inside it, and describe every vertex inside S as distinguished ; otherwise, every

vertex of G is distinguished.

L 5. (i) If a *-cycle C passes through a distinguished �ertex, then C is an 8-

cycle.

(ii) If two distinguished 3(1)-�ertices b
"
, b

#
are adjacent then edge b

"
b
#

is incident

with a "7-face.

Proof. (i) : If such a C exists then clearly S exists and CfS1W. Suppose that

C is a 7-cycle. If only one vertex of C is inside or outside S, then combined with a

segment of S it gives a %6-cycle, contradicting g& 7. Thus either two or three

vertices of C are inside S, rV(S )r¯ 8, and C splits S into two equal segments, creating

two 7-cycles or 8-cycles with fewer vertices inside them than S. Clearly these cycles

can have no chords, and since no two 2-vertices of G are adjacent by Lemma 4(i), at

least one of the cycles must be separating, contradicting the definition of S.

(ii) : For i¯ 1, 2, let b
i
be adjacent to h

i
and k

i
where d(k

i
)¯ 2. There are two

cases.

Case 1: k
"
,k

#
are incident with the same face. Assume that this is labelled as in

Figure 1(a). Form G
i
from G«¯G®²k

"
, b

"
, b

#
,k

#
´ by adding a new 2-vertex z

i
adjacent

to f
i
and h

$−i
(i¯ 1, 2).

C 1. Either g(G
"
)& 7 or g(G

#
)& 7.

Proof. Suppose that g(G
"
)% 6 and g(G

#
)% 6. Then G« contains paths f

"
u
"
…h

#

and f
#
u
#
…h

"
of length at most 4. These paths must cross, at a vertex �, say. The dis-

tances from � along these paths satisfy d(�, f
"
)­d(�, h

#
)% 4 and d(�, f

#
)­d(�, h

"
)% 4 by

assumption, and also d(�, f
"
)­d(�, h

"
)& 4, d(�, f

#
)­d(�, h

#
)& 4 and d(�,h

"
)­d(�,h

#
)&

4 because g(G)& 7. It follows that either d(�, f
"
)¯ d(�, f

#
)¯ 1 and d(�, h

"
)¯ d(�, h

#
)¯

3, or else all four distances equal 2. In the first case, �¯ u
"
¯ u

#
and we have a 4-cycle
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h1 h2

b2b1

f1 f2

x

k1 k2

(a)

h1

h2

b2

b1

f1

f2

k1

k2

(b)

x1

y1

x2

y2

F 1.

unless �¯x. In the second, xf
"
u
"
�u

#
f
#
x is a closed walk of length 6, which contains

a %6-cycle unless u
"
¯ u

#
¯x. In either case we may suppose that u

"
¯x. Then

there is a 7-cycle h
#
b
#
k
#
f
#
x…h

#
, which is separating because d( f

#
)1 d(k

#
)¯ 2

by Lemma 4(i). This contradicts Lemma 5(i), and so completes the proof of

the claim. *

By Claim 1, we may suppose without loss of generality that g(G
"
)& 7, which

means that G
"
has an acyclic 3-colouring c by the minimality of G. We now show that

this can be modified into an acyclic 3-colouring of G. As in Lemma 3, whenever we

describe how to colour k
i
, we assume implicitly that c(b

i
)¯ c( f

i
), since otherwise c(k

i
)

is uniquely determined and no 2-coloured cycle can possibly use k
i
.

Without loss of generality c( f
"
)¯ 1. If c(h

#
)1 1, say c(h

#
)¯ 2, we can colour

b
"
b
#
k
#

so that h
"
b
"
b
#
k
#

is coloured 1231, 2313 or 3213, depending on c(h
"
). Thus

we may suppose that c(h
#
)¯ c( f

"
)¯ 1 and, by symmetry, that c(h

"
)¯ c( f

#
)¯ j, say.

If j¯ 1, set c(b
"
)¯ 2, c(b

#
)¯ 3. Suppose j1 1, say j¯ 2. If in G

"
, c(z

"
)¯ 3, colour

k
"
b
"
b
#

with 313. Otherwise, c(z
"
)¯ 2, and we colour k

"
b
"
b
#

with 213 or 312

according to whether there is or is not a 1, 2-path connecting h
"
to h

#
; note that if there

is, then there is no 1, 2-path connecting h
"
to f

"
, since there is none in G

"
®z

"
connecting

f
"

to h
#
. Thus in every case we have constructed an acyclic 3-colouring of G, and

this contradiction completes the discussion of case (1).

Case 2: k
"
,k

#
are not incident with the same face. Assume that the two faces

incident to b
"
b
#

are labelled as in Figure 1(b).

Let c be an acyclic 3-colouring of G«¯G®²k
"
, b

"
, b

#
,k

#
´. If c( f

"
)1 c(h

#
), say

c( f
"
)¯ 1, c(h

#
)¯ 2, then we can colour b

"
b
#
k
#

so that h
"
b
"
b
#
k
#

is coloured 1231,

2313or3213,dependingon c(h
"
) (with theusual conventionabout colouring2-vertices).

Thus we may suppose that in every colouring of G«, c( f
"
)¯ c(h

#
). This means

that identifying f
"

with y
"

in G« must create a %6-cycle, and likewise identifying x
"

with h
#
.

Therefore G« contains paths P
"
,P

#
of length at most 6 connecting f

"
to y

"
and x

"

to h
#
, and P

"
and P

#
must cross, at a vertex �, say. The distances from � along these paths

satisfy d(�, f
"
)­d(�, y

"
)% 6 and d(�,x

"
)­d(�, h

#
)% 6, and also d(�, f

"
)­d(�,x

"
)&

6, d(�,x
"
)­d(�, y

"
)& 6, d(�, y

"
)­d(�, h

#
)& 6 and d(�, f

"
)­d(�, h

#
)& 4 because g(G)&

7. It follows that either all four distances equal 3, or else d(�, f
"
)¯ d(�, h

#
)¯ 2 and
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d(�,x
"
)¯ d(�, y

"
)¯ 4. Let C

"
, C

#
and C

$
be the three cycles generated by adding

f
"
x
"
, x

"
y
"
and y

"
h
#
, respectively, to P

"
eP

#
, and let C

%
be their mod-2-sum, which is a

cycle including � and the path f
"
x
"
y
"
h
#
. The lengths of C

"
,… ,C

%
are either 7, 7, 7, 9

or 7, 9, 7, 7 ; hence these cycles have no chords. C
%

is certainly separating. Since no

two 2-vertices of G are adjacent by Lemma 4(i), either C
"
and C

$
are both separating

or C
#
is separating. Either way, each of x

"
and y

"
lies on a separating 7-cycle, and so S

exists and, by Lemma 5(i), neither of these vertices is inside S. However, b
"
and b

#
are

inside S, and so all vertices in Figure 1(b) are inside S or on S. Hence x
"
and y

"
are

on S.

Similarly, x
#
and y

#
are on S. Thus S contains at least two internally disjoint paths

between ²x
"
, y

"
´ and ²x

#
, y

#
´, at least one of which, say P, has at most two internal

vertices. Without loss of generality P connects x
"

to y
#
. Then we have a %8-cycle

x
"
f
"
k
"
b
"
h
"
y
#
Px

"
which is strictly enclosed in S, and is separating because d( f

"
)1

d(k
"
)¯ 2 by Lemma 4(i). This contradicts the definition of S and so completes the

proof of Lemma 5. *

We now show that Lemmas 4 and 5 give a contradiction. If G contains a *-cycle,

form H from G by deleting all vertices outside S ; otherwise let H¯G. Assign a charge

of 5d(�)®14 units to each vertex � of H and of 2r( f )®14 units to each face f of H.

By Lemma 1(ii), the total charge assigned is ®28. We now redistribute the charge so

that its sum is provably greater than ®28, and this contradiction will prove the

theorem. Note that the charge on each face is non-negative, by the supposition that

r(g)& g& 7; and vertices of degree 2, 3, 4, 5,… start with charge ®4, 1, 6, 11,….

Our rules for redistributing the charge are as follows:

(R1) Each distinguished 2-vertex receives 2 from each adjacent vertex.

(R2) Each distinguished 3(1)-vertex receives "

#
from each adjacent vertex that is

not a distinguished 2-vertex or a distinguished 3(1)-vertex.

(R3) For each pair b
"
, b

#
of adjacent 3(1)-vertices, b

"
and b

#
each receive "

#
from

each "7-face incident to edge b
"
b
#
.

It is easy to see that the charge on each face f is still non-negative: by Lemma 4(iv)

the boundary of f contains at most "

$
r(f ) pairs of adjacent 3(1)-vertices, and so f gives

up at most :"
$
r( f 9% 2r( f )®14 if r( f )" 7.

We now prove that each distinguished vertex � has non-negative charge. If

d(�)¯ 2, then � started with ®4 and gained 4, so now has 0. If d(�)¯ 3 then � is a

3(b)-vertex (b ` ²0, 1´) by Lemma 4(ii). If b¯ 0 then � started with 1 and gave "

#
to at

most two 3(1)-vertices by Lemma 4(iii). If b¯ 1 let � have neighbours �
"
, �

#
, �

$
where

d(�
"
)¯ 2. If �

#
, say, is a distinguished 3(1)-vertex then, by Lemma 4(iv), � received "

#

from �
$

and "

#
from the "7-face incident with edge ��

#
whose existence was proved

in Lemma 5(ii) ; otherwise, � received "

#
from each of �

#
, �

$
. In each case � started

with 1, received at least 1 and gave at most 2 to �
"
.

If d(�)¯ 4 then � started with 6 and, by Lemma 4(ii), gave up at most 4 to two

2-vertices plus 1 to two 3-vertices. If d(�)& 5, then � gave up at most 2d(�)%
5d(�)®15.

Now we already have a contradiction if H¯G, when all vertices are distinguished,

since in this case the sum of all charges is non-negative. If H1G then we must also

consider the vertices on S. Each such vertex � has given at most 2(d(�)®2) to

distinguished vertices and so now has at least 5d(�)®14®2(d(�)®2)¯ 3d(�)®10.
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This is ®4 if d(�)¯ 2, ®1 if d(�)¯ 3 and otherwise is positive. Since G is 2-connected,

d(�)" 2 for at least two � `S, and since rS r% 8 the sum of all the charges, which

should be ®28, is at least 6¬(®4)­2¬(®1)¯®26. This contradiction completes

the proof of Theorem 2. *
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