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Abstract

Representing signals as linear combinations of basis vectors sparsely selected from an overcom-
plete dictionary has proven to be advantageous for many applications in pattern recognition, machine
learning, signal processing, and computer vision. While this approach was originally inspired by in-
sights into cortical information processing, biologically-plausible approaches have been limited to
exploring the functionality of early sensory processing in the brain, while more practical applications
have employed non-biologically-plausible sparse-coding algorithms. Here, a biologically-plausible
algorithm is proposed that can be applied to practical problems. This algorithm is evaluated using
standard benchmark tasks in the domain of pattern classification, and its performance is compared to
a wide range of alternative algorithms that are widely used in signal and image processing. The re-
sults show that, for the classification tasks performed here, the proposed method is competitive with
the best of the alternative algorithms that have been evaluated. This demonstrates that classification
using sparse representations can be performed in a neurally-plausible manner, and hence, that this
mechanism of classification might be exploited by the brain.
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1 Introduction

Many methods in signal processing and pattern recognition seek to represent a signal x as a linear
combination of basis vectors selected from a dictionary, V, in proportion to a set of coefficients, y, i.e.,:

X~ Vy

Well-known examples include vector quantisation (VQ), principal components analysis (PCA), indepen-
dent components analysis (ICA), and non-negative matrix factorisation (NMF). These methods differ in
the types of constraints placed on the factors V and y. In addition, there are often several different
algorithms which have been proposed to implement each method, which differ in the details of how the
factors are found.

Partially inspired by research on efficient coding in the primary visual cortex (Olshausen and Field,
1997, 2004), recently there has been much interest in representing signals using a sparse set of basis
vectors selected from an overcomplete dictionary (see Pece, 2002; ToSi¢ and Frossard, 2011; Wright
et al., 2009a, for reviews). In vision, sparse representations have been applied to image compression
(e.g., Aharon et al., 2006; Fischer et al., 2006, 2007; Murray and Kreutz-Delgado, 2006; Pece and
Petkov, 2000) and image restoration (e.g., Elad and Aharon, 2006; Hyvarinen et al., 1998; Mairal et al.,
2009). Sparse representations are also increasingly popular for classification (e.g., Bociu and Pitas,
2004; Elhamifar and Vidal, 2011; Jiang et al., 2013; Kang et al., 2011; Mairal et al., 2008a; Ramirez
et al., 2010; Sprechmann and Sapiro, 2010; Wright et al., 2009b; Zhang et al., 2013), often with results
that are competitive with the state-of-the-art. As with the non-sparse, non-overcomplete, case there are
many algorithms that have been proposed for finding sparse representations. These algorithms differ in
terms of the constraints placed on the factors V and y, the method used to measure and constrain the
sparsity of y, as well as in details of the algorithm used to search for appropriate factors.

The elements of the vector y define a set of coefficients that accurately represent the signal x through
a mixture of basis vectors taken from the dictionary V. For sparse coding algorithms, the vector y must
also be sparse, meaning that each signal is represented by a small number of non-zero coefficients. Many



algorithms (“sparse solvers”) have been proposed for finding appropriate values of y given a dictionary
and a signal. Most practical methods fall into one of two classes: greedy pursuit algorithms, or convex
relaxation algorithms (Tropp and Wright, 2010).

The columns of the matrix V comprise basis vectors (or “elementary components”, or “codebook
entries”, or “atoms”, or “dictionary elements”), that are appropriate for the efficient representation of
all the signals that occur in the particular task domain under consideration. The appropriate entries in
the dictionary, V, will thus depend on the (typically large) set of signals that need to be represented.
Dictionaries are typically learnt from the data or are predefined. In the case of dictionary learning
for classification tasks, separate sub-dictionaries might be learnt for each class (Ramirez et al., 2010;
Sprechmann and Sapiro, 2010), or a single dictionary might be learnt for all classes (ToSi¢ and Frossard,
2011). In the case of dictionary predefinition, the dictionary might be defined using a generic set of basis
vectors, like Gabor functions (Yang and Zhang, 2010), or the dictionary might be defined to consist of a
set of signals taken from the training set (Wright et al., 2009b).

This article advocates a biologically plausible method for finding sparse representations. Many pre-
vious algorithms for finding sparse representations have been presented as models of cortical informa-
tion processing (e.g., Bell and Sejnowski, 1997; Berkes et al., 2009; Charles et al., 2012; Falconbridge
et al., 2006; Foldidk, 1990; Hamker and Wiltschut, 2007; Harpur, 1997; Hoyer, 2003, 2004; Hoyer and
Hyvérinen, 2000; Jehee and Ballard, 2009; King et al., 2013; Liu and Jia, 2012; Liicke, 2009; Olshausen
and Field, 1996; Perrinet, 2010; Rao and Ballard, 1999; Rehn and Sommer, 2007; Rozell et al., 2008;
Van Hateren and van der Schaaf, 1998; Weber and Triesch, 2008; Wiltschut and Hamker, 2009; Zhu and
Rozell, 2013; Zylberberg et al., 2011). Hence, several of these previous algorithms are also biologically
plausible. However, in most cases these algorithms have been applied to only a single task: learning
basis vectors that resemble the receptive fields (RFs) of cells in primary visual cortex (V1) when trained
on patches taken from natural images. Hence, previous work on biologically-plausible sparse coding
methods has concentrated on dictionary learning in a single domain. Here, the emphasis is on showing
that a biologically-plausible algorithm has the potential to model a wider range of cortical processes
underlying a wider range of tasks, and that a biologically-plausible algorithm can be used for practical
applications.

The proposed, biologically-plausible, algorithm is called PC/BC-DIM. Previous work on PC/BC—
—-DIM has concentrated on dictionary learning, and has shown that the PC/BC-DIM algorithm (with
appropriate learning rules) can learn dictionaries that can be used to efficiently represent natural images
(Spratling, 2012c), face images (Spratling et al., 2009), and artificial datasets used to benchmark ma-
chine learning algorithms (Spratling, 2012c; Spratling et al., 2009). Here, to allow direct comparison
with other sparse solvers, PC/BC-DIM is used to find sparse representations defined over a predefined
dictionary. It is shown that the classification performance of PC/BC—DIM is competitive with the best
performance of the non-biological sparse solvers that were tested.

2 Methods

2.1 Sparse Solvers

Given a dictionary, V, we wish to find a sparse set of coefficients, y, that can accurately reconstruct a sig-
nal x from the dictionary entries. Numerous algorithms for solving such sparse representation problems
have been proposed. The performance of the proposed algorithm (PC/BC-DIM, see section 2.2) was
compared to a representative set of these existing algorithms taken from three publicly available tool-
boxes: SMALLbox' (Damnjanovic et al., 2010), SparseLabZ, and L1Benchmark? (Yang et al., 2010).
The algorithms that were tested are listed in Table 1. The tested methods include a number of dif-
ferent implementations of greedy algorithms constraining the ¢y-pseudo-norm of the coefficients (MP,

"http://small-project.eu/software—data/smallbox/
http://sparselab.stanford.edu/
*http://www.eecs.berkeley.edu/-yang/software/llbenchmark/
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Toolbox Acronym Description

PC/BC-DIM The proposed algorithm

SMALLbox MP Matching Pursuit
OMP Orthogonal Matching Pursuit with Cholesky updates
PCGP Partial Conjugate Gradient Pursuit

SparseLab PDBBP Primal-Dual Barrier Method for solving Basis Pursuit
LARS+ Least Angle Regression
LARS-lasso+ Least Angle Regression with the Lasso modification
PFP+ Polytope Faces Pursuit

L1Benchmark Homotopy+ Homotopy Method for solving Basis Pursuit Denoising
SpaRSA+ Sparse Reconstruction by Separable Approximation
FISTA Fast Iterative Shrinkage-Threshold Algorithm
DALM Dual Augmented Lagrange Multiplier

Table 1: The set of algorithms for finding sparse representations that are tested in this article.

OMP, PCGP, LARS+), greedy algorithms constraining the ¢1-norm of the coefficients (LARS-lasso+,
PFP+), and a number of different convex optimisation algorithms for finding solutions with the ¢1-norm
constraint on the coefficients (PDBBP, Homot opy+, SpaRSA+, FISTA, and DALM).

In each case, the algorithm was tested using default parameter settings. Where user-defined parame-
ter values were mandatory (MP, OMP, PCGP), these were set to those values that gave the best results for
the first classification task (USPS)*. There parameters are therefore likely to be sub-optimal for the other
tasks. However, this is also the case for all the other tested algorithms. It would be possible to tune the
parameters of each algorithm to each task, however, the results would then likely favour the algorithm
with the most free parameters. The motivation for using a fixed set of parameters with each algorithm, is
to test how well algorithms perform across tasks. Since all the datasets used to test the algorithms were
inherently non-negative, where the algorithm supported it, the coefficients were constrained to be non-
negative: this is indicated by the plus-sign at the end of the algorithm name>. The proposed algorithm,
PC/BC-DIU, is also constrained to find non-negative coefficients.

2.2 The Proposed Sparse Solver

In terms of neural networks, the coefficients, y, can be interpreted as the activation strengths of a set
of neurons which have generative (or top-down) connections with weights equal to the set of basis
functions, V (see Fig. 1). An appropriate set of neural activations can then be used to reconstruct, via
the generative weights, the input to the neural network x. Here we define a neural network algorithm
that can be used to find sparse representations, y that accurately represent the input. The proposed
algorithm is called Divisive Input Modulation (DIM) which is the main computational building block
underlying the PC/BC model of cortical function (De Meyer and Spratling, 2011, 2013; Spratling, 2008,
2010, 2011, 2012a,b,c). PC/BC-DIM is implemented using the following equations:

e=x0 (e + Vy) (1)

y < (e1+y)® We )

4 All three algorithms required the same two parameters to be defined: the maximum allowable representation error, and the
maximum number of coefficients that could take non-zero values. The former was set to 1 x 10~ for all three algorithms. The
latter parameter was set to 8, 5, and 20, for MP, OMP, and PCGP respectively (only values greater than one were considered, to
prevent the algorithm becoming identical to a nearest neighbour classifier, see section 2.3).

SNote that for LARS+ and LARS-1asso+ the coefficients that are found by the solver still contain negative values, despite
the constraint that the solution should be non-negative.



Figure 1: The PC/BC-DIM neural network architecture. Rectangles represent populations of
neurons, with y labelling the population of prediction neurons and e labelling the population of
error-detecting neurons. Open arrows signify excitatory connections, filled arrows indicate in-
hibitory connections, crossed connections signify a many-to-many connectivity pattern between
the neurons in two populations, and parallel connections indicate a one-to-one mapping of con-
nections between the neurons in two populations. The feedback (or generative) weights, labelled
V, correspond to a dictionary of basis vectors, and the activity of the prediction neurons, y, cor-
respond to the coefficients of the sparse representation. The feedforward (or discriminative)
weights, labelled W, are equal to a rescaled transpose of the feedback weights. Hence, if a pair
of neurons in the e and y populations are connected by strong (or weak) feedforward weights,
then the reciprocal feedback connection is also strong (or weak).

Where e is a (m by 1) vector of error-detecting neuron activations; y is a (n by 1) vector of prediction
neuron activations; W is a (n by m) matrix of feedforward synaptic weight values; V is a (m by n)
matrix of feedback synaptic weight values; €; and ey are parameters; and © and ® indicate element-
wise division and multiplication respectively (addition operations are also performed element-wise).
The matrix V is the dictionary, hence, the feedback connections from each prediction neuron represent
a single basis vector. The columns of V are normalised to have a maximum value of one. The matrix W
is equal to the transpose of the V and has each row normalised to sum to one. Hence, the feedforward
and feedback weights are simply rescaled versions of each other.

Initially the values of y are all set to zero, although random initialisation of the prediction node
activations can also be used with little influence on the results. Equations 1 and 2 are then iteratively
updated with the new values of y calculated by equation 2 substituted into equations 1 and 2 to recur-
sively calculate the neural activations. This iterative process was terminated when the total absolute
change in e between successive iterations was less than 0.04. Parameter values of ¢; = 1 x 10~ and
€2 = 1 x 1073 were used in all the experiments reported in this article.

The values of y represent predictions of the causes underlying the inputs to the network. The values
of e represent the residual error between the input reconstructed from these predictions and the actual
input, x, to the network. This residual error is calculated, in equation 1, through the divisive comparison
of the actual input with the reconstruction of the input, Vy. An element of e will equal unity when
the prediction of that element of the input is correct, and will have a value of less than, or greater than,
unity when the prediction is incorrect. Values of e less than unity, corresponding to elements of the
input that are over-represented by the predictions, will tend to reduce the strength of response of the
prediction neurons via equation 2, see below. Conversely, values of e greater than unity, corresponding
to elements of the input that are under-represented by the predictions, will tend to increase the strength
of response of the corresponding prediction neurons. These effects will tend to drive all error-detecting
neuron responses towards a value of unity. ey is a constant that prevents division-by-zero errors. It is
sufficiently small to have a negligible effect on the calculation of e except when an element of x is small.
For elements of x that are smaller than e, the corresponding value of e will always be small, and hence,
these inputs are effectively ignored. Hence, the value of €3 also determines the minimum input activity
that is considered significant.

The predictions, y, are updated via equation 2. The first term on the right-hand side of equation 2
means that the new value of a prediction neuron’s response will be proportional to its value at the previ-
ous iteration. ¢; is a small constant that allows a prediction neuron to become active even if its response



is initially zero. The second term on the right-hand side of equation 2 represents the feedforward input
to the prediction neurons from the error-detecting neurons. The strength of this feedforward input will
be influenced by the strength of the error neuron outputs (which are in turn influenced by the sensory-
driven input to the network and the accuracy of the top-down predictions, as described in the preceding
paragraph) and by the similarity between this activity and the synaptic weights, W. Each element of
y will converge to a steady-state when the corresponding element of the vector We has a value of one
(assuming ¢; is sufficiently small to be negligible). The neural responses will converge towards this
steady-state since if We is greater than unity, y will increase (due to equation 2). This will subsequently
decrease the values of e (via equation 1) which will in turn reduce the value of We. In contrast, if We
is less than unity, y will decrease (due to equation 2). This will subsequently increase the values of e
(via equation 1) which will in turn increase the value of We.

The activation dynamics described above result in the PC/BC-DIM algorithm selecting a sparse
subset of active prediction neurons whose RFs (which correspond to basis functions) best explain the
underlying causes of the sensory input. The strength of activation reflects the strength with which each
basis function is required to be present in order to accurately reconstruct the input. This strength of
response also reflects the probability with which that basis function is believed to be present, taking into
account the evidence provided by the signal and the full range of alternative explanations encoded in the
RFs of the prediction neurons.

Although the PC/BC-DIM algorithm does not explicitly enforce sparsity, the activity of the pre-
diction neurons in response to natural image patches is highly sparse and statistically independent
(Spratling, 2010, 2012c), images are therefore represented efficiently. Furthermore, although PC/BC—
-DIM does not explicitly minimise the reconstruction error using a global objective function, the activ-
ity of the prediction neurons can be used to reconstruct the input with high fidelity (Spratling, 2012c;
Spratling et al., 2009), images are thus represented accurately. The results presented in section 3 demon-
strate that the reconstruction error and the sparsity of PC/BC~-DIM are competitive with the best of the
other sparse solvers tested on the classification tasks considered here.

2.3 Data Preprocessing and Dictionary Definition

Comparison of the algorithms for finding sparse representations was carried out using three standard
datasets: the USPS and MNIST® hand-written digit datasets, and the ISOLET’ audio dataset. All three
tasks define separate training and testing sets. These standard splits were used for the experiments
performed here. For USPS the training set contains 7291 exemplars and the testing set contains 2007
exemplars. For ISOLET the training set contains 6238 exemplars and the testing set contains 1559 exem-
plars. For MNIST the training set contains 60000 exemplars and the test set contains 10000 exemplars.
For each dataset, in addition to testing performance on the test set, classification performance was also
tested using the training set. In each case performance was tested using the first 2000 exemplars from
the training set.

For a fair comparison of different algorithms it is necessary to test each algorithm using the same
dictionary. It would be possible to learn the dictionary, but this would require using a specific algorithm
for finding sparse representations during the learning process. The results might therefore conceivably be
biased in favour of the method used to learn the dictionary. To avoid this issue, the dictionary is created
using the training data itself, following the method used by Wright et al. (2009b). Such a dictionary may
not be optimal for discrimination between classes (Jiang et al., 2011; Sprechmann and Sapiro, 2010;
Zhang et al., 2013), and hence, there may be scope for improving classification performance beyond the
results reported here. However, the aim here is to compare the PC/BC-DIM algorithm with other sparse
solvers, rather than produce state-of-the-art classification performance.

For each data set, as a whole, the data was rescaled to be in the range [0, 1]. Hence, the data contained
only non-negative values. Each individual signal in the data was then rescaled to have unit ¢;-norm, ¢o-

*http://yann.lecun.com/exdb/mnist/
"http://archive.ics.uci.edu/ml/datasets/ISOLET
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norm, or {,-norm (depending on the algorithm under test, see below). The signals forming the training
set were then used to define the dictionary entries used for performing the classification: each column
of V was a (normalised) exemplar from the training set. For USPS and ISOLET all training exemplars
were used to form the dictionary. To make the task more manageable, only the first 2000 training
exemplars for each digit of the MNIST dataset were used to define the dictionary. Hence, for this task
only 20000 of the 60000 training exemplars were employed. These dictionaries composed of exemplars
from the training data, as described immediately above, were used for all the experiments described in
sections 3.1 to 3.3.

In all previous work using the PC /BC—-DIM algorithm the input x has been allowed to range between
zero and one, and the columns of V have been normalised to have a maximum value of one (i.e., to have
unit /,-norm). Previous work on sparse coding has constrained the magnitude of the dictionary entries
and signals using the ¢1-norm (e.g., Pece and Petkov, 2000) or, more typically, the £2-norm (e.g., Elad
and Aharon, 2006; Sprechmann and Sapiro, 2010; Thiagarajan and Spanias, 2011; Wright et al., 2009b).
Each of the algorithms was therefore tested, using the test set for the first classification task (USPS),
to determine which form of normalisation gave the best results. All subsequent experiments were per-
formed using the same method of normalisation. Specifically, the reported results for algorithms LARS+,
LARS-lasso+, PFP+, and FISTA were all generated using dictionary entries and signals normalised
to have unit #1-norms, while the ¢5-norm was used for MP, OMP, PCGP, Homotopy+, SpaRSA+ and
DALM, and the remaining algorithms were tested using the /,,-norm. Note that for some algorithms
(i.e., PC/BC-DIM, PDBBP, PFP+, Homotopy+), results seemed to be little affected by the form of
normalisation used, whereas for all other algorithms the classification performance varied widely with
the normalisation method.

2.4 Methods of Classification

To compare the classification performance of each algorithm on each dataset the method of classification
used by Wright et al. (2009b) was employed. Wright et al. (2009b) showed that this method produced
performance comparable to the state-of-the-art in a face recognition task. A sparse representation of the
signal was found using the entire dictionary. Each dictionary element is associated with a single class:
the class of the training exemplar used to define that dictionary element. The sparse solver defines a
coefficient for each dictionary element, hence, each coefficient can also be associated with a single class
label. For each class in turn, the coefficients associated with dictionary entries for that class were selected
(all other coefficients being set to zero) and the class-specific reconstruction error was calculated. The
signal was then allocated to the same class as the sub-set of coefficients that produced the smallest
reconstruction error. The performance of each of the tested algorithms using this method of classification
are presented in section 3.1.

It is difficult to envisage how the method described above could be neurally implemented. A far
simpler, and more biologically-plausible, method would involve reading out the values of y. For exam-
ple, this could be done by using an additional population of neurons, one neuron for each class. Each of
these neurons would receive weighted connections from the neurons representing the y values, and the
class of the signal would be decided by locating the maximum response within this population of clas-
sification neurons. To investigate the performance of such a method, classification was also performed
by separately summing the coefficient values associated with dictionary entries for a specific class, and
assigning the signal to the class that has the highest sum of coefficient values. This is equivalent to using
a set of classification neurons with binary weighted connections: with a value of one for every y value
associated with a specific class, and zero for all other y values. Such a linear decoding of the coeffi-
cients is similar to the method used by Jiang et al. (2011, 2013), except here the dictionary and decoding
weights are predefined using the training data and class labels, rather than being learnt. The performance
of each of the tested algorithms using this method of classification are presented in section 3.2.

Sprechmann and Sapiro (2010) investigated the classification performance of a sparse dictionary
learning algorithm on the same three datasets used here. This algorithm produced results comparable
to the state-of-the-art for these particular tasks (Sprechmann and Sapiro, 2010). Classification was



performed by splitting the dictionary into separate sub-dictionaries each of which contained all the basis
vectors corresponding to a single class. A sparse representation of the signal was found separately using
each class-specific sub-dictionary and the signal was allocated to the same class as the sub-dictionary
that minimised a measure of representation quality. The representation quality used by Sprechmann
and Sapiro (2010) was a function of both the reconstruction error and the sparsity (the ¢1-norm of
the coefficients). For simplicity, in this article the signal was allocated to the same class as the sub-
dictionary that produced the smallest reconstruction error, and results for this method of classification
are presented in section 3.3. When sparse representations are calculated separately for different sub-
dictionaries, classification based on the strength of the response of the coefficients, as discussed in the
previous paragraph, fails completely. This is because each sub-dictionary will generate strong responses
to each signal in order to try to minimise the reconstruction error. However, reading out the responses of
the error-detecting units associated with separate sub-dictionaries could be done in a neurally-plausible
manner.

All three classification methods described above become identical to a nearest neighbour (1-NN)
classifier when the following two conditions are met:

e when the dictionary is composed of all the exemplars from the training set, and
e when the sparsity of the representation generated by the solver is constrained to be maximum.

When the second condition is true, the sparse solver returns only one non-zero coefficient corresponding
to the single, most similar, dictionary element. The signal is therefore assigned to the same class as
this dictionary element, which if the first condition is true, is the class of the most similar training
exemplar. When the sparse solver is allowed to find more than one non-zero coefficient, the classification
methods described above are not equivalent to a k-nearest neighbour (k-NN) classifier. This is because
classification with the sparse solver depends on the combination of dictionary elements that can best
explain the signal, which is not necessarily the k most similar elements. For comparison with the sparse
dictionary based classification results, the performance of k-NN classifiers, with various values of k, are
provided in Fig. 4.

2.5 Dictionary Learning

To ensure that the results presented here are not specific to the case where the dictionary is composed of
exemplars from the training data, experiments were repeated with learnt dictionaries. Many algorithms
for learning sparse representations have been proposed both in the computational neuroscience litera-
ture (e.g., Bell and Sejnowski, 1997; Berkes et al., 2009; Charles et al., 2012; Falconbridge et al., 2006;
Foldidk, 1990; Hamker and Wiltschut, 2007; Harpur, 1997; Hoyer, 2003, 2004; Hoyer and Hyvérinen,
2000; Jehee and Ballard, 2009; King et al., 2013; Liu and Jia, 2012; Liicke, 2009; Olshausen and Field,
1996; Perrinet, 2010; Rao and Ballard, 1999; Rehn and Sommer, 2007; Rozell et al., 2008; Spratling,
2012c; Van Hateren and van der Schaaf, 1998; Weber and Triesch, 2008; Wiltschut and Hamker, 2009;
Zylberberg et al., 2011), and in the machine learning literature (e.g., Aharon et al., 2006; Engan et al.,
2007; Jiang et al., 2011, 2013; Lemme et al., 2010; Mairal et al., 2012, 2010, 2008a,b, 2007; Murray
and Kreutz-Delgado, 2006; Plumbley, 2007; Ramirez et al., 2010; Sprechmann and Sapiro, 2010; Thi-
agarajan and Spanias, 2011; To8i¢ and Frossard, 2011; Wei et al., 2013; Yang et al., 2011; Zhang et al.,
2013). Here the ILS-DLA algorithm (Engan et al., 2007) was used. This algorithm employs two steps
which are iteratively performed to learn a dictionary. In the first step the dictionary is kept constant and a
sparse solver is used to find the coefficients that are required to encode the training data using the current
dictionary. In the second step, the dictionary elements are updated, as follows:

V= XY")(YYh) !

Where X is an m by p matrix of training data arranged such that each column corresponds to one
exemplar, and Y is an n by p matrix of coefficients each column of which contains the coefficients found



by the sparse solver to represent the corresponding column of X. For the inverse of YY7 to exist, it
is necessary for the coefficient corresponding to each dictionary element to be non-zero for at least one
training exemplar. If this was not the case, following the method described by Engan et al. (2007), that
dictionary element was replaced by the training exemplar that had the highest reconstruction error. The
dictionary was initialised to consist of the first n exemplars from the training set (Engan et al., 2007),
and 25 epochs of this learning procedure were performed. Separate class-specific sub-dictionaries were
learnt with n = 100 for each sub-dictionary.

To test a particular sparse solver, that algorithm was used in the learning procedure described above,
and then the same sparse solver was used to perform classification using the learnt dictionary. The
classification performance was tested by assigning the signal to the same class as the sub-dictionary that
produced the smallest reconstruction error, similar to the method proposed by Sprechmann and Sapiro
(2010), and identical to the third classification method described in section 2.4. In the experiments
performed using dictionaries defined using exemplars from the training data, each algorithm was tested
using an identical dictionary. In contrast, for the experiments performed on learnt dictionaries, testing
is carried out using different dictionaries for each algorithm. However, these learnt dictionaries have all
been defined using the same learning procedure. The performance of each of the tested algorithms using
this method of classification are presented in section 3.4.

2.6 Code

Software, written in MATLAB, which performs the experiments described in this article is available
from: http://www.corinet.org/mike/Code/sparse_classification.zip.

3 Results

3.1 Classification based on reconstruction error with a single dictionary

Each of the algorithms under test was applied to classification tasks following the method used in
(Wright et al., 2009b) for facial image recognition. Specifically, a dictionary was defined using ex-
emplars taken from the training set (see section 2.3), and a sparse representation of a test signal was
found with this dictionary using one of the sparse solvers (see sections 2.1 and 2.2). A test signal was
assigned to the same class as the class-specific sub-set of coefficients that produced the smallest recon-
struction error (see section 2.4). The percentage of signals that were misclassified by each algorithm is
shown in the first column of Fig. 2. For easier comparison across all data sets, this same information is
also shown in the first column of Fig. 3. It can be seen that the classification performance of the proposed
algorithm, PC/BC-D1IM, is competitive with that of the best of the alternative algorithms tested.

As well as testing the classification performance of each algorithm using the test set for each dataset,
classification performance was also assessed using the training sets (results are shown as lighter portions
of the bars in the first column of Fig. 2). When the classification performance is evaluated using signals
taken from the training set, and the dictionary is defined using all exemplars from the training set, it
should be expected that each algorithm will perform perfectly: the sparse solver should generate a max-
imally sparse representation (a single non-zero coefficient) with zero reconstruction error, by selecting
the item in the dictionary that is exactly identical to the input. This perfect performance was produced
by most of the tested algorithms, however, surprisingly three algorithms (Homotopy+, SpaRSA+,
and FISTA) produced classification errors on the training data. Two further algorithms, LARS+ and
LARS-1lasso+, crashed when calculating sparse representations for the MNIST training data.

As a baseline against which to compare the results shown in Fig. 3, results for the k-nearest neigh-
bours (k-NN) classifier, using a range of values for k, are shown in Fig. 4. It can be seen that across all
three classification tasks a value of k=1 produces the best performance for a nearest neighbours classifier.
While several of the sparse coding algorithms produce worse performance than 1-NN, the performance
of the best sparse coding algorithms (including the proposed algorithm) is superior to nearest neighbours.
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Figure 2: Comparison of the proposed, biologically-plausible, sparse coding algorithm
(PC/BC-DIM) with 11 alternative algorithms using the USPS (top-row), ISOLET (middle row),
and MNIST (bottom-row) datasets. The first column shows the percentage of signals misclassi-
fied by each algorithm: the dark part of each bar shows the classification error on the test set, the
light part of each bar shows the classification error on the training set. For most algorithms there
is no light part of the bar as there was no classification error on the training set. The second col-
umn shows the normalised squared error between the signal and the reconstruction of the signal
generated by the sparse representation. This value has been averaged across all exemplars in
the test set. The third column shows the sparsity of the representation, calculated using Hoyer’s
measure, averaged across all exemplars in the test set. The fourth column shows the total time
taken by each algorithm to process all the exemplars in the test set. The execution time data is

only provided for the USPS dataset. 9
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Figure 3: The total classification error over all three datasets for PC/BC—DIM and the 11 other
algorithms under test. For each bar, the first two shaded segments correspond to the classifica-
tion error for the USPS dataset, the second two segments show the the classification error for
the ISOLET dataset, and the last two segments show the error for the MNIST dataset. In each
of these pairs of shaded segments, the classification error on the test set is shown first, and the
error on the training set is shown second. Note, however, that for many algorithms the classifi-
cation error on the training set is zero so the second shaded segment in each pair is not visible.
The first column shows the classification error when classification was performed by finding a
sparse representation for the entire dictionary and then determining which class-specific sub-set
of coefficients produced the lowest reconstruction error: similar to the method used in Wright
et al. (2009b). These are the same values as shown in the first column of Fig. 2. The second
column shows the classification error when classification was performed by finding a sparse rep-
resentation for the entire dictionary and then determining which class-specific sub-set of coeffi-
cients had the highest sum. The third column shows the classification error when classification
was performed by finding sparse representations separately for class-specific sub-dictionaries
and determining which sub-dictionary produced the lowest reconstruction error: similar to the
method used in Sprechmann and Sapiro (2010). The fourth column shows classification error
calculated as for the third column, except in this case the algorithm under test had been used to
learn the class-specific sub-dictionaries using the ILS-DLA dictionary learning method (Engan
et al., 2007).

The remaining columns of Fig. 2 show additional information about each algorithm. The second
column shows the reconstruction error for each algorithm, averaged over all the signals in the test set.
For an individual signal the reconstruction error is measured as the normalised squared error (NSE)
between the signal, x, and the reconstruction of the signal generated by the sparse code, Vy:

> (x — Vy)?
> x2

It can be seen that the reconstruction error for PC/BC—-DIM is small and comparable to the best of the
other algorithms.

The third column shows the sparsity of the representations found by each algorithm, averaged over
all the signals in the test set. For each exemplar in the test set the sparsity was measured using the metric
proposed by Hoyer (2004):

NSE =
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Figure 4: The total classification error over all three datasets for k-nearest neighbours classi-
fiers, with varying values of k. The format of this figure is identical to, and described in the
caption of, Fig. 3.

where n is the total number of coefficients (i.e., the length of vector y). Sy ranges from O to 1, with
higher values corresponding to sparser distributions. It can be seen that the representations found by
PC/BC-DIM are highly sparse.

The fourth column shows the total time taken by each algorithm to find the sparse coefficients for all
exemplars in the test dataset. It excludes the time taken by the code to perform tasks common to testing
each algorithm, such as loading the data and analysing the results. Timings were taken by running the
code in MATLAB on a machine equipped with 8Gb of RAM and an Intel core 17-920 CPU running at
2.67GHz. Each algorithm was tested in isolation, and hence, timings were (as far as could be controlled)
unaffected by other jobs running on the computer and each algorithm was free to utilise multiple cores
of the CPU. Due to limitations in the available computational resources and the much longer run-times
for the larger datasets, timings under these controlled conditions could only be taken for the first dataset.
However, informal observations suggested that the relative speed of each algorithm was similar on the
other datasets. The execution time for PC/BC-DIM is roughly average for those algorithms tested.

Attempts were also made to test other existing algorithms. Namely, the Iterative Re-Weighted Least
Squares algorithm from the SparseLab toolbox and from the L1Benchmark toolbox the Primal-Dual
Interior-Point method for solving Basis Pursuit and the ¢;-Regularized Least Squares algorithm. All
three of these algorithms were at least an order of magnitude slower than any of the results shown in
Fig. 2. It was therefore not practicable to fully test these algorithms with the computational resources
available. Hence, compared to existing algorithms in general, PC/BC-DIM is faster than the results in
Fig. 2 suggest.

Across all algorithms there appears to be a weak correlation between classification accuracy and
reconstruction error: algorithms that produce small reconstruction error also tend to generate the most
accurate classification performance (see Fig. 5a). However, there does not appear to be a correlation
between classification accuracy and sparsity: both high and low values of sparsity are produced by
algorithms which produce accurate classifications, whereas highly sparse representations lead to both
accurate and very poor classification performance (see Fig. 5b).

Similar observations can be made for a single algorithm when the sparsity and reconstruction er-
rors are recorded separately for correctly classified and incorrectly classified signals. Specifically, when
using PC/BC-DIM to classify the images from the USPS test data, the mean NSE for representations
that led to the correct classification was 0.029 while mean NSE for representations that led to the wrong
classification was 0.064. Hence, correctly classified exemplars were generally represented more accu-

11



a 1
m g © o
2 0.8 0.95
S — o
5 06 o g °° "
S Z 085
g 04 5
= o
g 0 x o 0.8
3 0.75
o o
0 0.7
0 20 40 60 0 20 40 60
classification error (%) classification error (%)
(@) (b)

Figure 5: Scatter plots showing the relationship between classification error and (a) reconstruc-
tion error, and (b) sparsity. Each point shows results from a different sparse-coding algorithm
when applied to classifying the test data from each dataset: USPS (squares), ISOLET (circles),
and MNIST (crosses). The same results are also shown in Fig. 2.

rately. The mean Hoyer sparsity of representations that led to the correct classification was 0.957, while
the mean Hoyer sparsity of representations that led to the wrong classification was 0.973. Hence, wrong
classifications were on average more sparse than correct ones. However, this latter result is due to the
dictionary containing similar entries that get co-activated by the same stimulus, and hence, produce a
more distributed code despite producing a correct classification. When dictionary entries from the same
class that had a normalised cross-correlation (NCC) greater than 0.975 were merged into a single av-
erage basis vector (reducing dictionary size from 7291 to 5240 entries), the sparsity of test images that
were correctly or incorrectly classified became very similar (0.966 versus 0.970). Consistent with previ-
ous work (Spratling, 2006; Spratling and Johnson, 2004; Zhang et al., 2011), this latter result calls into
question the idea that sparsity is a useful measure of representational quality for pattern recognition.

3.2 C(lassification based on summed response with a single dictionary

In the results presented above, a sparse representation was found for a single dictionary, and classifica-
tion was then performed by calculating class-specific reconstruction errors by using only those coeffi-
cients corresponding to each class. An alternative, simpler and more biologically-plausible, approach
is to simply sum the coefficients corresponding to each class, and assign the signal to the class with
the highest sum (see section 2.4). For this alternative method of classification, the percentage classifi-
cation errors, across all three tasks, are shown in the second column of Fig. 3. By comparing the first
two columns of Fig. 3, it can be seen that the results are very similar for these two alternative meth-
ods of performing classification using a single dictionary. This suggests that the excellent classification
performance of sparse coding could be exploited by biological systems.

3.3 Classification based on reconstruction error with multiple sub-dictionaries

Sprechmann and Sapiro (2010) employed a third method of classification, which is also biologically-
plausible. Specifically, they performed sparse coding independently with multiple class-specific sub-
dictionaries, and assigned a signal to a class based on the quality of the sparse representation produced
by each sub-dictionary (see section 2.4). The third column of Fig. 3 shows results for this classification
method, when the quality of the sparse representation was determined by the reconstruction error associ-
ated with each sub-dictionary. Algorithms LARS+ and LARS—-1asso+ again crashed when calculating
sparse representations for the MNIST training data. By comparing the third column of Fig. 3 with the
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preceding columns, it can be seen that the classification performance of some sparse solvers is signif-
icantly different when sparse representations are determined for a single dictionary compared to when
sparse representation are found separately for multiple sub-dictionaries. Other algorithms, including
PC/BC-DIM, maintain good classification performance for each method of classification. It can also be
seen that the classification performance of the proposed algorithm using this method is competitive with
that of the best of the alternative algorithms tested.

3.4 C(lassification based on reconstruction error with multiple learnt sub-dictionaries

For the experiments described above the class-specific sub-dictionaries were predefined using exem-
plars taken from the training data. These experiments were repeated using smaller (100-element) sub-
dictionaries learnt from the training data using the ILS-DLA learning algorithm (see section 2.5). Each
sparse solver was used to learn class-specific sub-dictionaries and then its classification performance
was tested using those dictionaries it had learnt. Apart from using learnt dictionaries, the procedure was
otherwise identical to that used in section 3.3. The results are shown in the last column of Fig. 3. Al-
gorithm LARS—1asso+ crashed when calculating sparse representations during training on the USPS
dataset, while FISTA became stuck in a seemingly infinite loop during training on all three datasets.
Comparing the third and fourth column of Fig. 3 it can be seen that, with the exception of algorithms
OMP and PDBBP, classification performance deteriorates. This is likely to be primarily due to the learnt
dictionaries being much smaller than the predefined dictionaries. With the exception of algorithm OMP,
the algorithms that perform best in this experiment are the same as those that performed best when tested
with predefined dictionaries. This would suggest that the previous results generalise to other methods
of dictionary definition. It can also be seen, for this experiment as for the previous experiments, that the
classification performance of the proposed algorithm, PC/BC-DIM, is competitive with that of the best
of the alternative algorithms tested.

4 Discussion

Each of the tested algorithms has the same objective: to find a sparse set of basis vectors that can
reconstruct the input signal with minimum error. It is therefore surprising that the results are so varied.
Since all other details of the evaluation process (such as the dictionary, and the method used for assigning
signals to classes) are identical, these large differences in performance are due to differences in the
sparse representations found by the sparse solvers themselves. This result suggests that performance
of sparse coding algorithms may be heavily dependent on the choice of sparse solver. Which sparse
solver is optimal may prove to be application specific. However, if the results presented here for three
classification tasks generalise to other applications then it suggests that a good choice of algorithm would
be PFP+, DALM, or the proposed algorithm: PC/BC-DIM.

This result demonstrates that classification using sparse representations can be performed in a bio-
logically-plausible way. Two biologically-plausible methods were considered. In the first method, a
single neural network with synaptic weights representing patterns from all classes was used. A sparse
representation was calculated using the PC/BC-DIM algorithm for each input signal, and the class of
the signal was determined by summing the responses of the neurons encoding the coefficients of the
sparse representation. In the second method, separate neural networks were used for each category,
and a signal was classified by summing the responses of error-detecting neurons once the PC/BC-DIM
algorithm had found sparse representations with each sub-network. Previous work on sparse coding in
the brain has concentrated on simulating early sensory cortical areas, such as V1 and V2 (e.g., Lee et al.,
2008; Olshausen and Field, 1997, 2004; Spratling, 2012c; Zhu and Rozell, 2013). The current work
suggests that the same mechanisms might also operate in other, higher, cortical regions to perform more
cognitive tasks like classification.
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