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Abstract

In this paper we study a Gaussian relay-interference n&werwhich relay (helper) nodes are to
facilitate competing information flows over a wireless netlv \We focus on a two-stage relay-interference
network where there are weak cross-links, causing the mksmo behave like a chain of Gaussian
channels. For these Gaussidd and ZS networks, we establish an approximate characterization of
the rate region. The outer bounds to the capacity region stabkshed using genie-aided techniques
that yield bounds sharper than the traditional cut-setrobtainds. For the inner bound of th&Z
network, we propose a new interference management schemed interference neutralization, which
is implemented using structured lattice codes. This tepinallows for over-the-air interference removal,
without the transmitters having complete access the i@ signals. For both thaZ andZS networks,
we establish a new network decomposition technique thadr@agmately) achieves the capacity region.
We use insights gained from an exact characterization ottieesponding linear deterministic version

of the problems, in order to establish the approximate dtarzation for Gaussian networks.

. INTRODUCTION

The multi-commodity flow problem, where multiple indepentienicast sessions need to share net-
work resources, can be solved efficiently over graphs usmept programming techniques| [1]. This
is not the case for wireless networks, where the broadcastsaperposition nature of the wireless
medium introduces complex signal interactions betweenctimapeting flows. The simplest example is
the one-hop interference chanrel [2], where two transmittéth independent messages are attempting
to communicate with their respective receivers over thesl@gs transmission medium. Even for this

simple one-hop network, the information-theoretic chamazation has been open for several decades. To
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Fig. 1. Two-stage relay-interference network.

study more general networks, there is a clear need to uatersind develop sophisticated interference
management techniques.

The capacity of the wireless Gaussian interference chamaelbeen (approximately) characterized,
within one bit (seel[3] and the references therein). Bugdon this progress, a natural next step is
to study the approximate capacity region of small-sdaterference-relay networkswvhere there are
potentially multiple hops from the sources to destinatitim®ugh cooperating relays. Studying even
simple two-hop topologies could help develop techniqueaktarnld insight that would enable a (perhaps
approximate) characterization of capacity for more gdnesbworks. We are interested in our work in a
universaltype of approximation, in that it should characterize thpagdty to within a constant number
of bits, independently of the signal-to-noise ratio and ¢hannel parameter values.

The focus of this paper is to study the two-stage relaydfatence network illustrated in Figuté 1. In
particular, we give an approximate characterization ofdhpacity region for special cases of these net-
works when some of the cross-links are weak. These arerdhest in Figuré 3(&) and Figure 4j(a), which
we refer to as th&S andZZ Gaussian models. We first studydaterministicversion of these problems
by using the linear deterministic model introduced[ih [4h Axact capacity region characterization in
the deterministic case is then translated into a univgrsadproximate characterization for the (noisy)
Gaussian network. In particular, fatS and ZZ networks we have a capacity region characterization
within 2 bits (or less), independent of the operating signal-te@oatio and the channel parameters.

In studying these special networks, we discover that mamhisticated techniques are required to
(approximately) characterize the network capacity regibme main new ingredients that enable this
characterization are as follows¢i) a new interference management technique we tamerference

neutralization in which interference is canceled over the air, withoutrlays necessarily decoding the
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transmitted messa&iii) a structured lattice codéhat enables interference neutralization over Gaussian
networks;(iii) A network decompositiotechnique which enables appropriate rate-splitting oftlessage
and power allocation for the different message componéivisgenie-aided outer bounding techniques
that enable bounds that are tighter than the informatie+ttic cut-set outer bounds.

A way to interpret the achievability results for tiZ& networks is that the relays perform a partial-
decoding of strategically split messages from the souraed, then cooperate to deliver the required
messages to the destination, again through strategigalityiry the messages. The power allocated to
each of the sub-messages is determined using the insigivederom the deterministic model, that
messages that are not intended be decoded arrive at theleaseThe achievability for th&@Z network
is slightly more sophisticated in that one of the relays muieed to only decode a function of the sub-
messages. The function is chosen such that its signal in ioatidn with the transmission of the other
relay causes the unwanted interference to be cancelledrgieed) at the destination. This interference
neutralization is enabled in the Gaussian channel usingbep property of a structured lattice code.

Work in the literature over the past decade has examinethgdalws for multiple independent flows
over wireless networks, see for example [6]-[8]. The goeiehs to characterize the order of the wireless
network capacity as the network size grows. In contrastuinveork, instead of seeking order arguments
and scaling laws, we try to characterize the capacity (gerhaithin a universal constant of a few
bits) for specific topologies. The interference channel spacial case of such networks, where there
is only one-hop communication between the sources andnadéisiis. There has been a surge of recent
work on this topic including cooperating destinatiohs [8dause of feedback in inducing cooperation
at the transmitterd [10]. The deterministic approach dgped in [4] has been successfully applied to
the interference channel ih [11]. The fundamental role ¢érfierence alignment id-user interference
channel (still a one-hop network) has been demonstrateti2h [13].

The paper is organized as follows. Secfidn Il introducesmmiation and the basic network models we
study. Sectiof 1]l illustrates the transmission technigused in this paper through simple deterministic
examples. The main results are given in Sedfioh 1V, along wiproof outline for the Gaussian networks
in Sectio Y. The achievability and converse for the detarstic ZS network is given in Section VI, and

many of these ideas are translated into the precise proghécorresponding Gaussia$ network in

A noise nulling technique is proposed [A [5] to mitigate edated noise in an amplify-forward relaying strategy foriragyke
unicast “diamond” parallel relay network. However, thefeliénce in our technique is that we use the structure of thelmmoks
(without necessarily decoding information) to neutraliméerference, and not noise statistics. Moreover the piehiinicast

nature of the problem necessitates strategic partitioaimd) rate-splitting of different components of the messages
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Appendix[A. Section VI follows a similar program for th&Z network, by first identifying the capacity
region for the deterministic version. This allows illugioa of ideas such as interference neutralization,
as well as genie-aided outer bounding techniques. Thegaré@nslation of these results into Gaussian

ZZ networks is given in AppendiX_IB. Sectign MIll concludes theppr with a short discussion.

Il. PROBLEM STATEMENT

A well accepted model for wireless communication is a lin€aussian model. In this, the received

signaly;(t) at timet, is related to the transmitted signdls;[t]} as
yilt] = Z hija;[t] + 2[t], 1)
J

wherez;(t) is i.i.d. (unit-variance) Gaussian noise, angl represents the fading channel from transmitter

1 to receivery.

I1.1 The Deterministic Model

In [4], a deterministic model was proposed, to capture theemrse of wireless interaction described
in (I). The advantage of the deterministic model is its siaiyl which allows exact characterizations;
its purpose is to build insights for the noisy wireless neatwim (1). The deterministic model of [4]
simplifies the wireless interaction model by eliminating thoise and discretizing the channel gains
through a binary expansion gfbits. Therefore, the received signgl, which is a binary vector of size

q, Is modeled as

it = Y Ny X, )

where N;; is ag x g binary matrix representing the (discretized) channelsi@mation between nodes
j andi and X is ag x 1 vector that contains the (discretized) transmitted sigia will drop the time
indext when it does not play a role for simplicity. All operations (@) are done over the binary field,
5. We use the terminologgleterministic wireless networkhen the signal interaction model is governed
by (2). The model in[(2) is an approximate representation Gaassian fading channel, which attempts
to capture the attenuation effect of the signal caused bghla@nel gain. This can be interpreted as the

number of significant bits of a binary representation of thyaut, z;, that is above the noise level. More
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precisely, typically the model ifi2) assigng; = J7~ "4, whereJ is a shift matrix, i.e.,

0 0 0 0
1 0 0 0

J=]lo0 1 0o - 0 ) (3)
0 - 0 1 0

axq
For real channel gairk;; in the Gaussian modell(1), we calculatg; as n;; = [4log|h;;|*]. The

parametey is chosen such that > max; ;[ log |h;;|*].

An example of a deterministic network is illustrated in Rigl2. Each node contains several channel
inputs and outputs, which are callsdb-nodeor level through out this paper. Sourcg can only send
one bit to noded and no bit to node3; sourceS; can send its two MSB to botd and B, and its LSB

to nodeB. The transmitted bits from node&s and S, interfere on the LSB that nodé receives.

> O O
S11O &A@ O,
O & O O
@ > @
SorO A BO @D,
@ @ ©O

Fig. 2. A deterministic network.

In a deterministic network, given a cut that separates notlé®m node), the cut-value equals the
rank of the transfer matrix between the nodea/iandV. For example, in Figurel 2, the cut that separates
nodesd = {51, 52, A, B} andV = {D;, D>} equals

0 0
0 0
rank =3. 4
Lo (4)
1

o O = =
= O o O

0
The rows of this transfer matrix correspond to the four tnaitted inputs by nodesl and B, while the

columns to the four receives outputs at nodgsand D-.

I1.2 Interference-relay network model

Our goal in this paper is to derive approximate capacity atterizations for a class @fuser relay-

interference networks shown in Figuré 1, which we call ¥ network. We start by describing our
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notation for Gaussian channels.
Two transmitters,S; and.S,, encode their messag#ls, and W, of ratesR; and Rs, respectively, and
broadcast the obtained signals to the relay nodeand B. Denote the transmitted signals by and

x9, and the received signals at the relaysihyand . Then

nilt] = vam[t] + Vgt + 21,
Wolt] = Vg1 [t] + /gaawa(t] + 2],

wherez{, 2, are unit-variance Gaussian noises, independent of eaeh atiu ofz,, z».

(5)

The relay nodes perform any (causal) processing on thesived signal sequencég [¢]} and{v}[t]}
respectively, to obtain their transmitting signal seqesnéx’ (¢)} and{z}(¢)}. The received signals at

the destination nodes can be written as
yilt] = Vhuz [t] + Vhieaslt] + 21 [t]
Yalt] = Vhor @ [t] 4+ V/hoaws[t] + 2ot],

where thez], 2}, z1, andz, are independent zero-mean unit-variance noises, whichlsoeindependent

(6)

of x1 and z,. There is a power constraint for each transmitted signat iy E[z?] < 1, E[23] < 1,
E[z?] <1 andE[z%] < 1.

Each destination nod®;, i = 1, 2, is interested in decoding its messddg, using its received signals
{vi[t]}. We define a rate paiR;, R2) to be admissible if there exist a transmission scheme untiehw
D; and D, can decoddV; and W5, respectively, with arbitrary small (average) error ptaibty in the
standard mannef_[14]. This would allow two end-to-end kéaunicast sessions at ratéB;, R) for
the source/destination paifs§;, D) and(Sz, D2).

A useful tool to examine the network problem defined above stuidy its deterministic version, based

on the model developed ifil(2). Using the deterministic appnpwe can rewritd {5)-16) as

Y{[t] = My Xq[t] + M2 Xolt]
Yz/[t] = My X, [t] + Moo X5 [t],

()

and
Yi[t] = Nu Xi[t] + N2 X5t
Yg[t] = Nng{ [t] + NQQXé[t],

(8)

where the matrice§)M;; } and{V;;} approximately model the channelsfit (B)-(68,, M,; = J9~™, N;; =
Jo=i. The matrixJ is defined as in[{3), whilen;; = [4 log |g;;|*] andn;; = [ log |hs;]*].
It is worth mentioning that though this network looks likescaded interference channels, there is an

important difference. Unlike the interference channed, thessages sent by the relays at the second layer

May 5, 2010 DRAFT



of transmission need not independeir®,, we can try to induce cooperation at the relays to transmit
information to the final destinations. This distinction reakhis network more interesting than a simple
cascade of interference channels.

In this paper, we focus on two specific realizations of thevoet, namely, theZS and theZZ networks,
which further simplify the connectivity models &fl (9)}(&8)e describe these two networks in the following,
and give an approximate characterization of their admiss#te region in Sectiopn IV.

Notation alert: Throughout this paper, we use the lowercase letteesdy for the signals transmitted
by the sources and received signals at the destinationseinGéssian networks. The received and
transmitting signals by the relays are denotedzbyandy’. Similarly, uppercase letters will be used for

the deterministic networks.

I1.3 The ZS Network

The ZS network is a special case of the interference-relay netaeflned in[[5){(B). In th&S network
one cross link in each layer has a negligible gain, and thezefoes not cause interference, as illustrated
in Figure[3(@). In particular, we assumg = hio = 0 in the Gaussian network, amay; = n12 = 0 in the
deterministic network. The resulting Gaussié® network is shown in Figurg 3(a), and the deterministic

model for this network is given in Figufe 3(b).

21
S A D,
Yﬂh Vo Yy Y zy Vhi f_*_\ Y1
@
o V' hot
1
m -
g12
7\ yé Yo
d_j x, d_j
52962 V922 B T2 Vha Dy
29

(a) The GaussiaZS network
A
sif —— T o,
/ \
A T D,
ma2 B n99

(b) The deterministiZS network

Fig. 3. TheZS network.
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1.4 The ZZ Network

The ZZ network is another special configuration interferenceyraietwork, wherein one cross link
in each layer has zero gain. However, the difference is therte the missing links are in parallel. In
particular, we assumeg,; = ho; = 0 andmse; = no; = 0 in the Gaussian and deterministic networks,

respectively. The Gaussian and corresponding deterigini&t networks are shown in Figufé 4.

S1 , A , D;
T:m V911 @ Y1 T zy Vhi (P— le
t t
Zi ! 21— 2
V912 , Vhi2
jx @ Yo Y x/ @ yQT
h"? V922 T B Y2 Vha D,
zh 2
(a) The GaussiaZZ network
N my | Yo X v,
11 n
S 1 Y 11 YDI
mi2 n21

v/
SXXQ Mmoo . Y X3

n
B 2 22

YFD 2

(b) The deterministiZZ network
Fig. 4. TheZZ network.

[Il. EXAMPLES ILLUSTRATING TRANSMISSION TECHNIQUES

In this section, we illustrate through examples some of tladnrmterference management techniques
we will use to (approximately) achieve the capacity of olayenterference networks. For simplicity in
demonstrating the ideas, we focus on deterministic netsvttkoughout the examples. However, similar
techniques will be used later for Gaussian channels as well.

We also present a simple Gaussian example at the end of ttisrseo illustrate the message splitting
idea used in many places through out this work.

Example 1 (Network Decomposition for td8 Network): A deterministicZS network can be always
decomposed into two subnode-disjoint networks, where tisé gartition consists of a set of sub-nodes
of S1, A and D4, and looks like a line network. The second patrtition is, hesvea diamond network,

with a broadcast channel fros, to A and B in the first layer, and a multiple access channel frdm
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and B to D, in the second layer. This diamond network can be used to sdoiation fromS; to D.
Since these two networks are sub-node disjoint, there woeldo interfering signal, and each of them

can be analyzed separately. This is more illustrated inrEigu

S A

B Dy

Fig. 5. Network partitioning for a deterministi€S network.

In a GaussiaZS network the network decomposition can be done using mesgaigeng, superposi-
tion coding and proper power allocation. We will use thisht@que to achieve an approximate capacity
for the GaussiaiZS network.

Example 2 (Interference NeutralizationThis technique can be used in networks which contain more
than one disjoint path frons; to D; for ¢ # j, whereD); is not interested in decoding the message sent
by the source nod#;, and therefore it receives the interference through mae tne link. The proposed
technique is to tune these interfering signals such that leeitralize each other at the destination node.
In words, the interfering signal should be received at threespower level and with different sign such
that the effective interference, obtained by adding thetnupies a smaller number of degrees of freedom.

To best of our knowledge, this technique is new and was beewodinced in [[15].

Fig. 6.

May 5, 2010
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Interference NeutralizatiofR:, R2) = (2,2) is achievable.
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Fig. 7. Interference neutralization.

Figure[® shows a network in which interference neutralirats essential to achieve the desired rate
pair (R1, R2) = (2,3). Here D, has only two degrees of freedom, and receives informatits flom
both A and B over these sub-nodes. However, notice that there are tjoirdipaths 65, A, D) and
(S2, B, D1), which connectS; to D;. As it is shown in Figur€l6, using a proper mapping (permaoigti
at the relay nodes, one can make the interference neuttadizéhe destination nod®;, and provide
two non-interfered links fronb; to D,. Note that this permutation does not effect the admisséiie of
the other unicast fronds to Ds, the cost we pay, is to permute the received bit®at A more general
illustration of this phenomenon is given in Figlre 7.

Example 3 (Use of Lattice Codes to Implement Interferenadrhliization over GaussiaZZ Network):
The idea of interference neutralization illustrated in Exée[2 can be also used in Gaussian networks.
In this case a group structured code, such as lattice codegisred to play the role of composition
and decomposition of the signal and interference in tworkyd the network. Consider the Gaussian
ZZ network in Figurd 4(&). We can use message splitting andfémemce neutralization to improve the
achievable rate pairs of this network.

Let the second source split its message into two partd’as- (W2(N), Q(P)), namely, the functional
(neutralization) and private parts, of rat& y = R; and Ry p = Ry — R;. Both transmitters use a
common lattice code to encod&; and Wz(N), and map them into<§N) and xéN), respectively. The
other messagéVQ(P) can be encoded t&ép) using a random Gaussian code. We assume that both the
lattice code and the random Gaussian code have average pquedrtol. Then, the transmitting signals

would be a linear combination of the codewords with a propmver allocation,.e.,

xi = vanx), xe = V/Bnxg 4+ /By, ©)
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where the power allocation coefficients satisfyy < 1 and Sy + Sp < 1. The transmitters choose the
power allocated to<§N) to ng) in a way that they get received 4t with the same power. In this way,
their summation would be again a lattice code and can be éelcatiA by treatingxgp) as noise. A
similar strategy will be used for signaling at the relay fiansmission in the second layer of the network.

The only difference is that instead of sendinﬁv), the relay nodeB sends—x\V). Then, the lattice point

2
observed atD; would be exactlyng) and it can findiW;. The other decoder can simply first reverse

—xéN) to xéN), and then decode it. This idea is illustrated in Figure 8.

S1 A Dy
Jaw e, [ e -
1
VI Vhiz
|
VB _i N — N T
So B Dy

Fig. 8. Using lattice codes for interference neutralizativer a GaussiadZ network. The origin is specified by a cross™
Power allocated to the messages at the transmitters arercash that the two lattice points correspondingci%’) and xéN)
get received aB3 at the same power level, and their summation becomes a poitiiteoscaled lattice. The same strategy is used

by the relays. The relay nodB also reverses its transmitting lattice point in order totraize the interference caused in the
first layer of the network.

Example 4:Consider the Gaussiahnetwork shown in Figurg]9, with channel gains > 1, g12 > 1,

and g2 > 1.

Fi *
Wy Yivl g11 @ le Wl

Fig. 9. A GaussiarZ network.
The source nodes; wishes to encode and send messHgeto the destination nodé€';, for i = 1,2.
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Denoting the rate of messad€; by R;, an approximate capacity characterization for this netwsr

given by network is given by
7 1
R = {(31732) Ry < 5103;(1 +g11)
1
Ry < 3 log (1 + g22) (10)

1 1
R+ Ry < —log (1 4 g11 + g12) + = log <1+@> }
2 2 g12

It is easy to show that any achievable rate pair belong84pand henceéR? establishes an outer bound
for the capacity region. Moreover, one can show that thepate R; — %, Ry — %) is achievable provided
that(Ry, Ry) € R%. The encoding strategy to achieve such rate pair involvessage splitting and proper

power allocation. We will discuss this in more details in Apgix[C.

IV. MAIN RESULTS

In this section we present the main results of this paperchvis the approximate capacity character-
ization of the Gaussia@S and ZZ interference-relay networks. In order to obtain such arr@pmate
characterization, we have a complete characterizatiomefdeterministic versions of thaS and ZZ
networks. The coding strategies for the Gaussian problemsoatlined in Sectiol V. The detailed
analysis of these strategies and the corresponding outerdsowhich lead to Theorems$ 2 and 4 are
given in Appendice§ A andlB, respectively. Most of the ingigare obtained by analyzing the deter-
ministic versions of these problems, and the exact chaiaat®ns are summarized in Theorefs 1 and
respectively. We prove these results in Sectlods VI[antl MBpectively. The achievability and outer

bound results for the Gaussian cases are directly inspiyatidse results.

IV.1 TheZS Network

The ZS network illustrated in Figur¢ 3(b) and the correspondingi$s#&nZS network is given in
Figure[3(d). Theorenid 1 afdl 2 give the exact and approximatieir{ 2 bits) characterizations of their
capacity regions.

Theorem 1 (The capacity region of determinigis network): The capacity region of the determinis-
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tic ZS network is specified byRP?5, whereRPZS is the set of all rate pairéR;, R,) that satisfy

Ry < myy, (DZ5-1)
Ry < max(mqg, ma2), (DZS-2)
Ri + Ry < max(my1, mia) + (maa —mi2) ™, (DZs-3)
Ry < 'mya + naa, (DZs-4)
R1 + Ry < may + max(nq1,na1), (DZS-5)
Ri + Ry < max(mi1, mi2) + naz, (DZ5-6)
Ri < nuy, (DZ5-7)
Ry < max(nay, nog), (DZS-8)
Ry < mag + nax, (DZS-9)
R1 + Ry < max(nai, na2) + (n11 —na1) ™. (DZs-10)

Theorem 2 (An Approximate capacity region of Gausgidmetwork): Let R¢%°> be the set of all
rate pairs(R;, Ry) which satisfy [GZ5-1)-({GZS-10) given below. TheriR®%S is an outer bound for
the capacity region of the Gaussid$ network. Moreover, for anyR;, Ry) € R®%°, there exists a

transmission scheme with ratéB’, R}) = (Ry — 01, Re — d2), whered; = 1 andd, = 1.5 are universal
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constants, independent of the channel gain, and requited.ra

1
RBi<g log(1 + g11) (GZ5-1)
1
Ry < 5 log(l + g12 + 922) (GZS-Z)
1 1 922
Ry + Ry < —log(l+g11 +g12) + zlog | 1 + == (GZS-3)
2 2 912
1 1
Ry < 5 log(1 + g12) + 5 log(1 + ha2) (GZS-4)
1 1
R+ Ry < 5 log(l + 922) + 5 log(l + hi1 + hzl) (GZS-S)
1 1
R+ Ry < 5 log(1 4 g11 + g12) + 3 log(1 4+ ha2) (GZS-6)
1
R < 5 log(l + hll) (GZS-?)
1
Ry < 5 log(l + ho1 + hog + 24/ h21h22) (GZS-8)
1 1
Ry < 3 log(1 + g22) + 3 log(1 + ho1) (GZS-9)
1 1 h
Ry + Ry < 3 log(1 + ho1 + hoo + 24/ hathag) + 3 log <1 + h_11> . (GZ5-10)
21

The outer bound for the results above are fairly standardinaegts based on reducing a multi-
letter mutual information into single-letter forms by appriately using decodability requirements at
the different destinations. The details of these are gime8actiof V.1 and Appendix B.1, respectively.

The coding strategy achieving these regions is based ond®asi One is that of metwork decompo-
sition illustrated in SectiomIll, Examplel 1 for the deterministietwork. The insight from the network
decomposition leads to the idea of strategite-splittingand power allocation in the Gaussian channel.
For the Gaussian coding scheme, we need to strategicaliyiggathe messages and allocate powers in
order for the relays to partially decode appropriate messamd setup cooperation. The details of this

strategy are outlined in Sectidd V.

IV.2 TheZZ Network

The ZZ network illustrated in Figur@ 4(pb) and the correspondingi&&|nZZ network is given in
Figure[4(@). Although superficially th&S and ZZ networks may look similar, the subtle difference
in the network connectivity, makes the two problems congbjetifferent, both in terms of capacity
characterization, as well as transmission schemes. Itb@ilkhown that a new interference management

scheme, which we term as interference neutralization, ésle@ to (approximately) achieve the capacity
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of this network. The most intuitive description for intendace neutralization is to cancel interference
over air without processing at the destinations. This séhean be used whenever there are more than
one path for interference to get received at a destinatianwill explain it in more detail in Sectioris]V
and[\V1I.

Theoremd B anf]4 give the exact and approximate (withliits) characterizations for the capacity
region of the deterministic and the Gaussiahnetworks, respectively. Another new ingredien used here
is needed a genie-aided outer bound that gives the (noiggsdmk of the first (or correspondingly
second) layer to the destination (or correspondingly torélay). This genie-aided bound allows us to
develop outer bounds that are apparantly tighter than fleenmation-theoretic cut-set bounds by utilizing
the decoding structure needed.

Theorem 3 (The capacity region of determinisfi¢ network): The capacity region of the determinis-

tic ZZ network is given byRP?%%, whereRP%Z is the set of all rate pairéR;, R,) which satisfy

Ry < myy, (DZZ-1)
Ry < mao, (DZZ-2)
Ry < nay, (DZZ-3)
Ry < ngo, (DZZ-4)
R+ ry < max(ma1,maz2) + (ma2 — mi2) ™ + naa, (DZZ-5)
Ry + Ry < max(ni1, m2) + (na2 — ni2) ™ + mya. (DZZ-6)

Theorem 4 (An approximate capacity region of Gausg@i@nnetwork): Let R°%Z be the set of all rate
pairs (Ry, Ry) which satisfy [GZZT)-(GZZ8) given below.

1
Ry < 3 log(1 + g11) (GZ71)
1
Ry < 3 log(1 + go2) (GZZ2)
1
R < 3 log(1 + hi1) (GZZ3)
1
Ry < 3 log(1 + ha2) (GZZ4)
1 1 922 1
Ry + Ry < 3 log(1 + g11 + g12) + 3 log | 1+ T t5 log(1 + h12), (GZ15)
12
1 1 hao 1
R+ Ry < 5 log(1 4 h11 + hi2) + 3 log [ 1+ e + 5 log(1 + g12) (GZZ6)
12
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Then, any admissible rate pdiR;, R») for the GaussiarZZ networks belongs t&R %%, Moreover, for

any rate paiR;, R2) € R%%Z, there exists an encoding scheme with rdteé, R}) = (R, — I, Ry — ).

V. GAUSSIAN CODING STRATEGIES

This section is devoted to providing the basic ideas of thginrgpbschemes used in the Gausséh

andZZ networks. We also develop an outline of how to analyze theskng strategies.

V.1 The Gaussia@S network: Achievability

The coding strategy for the Gaussidf network is essentially a partial-decode-and-forwardtsty
along with a strategic rate-splitting of the messages. hetmessages to be sent frgf, S, be denoted
by W1, W, respectively (see Figufe 3[a)). We will break thg network into two cascaded interference
channels, where we require particular messages to be decadée relays and forwarded to the
destinations. The first stage isZainterference channel, where the mess#ggeis split into three parts:
(Uz(l), 2(2), U2(3)>. The intention of this strategic split is to allow the the ed&; (which is relayA in
the originalZS network) to decode{Ul(l), 2(1), U2(2)> and node, (which is relayB in the originalZS
network), to decode{U(l), UQ(?’)). This is illustrated in Figurg10. Heréf,z(l) plays the role of a common
message which can be decoded at both receivers, Whé’éé)aand UZ(S) are the private messages for
G and G respectively.

The next stage of th&S network is aS interference channel depicted in Figlré 11. Here we take the
messages delivered and decoded byzhsterference channel of the first stage and further prodess t
to ensure delivery of the desired messages to the destindtigparticular, we further split the decoded
messages from the first stage into several parts and recglivery of messages as shown in Fighre 11.
This splitting and delivery of appropriate pieces, finallyseres thafl; and W, are decodable at the
destinations. This is the encoding strategy in #i%enetwork. In the following lemmas, we give the rates
at which messages at each stage can be delivered. Puttiethéod.emmag]1l arld 2, we get the desired
result given in Theoreml 2. The proofs of these lemmas follairlyf standard arguments, and are given
in Appendix[C.

A formal statement of the argument above is given below.

Lemma 1: Consider the Gaussiah interference network with channel gaitg1, g12, g22), and de-

coding requirements as shown in Figlre 10. Denoting theaftee sub-messagéi(j) by T, ;, any rate
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1

Fy G
v Y VI @ y1 oW, o U(2))
/
Y2
(U Y U22)’ T2 /g O Y )
2 22 22 GQ

Fig. 10. TheZ interference channel with particular message requiresneiptures the proposed coding scheme for the first
layer of the Gaussia@S network.

tuple (Y11, Y21, Y22, T2 3) Which satisfies

1 1\ 7T
Tip<|zlog(l+g11)—3) , (7)
2 2
1 912> 1>+
o ), 8
(2 < 922 2 ®
1 1\t
To1+ T2 < 510g 1-1-912)—5 ; 9
1 1\
Ti1+ Yo+ T2 < 510g 1+911+912)—§ , (10)
+
welnlem) )
2 912 2
1 1\ "
To1+ T3 < log 1-1-922)—5 ; (12)

is achievable.

The next lemma gives an achievable rate region for the selayed of theZS network, which is &

interference network depicted in Figurel 11.

F1 7 Gl
(Vl(l)v Vl(Q)v VQ(l), VQ(Q), V2(3)’ ‘/2(4)) Yxl 11 ® Y1 Y (‘”/1(1)’ ‘71(2), ‘”/2(1)’ ‘72(3)>
hoy
Y2 o (1) (1) (2 173) 1r(4) (5
(1/';1),1/2(2),1/'2(5)) Y@ - © Y (Vf R RO R ORI >)
Fy 22 TZ2 G

Fig. 11. TheS interference channel with particular message requiresneeipicting the proposed coding strategy for the second
layer of the Gaussia@S network.
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Lemma 2: Consider the GaussiaB interference network with channel gairié;q, ko1, he2), and
decoding requirements as shown in Figlré 11, wheyre denotes the rate of messa@féj). Any rate

tUpIe (@171, @1,2, @271, @272, @2,3, @2,4, @275) which satisfies

Nt
©1,1+012+021 +6033 < < log (1 + hi1) — 5) (13)
o Liog (142 L (14)
12 < ) 0og h12 B
1 h21 1
< | - — 15
@24_<2 og< h11> 2) (15)
1
O1,1 + 023+ 024 < <§ log (1 + he1) — > (16)
1
O25 < <§ log (1 + hoa) — —> (17)
1
O1,1+6021+022+ 023+ 024+ 035 < <§ log (1 + ho1 + haa) — 5) ; (18)

is achievable.

V.2 The GaussiadZ network: Achievability

The encoding scheme needed for #i& network is slightly more sophisticated than th& network.
An additional component to strategic message splittingh& of interference neutralization. This was
illustrated in examplels| 2 and 3 in Sectiod Ill. This alonghaitessage splitting inspired by the network
decomposition illustrated in examplé 1 of Section IlI, fothe basis of the encoding scheme for #i&
network.

More formally, the interference that has to be neutralizeil,be combined with the main message in
the first layer according to some partial-invertible fuontiln the second layer the inverse of the function
is applied on this combination and the other interferenceived through the cross link. The remaining
parts of the interference has to be either decoded or treegtaubise. The neutralization is implemented
using lattice codes and the rate-splitting along with appete power allocation is also used.

We formally define a partial-invertible function andZaneutralizationnetwork in the following. The
GaussiarZZ network is essentially a cascade of t&aeutralization networks. An achievable rate region
for the Z-neutralizationnetwork is given in Lemmal3. This rate region will be later dise obtain an
achievable rate region for the Gaussiéh network. We will analyze the performance of the Gaussian

encoding/decoding schemes in Appendix]B.2.
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Definition 1: Let &/ andV be two finite sets. A functior(-,-) defined on/ x V is called partial-
invertible, if and only if having¢(u,v) andu, one can always reconstruetfor any v € & andv € V.
Similarly, « can be obtained fromp(u, v) andw.

An intuitive way of thinking about a partial-invertible(u, v) is the following. An arbitrary function
defined on a finite set& and ) creates a table with rows corresponding to the elemen® aind
columns corresponding to the elementsipfthe each cell of the table consists the value assigned to its
row and column by the function. A function will be partiakirtible, if and only if no two cells in the
same column or row of its table be identical.

Note that summation over real numbers, and multiplicatioer mon-zero numbers are two examples of
partial-invertible functions. However, it is clear multgation over real numbers is not partial-invertible,
sincew = ¢(1,0) = ¢(2,0), and therefore havings andv = 0, u can be anything.

Definition 2: Consider theZ network shown in Fig 12, which consists of a Gaussian brastddaannel

from F5 to the receivers and a Gaussian multiple access channelAff@and F; to G1. A Z-neutralization

Fy G1
Yxl g11 o le (01(1)7<£(U1(0)’U2(0)))

()

(ot

Fig. 12. The Gaussia@@ channel.

network is aZ network, wherein the first source node has two mess(algéoé, Ul(l)) of ratesY, and
Y1, respectively. Similarly the second source observes twiependent messageég(o), Uz(l)) of rates
Ty and Y.

The second receiver is interested in decodmﬁ) and U2(1), while the first destination wishes to
decodeqS(Ul(O), UQ(O)) and Ul(l), whereg(-,-) can be any arbitrary partial-invertible function. A ratel
(Yo, Y1, Y9) is called achievable if the receivers can decode their ngesswith arbitrary small error
probability.

Lemma 3: Consider theZ-neutralization network defined Definitidh 2 with channehgd g1, g12, g22)

(see Figuré12). Let

A £ min{gi1, g12, 922}, (19)

May 5, 2010 DRAFT



20

and

{1 = max {911, 912, 922, 91;19222 } - (20)
Any rate tuple(Yg, T, T2) satisfying
1 1\
To < 5 log (/\) - 5 > (21)
1 +
To+ 7T < <§ log (g11) — 1) , (22)
1 +
Yo+ Yo < <§ log (g22) — 1> ; (23)
1 3\ T
To+ T+ 7T < §log('u)_§ ; (24)

is achievable.

As mentioned before, we strategically split the messagesraquire functional reconstructions for
some of them at the relay nodes to facilitate neutralizagibthe destinations. More precisely, in the first
layer of the network, each source node splits its messageavimt parts, namely, “functional” and private
parts,W; = (Ul(o), Ul(l)) andW, = (Uéo), Ué”). The “functional” partsUl(O), U2(0) both have the same
ratesYy. Both transmitters use a common lattice code to encode filnaitional sub-messages. Now the
first layer encodes the message such that the first receiviich{\is relay A in the originalZZ network)
can decodé]l(l) andqﬁ(Ul(O), Uz(o)), and the second one (reldy in the originalZZ network) can decode
Uz(o) and Uz(l). Lemmal3B gives the rates at which these can be sent reliaby.s€cond stage operates
in a manner similar to the first stage, by splitting the messagto functional and private parts. The first
sender (relayA in the original network) useéfl(l) and ¢(U1(0), UQ(O)) as the private and functional parts
and the other one (relai) usesUQ(I) and U2(0) as the private and functional parts.

The functional parts are sent appropriately, using a comiatice code in both stages. LgﬁN) and
ng) be the lattice codewords, correspondingﬁﬁ) and UQ(O), respectively. The power allocation In the
first layer it is done so that two lattice points get received at the same power (see Figlte 8). The group
structure of the lattice code implies that the summatiomaf teceived lattice point(™) = ng) +x§N)
is still a valid codeword, and can be decodedAyThe functiong(-, -) is in fact the decoded message
from (™). In the second stage, relay nodk sends the inverse of the the received lattice point, that
is xlz(N) = —xéN), while A forwards the sum lattice poink/l(N) = xV). Again these lattice points are
scaled properly so that they get received/gt at the same power. Thus, their summation would be a

lattice point and equalsll(N) + x;(N) = (ng) + ng)) - ng) = ng), which will be decoded thl(O).
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The other destinatioD,, receives—xéN), finds its inverseng), and finally decodes it t(15]2(0). This

idea is illustrated in Examplel 3, and the precise detailshisf argument are given in Appendix B.2.

VI. THE DETERMINISTIC ZS NETWORK

In this section we prove Theordm 1. We study this problem o parts. First we present the converse
proof, which shows any achievable rate pair belong®Rf>. Then for any rate pair in this region, we

propose an encoding scheme which is able to transmit messgg® the desired rates.

VI.1 The Outer Bound

In this section we show that any achievable rate p&ir, Ry) for the deterministiZS network belongs
to RPZS. Assume there exists a coding scheme with block ledgtiich can be used to communicate
at ratesR; and R, over the network. We use fold face matrices to derfatepy of them, as the transfer
matrix applied over a codeword of lengthe.g.,My; = I; ® M.

All of the bounds in the theorem excefid45-3) and [DZS-10) can be obtained straight-forwardly
using the generalized cut-set boundini[16], which showsitha linear finite-field network, the maximum
reliable rate can be transmitted through a cut is upper bedibg the rank of the transition matrix of the
cut. Here, we only present the proof @Z7S-5) to illustrate this idea. Then we prove the two remaining
bounds, which are tighter than the cut-set bound.

(DZS-5) R; + Ry < mgy + max(nq1,n21): This bound corresponds to the df = {S;, 52, A}
and; = {B, D1, D}. The transition matrix from the input of the cig, = (X2, X{) to its output

Yo, = (Y3, Y1,Y2) can be written as

Yyt My O ot 0
vi =] 0 Ny X?Z +1 0 | X (25)
Yy 0 Ny ' Noo

Therefore, from[[16] we have

N
U(R1 + Ry) <rank(Ggq, o,) = rank(Mag) + rank H = lmoy + fmax(nii,no1). (26)
Noy
As mentioned before, we skip the proof of those bounds whidlovt from the generalized cut-set
bound. In the following we present the proof of the two renrarninequalities which are tighter that the

cut-set bound.
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(DZS-3) Ry + Ry < max(ma1,mi2) + (ma2 —mi2)™: In order to prove this bound, we can start
with
U(Ry + Ro) < I(X7, X5, Y5)
< I(X1, X5 Y1, Y5) (27)
= I(X7, X33 17%) + I(X], X5 Y59 )
< I(XT, X5 Y1) + HYL' Y1) — H(Y,'| X1, X5, Y1), (28)
where in [2¥) we used the data-processing inequality forMiaekov chain
(X1, X3) & (Y15, Y21) & (X1, X5) & (Y, Y), (29)
and [28) holds sinc#&,* is function of X{. Now, it is clear that
I(Xt, X5 Y)) < rank ([ M;; Moy D = {max(mq1, my2). (30)
In order to bound the second term, we can write
H(Y,' Y1) = HY, 1, X YY) (31)
< H(Y,' , Wany', X YY)
— H(Y,' |V}, X, Y Wa) + HWa|Y'6, X1 YY)
< HY,' )Y XY Wo, X0 + £ey (32)
< HY V8 — My XY + Leg
< H(Mop X5 M9 X3) + Leg

Mo
< frank — frank (Mi2) + ey

Moo
= f(’l’)’LgQ — ’I’)’L12)+ + f(—:g, (33)

where [31) holds sincé&’,’ is also a function ol;*, andY/ is also a deterministic function of,’.. We
used Fano’s inequality i (82), whel€; should be decodable based BA. Summing up[(30) and(33),
we get the desired bound.

Note that the cut-set bound for the dat = {51, S2} andQy = {A, B, Dy, D>} gives us

M1 Mo
(Ry + R2) < rank = {max(my1 + maa, m12), (34)
0 My
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in which the RHS can be arbitrarily larger than the RHS of thespnted bound. The reason for this
difference is the following. It is inherently assumed inidieig the cut-set bound that the receivers can
cooperate to decode the messages of ratesind R, and no decodability requirement is posed for
individual receivers. However, the setup of this problenpase an extra constraint, that I3 alone
should be able to decod#,. Incorporating this decodability requirement shrinks e of admissible
rates, and gives us a tighter bound.

(DZ5-10) Ry + Ry < max(nai,n11) + (n11 — n21)™: The last inequality captures the maximum
flow of information from the relays to the destinations, sticat D; and D, be able to decod#&; and

W, respectively. We again start with
U(Ry + Ro) < I(X7, X3;Y{,Yy) = H(Y(,Yy) = H(Yy) + H(Y|Y3). (35)
The first term can be easily bounded by
H(Yy) < rank ([ Ny Nao D = { max(na1, n22). (36)
In order to bound the second term, we use the fact ifiatcan be decoded frori’@f. Therefore,
H(Y{|Y;) < H(Y{, Wa|Yy)
= H(Y{|Yy, Wa) + H(W,|Yy)
< H(Y{|Ys, W) + leg (37)
= H(Y!|YY, W, X5, Y, X)) + tey
< H(Y{|Y; — Noo X)) + ley

= H(Nj1 X f|No1 X /%) + ey

N1y
< frank — frank (Ngy) + ley
Noy

= €(n11 — n21)+ + Ley. (38)

In 37) we used the Fano's inequality, as well as the fact HigtY,*, and X,’ are known having/s.
The bound is obtained by replacirig {36) ahdl (38)[in (35).

It is worth mentioning that this bound is tighter than the-set bound for the cut, = {51, 52, A, B}
andQy = {D1, D>}, which is

Ri+ Ry < max(nu + no2, 7”L12). (39)
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V1.2 The Achievability Part

Network Decomposition:The achievability scheme presented here is based on desdainpoof
the deterministicZS network into two node-disjoint networks. In fact, such pieming depends on the
demanded rate paji;, Ry) € RPZ°. The resulting family of separations immediately suggastample
coding scheme. We will show that this separation is optiad] does not cause any loss in the admissible
rate region of the network.

Before introducing the network decomposition, we defineaurivalence class for the sub-nodes (levels)
in a network.

Definition 3: In aZ (or S) deterministic network, two sub-nodesandb are calledrelated sub-nodes,
and denoted by, ~ b if any of the following conditions hold:

e a=2";

e a IS connected t@;

« b is connected ta;

« there exists a sub-nodesuch thatc broadcasts to both andb;

« there exists a sub-nodewhere botha andb are connected to.
Note that this relation is reflective, symmetric, and trawsi Therefore, it forms equivalence classes for
the sub-nodes.

We denote byV; and N, the partitions of the network. Assume we wish transmittingade R2; =
r < min(mq1,n11) from Sy to D;. The first part of the networkVy, includes the topg(mi; — mi2)™
levels as well as the lowesét — (m1; —mi2)*)™ levels of S;. It also includes all the related sub-nodes
of S5, and the receiver levels of and B. Similarly, in the second layer of the network; includes the
lowest (n1; — no1)™ levels as well as the tofr — (ny; — n21)*)™ nodes of the transmitter part of.
All related sub-nodes of the transmitter part®f as well asD, and D, also belong toV;. The second
part of the network\5, is formed by all the remaining nodes.

We will useN; for transmitting data fron$; to D;. Similarly A5 is only used to communicate frosy
to Ds. Therefore, we have two uni-cast networks, and each paiaokmitter-receiver can communicate
up to the capacity of their own partition, which is the mirt-ofi the partition [4].

It is worth mentioning that any two “related” sub-nodes Ibgjdo the same partition. Therefore, these
two networks are node-disjoint, and do not cause intertexdor each other. This allows us to derive
the capacity of each network separately, and argue(fRatR,) can be achieved simultaneously for the

original network, if R; and R, are achievable for partitions; and \>.
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Encoding SchemeA transmission fromS; and Sy to D; and D, is performed as followsS;
transmits only on its sub-nodes which belonghe, and keeps its other sub-nodes silent. Similasly,
encodes its message on the sub-nodes includéd jrand sends zero on the other levels. Therefore, the

effectivecommunication over each partition is a simple uni-cast.

(1)
SlYXl r Yl Y i YDl

(b) Effective channel fo(S2, D2).

Fig. 13. The effective separatétb network.

Fig. [I3 shows the effective parts of the network. It is easysé¢e that the diamond network

n

Figure[I3(D) is also a linear shift deterministic netwonkith channel gains

miy(r) = min(max(maiy, mi2) — r,m12), (40)
mbe(r) = min(max(mq1, mi2) + (mag — mi2)™ — r,man), (41)
Ny (r) = min(max(n1y, ng1) — r,m21), (42)
nho(r) = min(max(ni1, na1) + (n2g — na1)t — r,na2). 43)

Achievable Rate Regionthe cut values of\V; can be easily computed as
Q={5}: (mi1 —ma2)t + (r — (m11 — ma2) ™) " = max{(mi1 —ma2)",r} >
Q = {51, A} : (r — (’I’LH — n12)+)+ + (TLH — ’I’L12)+ = max{(n11 — n12)+,r} 2 T.

Therefore any rate ilRP%5(r) = {R; : Ry < r} can be conveyed frons; to D; through\V;.

The capacity of\V; can be found using the generalized max-flow min-cut theo#mHence, the rate
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region of the second partitia> would be

RZ%(r) = {Rz :Ry < max(miy(r), my(r)), (44)
Ry < miyy(r) + niy (), (45)
Ry < mhy(r) + nby(r), (46)
Ry < max(n; (1), ngy(r))}- (47)

Therefore, by using this decomposition, any rate pair ins#eR %> (r) x RD%5(r) = {(R1, R2) : Ry €
RD%5(r), Ry € RD%3(r)} can be achieved. It remains to prove the following lemma.
Lemma 4: For any deterministiZS network,

R c | (RlDZS(r) X RZDZS(T)) . (48)

r<min(mii,n11)
We will prove this lemma in Appendix]IC.

VIl. THE DETERMINISTIC ZZ NETWORK

In this section we prove Theordr 3. This is done in two pahts, provide the converse and achievability

proofs.

VII.1 The Outer Bound

In the following we will show that any achievable rate pait;, R2) satisfies constraint®dZZ-1)-
(DZZ-6). The individual rate bounds can be directly obtainedHgydeneralized cut-set bound introduced
in [16], where the maximum flow of information through a cutardinear deterministic network is upper
bounded by the rank of the transition matrix from the sendet pf the cut to its receiver part. Hence,
we skip the proofs of[iZZ-1)-(DZZ-4).

The sum-rate bounds ifDZZ-5)-(DZZ-6) are, however, genie-aided bounds which are tightertheat
cut-set bounds. In the following, we focus on these two bsuadd present their proofs in detail. Again
we assume that there exists a coding scheme with block lengthich can be used to communicate at
rates?; and Ry over the network.

(DZZ-5) Ry + Ry < max(mi1,mi2) + (ma2 —ma2)* + nio: In order to prove this inequality we
focus on the flow of information from the sources to the reldyse key idea here is to providé with
the information sent byB to D; as side information. In such condition, the informatidrhas received

aboutl¥; is stronger than the information available/af, and therefored can decodél; sinceD; can
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as well. OncdV; is decoded at4, it can determine the transmitted codeword fr6m By removing the
interference fromS;, A can also partially decod@’.

More precisely, we can write
((Ry + Ro) < I(X{, X5V, Y55 = H(Y, %, Y,Y) < H(Y, Y, Y5, TY)
= H(YW",T9) + H(Y,'[¥;,T))
< H(Y;") + H(TY) + H(Y,'|Y{",T%), (49)
whereT = N5 X, is the part of the signal received &, from B as in Figurd 4(B). The first two
terms are easily bounded Wymax(mi1, m12) and¢n,,, respectively. Deriving an upper bound for the

last term is more involved.

Similar toT'ly, we definel’{ = M, X%, where we have
H(T{[Y,",Tly) = H(Y{" = My X{|Y;". ) (50)
< H(X{|Y;",Tl2)
< H(Wh|Y{",Tly)
= HW, Y% X!, Tl,)
< HWi N1 X[ +Tlp)
= HWL|Y1y) < leg, (51)

wheree;, — 0 as? grows. We have used the invertibility property of the deterstic multiple access
channel in[(BD), and(5%1) follows from the Fano’s inequakiyd the fact thaD); can decode the message
sent byS;. Therefore, we havél (Tl;|Y;*,T'ls) < /s, Hence,

H(Y,HY, 6 Tl) < H(Y, Tl Y4, Tly)
= H(Y,Y 00y, Y, Ty) + H(TL Y%, Tly)
< H(Y,*|Tly) + tey
= H (M X5 M9 X5) + leg
< l(mags — ma2)T + Ley. (52)
Replacing the upper bounds for each term[in (49), we get

Ry + Ry < max(my1,mi2) + ni2 + (magy —mia) ™. (53)
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It is worth mentioning that the cut-set bound fag = {51, S2} andQ, = {A, B, D1, D2} gives us
Ry + Ry < max(mq1 + maz, m12), (54)

which is looser than the genie-aided bound.

(DZZ-8) R, + Ry < max(ni1,n12)+ (nee—mn12)T+mio: The last inequality captures the maximum
flow of information from the relays to the destinations. ititely, this inequality says that the number
of interfering bits can get neutralized &t cannot exceed the minimum ofi;5 andnqo. In order to
make this intuition formal, we providEl;, the partial information abouf’; which is available at4, as

side information forD;. We then have
U(Ry + Ro) < I(Y1y,Yly; X1y, Xlp) = H(Y 1y, V)
< H(Y,Yl,Tly)
<SHYhL)+HThL)+ HYL[YH,Th).

Again, we can simply upper bound the first two terms by the rahkhe corresponding matrices. In

order to bound the last term, similar to the proof[BZZ-5), we use the following bounding technique.
H(TL|Y1,TY) = HYl, — N X, Y1, T)
< H(X{'[Y11,Th)
< HY, Y1, Tl)
= H(M 1 X1y +Th|Y1,Tl)
< HXL|YE,Th)
< H(XL|Yh)
< HW|Yh) < ley, (55)
where [G5) follows from the Fano’s inequality. This ineqtyatan be used as
H(Yy|Y1,,Tl) < H(Yly, Tl |Y1y,Tl)
= H(Y1y|Dly, Y11, Tly) + H(TL |V, Tly)
< H(Y,|Tly) + Leg
= H (N X' N1 X,0) 4 Ley

< g(nQQ — ’I’L12)+ + 665. (56)
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Therefore, we have
Ry + Ry < max(nii,ni2) + miz + (n2g — nia) ™. (57)

Again, it is easy to show that this bound is tighter than thieset bound foQ2s = {5y, S2, A, B} and
Q4 ={D1, D2},

Ry + Ry < max(niy + naz, ni2). (58)

This completes the proof of the converse part of Thedrem 3.

VII.2 The Achievability Proof

In this part we will show that all rate pairs satisfying inedjties [DZZ-1))-(DZZ-6) are achievable.

In particular, we introduce a coding scheme which achieweh sates. Our coding strategy provides
the interference neutralization at the destination. Thiperformed by splitting the messages into two
parts, namelyprivate and functional parts. The private sub-messages can be decoded at the, r@talys
forwarded to the destinations. The functional sub-mességlee second source can be also decoded at
B. However, A only receives a combinatiorx¢r ) of the functional sub-messages, and cannot decode
them. It only forwards such combination on proper (powergle such that the interference caused by the
functional sub-message 6 get neutralized over the second layer of the network, Bactan decode
the sub-message of its interest.

Our analysis is based on characterizing the numbeuct andcombinedbits can be sent through each
layer of the network. In the following we focus on one layertioé network, and obtain an achievable
rate region for these numbers. Next, we use this region td e encoding scheme for til&Z network,
and obtain an achievable rate region, which matches wittother bound.

Definition 4: Consider a deterministi# network, with gaing(ni1,n12,n22). as shown in Figure_14.
Each of the transmitters has a set of information bits tostm@hto the receivers. This set faF;
includesY; private bits andY, functional bits, namelyW; p = {W; p(1),...,W; p(T;)} andW; y =
{Win(1),...,X;n(Yo)}. The second receiver wishes to receive all the private andtifenal bits of
Fy, while the first receiver is interested in receiving the atévbits of F;, and thexor of the functional

bits of F; and F;,. More precisely, denoting byV; the set of bits; is interested in, we have

Wi =Wy p U{Win(j) & Win() @ Won(i):j=1,..., Yo},

Wy = WQ’P U WQ’N.
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We term this network with the described decoding demandsegrrdinisticZ-neutralization network.

The goal is the characterize the set achievable tu@gsY, Ts).

o ol
Win(), ..., Win(To)} F§ CS'}Gl (Win(1) @ Wan(1), ..., Win(To) ® Wan(To)}
(Wep(L),... . Wip(T)} § § (Wep(Dsers W p(T1)}
1o o
(Won(),... . Wan(To)} | 19 o | AWan(),... . Waon(To)}
5O O
(Wop(L),....Wap(Ta)) | lo A | (Wap(L),.... Wap(Ts)}
e O

Fig. 14. A deterministiZ-neutralization network with the message demands.

The following lemma gives an achievable rate region for théedministicZ-neutralization network.
The proof of this lemma can be found in Appenflix C.
Lemma 5: Consider the deterministiZ-neutralization network defined in Definitidd 4 with channel

gains(ni1, ni2, noo) (see Figuré_14). Any rate tuplély, T, Ts) satisfying

Yo < A2 min{ni1,nio, n2o}, (59)

Yo+ Y1 < nip, (60)
Yo+ Yo < noo, (61)
Yo+ Y1+ Yo < 2 max{nii, nia, noa, n11 + ng2 — n12}. (62)

is achievable for this network.

Now, having an achievable rate region for the determinigtiteutralization network, we are ready to
present the coding scheme and analyze its rate region faf Zheetwork.

Recall that theZZ network consists of two cascad@&dnetwork. In first layer, the source nodes split
their message into private and functional parts. They cad seese parts to the relays as long as their
rates belong to the achievable rate region of the first lalengn Lemmdb. Once the relays receive these
sub-messages, forward them to the destination nodes usrgame scheme for the private and functional
sub-messages. This can be done if the rate tuple for the ssbages satisfy the corresponding inequalities
for the second layer as well. Note that functional bits reegiat the destination ai&’ x (j)©Wa n(j) =
Win(@) & Wan(j)] @ Wan(j) = Wi n(j). Therefore, the interference of these bits get neutralized

and pure information bits will be received at the destirmatio
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The achievable rate region of this scheme is given by
REZ = {(B1, Rz) 370,11, T3 > 0,
Ry ="y + Ty,
Ry =g+ Yo,
Yo < min{A,, \n},
Yo + Y1 < min{myy,n11},
Yo+ Yo < min{mag, noa},
Yo+ T +7Ty < min{um,,un}} (63)

Here we used subscripta andn to denote) and i parameters of the first and the second layer of
the network, respectively. Applying Fourier-Motzkin elimation on this set to project it on the?,, R2)

plane, gives us the rate region claimed in the theorem.

VIII. DISCUSSION

Interference management is perhaps the most fundamergal moblem in wireless networks. The
recent progress in (approximate) characterization of miberfierence channel capacity and the utility of
the deterministic approach inspired the questions studit¢itis paper. Even though the interference-relay
networks studied in this work were special, they revealectis¢ new features needed for information
transmission. In particular, the interference neutréitimaand network flow decomposition techniques
were uncovered through the studyA® andZS networks. We also saw the importance of using structured
lattice codes for interference neutralization. Moreowee, believe that the neutralization technique is
robust to channel uncertainties and one could get partigtralezation in such situations. This is a topic
of ongoing work on this topic. We also believe that the outeurimling techniques developed in this
work could have more general applicability in the wirelessltiple-unicast problem. The two-unicast
problem in arbitrary layered wireless networks would be wrzd next step arising out of our work. The
deterministic approach for this problem has already pedidome interesting new techniques![17]. In
summary we believe that the deterministic approach is a isinghmethodology to make progress on

the wireless multiple-unicast problem.
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APPENDIXA

THE GAUSSIAN ZS NETWORK
A.1 The Outer Bound
In the following we will prove each of the inequalities i64S-1))-(GZS-10), separately. We will use

the notation as shown in Figurel15, and assume that the ratéa R2) can be achieved with small

enough decoding error probability using a code of length

Z1
Slx N Y] - ) Vhi /L (i 2
1
T O+ < O—T
2 Vv ho1
22
V912
T %Y o1
5,2 V922 Y B /I Dy
22
Fig. 15. The GaussiadS network.
Lemma 6: Any achievable rate paifR;, R2) satisfies
CRy < I(x1;01) + ley, (A1)
(Ry < I(25;y5) + Ly, (A.2)
(R + Ra) < Iy, w591, y3) + Ler. (A-3)

Note thatsy, — 0 as/ grows.
This lemma is a consequence of the Fano’s lemma combinedhvéatdecodability requirements imposed
by the problem, and its proof is given in Appendik C.

Most of the inequalities inNGZS-1))-(GZS-10) are cut-set type bounds, although the proof presented
here are slightly different than the standard argument. éd@w the sum-rate bounds ii€4S-3) and
(GZS-10) are different from the well known cut-set bounds. These bounds are in general tighter
than the cut values for the corresponding cuts. This is Imxdue decoders are inherently allowed to
cooperate in deriving a cut-set bound, while individualaténg abilities are imposed in this problem. In
the following we first present the proofs d&Z5-3) and [GZ5-10), which are more involved, and then

prove the cut-set type bounds.
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o (GZ53) Ri+Ry < 3log(14g11+g12)+ 3 log (1 + %): We start with Lemm@&]6 for the sum-rate

which implies
((Ry+ Ro) < I(af, 2% y1,y5) + leg
< I(ah, ah; 0 00) + Ley
= I(af, w55 y1") + (@], 25; 95 |yi") + Lee
< élog(l + 911+ g12) + h(ys 1y1") — hys |y’ 21, 25) + Leg,
where [[A.4) follows from the data processing inequalitymiaote that
hys Wilyl") = h(ysly1") + HWily,', v5)
= HWily)) + h(ys' Wi, y1)
< H(Whly}) + h(ys W1, ).
Therefore,
h(ys [yr") < hlys' Wi, u') + Lee
< h(yy |2, y1) + leg
= h(y/f]a:f, @xé + 2/13) + ley
< M(v/g225 + 25 |\/growh + 211) + Lo
= h(amh + 2 — VI (faigh + )| ammh + =) + b

V912
< h(zy — —”9222,1[) + Ley
V912

14
= —log(2me) <1 + @> + ley,
2 912

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

where [A®) holds since{ is a function of i/, and in [AT) we used the invertibility property of
the functiony! = /griz{ + /91225 + 2. Replacingh(ys’|y;") from (A8) in (AF), we get the

desired bound.

o (GZ5-10) R;+ Ry < %log (1 + %) + %log(l + ho1 + haa + 2v/ha1hoo): The sum-rate can be
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upper bounded as in Lemrh&a 6. Next, we have
((Ry+ Ro) < I(af, 25; y1,y5) + leg
< I(aY, w591, ys) + Leg
= I(ay,25595) + L@y syilys) + I(ay'syiley v5) + Leg. (A.9)
The first term in[(A.9) can be simply upper bounded as
I(zy, 55 y5) < L 5 108(1 + har + oy + 2v/ hathaz). (A.10)
In order to bound the second term, we can use the factithatan be decoded fromg, and write
(s 9y, Walys) = I(ws's 95 |ys) + T(as's Walyf, 5)
= I(wy;y1[Wa, ys) + I (25 Walys)
< Iy Y} |[Wa, ) + H(Wayh)
< I(xy:yilys, Wa) + Lee.
Therefore,

(a3 yilys) < I(xgsyfilys, Wa) + Lee < 1(yssyilys, Wo) + beg = bz, (A.11)
where the second inequality follows from the fact thgt is a function ofyy’, and [AZ1) holds
sincey,’” andy{ are independent ifV; is given.

Finally, we bound the last term as follows.
I(@fsytlay, ys) = I oy, v/ hoa 'l + 25)
= h(v/hua! + =]y, Vhnat +25) — hyiley, vV hanat + 25, 21)

, Vhi1
< h(v/ hllxlé + Z{ - \/E( V horz 1 + 22)) h(zf)
h11

14
< — — .
< 5 log (1 + h12> (A.12)

Replacing the bound derived for the three terrhs, (A.10)ITH. and [[A.IR) in[(A.D), we get the
desired bound.
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b) The proofs of cut-set type bounds:
o (GZ5D) Ry < 3log(1l+ gi1): We start by Lemma&l6, and write
(R = I(xf;yt) + tey
< I(afsy) + ler (A.13)
< I(af; a5, y)) + ley
= I(ag;25) + (291 |25) + leg (A.14)
< glog(l +g11) + leg (A.15)

where [AIB) follows from the data-processing inequalidy the Markov chain{ < y/* <> zf
yt, and in [A1%) we used the fact thaf andz!, are independent. It is worth mentioning that this
inequality essentially bounds the maximum flow that can Bedgmitted through the c@t; = {S;}
andQ, = {Sg, A, B, Dy, Dg}
o (GZ52) Ry < 3log(1l+ gi2 + g22): Again starting from LemmAl6, we have
(Ry < I(wh;ys) + Leg

< I(zh;y1',ys) + Lee (A.16)

< I(ahal, vl yd) + le

= I(h;ah) + I(ah;y1,yo |21) + Leg

= h(y' yo |21) — hlys, vy [, o5) + Leg

< h(V/grewy + 215 amah + 20) — h(z, 2) + leg

l
< 3 log(1 + g12 + g22) + ley, (A.17)

where the data processing inequality impli€s_(A.16) for Markov chainzi < (y,yy) <
(zf,xf) < y{. Note that this bound is essentially the cut-set bound ferdat 2, = {S,} and
Qa = {51, 4, B, D1, Da}.
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e (GZ5-4) R, < %log(l + g12) + %log(l + hg2): Again we use Lemma@l6 to upper bouid as
(Ry < I(x5;y5) + ley
< I(xy, w571, y1' y5) + Lee
= I(xy, a%;a0) + I(xy, 2591, ysl2f) + Lo
= I(xg, ah;y)' o) + (a2 yalat, 1) + Lee
= I(wyyy |21) + (g yr |, o) + L(xgs yslat, ur') + L yslat, yif 23) + lee (A18)
= I(ah ) |2) + (s yslat, yi") + Leo

¢
< ~log(1 + g12) + 3 log(1 + hag) + ley. (A.19)

N~

Note that we used the fact that the second and fourth termi&.&8) are zero. This follows from
I($2 7111 |$17$2) < I(mz 71/1 \/guxf - \/912$§|${,$§) = I@;Wﬁﬁ@é) =0,
and

I(alsyslat, yn's 23) < I(ahyslat, 2, 23)

‘T27y2 V h2 ‘Tl V h22x/2£‘x€7xllg7x/2£)
S I(:Eg;zaxhxllg’x;) 0.

o (GZ5B) Ri+ Ry < 3log(1l+ g2) + 3log(l+ hyy + har):
We start from Lemm&l6 and write

Ry + Rp) < I(yi,ya; o1, 25) + Leg (A.20)
< Iy, ybs oy, ah) + Leg
< I(yf s, ys @, ah) + Leg
= I(yss @) + I(ya's o) + I(yi, ya; &1, a5 ys ) + Lee
= I(ys o) + I(yf, yos o' ablay) + Leg
= I(ys'; 2%) + h(yl, yslws ) — h(yi, yolos, o' w5 ) + Leg
Iyg,a:Q )+ h \/ﬁxl +zl,\/§x1+22 zl,zz)—i-&?g

14
< -lo g(l + 922) + 5 log(l + h11 + hgl) + ley (A.Zl)

N~
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where [A20) follows from the data processing inequalitytfe Markov chair(z{, z5) < (y{’, ys) <

(zf,25) < (y%,v5). Note that this bound essentially captures the maximum flbwformation

through the cut), = {51,592, A} andQy = {B, Dy, D> }.

e (GZS-6) Ry + Ry < %log(l + 911+ g12) + %log(l + hao):
Similar to the previous bounds, we start from Lemima 6 andewrit

Ry + Ry < I(yf,ys; 2, 25) + Leg
< I(y)', vy af, @5) + Leg (A.22)
< Iy, yg;af, 25, m5) + Leyg
= I(ys 2, 28) + Iy a5 |2, @8) + T(yhs a5 |y)') + T(ys; af, ably a3) + lee (A.23)
= I(y)s 2, 25) + I(yb; o |y,") + Ly
< glog(l + 911 + g12) + 1(y3; 25 |y,) + Leg. (A.24)

Note that in [[A.2R) we used the data processing inequalityafgument similar to that is used in

the proof of [GZ5-4) shows that the second and fourth terms[in (A.23) are 2¢ow, we have
Iy w5 lyi) = h(ysly)') — hlyslas . y1)
< h(ysle) = hiyaley', o5, 1)
= h(V/haay + zla)) — h(zlz) 2 y))
< h(V/hasy + 2) — h(zh)
< g log(1 + hag) (A.25)

Finally, we obtain the desired bound by replacihg (A.25)A2d). It is worth mentioning that this
bound is the same as the cut-set bound for thefout {51, So, B} andQ, = {A, D1, Dy }.
o (GZ57) Ry < $log(1+ hy1): Using LemmdD and the data processing inequality, we cate wri

! ! g
(Ry < I 91) +lep < I()5y1) + leg < S log(1+ hn) + Lee. (A.26)

e (GZ5-8) R; < %log(l + hoy + hag + 2v/ha1has): Starting from Lemmalé and applying the data

processing inequality for the Markov chaif} < (v, ys) <> (27, z5) <> y5, we have
’ ’ ’g
(Ry < T(ab; ) + ey < I(x), a5 y) + lep < 3 log(1 + hao1 + hoo + 24/ horhag) + lep. (A.27)

Note thatz\’ and z/ are not independent. However, their variance is upper bedimy (v/h21 +

Vha2)?.
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e (GZ5:9) R, < %log(l +g22) + % log(1 + hg1): Consider the cut which partitions the network into
Qs ={51,52,A, D1} andQy = {B, D2}. We have

Ry < I(x%;y5) + Leg
< I, oy ub) + Le
= I(h;y) + 1@\ ys [05) + 1@ 05lys ) + I(ah; wslys »at) + e (A28)
= I(z;95) + I (w5 y5lys) + Lo
= I(x%;y) + I(@1 yslys » x3) + Ceg
< glog(l + g22) + glog(l + hat) + Ley. (A.29)
We again used an argument similar to that is used in prod&g@B{4) to show that the second and

fourth terms in[(A.2B) are zero.

This completes the proof of the outer bound in Theokém 2.

A.2 The Achievability Part

In this section we provide an encoding scheme for the Gau&Sanetwork, and show that the rate

region that can be achieved using this scheme is only a adnsitagap away from the outer bound.

Large Channel Gainsin this part, we assume that all channel gains are at lgais¢., g;; > 1,
andh;; > 1. Note that if any of the gains are small, then either one ofréttes are small (of the order
of our constant bit gap), or the cross links are negligible. Wil discuss these cases later.

The encoding scheme proposed for the Gausa&metwork consists of two separate parts. We first
split the message of the second source nodeld’'as- Ul(l) and Wy = (Uz(l), 2(2),U2(3)), whereUz(l)
can be decoded at both relay nodésand B, and U2(2) and U2(3) can be decoded only at and B,
respectively (see Figufe110). Denoting the rate of mesﬁ’ﬁﬁé by Y, ;, the following rate constraints

are imposed by this message splitting
Ry =Ty, (A.30)
Ry =To1+ Too+ Tags. (A.31)

An achievable rate region for this message splitting is iveLemma(1l.
In the second layer of the network (see Figure 11), relay nbdierther splits its messages as follows:
Wy = Ul(l) = (Vl(l), VP), U2(1) = <V2(1),V2(2)), andU2(2) = <V2(3), V2(4)> . A similar message splitting
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is also performed at nod& to obtain U2(1) = (VQ(”, 2(2)) and U2(3) = VZ(S). This message splitting

imposes the following rate equations

Y11 =011+012, (A.32)
To1 =021+ 62, (A.33)
To2 =023+ Oay, (A.34)
To3 = 0y5, (A.35)

where©; ; denotes the rate of the messdg@). Next, the relay nodes have to convey the messages to
the destination nodes such thay can decodd/l(l), V1(2), Vz(l) and V2(3), and D, be able to decode
Vl(l), V2(1), V2(2), Vz(g), V2(4) and V2(5). An achievable rate region for this transmission scenarigiven
in Lemmal2.

Putting the rate constraints in Lemrmh 1 and Lenftha 2 togetliter the equations in[(A.30]-(A.31)
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and [A32){A35), we obtain the following achievable raggion for the GaussiaAS network.
RSGS = {(R17R2) 2311, 21,22, 723,011,012,021,022,023,024,025 > 0, (A.36)
Ry =171,
Ry ="o1 4+ Yoo+ Yo3,
Ti1=0611+01y2,
To1 =091+ 022,
Too =023+ Oy,

To3 =025,

2

1 912> 1>+
Yoo<|=log|1l+ZF2) — = ,
2,2 (2 g( 922 B
1

1 +
Yo+ Too < <§ log (1+ g12) — 5) ;

1 1\ "
T < 510g(1+911)—— ,

1 1\ 7"
Ti1+To1+ T2 < <§ log (14 g11 + g12) — —> ,

2
1 1\*
To3 < (—log (1 + @> — —> )
2 912 2

1 "t
To1+To3< 5 log (14 g22) — 5]

1 Nt
©1,1+ 012 +6021+ 023 < <§ log (1 + h11) — 5) ;
1 hiy 1\*
<(Zlog(1+2) -2
@1’2_<2 Og< +h12> 2) ’

1 hay 1\ "
Oy < (=log(14+H)-=
2’4_<2 Og<+h11> 2) ’
1

1 +
©1,1 + 623+ 624 < <§ log (1 + ha1) — 5) ,

1 1\ T
O25 < ilog(l + hag) — 5] o

1 N\t
©1,1+ 021 +022+ 6023+ 02,4+ 05 < <§ log (1 + ho1 + hag) — 5) }

We apply the Fourier-Motzkin elimination on this region,dgmject it on the coordinate®; and Ro,

and obtain the following rate region. After some simplifioat, we get
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GZS 1 1\ "
Rach = {(R17R2) Ry < §1Og (g11) — 5)

1 N\t
Ry < 5103; (12 +922)—= | .

2
"
Ry + Ry < <% log (911 + g12) + %log <%> — %) ;
Ry < (1 log (g12) + l1083 (ha2) — l>+>
2 2 2
1 1 1\ "
R+ Ry < <§ log (g22) + 3 log (h11 + ha1) — 5) )

1 1 1\
Ri+ Ry < <§ log (g11 + g12) + 5 log (ha2) — 5) ,

1 N\
R, < (§log (h11) — 5) ;

1 1\t
Ry < §log (ho1 + hoo) — 5]

R < (L1og (g22) + 210 (o) — 1)
2 S B g (922 5 g (21 5 )

hll 1

Ri+Ra < (1og (hoy + has) + —1 +}
1 2 > B og (21 292 2og h21 5 .

Note that this rate region is characterized by a set of camss which are similar to the inequalities
in the definition of R®%, except for the additive constants, and the fact thatl + z) is replaced by

log(x). Note that sincer > 1, we have

(A.37)

N =

1 1
3 log(1+z) — 3 log(z) <

Hence, the difference between the RHS’s of two sets of inégsado not exceed for Ry, and3/2 for
Ry and Ry + R,. Therefore, for any rate paiiR;, Ry) € R%°, we have(R; — 1, Ry — 1.5) € RSZS.
This completes the proof.

Small Channel GainsWe will show in this part that if any of the channel gains areapthen the
outer bound in Theorem 2 is still within a constant bit gap mfaghievable rate region. This argument is
based on the analysis of the same network, in which all thes limith gain smaller than are removed.
One can show that the capacity region of this modified netvimnkithin a constant gap from that of
the original one. On the other hand, we can argue that the gapebn the achievable rate pairs of

the modified network and the outer bound in Theofém 2 is badifiyea constant. Therefore, we can
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conclude that if( Ry, Rs) € RGZS then (R, — 01, Ro — d2) is achievable for the original network, where
01 =1 anddy = 1.5.

The main intuition behind this argument is the fact that siatt the nodes are assumed to have power
constraint equal ta, the flow of information through a link with gain not exceeglihis upper bounded
by £log(1 + SNR) < 3log(1 4+ 1) = 3 bit. Therefore, by removing such links from the network, the
achievable rates change by at mésbit. On the other hand, the incoming signals over small cehnn
gains may act as an interference on the original network¢chvbause a total noise power not exceeding
1. Therefore, by doubling the noise variances of the origireivork, we guarantee that capacity region
of the modified network is always smaller than that of the inafjone.

The advantage of analyzing the modified network instead efotiiginal one is that some of the links
are removed in the modified network, which convert it to senpietwork to analyze.

A precise analysis of the modified networks requires comsigeseveral cases separately. However,
similar techniques and ideas will be used for all cases. & fdllowing we present one illustrating
example, and skip the details for the other cases.

Example 5: Consider the GaussiafS network in Figurg 3(a), and assume that = 0. Therefore,
the first layer of the network would be two parallel links aowh in Figure[1b, wherds[z2] = 2.
Moreover, the rate region ifGZS-1))-(GZS-10) will be reduced to

21 21
A
%xl\/ﬁ > ina:’lx/h—u é yl%
hoy
~ Yy Y2
1962 V922 dt_j Zxé hoo \:F Z
2 22

Fig. 16. A modifiedZS network obtained assuming. = 0.
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1
Ry < - log(1+ g11) (A.38)

2
Ry < 3 log(1 + g12) (A.39)
R < %log(l + i) (A.40)
Ry < %log(l + hao) (A.41)
Ri+ Ry < %log(l + o1 + hos + 2v/harhay) + %log <1 + Z—i) . (A.42)

The encoding strategy for this network is fairly simple. Lé;, R;) be a rate pair satisfyind_(A.B8)-
(A42). The goal is to show thdtR; — 1, Ry — 1) is achievable. SincéR; — 1, Ry — 1) satisfies[(A.3B)
and [A.39), transmission over the first layer of the netwedknT the source nodes to the relays is simply
done using random Gaussian codes.

The second layer of the network is a Gaus&aretwork. Once the relays decode the messages received
from the first layer of the network, they encode them using eoding strategy similar to that of the
Z network in Examplél}4 in Sectidn]ll. Note that the sum-rateinms in [A.42) and the outer bound of

the S network are slightly different. However, their differeniseupper bounded by

1 1 1 2v/ha1hao
—log(1+h h 2v/harha) — = log(1 + h hag) = =1 1+ ———F——
2og(+21+ 22 + 21h22) 2og(+21+ 22) 20g<+1+h21+h22
1 1
< log(1+1) = 2. (A.43)

Therefore, the loss caused by this difference is at ijdsit, and(R; — 1, R, — 1) would be achievable.
On the other hand, as we argued before, the capacity of théietbdetwork is an inner bound for the

original one, and hencé¢R; — 1, R, — 1) is achievable for th&S network as well.

APPENDIX B

THE GAUSSIAN ZZ NETWORK
B.1 The Outer Bound

In the following we present the proof for each of the inediediin [GZZ1))-(GZZ8), separately. We
again present the Gaussiad network in Figuré_1l7, to clarify the notation used in the grdo particular,
we use two variables, which are the noisy signals receiveti@td D, through the cross links assuming

the direct links were absent, namely,

Y1 = /91272 + 217

Yo =/ hiaxh + 21.
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Note thaty] = \/giiz1 + 71 andy; = Vhiz) + 7.

Suppose that the rate paiR;, Rs) is achieved with a small decoding error probabilityusing a code
of length ¢. The following chains of inequalities provide upper boumdsthe individual rates as well
as the sum-rate. We again use Lenitha 6, which essentiallyrespthe decodability requirements of the

network.

S Jon y A D,
21 11 ) 1Y 1 11 Y1
+ @ Y
~ N
2 M 2] 72
912 Vhia
~ Y Y. o—2Y
xIo d_/ ! h
2 922 ? B 2 22 D,
2h 2

Fig. 17. The GaussiadZ network.

The individual rate bounds ifGZZ1)-(GZZ4) have the same structure as the cut-set bound, although
we derive them through a slightly different argument. Hogrethe two sum-rate bounds i&ZZ5)
and [GZZ8) are conceptually different than the cut-set bounds. &les bounds which are tighter than
cut-set bounds are derived through a genie-aided argurtexttis, we assume that the signal sent over
the cross link of one layer is given by a genie to the receivehe other layer (relay nodd in layer 1
and destination nod®; in layer 2). Therefore, we present the proofs E4Z5) and [GZZ0) first. The
more standard cut-set type bounds are provided later foptEiemness.

a) The proof of the genie-aided bounds:

e (GZZB) R+ Ry < %log(l + g1 + g12) + %log (1 + %) + %log(l + h12): We start with the
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sum-rate inequality in Lemnia 6, and write
((Ry + Ro) < I(yy,y5; o, 25) + leg
< I(y) yss ol o) + leyg
< Iy ys 263 o1, o) + Ly
= I(y\, 75 21, @5) + I(yss 21, b lyr’, 25) + Lee
< Iy vss 2, w5) + I(ys , vis s wslyr’, 78) + Ceg
= I(y 2% 2, 25) + T(vis 2, a5lyi’ s v8) + Iy 21, w5yl 71, v8) + L

= I(y, 7% 21, @5) + 10 21, 5lyi",78) + (s 251y’ 71, 98) + 1 (ya's 2|2, ', 7%) + Lee
(B.1)
Each of the terms in((Bl1) can be bounded as follows. In ordebadund the first term, we can
simply write

0o 6.0 X 0.0 0 A
Iy, vas 1, ) = I(ygs 21, w5) + 1(yy s w7, 25]73)

A, "0t I
= I(v; 71, 73) + h(yy |v2) — h(yy |27, 25, 73)

< I(yg;af, @5) + h(y) — h(y|at, 25) (B.2)
= I(y3; 2, 25) + I(y); 21, 75)

< I(vg;a9) + Iy 21, 25) (B.3)
= glog(l + hi12) + glog(l + g1 + q12), (B.4)

where in [B.2) we have used the fact that conditioning desgredhe entropy, and the Markov chain
Ve sy oy o (2], 28) > y)f. Also (B.3) follows from the same Markov chain.
For the second term, we can write
Iy 2l ably) ) = Ty — 4t 2l ably), %)
= I(gnzi 2l ahly 75)
< I(Whsal, oy, 75)
< H(Wily',75)

< H(Wily}) < ley, (B.5)

where the last inequality holds singé = Az}l + % = f1(y) + 7% = f2(yi5,75).
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In order to bound the third term il (B.1) we can write
I(yss 25y’ 71578) = h(ably’s1,78) — h(ably’s v’ 1, 75)

< h(ws|yy) — hablyr’ s ys 71, 72) (B.6)
= h(zbl77) — (R, t vy y' v8) — (S ys ,75)]
= h(x|t) — [h(@y, 1y vs) — Rty va)] (B.7)
= h(@5)7) — h(@s)yi’s o' 1)
= h(@5)7) — h(@s)2t, v’ 1) (B.8)
= h(wsyi) — [P(5lys’s M) + h(@i |25, ys , 77) — by’ 71)]
= h(ws|yi) — b5y’ 1) (B.9)
= I(ys; 25|71
= h(ys 1) — h(ys i, 75)
= h(ys ) — h(ys |a5) (B.10)

7 g22 "0 VAW
= h(yy — \/g ’71) h(yy — \/922952’952)

¢ 1922 1) ¢ 0.0
= h(zg — gzzl I71) — h(zy |25)

<zt — 2220 ~ () (B.11)
g12
:€1g<1+@¥> (B.12)
2 912

where in [B.6) we have used the fact that conditioning reglithe differential entropy, and_(B.7)
holds due to the Markov chaifx$, ) < (1%, v5) < 5. Then in [B:8) we replacedy,’,v{) by
(z4,~%) since there is an one-to-one may, = \/giiz} + t¢, between these joint variables, and
in (B9) we used the fact that! is independent ofz%, i/, () to concludeh(z{|z5, v, 7t) =
h(x4|ys, ) = h(z). Also (B-10) holds due to the Markov chai’ < x5 <+ 4f. Finally, (B.11) is
true due to removing conditioning and the fact thatis independent of;.

Finally for the last term in[{B]1) we have
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I(yss 2ilah, v’ 1,78) < I(ys's Walzh, w70, 75)
< H(Whlah, yi',71,75)
< HWhly,5)
< H(Whly}) (B.13)

< ley, (B.14)

where [BIB) is due to the fact thaf = /hiio)f + 9% = f1(y) + 45 = f2(yf,75) is a function
of (y,~%), and [BI#) is just the Fano’s inequality.

Replacing [(B.}®),[(B5),[(B.12), and (B.14) in (B.1), we get

1 1 1
R+ Ry < B log(1+ g11 + g12) + B log (1 + ?) + 3 log(1 + hi2) + 3ley. (B.15)
12

« (GZZ8) Before proving this inequality, we present a lemma whidh be used in this proof. We
will present the proof of this lemma later in Appendikx C.
Lemma 7: Let X; and X be two (arbitrarily correlated) random variables with sage constraints
E[X?] = 0? andE[X3] = 03, which form a Markov chain\; < I' +» X, for some random variable
I'. Also assume tha¥ is a zero-mean unit variance Gaussian random variable émbkmt of X,

X5 andT'. Then the conditional differential entropy &f = X; + X, + Z is upper bounded by

1
h(Y|D) < 5 log 2me(1 + 0% +03). (B.16)

Now, in order to provel@ZZ5), we start with Lemmal6.
(R + Ro) < I(yi, 32, 5) + Leg
< I(yy, s, V15 21, @5) + Lo
= I(y1,7is 21, @5) + I(ys; a1, ahly1, 1) + Lo
= I(vi; 21, 75) + I(yi; af, 25]70) + 1 (ys; o1, w5yt 1) + Ler. (B.17)
Since~{ is independent of!, the first term can be simply bounded as

, V4
I(vf; 2, @8) = I(vf; 28) + I(t5 28 |ah) = I(7i; ab) + I(215 2]2b) < 3 log(1+g12). (B.18)
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For the second term we can write
I(yg; ot 25090) = h(yi|v) — h(yilal, 25,~)
h(yiln) — h(yila), s (B.19)

= h(yin) — h(zilzy, z5)

= h(v/hiuz + Vhiawy + 2{7%) — h(z))

¢ ¢
< Zlog (2776(1 hi 4 h12)> — Zlog 2me (B.20)
=9 2
¢
10?;(1 + hi1 + hi2), (B.21)

where [B.19) follows from the Markov chainy{ <+ (z,z5) < (zf,25,77). In (B:20) we have

used Lemmal7 fot{, = andz; which form a Markov chain, since

/ / _tg !’ !’ !’
¢ ¢ 01,0 0. 00 . AW
I 2 [t]) < Iy y|t)) —I( Liyo [t) = I(2f;ys [t)) = h(ai|t]) — h(zi[t], ys) = 0.

V911
The third term can be further upper bounded by

I(yg; a5, ablyi, 1) = hyslyt,7h) — byl 25, y1,70)
h(yslyi, 1) — hlysles) (B.22)
h(yslyt, ) — hysley, x, yi,70) (B.23)
1(927331 7372 \ylle)
< I(ys, 73 21 w3 |yT, 1)
= I(v; 2, 2 lys v0) + Ty o 2yl o1, 75), (B.24)

where both [(B:22) and(B.23) follow from the Markov chajf <+ =5 < (2%, y{,~%). Now, we

have
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I(’Y2ax1 7952 ’?Jp’h) I(?J 727331 7372 ’?41771)
\/H% 751317 |Z/1,71)
I(Z/,l ’3:,1 ,3:2 |Z/1771) (B.25)
< Iy — 121, 20 Y1, 1)
= I(Vgnat; o), 2|yl )
< I(Wisz), 2 yi, 1)
< H(Whly}) < Lee, (B.26)

where [B.Zb) follows from the fact that/ is a function ofy‘. Finally,

0 0.0 0 0 00 0 W
1(927331 7332 ‘ylﬁla’}’z) (y2’y17'717'72) - h(y2’y17717'727‘731 , Ty )

h ! !’ !’

¢ 22 ¢ ¢ G0 0 0 e
=h(y2—\/h Yalyt, . 75) — h(ys — V haawo [yL, 1, 75, 21, @)
_ v h22 Z o0 £ 0 00

= h(z2 - h1 ‘y17’Y1=’Y2) (22’?417’)’17%7%1 , Ty )

< h(sf — [ 22) — () ®27)

@ h22
=1 14+ = B.2
5 0g< + h12> (B.28)

Here, in [B.2Y) we have used the fact that conditioning desme the differential entropy, and the

fact thatz{ is independent ofy{,~¢, %, =\, z}). Replacing [(B-1B),[(B-21)[(B.26), and(BI28) in
(B.17), we will obtain the desired inequality.

b) The proofs of cut-set type bounds:
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e (GZZ1) Ry < %log(l + g11): The individual rate bound can be simply obtained from
(Ry = I(x5;9%) + ley
< I8y us) + Leg (B.29)
= I(z3 91 lys) + 1(al5y5) + Leg
= h(y1'lys) — h(yyl=1, o) (B.30)
< h(yy|=5) — h(z( |21, o)
= h(vguzi +2°) = h(z) + leg
< g log(1 + g11) + Lz,

where [B.29) follows from the data processing inequalitytfee Markov chaine! < (y,%, y') < v,
and [B.30) follows from the Markov chaip,’ <+ z§ < v). Note thate, — 0 as ¢ grows. It
is worth mentioning that this bound is similar to the cut-beund for the cut?;, = {S;} and
Q4 = {Ss, A, B, Dy, Ds).

o (GZZ2) Ry < 3log(l+ gao):

For the second rate bound, we can start with Lerhina 6 and write
, ¢
(Ry < I(w;y5) + Lo < I(wiya) + lee < 5 log(1+ gao) + Ley,

where we have used the data processing inequality and thkoMahainzh < yyf <>z < & in
the second inequality. Note that this bound captures thamuam flow of information through the
cut specified by2;, = {So} andQ, = {51, A, B, D1, D2 }.
e (GZZ3) R, < %log(l—i-hll): In order to prove this upper bound, we use the cut-set boonthé
cut Qg = {Sl, 52, A, B, D2} ande = {Dl}
(Ry < I(zfsyf|zs) + Leg
= h(yi|zs) = h(yile( ws) + leg

= h(\/hllx/f + zf[w;) — h(zf\xllg, x/f) + ley

< h(vVhue! + 20) — h(z]) + leg
4
< B log(1 + hy1) + ley.

e (GZZ4) R, < %log(l + hgy): Starting from Lemmal6, we can write

’ ’ 1
(Ry < I(wy5ys) + ley < I(wy;y5) + lee < S log(1+ hao) + Ly,
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where the second inequality follows from the data processiequality for the Markov chain
xh <yl o x> b
This shows that the rate region in Theorem 4 is an outer boanthé achievable region region of the

GaussiarZZ network.

B.2 The Achievability Part

In this section we present an encoding/decoding schemegdaride an achieve rate region for this
strategy. We then show that the gap between the boundarysohthievable rate region and that of the
outer bound presented in Theoréim 4 is upper bounded by aacdnst

Similar to the GaussiaéS network, we only consider the large channel gain case, wiverassume
that all the channel gains are lower boundedl by similar argument to that we used for t€& network
shows that for small channel gain cases the network is redt@a simple one and its gap analysis is
fairly simple.

We essentially use the result of Lemfa 3 as an achievableegiten for theZ-neutralization network.
We use notation(\y, ity) and (Ap, pp,) to distinguish between and i parameters of the first and the
second layers of the network.

In the first layer of the network, each source node splits #sgage into two parts, namely, functional
and private partsiV; = (Ul(o), Ul(l)) andW; = (UQ(O), Uz(l)), where the functional parts, have the same
rate,i.e., T1o = Yoo = To. Both transmitters use a common lattice code to encode fheational
sub-messages into; o = zp(Ul(O)) andxp o = z/z(UZ(O)), wherey is the one-to-one encoding map induced

by the lattice code. We define the partial-invertible fuoctby

6 (U 08) = vt (w0 + e (Uf”)) = v (x10 + %20). (B.31)
We denote the rates of the private sub-message¥bgnd Y5, whereY; = R; — T, for i = 1,2.

The goal is to encode and forward messagesitand B in such a way thatd can decodeUl(l) and

qS(Ul(O), 2(0)), and B can decodé]z(o) and Uz(l). Based on Lemm@l 3, this can be done provided that
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The second layer of the network is anotf¥eneutralization network with transmitter$ and B, and
receiversD; and D,. We useVl(O) =t (w(Ul(O)) +¢(U2(0))), Vl(l) = Ul(l) as the functional and
private messages of the first relay node, 5@9}) =7 (—x20) = v H(—1( 2(0))) andvz(l) = Uz(l) for
the functional and private messages of second relay. Denttie corresponding rates I8, ©, and

©9, we have
0,="7,, 1=0,1,2. (B.32)

The goal is to encode and send these messages to the dessnatich thaD; can decodeﬁ(Vl(O), 2(0))
and Vl(l), and D, can decodeVQ(O) and Vz(l). Again we use the achievable rate region proposed in

Lemmal3.

Op+ 601+ 02 <
Note that the first destination observﬁ(si/l(o), VZ(O)), which is equivalent to

6 (VO V) = 41 (570) + w(ri™)

=47 (vU”) +w(uf”) - w(uf”)) (B.33)
= v, (B.34)
Therefore, combining it Witth(l) = 1(1), the first destination node can decoll§. The second

destination nodeD, hasVz(O) and V2(1) = U2(1), and can compute
v (™) =0y, (B.35)

and hence it decodédd.
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This scheme can reliably transmit the messages with rateirpai

Resl = {(R17R2) :3 Yo, T1,Y2,00,01,02 > 0, (B.36)
Ry =00+ 0y,
Ry =6 + 02,

0, =17, 1=20,1,2,
1 1\*

To < <§10g (Ag) = _> )
1 +

To+ Y1 < <§ log (g11) — 1> ;
1 +

To+ Ty < (5 log (g22) — 1) ,

1 3\ "
TO+T1+T2§ §log(,ug)—§ s

1 1\ "
o< (3roe0m - 3)

1 +
@0 + @1 S (5 log (hll) — 1> N

1 +
@0 + @2 < (5 log (hgg) — 1> s

1 3\ "
O+ 601+ 02 < ( log () — } (B.37)
It only remains to apply Fourier-Motzkin elimination to geot this region ontd R;, Ry). This gives
us
1 +
Redt = {(Rl,Rz) Ry < <§log (g11) — 1> ,
1 +
Ry < <§ log (h11) — 1) ;
1 +
Ry < <§ log (g22) — 1> :
1 +
R2 < <§ lo (hgg) — 1) s
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Note that the RHS’s of the sum-rate bounds depend on the ofdlee channel gains. For most of possible
orderings, these two inequalities would be consequencéseoindividual rate bounds. For example, if
An = haa, then the last bound is implied by the first and fourth bousds;e/ ., > g11. It can be shown

in general thatRS4Z is equivalent to

1 +
Reat = {(RlaRZ) Ry < <§ log(g11) — 1) :
1 +
Ry < (5 log(ga2) — 1> ;
1 +
Ry < <§ log(h11) — 1> ;
1 +
Ry < <§ log(ho2) — 1) ;
1

1 1 3\ "
<[ =1 —1 — .
Ri+ Ry < <2 og(pn) + 5 0g(9g12) 2) }

Now, note thatgy; > 1, g12 > 1, andges > 1. These imply

1 1 1 1 2
5 log(1+ g11 + g12) +  log <1 + @> < 5 log(3max{gi1,g12}) +  log <w>
? 2 912 2 2 g12
1 . 1
< Log (max{glhglz} max{922,912}> L loge
2 g12 2
1 1
< 3 log(ptn,z) + B log 6. (B.38)
We also have
1 1 1
5 log(l+2) < Slog(z) + 5 (B.39)

for all x > 1. Applying (B:38) and[(B.39), we obtain the following achadle rate region, which is a
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subset ofRS4Z.

G2z 1 3\ "
Rach2= {(R17R2) Ry < 51052;(1 +911) — 5)
1 3\ "
< (=1og(1 ~
Ry < (2 og(1+ g22) 2) ;
1 3\ "
< (=10g(1 ~ 2
R, < <2 og(1+ hi1) 2) )
1 3\ *
<[z _ =
R2 ~ <210g(1+h22) 2) s
1 1 g22 1 7\t
R+ Ry < | slog(14+g11 +g12) + slog (1 4+ == ) + slog(1+hi2) — = |
2 2 g12 2 2
1 1 has 1 7\ "
< | =log(l+h —1 14+ = —log(1 - —
Rl+R2_<2 og(1 + 11+h12)+2og< +h12>+20g( + g12) 2) }
Therefore, for any rate paifR:, R) € R4, the rate pair(R; — 1log12, Ry — +1og12) belongs to

RE4E, and therefore can be achieved using the proposed encattiegns.
APPENDIX C

PROOF OFLEMMAS

Discussion of Examplel 4 in Sectibnl llIThe converse proof is fairly simple and follows from a

similar argument we used to proM&845-1)), (GZ5-2), and [GZ5-3) in Appendix(A.

In the following we will present an encoding strategy whiahmagantees to achieve rate paiR; —
%, Ry — %), provided that( Ry, Rs) € R?. This gives us an approximate capacity characterizatiothi®
GaussiarZ network. In order to do this, we consider the following twses.
Case Aigi2 > g2

Assume(R;, R2) be an achievable rate pair. Then, the first recetVeris able to decodél; sent at
rate R;, and remove the signal associated®g from its received signal. The remaining signal provides
a higherSNR to decodédV; than the signal received &t,. Therefore, in this particular regime, the first
receive would be able to decode both messages. Hence, weah@aeissian multiple access channel

from I, and I'; to G, combined with a line network froniy, to Go. Therefore, the intersection of the
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rate regions of the Gaussian MAC and the line networks is lgimphievable. That is

1 1 1
Razch’AZ {(Rl,Rg) R < ilog (1+g11),Re < ilog (1+g12),R1+ Ry < §log (I+ g1 +912)}

{ Ri,Ry) : Ry < - log (1 +922)}

1

2

1 1 1

51 g(1+g11), Ry < 510g(1+922),R1 + Ry < 51052;(1+911 + g12) }
(C.1)

{ R, Ry) :

Note that the individual rate bounds RZ and RZ A are the same. Moreover, the difference between

ach,

the sum rate bounds is bounded by

1 ggg) 1 1
log (1477 ) < Slog(1+1) = 5. C.2
! ( . B(14+1) =5 €2)

Therefore, the gap between each boundary poiRéfand RZy, 4 is at most} bit.
Case B:igi2 < go2!

The encoding scheme we introduce for this case is similar do-Kobayashi’'s scheme f&-user
interference channel. We first split the second mess&gento the common and private partd/, =
(Ws, WPr), with ratesRS and R, respectively, wheréVs can be decoded at both receivers afg is
only decodable afis. Sub-messagédd, W, andW} are encoded by corresponding randomly generated
Gaussian codes tr;, x5 andxg, and the resulting codewords are sent over the channel.

We allocatew, = 1/g¢;2 fraction of the transmission power availablefatto W72, and the remaining

powera. =1 — o, is allocated tolWy. Therefore, we have

Xo = \/acxh + \/acxb.

The first receiver(z;, decodedV; and Wy treatingiW? as noise. Therefore, the effective noise power
received at; would beE[, /gi2a,7) + 21]? = 2. According to the capacity region of Gaussian multiple
access channel, this can be done provided that

Ry <ilog(1+ 4,
R < 1ilog (1+2912) : (C.3)

The second decoder first decod&y treatingW)’ as noise. It then removes the corresponding codeword

IN

IN

IN

from the received signal, and decodé&¥’. This can be done as long as

c 1 14922
R2 S log <1+922/912> )

P 1 922
R, log (1 + 912) .

(C.4)
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it i At 1+goo 14912
Note that we have two upper bounds f&. However, it is easy to show thuit+g22/glg > 2,

for 1 < g12 < go0, and therefore, the first bound dominates the second onegU=urier-Motzkin

elimination to write the achievable region in termskf and R, = §+R”, and after some simplification,

we get that the region

1 1
Rins= { (1, Ro) i1 < 5 log (1+g11) — . c5)
1 1
Ry < B log (14 g22) — > (C.6)
Ri+Rs < ~log (1+ g1 +g12) + ~log (1492 —1} (C.7)
1 2=5 g 911 T 912 5 g 919 e .
is achievable. Therefore, {{R1, Ry) € R?, then(Ry — 3, R, — 3) is achievable. |

Proof of Lemmdll in Sectidn] V:The following achievability scheme simply uses superpasit
encoding of sub-messages/at, and a successively decode and cancel strate@¥ and G,. We use a
random codebook with a proper number of codewords, gerteaaieording to a zero-mean unit-variance
Gaussian distribution for each message. A proper powecatltin for the messages at the transmitters
allow the decoders to apply a decode and cancel strategy.evwate the codeword corresponding to the
messagé]i(j ) by x; ;, and the power allocated to this messagenby.

The available power af, can be arbitrarily allocated to its sub-messages. In pdaicwe choose
the power coefficients so that they satisfys < 1/g22, ao3 < 1/g12, andag; =1 — azs — ag 3. In
the decoding part(z; and G- treat UQ(?’) and UQ(Z), respectively, as noise. Therefore, the total noise at
G1 andGq would bez; = | /g1a0 3%2,3 +21 andzs = | /gaaia 2X2 2 + 2. HOwever, the effective noise
power cannot exceedl sinceE[giaoag 3 + 1] < 2 andE[gaag s + 1] < 2.

The receiverF; observes a Gaussian multiple access channel (with noiserpopper bounded by
2), WhereUl(l) is sent by one user, ar(dfz(l), 2(2)) is sent by the other user. The bounds[ih [7)}(10)
guarantee that these rates are achievable over the mudtipkess channel.

On the other hand, the channel fradim to G+ is Gaussian point-to-point channel with modified additive
noise. Therefore, any total rate not exceeding its capaeitybe reliably transmitted. This is condition
is fulfilled here sincel’y ; + Yo 3 satisfies[(IR). Finally, the bound on the power aIIocatedfé‘a upper
bounds its rate as i _(l1).

[ |
Proof of Lemmd12 in Sectidnl VAgain, the achievability scheme we propose for the Gaussian
S interference network (illustrated in Figutel11) is basedsaperposition coding, and a successively

decode and cancel decoding strategy, such that the reaariterof the problem are fulfilled. A proper
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power allocation is required to guarantee achievabilityhef rate tuples mentioned in this lemma.

Note thatG; does not decod@;@) and V2(4), and treats them as noise. We choose the total fraction of
power allocated td/2(2) and V2(4) to be at mostl /Ay, that isas 2 + as 4 < 1/hy;1. Therefore, the total
noise power received &¥; is upper bounded aB[h; (a2 + a4) + 1] < 2.

Similarly, V1(2) is treated as noise dt,. By bounding the fraction of power allocated to this sub-
message, we can upper bound the effective noise power @usat®, by Efhi (a2 +agq) + 1] < 2.

The point-to-point Gaussian channel frai to G; can support any sum-rate below its capacity as in
(13). Moreover©; » is bounded above since its allocated power does not excéed.

On the other hand, we have a Gaussian multiple access cifammel; and F; to G2, with total noise
power not exceeding. The bounds in[{15)-(18) guarantee that the desired ratesidp¢o the capacity
region of this channel, and therefore they are achievab&e skip the details of power allocation here,
but we point out that the achievability of the region is a @msence of the Gaussian multiple access
rate region achievability.

[ |
Proof of Lemmadl3 in Sectidnl Vin this part we show that any rate tuple satisfyingl (21)-(24)
achievable. The main idea of this proof can be summarizedlsvk.

« Use a common codebook with group structure, such as latbdes; forWl(O) and WZ(O), which

maps them tax; o andxs

« Choose a proper power allocation fef y andxy such that they get received &Y at the same

power level; More precisely, denoting their power allogatiby oy and 8y, they should satisfy
g11a0 = g12P0. This condition guarantees that the two lattice points gatesl by the same factor,
and therefore the result is still a lattice point on the sddédtice and can be decoded as long as
enough signal to noise ratio is provided.

« Use random Gaussian codebooks to encode the private sigagessiok; ; andx; 2, and use proper

power allocationp; and j;.

The first receiveiG; needs to decode the partial-invertiblewhich we define as
0 0 _ 0 0
o) =0 (o (1) o (1)
=1 (x1,0 + X2,0)

where) is the one-to-one encoding function which maps the funeliomessages to the common lattice
codebook. Note that the group structure of the code impealsxthy + x2 o is still a valid codeword. It

is easy to check that this function is partial-invertible.
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Let us define

. 911922
7 = min {911,91279227 " } : (C.8)

Depending on the minimizer in, we identify four cases. In each case, the achievable rgierras a
polytope, with a certain number of corner points. It suffisteshow the achievability only for the cornet
points, since a standard time-sharing argument guaraatgesvability for the rest of the region.

The proof details for each corner point includes messagéiisg] and power allocation for sub-
messages such that the decoders be able to decode corriegpmadsages. In the following we describe
this strategy in details for the case whefe= g;;. The extension of this method for other cases is
straight-forward, and therefore we skip it here to sake eviby.

Case l.p = ¢g11: It is clear from the definition ofy that in this casey;; < g2 < g99, and
therefore\ = g11 andu = g92. Hence, the desired region is characterized by all nontivegeate tuples

(Py, P, P,) satisfying

1
Py+ P < 5 log (g11) ,

1
Py+ P+ P < 510g(922)-

This rate region is illustrated in Figufe]18. It suffices t@whthat the corner pointsl, B and C' are

achievable, since the poinf3 and £ are degenerated fro® and C, respectively.

Fig. 18. Achievable rate region of th&neutralization network when = g11.

o A:(Py,P1,Py)=(0,0,1log(g22) — 3)
The encoding strategy for this corner point is fairly simplde second transmitter uses all its

available power to senWQ(”, while the first transmitter keeps silent. Thatxs,= 0 andx, = x2 ;.
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The first decoder has nothing to decode, and the second ondecanlex, from y, as long as
P, < 3log (14 go2). Itis clear that in particula?, = 3 log (g22) — 3 is achievable.

o B:(Py,P1,P2) = (3log(g11) — 1,0, 3 1og (g22) — 2 log (911) — 3)
The first encoder sends its lattice codeword with power atioa oy = (911 — 1)/g11. The second
encoder splits its private message img(” = (Wél’l),Wél’z)) of rates; and P> where P, =

Py1 + P>5. Then it sends

X2 = /B1,1X2,1,1 + V oX2,0 + /P1,2X2,1,2

where the power allocation coefficients are fixed tohe = 1/g12, fo = (911 — 1)/g12, and

B1,1 =1— Bo — Bi2. The signal received at the destinations are

Y1 = V911X1 + v/g12X2 + Z1,

= V912 — guix2,11 + Vg — 1[x1,0 + X2,0] + X212 + 21, (C.9)
= \/g22X2 + 72,

922(912 — 911 922(911 — 1

%Xllvl + ( \/ X2,172 + 2. (C.10)

The first node decode and cancel; 1, Xg = x10 + X209, andxy ;2 in order, while the second
one performs the same decoding for; 1, x20, andxs 1 . It is easy to show that the ratés ; =
31og (g12/911) — 0.5, Py = $1log (g11) — 1, and P, 5 = 1 log (g22/g12) are achievable, which implies
the private rates% = P»1 + Py 5 = 3 log (g22/g11) — 3 for the second transmitter.
o C:(Py, Py, P) = (0,51og (g11) — 1, 3 1og (g22) — 31og (911) — 3)
For this rate tuple, the rate of the functional message is. Zére second transmitter splits its private
message similar to that of corner poiBt The transmission power is distributed between among
the sub-message ag =0, a1 =1, f12 = 1/g12, Bo =0, and 11 = 1 — (31 2. A similar argument
to that of corner pointB shows that the rate; = 1 log (g12/g11) — 0.5, Py = 1log (g11) — 1,
and P, 5 = 1 log (g22/g12) are achievable, which implies the achievability of the ratént C.
[ |

Proof of Lemmd# in Sectidn V1.2Let (R, R2) € RP?> be an arbitrary rate pair which satisfies

(DZ5-1)-(DZS-10). In particularR; < min{miy,n11}. We claim that( Ry, Ry) € RDP%5(t) x RD%3(¢) for

t = Ry, and thereford Ry, Ry) is achievable using network decomposition. In order to de We have

to show that anyR, satisfying [DZS-1)-(DZS5-10), fulfills the constraints in the definition ®5%>(R;).
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Using [DZS-2) and [DZ5-3), we have

Ry < min (max(mi1,mi2) + (maz — mi2)" — Ry, max(mi2, mo2))

= min (max(miy, mi2) — R1,mi2) + (mag — mia)™

= miy(R1) + (maz — miz)"

< mip(Ri) + (my(Ra) — mip(Re)) " (C.11)
= max(mi,(R1), myy(R1)), (C.12)

where in [C.1l1) we have used the fact that
(min(a, b) — min(c,d))™ > min ((a — )™, (b —ad)T) .
Moreover, sinceR, satisfies[DZ5-3), (0ZS-5), and [DZS5-8), we have
Ry < min (max(mi1,mi2) + (moz — mi2)t — Ry, mos 4+ max(ni1,n91) — Ry, mas + not)
< min (max(mi1,mi2) + (M2 — mi2)" — Ry, mgz) + min (max(ni1,n21) — Ri,na1)  (C.13)
= may(R1) + i (R1), (C.14)
where [C.1B) holds since
min(a, b) + min(c,d) > min(a,b + ¢, b + d),

for non-negatives, b, ¢, andd.
In order to show that the third constraint is satisfied, westart with [DZS-4), (DZS-6)), and [DZS-10).

Ry < min (max(mq1,mi2) + nga + —Ri, mi2 + nga, max(ni1, na1) + (ng2 — no1)*t — Ry)
< min (max(mll, mlg) + — Ry, mlg) + min (max(nll, no1) + (n22 — n21)+ — Ry, 77,22)
= miy(r1) + niy(r1). (C.15)

Finally, using [DZS-8) and [DZ5-10), we have

_l’_

Ry < min (max(nll, Tl21) + (Tl22 — Tl21) - T, max(ngl, 77,22))

= min (max(nll, na1) — 1, ngl) + (ngg —na1) ™t
= iy (r1) + (ng2 — na1)™

< ny(r1) + (nh(r1) — ny (r1)) ™

= max(nh, (r1), nhy(r1)). (C.16)
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Putting inequalities in[(C.12) anB(CI14)-(Cl16) togetbleows thatR, € RP?5(R;), and completes the
proof. |
Proof of Lemmal5 in Sectidn VI].2:

The coding strategy we present here is based a network desitop, where the sub-nodes and the
links of the deterministicZ-interference network are partitioned into two disjointssaVe analyze the
rate region of each network, and derive an achievable rgierrdor the original network based on this
analysis.

We just point out here that in this coding strategy, the sds@mmdel,, never sends a bit on a sub-node
which is not received afiy, even ifnis > nos.

The first partition of the network/, consists of those sub-nodes@h which are connected to one of
the topm; sub-nodes of; and one of the topms, sub-nodes of,. All the sub-nodes in the network
which are related to (see Definitibh 3) any of these sub-natfesbelong to the first network partition.
The remaining nodes and link form the second part of the né&wé6. It is clear that these two networks
are node-disjoint, and do not cause interference on eadr.oth

We first characterize the number sub-nodes:inwhich belong ta\7, by determining whether each
of them can receive a bit fromi}, F5, or both of them. We denote the number of levelgdn which
are only connected to a transmitting level #a by k;. Similarly, the number of those only connected
to a a transmitting level (the tomin(nio, n22)) iN Fy by ko. Finally, ky denotes the number of levels
which are connected to transmitting levels of béthand I, (see Figuré_19).

First, we derivek,. Enumerate the levels @, from 1 (for the highest) ta; (for the lowest). Letj
be the index of a sub-node i, belong to\7, i.e., it receives bits from both; and F5. Its neighbors
in Fy and F (if there is any) are indexed by+ n1; — ¢ andj + ni2 — ¢, respectively. Thereforej,
belongs toN; if and only if 1 < j +ny; — ¢ < njp and1l < j + nyjs — ¢ < min(ny2,n22). Therefore,

the number of such sub-nodes is given by
ko = [min{q, g — n12 + noo} — max{q — n11,q — ni2}]”

= min{ni1,n12, n29, (n11 + noa — n12)*}. (C.17)

It is clear from the definition ok, that the remainingi1; — ko lowest levels ofG; are only connected
to sub-nodes of}, and hencek; = ni; — ko. Similarly, min{ni2,n22} sub-nodes in=; are receiving
information from Iy, wherek, of them are also connected . Therefore, the remaining sub-nodes
are only connected t6/y. Thus, ko = min{nis, n22} — ko.

We partition the network into two parts: The first part cotssef thek, sub-nodes o€7; connected to
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Fig. 19. A deterministicZ-neutralization network. The uppe& sub-nodes inG; are only connected td%, and therefore
ko = 2. The next3 sub-nodes receive information from bofy and F», and hencés, = 3. Although the lowest sub-node is

also connected to both transmitters, it only receives médron from F; since F» keeps silent on its sub-nodes belaw:.

both 7 and F5, and sub-nodes connected to them. The remaining sub-nodagte second partition of
the network. We characterize the achievable tuples for,edoted byQy, Q}, Q5) and (Qf, Q1, Q5),
respectively. The fact that these two partitions are isolatllows us to conclude that the summation of
such achievable tuples is also achievable for the origieahork.

Consider the first partition of the network. It is clear thay @f thek, levels of G; connected to both
Fy and F;, and can be used to communicate a functional bit, sidcenaturally receives th&or of the
transmitting bits. On the other hand, such sub-node can bd tts communicate one private bit from

any of 7} or F, to G; by keeping the other one silent. Therefore, any rate tugdisfgag

Qo+ Q1+ Q3 < ko (C.18)

is achievable.

The non-interfered links of the second partition of the rakacan be used to send private bits from the
transmitters ta=; simultaneously. Moreover, each transmitter can use oris abn-interfering sub-nodes
to send a functional bit t@¢+;, and then,; computes theixor , after receiving them separately. This
can provide up tanin{k;, k2 } new functional bits forGG;. Moreover, the lowelnas — n12)™ sub-nodes
of F» which are connected t6&', but not toG; can be used to send private bits@g without causing

any interference afr;.
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Hence, this strategy can transmit any rate tuple satisfying
0 < minf{ky, ko },
o+ Q1 <k,
0+ QY < ky+ (ngg —ni) " (C.19)

Summing up the rates achieved on each partition of the nkfwee have arrive at);, = Q. + Q7
for i = 0,1,2, where (Q,Q},Q5)'s and (Qf, @Y, Q%) satisfy [C.I8) and[{C.19), respectively. It only
remains to apply the Fourier-Motzkin elimination to prdjélce rate region on théQo, Q1,Q2) space.
This gives us
Qo < ko + min{ky, k2 },
Qo + Q1 < ko + ki,
Qo + Q2 < ko + ko + (na2 — n12) ™,
Qo+ Q1+ Q2 < ko+ ki + ko + (nog —ni2) ™. (C.20)
Some simple manipulations show that the RHS’s of the inétipgin (C.20) are the same as that claimed
in the lemma.
[
Proof of Lemmdl6 in Appendix_A.1As mentioned before, we will use the Fano’s inequality in
order to prove this lemma. We have
(Ry = H(Wy) = I(Wi;91) + H(Whlyi)
< T(Whsy) + Le (C.21)
< I(x1;97) + ey, (C.22)
where [C.211) is implied by the Fano’s inequality, and[in_@}.%e used the data processing inequality
for the Markov chaini?; « z{ <> y{. Note that where, — 0 as/ grows. The proofs of the other two
inequalities follow the same lines, and we skip them to sdkerevity. [ |
Proof of Lemmal7 in Appendix B.Note thatZ is independent of everything else, aiig and X are
conditionally independent. Without loss of generality vesm@lso assume that(y) = E[X;|T'=~] =0

for Vv (otherwise for any gived' = -, we can shiftX; by u;(v), while the entropy does not change).

Let E[X?|T = +] = oZ(y) for i = 1,2. Therefore the conditional variance bf can be bounded as

E[Y?[T =9] = B(X1 + X2 + 2)’[T = 1] =03 (y) + 05(7) + 1. (C.23)
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Therefore,

hY|D) = Er[h(Y|I' = 7)] = Er[h(X1 + X2 4+ Z|T' = )]

< Er[log 2me(o7 (v) + 03(7) + 1) (C.24)
< log 2me(Er[o?(y) + o3(v) + 1)) (C.25)
= log 2me(o? + 03 + 1), (C.26)

where in [C.2#) we have used the fact that Gaussian randombl@rhas the maximum differential

entropy among all random variables with the same variame,(&.2%) follows from the concavity of

the functionlog(-). Finally, (C.26) is just the tower propertlir[E[X?|T]] = E[X?]. |
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