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Abstract

In this paper we study a Gaussian relay-interference network, in which relay (helper) nodes are to

facilitate competing information flows over a wireless network. We focus on a two-stage relay-interference

network where there are weak cross-links, causing the networks to behave like a chain ofZ Gaussian

channels. For these GaussianZZ and ZS networks, we establish an approximate characterization of

the rate region. The outer bounds to the capacity region are established using genie-aided techniques

that yield bounds sharper than the traditional cut-set outer bounds. For the inner bound of theZZ

network, we propose a new interference management scheme, termed interference neutralization, which

is implemented using structured lattice codes. This technique allows for over-the-air interference removal,

without the transmitters having complete access the interfering signals. For both theZZ andZS networks,

we establish a new network decomposition technique that (approximately) achieves the capacity region.

We use insights gained from an exact characterization of thecorresponding linear deterministic version

of the problems, in order to establish the approximate characterization for Gaussian networks.

I. INTRODUCTION

The multi-commodity flow problem, where multiple independent unicast sessions need to share net-

work resources, can be solved efficiently over graphs using linear programming techniques [1]. This

is not the case for wireless networks, where the broadcast and superposition nature of the wireless

medium introduces complex signal interactions between thecompeting flows. The simplest example is

the one-hop interference channel [2], where two transmitters with independent messages are attempting

to communicate with their respective receivers over the wireless transmission medium. Even for this

simple one-hop network, the information-theoretic characterization has been open for several decades. To
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Fig. 1. Two-stage relay-interference network.

study more general networks, there is a clear need to understand and develop sophisticated interference

management techniques.

The capacity of the wireless Gaussian interference channelhas been (approximately) characterized,

within one bit (see [3] and the references therein). Building on this progress, a natural next step is

to study the approximate capacity region of small-scaleinterference-relay networks, where there are

potentially multiple hops from the sources to destinationsthrough cooperating relays. Studying even

simple two-hop topologies could help develop techniques and build insight that would enable a (perhaps

approximate) characterization of capacity for more general networks. We are interested in our work in a

universaltype of approximation, in that it should characterize the capacity to within a constant number

of bits, independently of the signal-to-noise ratio and thechannel parameter values.

The focus of this paper is to study the two-stage relay-interference network illustrated in Figure 1. In

particular, we give an approximate characterization of thecapacity region for special cases of these net-

works when some of the cross-links are weak. These are illustrated in Figure 3(a) and Figure 4(a), which

we refer to as theZS andZZ Gaussian models. We first study adeterministicversion of these problems

by using the linear deterministic model introduced in [4]. An exact capacity region characterization in

the deterministic case is then translated into a universally approximate characterization for the (noisy)

Gaussian network. In particular, forZS and ZZ networks we have a capacity region characterization

within 2 bits (or less), independent of the operating signal-to-noise ratio and the channel parameters.

In studying these special networks, we discover that many sophisticated techniques are required to

(approximately) characterize the network capacity region. The main new ingredients that enable this

characterization are as follows:(i) a new interference management technique we terminterference

neutralization, in which interference is canceled over the air, without therelays necessarily decoding the
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transmitted messages1; (ii) a structured lattice codethat enables interference neutralization over Gaussian

networks;(iii) A network decompositiontechnique which enables appropriate rate-splitting of themessage

and power allocation for the different message components;(iv) genie-aided outer bounding techniques

that enable bounds that are tighter than the information-theoretic cut-set outer bounds.

A way to interpret the achievability results for theZS networks is that the relays perform a partial-

decoding of strategically split messages from the sources,and then cooperate to deliver the required

messages to the destination, again through strategically splitting the messages. The power allocated to

each of the sub-messages is determined using the insight derived from the deterministic model, that

messages that are not intended be decoded arrive at the noise-level. The achievability for theZZ network

is slightly more sophisticated in that one of the relays is required to only decode a function of the sub-

messages. The function is chosen such that its signal in combination with the transmission of the other

relay causes the unwanted interference to be cancelled (neutralized) at the destination. This interference

neutralization is enabled in the Gaussian channel using thegroup property of a structured lattice code.

Work in the literature over the past decade has examined scaling laws for multiple independent flows

over wireless networks, see for example [6]–[8]. The goal there is to characterize the order of the wireless

network capacity as the network size grows. In contrast, in our work, instead of seeking order arguments

and scaling laws, we try to characterize the capacity (perhaps within a universal constant of a few

bits) for specific topologies. The interference channel is aspecial case of such networks, where there

is only one-hop communication between the sources and destinations. There has been a surge of recent

work on this topic including cooperating destinations [9] and use of feedback in inducing cooperation

at the transmitters [10]. The deterministic approach developed in [4] has been successfully applied to

the interference channel in [11]. The fundamental role of interference alignment inK-user interference

channel (still a one-hop network) has been demonstrated in [12], [13].

The paper is organized as follows. Section II introduces ournotation and the basic network models we

study. Section III illustrates the transmission techniques used in this paper through simple deterministic

examples. The main results are given in Section IV, along with a proof outline for the Gaussian networks

in Section V. The achievability and converse for the deterministicZS network is given in Section VI, and

many of these ideas are translated into the precise proof forthe corresponding GaussianZS network in

1A noise nulling technique is proposed in [5] to mitigate correlated noise in an amplify-forward relaying strategy for a single

unicast “diamond” parallel relay network. However, the difference in our technique is that we use the structure of the codebooks

(without necessarily decoding information) to neutralizeinterference, and not noise statistics. Moreover the multiple-unicast

nature of the problem necessitates strategic partitioningand rate-splitting of different components of the messages.
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Appendix A. Section VII follows a similar program for theZZ network, by first identifying the capacity

region for the deterministic version. This allows illustration of ideas such as interference neutralization,

as well as genie-aided outer bounding techniques. The precise translation of these results into Gaussian

ZZ networks is given in Appendix B. Section VIII concludes the paper with a short discussion.

II. PROBLEM STATEMENT

A well accepted model for wireless communication is a linearGaussian model. In this, the received

signalyi(t) at time t, is related to the transmitted signals{xj [t]} as

yi[t] =
∑

j

hijxj[t] + zi[t], (1)

wherezi(t) is i.i.d. (unit-variance) Gaussian noise, andhij represents the fading channel from transmitter

i to receiverj.

II.1 The Deterministic Model

In [4], a deterministic model was proposed, to capture the essence of wireless interaction described

in (1). The advantage of the deterministic model is its simplicity, which allows exact characterizations;

its purpose is to build insights for the noisy wireless network in (1). The deterministic model of [4]

simplifies the wireless interaction model by eliminating the noise and discretizing the channel gains

through a binary expansion ofq bits. Therefore, the received signalYi, which is a binary vector of size

q, is modeled as

Yi[t] =
∑

j

NijXj [t], (2)

whereNij is a q × q binary matrix representing the (discretized) channel transformation between nodes

j andi andXj is a q× 1 vector that contains the (discretized) transmitted signal. We will drop the time

index t when it does not play a role for simplicity. All operations in(2) are done over the binary field,

F2. We use the terminologydeterministic wireless networkwhen the signal interaction model is governed

by (2). The model in (2) is an approximate representation of aGaussian fading channel, which attempts

to capture the attenuation effect of the signal caused by thechannel gain. This can be interpreted as the

number of significant bits of a binary representation of the input,xj , that is above the noise level. More
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precisely, typically the model in (2) assignsNij = Jq−nij , whereJ is a shift matrix, i.e.,

J =











0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

...
. . .

. . .
. . .

. . .

0 · · · 0 1 0











q×q

. (3)

For real channel gainhij in the Gaussian model (1), we calculatenij as nij = ⌈12 log |hij |2⌉. The

parameterq is chosen such thatq ≥ maxi,j⌈12 log |hij |2⌉.
An example of a deterministic network is illustrated in Figure 2. Each node contains several channel

inputs and outputs, which are calledsub-nodeor level through out this paper. SourceS1 can only send

one bit to nodeA and no bit to nodeB; sourceS2 can send its two MSB to bothA andB, and its LSB

to nodeB. The transmitted bits from nodesS1 andS2 interfere on the LSB that nodeA receives.

S1

S2

A

B

D1

D2

Fig. 2. A deterministic network.

In a deterministic network, given a cut that separates nodesU from nodeV, the cut-value equals the

rank of the transfer matrix between the nodes inU andV. For example, in Figure 2, the cut that separates

nodesU = {S1, S2, A,B} andV = {D1,D2} equals

rank








1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1








= 3. (4)

The rows of this transfer matrix correspond to the four transmitted inputs by nodesA andB, while the

columns to the four receives outputs at nodesD1 andD2.

II.2 Interference-relay network model

Our goal in this paper is to derive approximate capacity characterizations for a class of2-user relay-

interference networks shown in Figure 1, which we call theXX network. We start by describing our
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notation for Gaussian channels.

Two transmitters,S1 andS2, encode their messagesW1 andW2 of ratesR1 andR2, respectively, and

broadcast the obtained signals to the relay nodes,A andB. Denote the transmitted signals byx1 and

x2, and the received signals at the relays byy′1 andy′2. Then

y′1[t] =
√
g11x1[t] +

√
g12x2[t] + z′1[t],

y′2[t] =
√
g21x1[t] +

√
g22x2[t] + z′2[t],

(5)

wherez′1, z
′
2 are unit-variance Gaussian noises, independent of each other and ofx1, x2.

The relay nodes perform any (causal) processing on their received signal sequences{y′1[t]} and{y′2[t]}
respectively, to obtain their transmitting signal sequences,{x′1(t)} and{x′2(t)}. The received signals at

the destination nodes can be written as

y1[t] =
√
h11x

′
1[t] +

√
h12x

′
2[t] + z1[t]

y2[t] =
√
h21x

′
1[t] +

√
h22x

′
2[t] + z2[t],

(6)

where thez′1, z
′
2, z1, andz2 are independent zero-mean unit-variance noises, which arealso independent

of x1 and x2. There is a power constraint for each transmitted signal, that is, E[x21] ≤ 1, E[x22] ≤ 1,

E[x′21 ] ≤ 1 andE[x′22 ] ≤ 1.

Each destination nodeDi, i = 1, 2, is interested in decoding its messageWi, using its received signals

{yi[t]}. We define a rate pair(R1, R2) to be admissible if there exist a transmission scheme under which

D1 andD2 can decodeW1 andW2, respectively, with arbitrary small (average) error probability in the

standard manner [14]. This would allow two end-to-end reliable unicast sessions at rates(R1, R2) for

the source/destination pairs(S1,D1) and(S2,D2).

A useful tool to examine the network problem defined above is to study its deterministic version, based

on the model developed in (2). Using the deterministic approach, we can rewrite (5)-(6) as

Y ′
1 [t] =M11X1[t] +M12X2[t]

Y ′
2 [t] =M21X1[t] +M22X2[t],

(7)

and

Y1[t] = N11X
′
1[t] +N12X

′
2[t]

Y2[t] = N21X
′
1[t] +N22X

′
2[t],

(8)

where the matrices{Mij} and{Nij} approximately model the channels in (5)-(6),i.e.,Mij = Jq−mij , Nij =

Jq−nij . The matrixJ is defined as in (3), whilemij = ⌈12 log |gij |2⌉ andnij = ⌈12 log |hij |2⌉.
It is worth mentioning that though this network looks like cascaded interference channels, there is an

important difference. Unlike the interference channel, the messages sent by the relays at the second layer
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of transmission need not independent,i.e., we can try to induce cooperation at the relays to transmit

information to the final destinations. This distinction makes this network more interesting than a simple

cascade of interference channels.

In this paper, we focus on two specific realizations of the network, namely, theZS and theZZ networks,

which further simplify the connectivity models of (5)-(6).We describe these two networks in the following,

and give an approximate characterization of their admissible rate region in Section IV.

Notation alert: Throughout this paper, we use the lowercase lettersx andy for the signals transmitted

by the sources and received signals at the destinations in the Gaussian networks. The received and

transmitting signals by the relays are denoted byx′ andy′. Similarly, uppercase letters will be used for

the deterministic networks.

II.3 TheZS Network

TheZS network is a special case of the interference-relay networkdefined in (5)-(6). In theZS network

one cross link in each layer has a negligible gain, and therefore does not cause interference, as illustrated

in Figure 3(a). In particular, we assumeg21 = h12 = 0 in the Gaussian network, andm21 = n12 = 0 in the

deterministic network. The resulting GaussianZS network is shown in Figure 3(a), and the deterministic

model for this network is given in Figure 3(b).
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(a) The GaussianZS network
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(b) The deterministicZS network
Fig. 3. TheZS network.
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II.4 TheZZ Network

The ZZ network is another special configuration interference-relay network, wherein one cross link

in each layer has zero gain. However, the difference is that,here the missing links are in parallel. In

particular, we assumeg21 = h21 = 0 andm21 = n21 = 0 in the Gaussian and deterministic networks,

respectively. The Gaussian and corresponding deterministic ZZ networks are shown in Figure 4.
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(a) The GaussianZZ network

S1

S2

A

B

D1

D2

m11 n11

m22 n22

m12 n21

X1

X2

Y ′
1

Y ′
2

X ′
1

X ′
2

Y1

Y2

(b) The deterministicZZ network
Fig. 4. TheZZ network.

III. E XAMPLES ILLUSTRATING TRANSMISSION TECHNIQUES

In this section, we illustrate through examples some of the main interference management techniques

we will use to (approximately) achieve the capacity of our relay-interference networks. For simplicity in

demonstrating the ideas, we focus on deterministic networks throughout the examples. However, similar

techniques will be used later for Gaussian channels as well.

We also present a simple Gaussian example at the end of this section, to illustrate the message splitting

idea used in many places through out this work.

Example 1 (Network Decomposition for theZS Network): A deterministicZS network can be always

decomposed into two subnode-disjoint networks, where the first partition consists of a set of sub-nodes

of S1, A andD1, and looks like a line network. The second partition is, however, a diamond network,

with a broadcast channel fromS2 to A andB in the first layer, and a multiple access channel fromA
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andB to D2 in the second layer. This diamond network can be used to send information fromS2 to D2.

Since these two networks are sub-node disjoint, there wouldbe no interfering signal, and each of them

can be analyzed separately. This is more illustrated in Figure 5.

S1

S2

A

B D2

D1

Fig. 5. Network partitioning for a deterministicZS network.

In a GaussianZS network the network decomposition can be done using messagesplitting, superposi-

tion coding and proper power allocation. We will use this technique to achieve an approximate capacity

for the GaussianZS network.

Example 2 (Interference Neutralization):This technique can be used in networks which contain more

than one disjoint path fromSi to Dj for i 6= j, whereDj is not interested in decoding the message sent

by the source nodeSi, and therefore it receives the interference through more than one link. The proposed

technique is to tune these interfering signals such that they neutralize each other at the destination node.

In words, the interfering signal should be received at the same power level and with different sign such

that the effective interference, obtained by adding them, occupies a smaller number of degrees of freedom.

To best of our knowledge, this technique is new and was been introduced in [15].

S1

S2

A

B

D1

D2

+

−

Fig. 6. Interference Neutralization;(R1, R2) = (2, 2) is achievable.
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Fig. 7. Interference neutralization.

Figure 6 shows a network in which interference neutralization is essential to achieve the desired rate

pair (R1, R2) = (2, 3). HereD1 has only two degrees of freedom, and receives information bits from

bothA andB over these sub-nodes. However, notice that there are two disjoint paths (S2, A,D1) and

(S2, B,D1), which connectS2 to D1. As it is shown in Figure 6, using a proper mapping (permutation)

at the relay nodes, one can make the interference neutralized at the destination nodeD1, and provide

two non-interfered links fromS1 to D2. Note that this permutation does not effect the admissible rate of

the other unicast fromS2 to D2, the cost we pay, is to permute the received bits atD2. A more general

illustration of this phenomenon is given in Figure 7.

Example 3 (Use of Lattice Codes to Implement Interference Neutralization over GaussianZZ Network):

The idea of interference neutralization illustrated in Example 2 can be also used in Gaussian networks.

In this case a group structured code, such as lattice code, isrequired to play the role of composition

and decomposition of the signal and interference in two layers of the network. Consider the Gaussian

ZZ network in Figure 4(a). We can use message splitting and interference neutralization to improve the

achievable rate pairs of this network.

Let the second source split its message into two parts asW2 = (W
(N)
2 ,W

(P )
2 ), namely, the functional

(neutralization) and private parts, of ratesR2,N = R1 andR2,P = R2 − R1. Both transmitters use a

common lattice code to encodeW1 andW (N)
2 , and map them intox(N)

1 and x
(N)
2 , respectively. The

other messageW (P )
2 can be encoded tox(P )

2 using a random Gaussian code. We assume that both the

lattice code and the random Gaussian code have average powerequal to1. Then, the transmitting signals

would be a linear combination of the codewords with a proper power allocation,i.e.,

x1 =
√
αNx

(N)
1 , x2 =

√

βNx
(N)
2 +

√

βPx
(P )
2 , (9)
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where the power allocation coefficients satisfyαN ≤ 1 andβN + βP ≤ 1. The transmitters choose the

power allocated tox(N)
1 to x

(N)
2 in a way that they get received atA with the same power. In this way,

their summation would be again a lattice code and can be decoded atA by treatingx(P )
1 as noise. A

similar strategy will be used for signaling at the relay for transmission in the second layer of the network.

The only difference is that instead of sendingx
(N)
2 , the relay nodeB sends−x

(N)
2 . Then, the lattice point

observed atD1 would be exactlyx(N)
1 and it can findW1. The other decoder can simply first reverse

−x
(N)
2 to x

(N)
2 , and then decode it. This idea is illustrated in Figure 8.

S1

S2

A

B D1

D2

√
αNx

(N)
1

√
βNx

(N)
2

√
g11

√
g12

√
g22

√
h11

√
h12

√
h22

Fig. 8. Using lattice codes for interference neutralization over a GaussianZZ network. The origin is specified by a cross “×”.

Power allocated to the messages at the transmitters are chosen such that the two lattice points corresponding tox
(N)
1 andx(N)

2

get received atB at the same power level, and their summation becomes a point on the scaled lattice. The same strategy is used

by the relays. The relay nodeB also reverses its transmitting lattice point in order to neutralize the interference caused in the

first layer of the network.

Example 4:Consider the GaussianZ network shown in Figure 9, with channel gainsg11 ≥ 1, g12 ≥ 1,

andg22 ≥ 1.

F1

F2

G1

G2

√
g11

√
g12

√
g22

z1

z2

x1

x2

y1

y2

W1

W2

Ŵ1

Ŵ2

Fig. 9. A GaussianZ network.

The source nodesFi wishes to encode and send messageWi to the destination nodeGi, for i = 1, 2.
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Denoting the rate of messageWi by Ri, an approximate capacity characterization for this network is

given by network is given by

RZ =
{

(R1, R2) :R1 ≤
1

2
log (1 + g11)

R2 ≤
1

2
log (1 + g22) (10)

R1 +R2 ≤
1

2
log (1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)}

.

It is easy to show that any achievable rate pair belongs toRZ, and henceRZ establishes an outer bound

for the capacity region. Moreover, one can show that the ratepair (R1− 1
2 , R2− 1

2) is achievable provided

that(R1, R2) ∈ RZ. The encoding strategy to achieve such rate pair involves message splitting and proper

power allocation. We will discuss this in more details in Appendix C.

IV. M AIN RESULTS

In this section we present the main results of this paper, which is the approximate capacity character-

ization of the GaussianZS andZZ interference-relay networks. In order to obtain such an approximate

characterization, we have a complete characterization of the deterministic versions of theZS and ZZ

networks. The coding strategies for the Gaussian problems are outlined in Section V. The detailed

analysis of these strategies and the corresponding outer bounds which lead to Theorems 2 and 4 are

given in Appendices A and B, respectively. Most of the insights are obtained by analyzing the deter-

ministic versions of these problems, and the exact characterizations are summarized in Theorems 1 and

3 respectively. We prove these results in Sections VI and VII, respectively. The achievability and outer

bound results for the Gaussian cases are directly inspired by these results.

IV.1 TheZS Network

The ZS network illustrated in Figure 3(b) and the corresponding GaussianZS network is given in

Figure 3(a). Theorems 1 and 2 give the exact and approximate (within 2 bits) characterizations of their

capacity regions.

Theorem 1 (The capacity region of deterministicZS network): The capacity region of the determinis-
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tic ZS network is specified byRDZS, whereRDZS is the set of all rate pairs(R1, R2) that satisfy

R1 ≤ m11, (DZS-1)

R2 ≤ max(m12,m22), (DZS-2)

R1 +R2 ≤ max(m11,m12) + (m22 −m12)
+, (DZS-3)

R2 ≤ m12 + n22, (DZS-4)

R1 +R2 ≤ m22 +max(n11, n21), (DZS-5)

R1 +R2 ≤ max(m11,m12) + n22, (DZS-6)

R1 ≤ n11, (DZS-7)

R2 ≤ max(n21, n22), (DZS-8)

R2 ≤ m22 + n21, (DZS-9)

R1 +R2 ≤ max(n21, n22) + (n11 − n21)
+. (DZS-10)

Theorem 2 (An Approximate capacity region of GaussianZS network): Let RGZS be the set of all

rate pairs(R1, R2) which satisfy (GZS-1)–(GZS-10) given below. ThenRGZS is an outer bound for

the capacity region of the GaussianZS network. Moreover, for any(R1, R2) ∈ RGZS, there exists a

transmission scheme with rates(R′
1, R

′
2) = (R1 − δ1, R2 − δ2), whereδ1 = 1 andδ2 = 1.5 are universal

May 5, 2010 DRAFT
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constants, independent of the channel gain, and required rates.

R1 ≤
1

2
log(1 + g11) (GZS-1)

R2 ≤
1

2
log(1 + g12 + g22) (GZS-2)

R1 +R2 ≤
1

2
log(1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)

(GZS-3)

R2 ≤
1

2
log(1 + g12) +

1

2
log(1 + h22) (GZS-4)

R1 +R2 ≤
1

2
log(1 + g22) +

1

2
log(1 + h11 + h21) (GZS-5)

R1 +R2 ≤
1

2
log(1 + g11 + g12) +

1

2
log(1 + h22) (GZS-6)

R1 ≤
1

2
log(1 + h11) (GZS-7)

R2 ≤
1

2
log(1 + h21 + h22 + 2

√

h21h22) (GZS-8)

R2 ≤
1

2
log(1 + g22) +

1

2
log(1 + h21) (GZS-9)

R1 +R2 ≤
1

2
log(1 + h21 + h22 + 2

√

h21h22) +
1

2
log

(

1 +
h11
h21

)

. (GZS-10)

The outer bound for the results above are fairly standard arguments based on reducing a multi-

letter mutual information into single-letter forms by appropriately using decodability requirements at

the different destinations. The details of these are given in Section VI.1 and Appendix B.1, respectively.

The coding strategy achieving these regions is based on two ideas. One is that of anetwork decompo-

sition illustrated in Section III, Example 1 for the deterministicnetwork. The insight from the network

decomposition leads to the idea of strategicrate-splittingand power allocation in the Gaussian channel.

For the Gaussian coding scheme, we need to strategically partition the messages and allocate powers in

order for the relays to partially decode appropriate messages and setup cooperation. The details of this

strategy are outlined in Section V.

IV.2 TheZZ Network

The ZZ network illustrated in Figure 4(b) and the corresponding GaussianZZ network is given in

Figure 4(a). Although superficially theZS and ZZ networks may look similar, the subtle difference

in the network connectivity, makes the two problems completely different, both in terms of capacity

characterization, as well as transmission schemes. It willbe shown that a new interference management

scheme, which we term as interference neutralization, is needed to (approximately) achieve the capacity
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of this network. The most intuitive description for interference neutralization is to cancel interference

over air without processing at the destinations. This scheme can be used whenever there are more than

one path for interference to get received at a destination. We will explain it in more detail in Sections V

and VII.

Theorems 3 and 4 give the exact and approximate (within2 bits) characterizations for the capacity

region of the deterministic and the GaussianZZ networks, respectively. Another new ingredien used here

is needed a genie-aided outer bound that gives the (noisy) cross link of the first (or correspondingly

second) layer to the destination (or correspondingly to therelay). This genie-aided bound allows us to

develop outer bounds that are apparantly tighter than the information-theoretic cut-set bounds by utilizing

the decoding structure needed.

Theorem 3 (The capacity region of deterministicZZ network): The capacity region of the determinis-

tic ZZ network is given byRDZZ, whereRDZZ is the set of all rate pairs(R1, R2) which satisfy

R1 ≤ m11, (DZZ-1)

R2 ≤ m22, (DZZ-2)

R1 ≤ n11, (DZZ-3)

R2 ≤ n22, (DZZ-4)

R1 + r2 ≤ max(m11,m12) + (m22 −m12)
+ + n12, (DZZ-5)

R1 +R2 ≤ max(n11, n12) + (n22 − n12)
+ +m12. (DZZ-6)

Theorem 4 (An approximate capacity region of GaussianZZ network): LetRGZZ be the set of all rate

pairs (R1, R2) which satisfy (GZZ1)–(GZZ6) given below.

R1 ≤
1

2
log(1 + g11) (GZZ1)

R2 ≤
1

2
log(1 + g22) (GZZ2)

R1 ≤
1

2
log(1 + h11) (GZZ3)

R2 ≤
1

2
log(1 + h22) (GZZ4)

R1 +R2 ≤
1

2
log(1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)

+
1

2
log(1 + h12), (GZZ5)

R1 +R2 ≤
1

2
log(1 + h11 + h12) +

1

2
log

(

1 +
h22
h12

)

+
1

2
log(1 + g12) (GZZ6)
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Then, any admissible rate pair(R1, R2) for the GaussianZZ networks belongs toRGZZ. Moreover, for

any rate pair(R1, R2) ∈ RGZZ, there exists an encoding scheme with rates(R′
1, R

′
2) = (R1− 7

4 , R2− 7
4).

V. GAUSSIAN CODING STRATEGIES

This section is devoted to providing the basic ideas of the coding schemes used in the GaussianZS

andZZ networks. We also develop an outline of how to analyze these coding strategies.

V.1 The GaussianZS network: Achievability

The coding strategy for the GaussianZS network is essentially a partial-decode-and-forward strategy,

along with a strategic rate-splitting of the messages. Let the messages to be sent fromS1, S2 be denoted

by W1,W2 respectively (see Figure 3(a)). We will break theZS network into two cascaded interference

channels, where we require particular messages to be decoded at the relays and forwarded to the

destinations. The first stage is aZ interference channel, where the messageW2 is split into three parts:
(

U
(1)
2 , U

(2)
2 , U

(3)
2

)

. The intention of this strategic split is to allow the the nodeG1 (which is relayA in

the originalZS network) to decode
(

U
(1)
1 , U

(1)
2 , U

(2)
2

)

and nodeG2 (which is relayB in the originalZS

network), to decode
(

U
(1)
2 , U

(3)
2

)

. This is illustrated in Figure 10. Here,U (1)
2 plays the role of a common

message which can be decoded at both receivers, whereasU
(2)
2 andU (3)

2 are the private messages for

G1 andG2 respectively.

The next stage of theZS network is aS interference channel depicted in Figure 11. Here we take the

messages delivered and decoded by theZ interference channel of the first stage and further process them

to ensure delivery of the desired messages to the destination. In particular, we further split the decoded

messages from the first stage into several parts and require delivery of messages as shown in Figure 11.

This splitting and delivery of appropriate pieces, finally ensures thatW1 andW2 are decodable at the

destinations. This is the encoding strategy in theZS network. In the following lemmas, we give the rates

at which messages at each stage can be delivered. Putting together Lemmas 1 and 2, we get the desired

result given in Theorem 2. The proofs of these lemmas follow fairly standard arguments, and are given

in Appendix C.

A formal statement of the argument above is given below.

Lemma 1: Consider the GaussianZ interference network with channel gains(g11, g12, g22), and de-

coding requirements as shown in Figure 10. Denoting the rateof the sub-messageU (j)
i by Υi,j, any rate
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F1

F2

G1

G2

√
g11

√
g12

√
g22

z1

z2

x1

x2

y1

y2

U
(1)
1

(

U
(1)
2 , U

(2)
2 , U

(3)
2

)

(

Û
(1)
1 , Û

(1)
2 , Û

(2)
2

)

(

Û
(1)
2 , Û

(3)
2

)

Fig. 10. TheZ interference channel with particular message requirements, captures the proposed coding scheme for the first

layer of the GaussianZS network.

tuple (Υ1,1,Υ2,1,Υ2,2,Υ2,3) which satisfies

Υ1,1 ≤
(
1

2
log (1 + g11)−

1

2

)+

, (7)

Υ2,2 ≤
(
1

2
log

(

1 +
g12
g22

)

− 1

2

)+

, (8)

Υ2,1 +Υ2,2 ≤
(
1

2
log (1 + g12)−

1

2

)+

, (9)

Υ1,1 +Υ2,1 +Υ2,2 ≤
(
1

2
log (1 + g11 + g12)−

1

2

)+

, (10)

Υ2,3 ≤
(
1

2
log

(

1 +
g22
g12

)

− 1

2

)+

, (11)

Υ2,1 +Υ2,3 ≤
(
1

2
log (1 + g22)−

1

2

)+

, (12)

is achievable.

The next lemma gives an achievable rate region for the secondlayer of theZS network, which is aS

interference network depicted in Figure 11.

F1

F2

G1

G2

√
h11

√
h21

√
h22

z1

z2

x1

x2

y1

y2

(

V
(1)
1 , V

(2)
1 , V

(1)
2 , V

(2)
2 , V

(3)
2 , V

(4)
2

)

(

V
(1)
2 , V

(2)
2 , V

(5)
2

)

(

V̂
(1)
1 , V̂

(2)
1 , V̂

(1)
2 , V̂

(3)
2

)

(

V̂
(1)
1 , V̂

(1)
2 , V̂

(2)
2 , V̂

(3)
2 , V̂

(4)
2 , V̂

(5)
2

)

Fig. 11. TheS interference channel with particular message requirements, depicting the proposed coding strategy for the second

layer of the GaussianZS network.
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Lemma 2: Consider the GaussianS interference network with channel gains(h11, h21, h22), and

decoding requirements as shown in Figure 11, whereΘi,j denotes the rate of messageV (j)
i . Any rate

tuple (Θ1,1,Θ1,2,Θ2,1,Θ2,2,Θ2,3,Θ2,4,Θ2,5) which satisfies

Θ1,1 +Θ1,2 +Θ2,1 +Θ2,3 ≤
(
1

2
log (1 + h11)−

1

2

)+

, (13)

Θ1,2 ≤
(
1

2
log

(

1 +
h11
h12

)

− 1

2

)+

, (14)

Θ2,4 ≤
(
1

2
log

(

1 +
h21
h11

)

− 1

2

)+

, (15)

Θ1,1 +Θ2,3 +Θ2,4 ≤
(
1

2
log (1 + h21)−

1

2

)+

, (16)

Θ2,5 ≤
(
1

2
log (1 + h22)−

1

2

)+

, (17)

Θ1,1 +Θ2,1 +Θ2,2 +Θ2,3 +Θ2,4 +Θ2,5 ≤
(
1

2
log (1 + h21 + h22)−

1

2

)+

, (18)

is achievable.

V.2 The GaussianZZ network: Achievability

The encoding scheme needed for theZZ network is slightly more sophisticated than theZS network.

An additional component to strategic message splitting is that of interference neutralization. This was

illustrated in examples 2 and 3 in Section III. This along with message splitting inspired by the network

decomposition illustrated in example 1 of Section III, formthe basis of the encoding scheme for theZZ

network.

More formally, the interference that has to be neutralized,will be combined with the main message in

the first layer according to some partial-invertible function. In the second layer the inverse of the function

is applied on this combination and the other interference received through the cross link. The remaining

parts of the interference has to be either decoded or treatedas noise. The neutralization is implemented

using lattice codes and the rate-splitting along with appropriate power allocation is also used.

We formally define a partial-invertible function and aZ-neutralizationnetwork in the following. The

GaussianZZ network is essentially a cascade of twoZ-neutralization networks. An achievable rate region

for the Z-neutralizationnetwork is given in Lemma 3. This rate region will be later used to obtain an

achievable rate region for the GaussianZZ network. We will analyze the performance of the Gaussian

encoding/decoding schemes in Appendix B.2.
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Definition 1: Let U andV be two finite sets. A functionφ(·, ·) defined onU × V is calledpartial-

invertible, if and only if havingφ(u, v) andu, one can always reconstructv for any u ∈ U andv ∈ V.

Similarly, u can be obtained fromφ(u, v) andv.

An intuitive way of thinking about a partial-invertibleφ(u, v) is the following. An arbitrary function

defined on a finite setsU and V creates a table with rows corresponding to the elements ofU and

columns corresponding to the elements ofV, the each cell of the table consists the value assigned to its

row and column by the function. A function will be partial-invertible, if and only if no two cells in the

same column or row of its table be identical.

Note that summation over real numbers, and multiplication over non-zero numbers are two examples of

partial-invertible functions. However, it is clear multiplication over real numbers is not partial-invertible,

sincew = φ(1, 0) = φ(2, 0), and therefore havingw andv = 0, u can be anything.

Definition 2: Consider theZ network shown in Fig 12, which consists of a Gaussian broadcast channel

from F2 to the receivers and a Gaussian multiple access channel fromF1 andF2 toG1. A Z-neutralization

F1

F2

G1

G2

√
g11

√
g12

√
g22

z1

z2

x1

x2

y1

y2

(

U
(0)
1 , U

(1)
1

)

(

U
(0)
2 , U

(1)
2

)

(

Û
(1)
1 , φ̂(U

(0)
1 , U

(0)
2 )

)

(

Û
(0)
2 , Û

(1)
2

)

Fig. 12. The GaussianZ channel.

network is aZ network, wherein the first source node has two messages(U
(0)
1 , U

(1)
1 ) of ratesΥ0 and

Υ1, respectively. Similarly the second source observes two independent messages(U (0)
2 , U

(1)
2 ) of rates

Υ0 andΥ2.

The second receiver is interested in decodingU
(0)
2 and U (1)

2 , while the first destination wishes to

decodeφ(U (0)
1 , U

(0)
2 ) andU (1)

1 , whereφ(·, ·) can be any arbitrary partial-invertible function. A rate tuple

(Υ0,Υ1,Υ2) is called achievable if the receivers can decode their messages with arbitrary small error

probability.

Lemma 3: Consider theZ-neutralization network defined Definition 2 with channel gains(g11, g12, g22)

(see Figure 12). Let

λ , min{g11, g12, g22}, (19)
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and

µ , max

{

g11, g12, g22,
g11g22
g12

}

. (20)

Any rate tuple(Υ0,Υ1,Υ2) satisfying

Υ0 ≤
(
1

2
log (λ)− 1

2

)+

, (21)

Υ0 +Υ1 ≤
(
1

2
log (g11)− 1

)+

, (22)

Υ0 +Υ2 ≤
(
1

2
log (g22)− 1

)+

, (23)

Υ0 +Υ1 +Υ2 ≤
(
1

2
log (µ)− 3

2

)+

, (24)

is achievable.

As mentioned before, we strategically split the messages and require functional reconstructions for

some of them at the relay nodes to facilitate neutralizationat the destinations. More precisely, in the first

layer of the network, each source node splits its message into two parts, namely, “functional” and private

parts,W1 =
(

U
(0)
1 , U

(1)
1

)

andW2 =
(

U
(0)
2 , U

(1)
2

)

. The “functional” partsU (0)
1 , U

(0)
2 both have the same

ratesΥ0. Both transmitters use a common lattice code to encode theirfunctional sub-messages. Now the

first layer encodes the message such that the first receiver (which is relayA in the originalZZ network)

can decodeU (1)
1 andφ(U (0)

1 , U
(0)
2 ), and the second one (relayB in the originalZZ network) can decode

U
(0)
2 andU (1)

2 . Lemma 3 gives the rates at which these can be sent reliably. The second stage operates

in a manner similar to the first stage, by splitting the messages into functional and private parts. The first

sender (relayA in the original network) usesU (1)
1 andφ(U (0)

1 , U
(0)
2 ) as the private and functional parts

and the other one (relayB) usesU (1)
2 andU (0)

2 as the private and functional parts.

The functional parts are sent appropriately, using a commonlattice code in both stages. Letx(N)
1 and

x
(N)
2 be the lattice codewords, corresponding toU (0)

1 andU (0)
2 , respectively. The power allocation In the

first layer it is done so that two lattice points get received at A at the same power (see Figure 8). The group

structure of the lattice code implies that the summation of two received lattice point,̃x(N) = x
(N)
1 +x

(N)
2

is still a valid codeword, and can be decoded byA. The functionφ(·, ·) is in fact the decoded message

from x̃(N). In the second stage, relay nodeB, sends the inverse of the the received lattice point, that

is x
′(N)
2 = −x

(N)
2 , while A forwards the sum lattice point,x

′(N)
1 = x̃(N). Again these lattice points are

scaled properly so that they get received atD1 at the same power. Thus, their summation would be a

lattice point and equalsx
′(N)
1 + x

′(N)
2 = (x

(N)
1 + x

(N)
2 )− x

(N)
2 = x

(N)
1 , which will be decoded toU (0)

1 .
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The other destinationD2, receives−x
(N)
2 , finds its inversex(N)

2 , and finally decodes it toU (0)
2 . This

idea is illustrated in Example 3, and the precise details of this argument are given in Appendix B.2.

VI. T HE DETERMINISTIC ZS NETWORK

In this section we prove Theorem 1. We study this problem in two parts. First we present the converse

proof, which shows any achievable rate pair belongs toRDZS. Then for any rate pair in this region, we

propose an encoding scheme which is able to transmit messages up to the desired rates.

VI.1 The Outer Bound

In this section we show that any achievable rate pair(R1, R2) for the deterministicZS network belongs

to RDZS. Assume there exists a coding scheme with block lengthℓ which can be used to communicate

at ratesR1 andR2 over the network. We use fold face matrices to denoteℓ copy of them, as the transfer

matrix applied over a codeword of lengthℓ, e.g.,M11 = Iℓ ⊗M11.

All of the bounds in the theorem except (DZS-3) and (DZS-10) can be obtained straight-forwardly

using the generalized cut-set bound in [16], which shows that in a linear finite-field network, the maximum

reliable rate can be transmitted through a cut is upper bounded by the rank of the transition matrix of the

cut. Here, we only present the proof of (DZS-5) to illustrate this idea. Then we prove the two remaining

bounds, which are tighter than the cut-set bound.

(DZS-5) R1 + R2 ≤ m22 + max(n11, n21): This bound corresponds to the cutΩs = {S1, S2, A}
andΩd = {B,D1,D2}. The transition matrix from the input of the cutXΩs

= (X2,X
′
1) to its output

YΩd
= (Y ′

2 , Y1, Y2) can be written as







Y
′ℓ
2

Y ℓ
1

Y ℓ
2







=








M22 0

0 N11

0 N21








︸ ︷︷ ︸

GΩs,Ωd




Xℓ

2

X
′ℓ
1



+








0

0

N22







X

′ℓ
2 . (25)

Therefore, from [16] we have

ℓ(R1 +R2) ≤ rank(GΩs,Ωd
) = rank(M22) + rank








N11

N21







 = ℓm22 + ℓmax(n11, n21). (26)

As mentioned before, we skip the proof of those bounds which follow from the generalized cut-set

bound. In the following we present the proof of the two remaining inequalities which are tighter that the

cut-set bound.

May 5, 2010 DRAFT



22

(DZS-3) R1 +R2 ≤ max(m11,m12) + (m22 −m12)
+: In order to prove this bound, we can start

with

ℓ(R1 +R2) ≤ I(Xℓ
1,X

ℓ
2;Y

ℓ
1 , Y

ℓ
2 )

≤ I(Xℓ
1,X

ℓ
2;Y

′ℓ
1 , Y

′ℓ
2 ) (27)

= I(Xℓ
1,X

ℓ
2;Y

′ℓ
1 ) + I(Xℓ

1,X
ℓ
2;Y

′ℓ
2 |Y ′ℓ

1 )

≤ I(Xℓ
1,X

ℓ
2;Y

′ℓ
1 ) +H(Y

′ℓ
2 |Y ′ℓ

1 )−H(Y
′ℓ
2 |Xℓ

1,X
ℓ
2, Y

′ℓ
1 ), (28)

where in (27) we used the data-processing inequality for theMarkov chain

(Xℓ
1,X

ℓ
2) ↔ (Y

′ℓ
1 , Y

′ℓ
2 ) ↔ (X

′ℓ
1 ,X

′ℓ
2 ) ↔ (Y ℓ

1 , Y
ℓ
2 ), (29)

and (28) holds sinceY
′ℓ
2 is function ofXℓ

2. Now, it is clear that

I(Xℓ
1,X

ℓ
2;Y

ℓ
1 ) ≤ rank

([

M11 M21

])

= ℓmax(m11,m12). (30)

In order to bound the second term, we can write

H(Y
′ℓ
2 |Y ′ℓ

1 ) = H(Y
′ℓ
2 |Y ′ℓ

1 ,X
′ℓ
1 , Y

ℓ
1 ) (31)

≤ H(Y
′ℓ
2 ,W2|Y

′ℓ
1 ,X

′ℓ
1 , Y

ℓ
1 )

= H(Y
′ℓ
2 |Y ′ℓ

1 ,X
′ℓ
1 , Y

ℓ
1 ,W2) +H(W2|Y ′ℓ1,X

′ℓ
1 , Y

ℓ
1 )

≤ H(Y
′ℓ
2 |Y ′ℓ

1 ,X
′ℓ
1 , Y

ℓ
1 ,W2,X

ℓ
1) + ℓεℓ (32)

≤ H(Y
′ℓ
2 |Y ′ℓ

1 −M11X
ℓ
1) + ℓεℓ

≤ H(M22X
ℓ
2|M12X

ℓ
2) + ℓεℓ

≤ ℓrank








M12

M22







− ℓrank (M12) + ℓεℓ

= ℓ(m22 −m12)
+ + ℓεℓ, (33)

where (31) holds sinceX
′ℓ
1 is also a function ofY

′ℓ
1 , andY ℓ

1 is also a deterministic function ofX
′ℓ
1 .. We

used Fano’s inequality in (32), whereW1 should be decodable based onY ℓ
1 . Summing up (30) and (33),

we get the desired bound.

Note that the cut-set bound for the cutΩs = {S1, S2} andΩd = {A,B,D1,D2} gives us

ℓ(R1 +R2) ≤ rank








M11 M12

0 M22







 = ℓmax(m11 +m22,m12), (34)
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in which the RHS can be arbitrarily larger than the RHS of the presented bound. The reason for this

difference is the following. It is inherently assumed in deriving the cut-set bound that the receivers can

cooperate to decode the messages of ratesR1 andR2, and no decodability requirement is posed for

individual receivers. However, the setup of this problem impose an extra constraint, that isB alone

should be able to decodeW2. Incorporating this decodability requirement shrinks theset of admissible

rates, and gives us a tighter bound.

(DZS-10) R1 + R2 ≤ max(n21, n11) + (n11 − n21)
+: The last inequality captures the maximum

flow of information from the relays to the destinations, suchthatD1 andD2 be able to decodeW1 and

W2, respectively. We again start with

ℓ(R1 +R2) ≤ I(Xℓ
1,X

ℓ
2;Y

ℓ
1 , Y

ℓ
2 ) = H(Y ℓ

1 , Y
ℓ
2 ) = H(Y ℓ

2 ) +H(Y ℓ
1 |Y ℓ

2 ). (35)

The first term can be easily bounded by

H(Y ℓ
2 ) ≤ rank

([

N21 N22

])

= ℓmax(n21, n22). (36)

In order to bound the second term, we use the fact thatW2 can be decoded fromY ℓ
2 . Therefore,

H(Y ℓ
1 |Y ℓ

2 ) ≤ H(Y ℓ
1 ,W2|Y ℓ

2 )

= H(Y ℓ
1 |Y ℓ

2 ,W2) +H(W2|Y ℓ
2 )

≤ H(Y ℓ
1 |Y ℓ

2 ,W2) + ℓεℓ (37)

= H(Y ℓ
1 |Y ℓ

2 ,W2,X
ℓ
2, Y

′ℓ
2 ,X

′ℓ
2 ) + ℓεℓ

≤ H(Y ℓ
1 |Y ℓ

2 −N22X
′ℓ
2 ) + ℓεℓ

= H(N11X
′ℓ
1 |N21X

′ℓ
1 ) + ℓεℓ

≤ ℓrank








N11

N21







− ℓrank (N21) + ℓεℓ

= ℓ(n11 − n21)
+ + ℓεℓ. (38)

In (37) we used the Fano’s inequality, as well as the fact thatXℓ
2, Y

′ℓ
2 , andX

′ℓ
2 are known havingW2.

The bound is obtained by replacing (36) and (38) in (35).

It is worth mentioning that this bound is tighter than the cut-set bound for the cutΩs = {S1, S2, A,B}
andΩd = {D1,D2}, which is

R1 +R2 ≤ max(n11 + n22, n12). (39)
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VI.2 The Achievability Part

Network Decomposition::The achievability scheme presented here is based on decomposition of

the deterministicZS network into two node-disjoint networks. In fact, such partitioning depends on the

demanded rate pair(R1, R2) ∈ RDZS. The resulting family of separations immediately suggestsa simple

coding scheme. We will show that this separation is optimal,and does not cause any loss in the admissible

rate region of the network.

Before introducing the network decomposition, we define an equivalence class for the sub-nodes (levels)

in a network.

Definition 3: In a Z (or S) deterministic network, two sub-nodesa andb are calledrelatedsub-nodes,

and denoted bya ∼ b if any of the following conditions hold:

• a = b;

• a is connected tob;

• b is connected toa;

• there exists a sub-nodec such thatc broadcasts to botha andb;

• there exists a sub-noded where botha andb are connected to.

Note that this relation is reflective, symmetric, and transitive. Therefore, it forms equivalence classes for

the sub-nodes.

We denote byN1 andN2 the partitions of the network. Assume we wish transmitting at rateR1 =

r ≤ min(m11, n11) from S1 to D1. The first part of the networkN1, includes the top(m11 −m12)
+

levels as well as the lowest(r− (m11 −m12)
+)+ levels ofS1. It also includes all the related sub-nodes

of S2, and the receiver levels ofA andB. Similarly, in the second layer of the network,N1 includes the

lowest (n11 − n21)
+ levels as well as the top(r − (n11 − n21)

+)+ nodes of the transmitter part ofA.

All related sub-nodes of the transmitter part ofB, as well asD1 andD2 also belong toN1. The second

part of the networkN2, is formed by all the remaining nodes.

We will useN1 for transmitting data fromS1 toD1. Similarly N2 is only used to communicate fromS2

to D2. Therefore, we have two uni-cast networks, and each pair of transmitter-receiver can communicate

up to the capacity of their own partition, which is the min-cut of the partition [4].

It is worth mentioning that any two “related” sub-nodes belong to the same partition. Therefore, these

two networks are node-disjoint, and do not cause interference for each other. This allows us to derive

the capacity of each network separately, and argue that(R1, R2) can be achieved simultaneously for the

original network, ifR1 andR2 are achievable for partitionsN1 andN2.
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Encoding Scheme:A transmission fromS1 and S2 to D1 and D2 is performed as follows.S1

transmits only on its sub-nodes which belong toN1, and keeps its other sub-nodes silent. Similarly,S2

encodes its message on the sub-nodes included inN2, and sends zero on the other levels. Therefore, the

effectivecommunication over each partition is a simple uni-cast.

S1
A

D1

r rX1 Y
′(1)
1 X

′(1)
1 Y1

(a) Effective channel for(S1, D1).

S2

A

B

D2
m′

22(r) n′22(r)

m′
12(r)

n′21(r)

X2

Y
′(2)
1 X

′(2)
1

Y
′(2)
2 X

′(2)
2

Y2

(b) Effective channel for(S2, D2).

Fig. 13. The effective separatedZS network.

Fig. 13 shows the effective parts of the network. It is easy tosee that the diamond network in

Figure 13(b) is also a linear shift deterministic networks,with channel gains

m′
12(r) = min(max(m11,m12)− r,m12), (40)

m′
22(r) = min(max(m11,m12) + (m22 −m12)

+ − r,m22), (41)

n′21(r) = min(max(n11, n21)− r, n21), (42)

n′22(r) = min(max(n11, n21) + (n22 − n21)
+ − r, n22). (43)

Achievable Rate Region:The cut values ofN1 can be easily computed as

Ω = {S1} : (m11 −m12)
+ + (r − (m11 −m12)

+)+ = max{(m11 −m12)
+, r} ≥ r

Ω = {S1, A} : (r − (n11 − n12)
+)+ + (n11 − n12)

+ = max{(n11 − n12)
+, r} ≥ r.

Therefore any rate inRDZS
1 (r) = {R1 : R1 ≤ r} can be conveyed fromS1 to D1 throughN1.

The capacity ofN2 can be found using the generalized max-flow min-cut theorem [4]. Hence, the rate
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region of the second partitionN2 would be

RDZS
2 (r) = {R2 :R2 ≤ max(m′

12(r),m
′
22(r)), (44)

R2 ≤ m′
22(r) + n′21(r), (45)

R2 ≤ m′
12(r) + n′22(r), (46)

R2 ≤ max(n′21(r), n
′
22(r))}. (47)

Therefore, by using this decomposition, any rate pair in thesetRDZS
1 (r)×RDZS

2 (r) = {(R1, R2) : R1 ∈
RDZS

1 (r), R2 ∈ RDZS
2 (r)} can be achieved. It remains to prove the following lemma.

Lemma 4: For any deterministicZS network,

RDZS ⊆
⋃

r≤min(m11,n11)

(

RDZS
1 (r)×RDZS

2 (r)
)

. (48)

We will prove this lemma in Appendix C.

VII. T HE DETERMINISTIC ZZ NETWORK

In this section we prove Theorem 3. This is done in two parts, that provide the converse and achievability

proofs.

VII.1 The Outer Bound

In the following we will show that any achievable rate pair(R1, R2) satisfies constraints (DZZ-1)-

(DZZ-6). The individual rate bounds can be directly obtained by the generalized cut-set bound introduced

in [16], where the maximum flow of information through a cut ina linear deterministic network is upper

bounded by the rank of the transition matrix from the sender part of the cut to its receiver part. Hence,

we skip the proofs of (DZZ-1)-(DZZ-4).

The sum-rate bounds in (DZZ-5)-(DZZ-6) are, however, genie-aided bounds which are tighter thatthe

cut-set bounds. In the following, we focus on these two bounds, and present their proofs in detail. Again

we assume that there exists a coding scheme with block lengthℓ which can be used to communicate at

ratesR1 andR2 over the network.

(DZZ-5) R1 +R2 ≤ max(m11,m12) + (m22 −m12)
+ + n12: In order to prove this inequality we

focus on the flow of information from the sources to the relays. The key idea here is to provideA with

the information sent byB to D1 as side information. In such condition, the informationA has received

aboutW1 is stronger than the information available atD1, and thereforeA can decodeW1 sinceD1 can
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as well. OnceW1 is decoded atA, it can determine the transmitted codeword fromS1. By removing the

interference fromS1, A can also partially decodeW2.

More precisely, we can write

ℓ(R1 +R2) ≤ I(Xℓ
1,X

ℓ
2;Y

′ℓ
1 , Y

′ℓ
2 ) = H(Y

′ℓ
1 , Y

′ℓ
2 ) ≤ H(Y

′ℓ
1 , Y

′ℓ
2 ,Γ

ℓ
2)

= H(Y
′ℓ
1 ,Γ

ℓ
2) +H(Y

′ℓ
2 |Y ′ℓ

1 ,Γ
ℓ
2)

≤ H(Y
′ℓ
1 ) +H(Γℓ

2) +H(Y
′ℓ
2 |Y ′ℓ

1 ,Γ
ℓ
2), (49)

whereΓℓ
2 = N12X

′ℓ
2 is the part of the signal received atD2 from B as in Figure 4(b). The first two

terms are easily bounded byℓmax(m11,m12) and ℓn12, respectively. Deriving an upper bound for the

last term is more involved.

Similar to Γl2, we defineΓℓ
1 = M12X

ℓ
2, where we have

H(Γℓ
1|Y

′ℓ
1 ,Γl2) = H(Y

′ℓ
1 −M11X

ℓ
1|Y

′ℓ
1 ,Γl2) (50)

≤ H(Xℓ
1|Y

′ℓ
1 ,Γl2)

≤ H(W1|Y
′ℓ
1 ,Γl2)

= H(W1|Y
′ℓ
1 ,X

′ℓ
1 ,Γl2)

≤ H(W1|N11X
′ℓ
1 + Γl2)

= H(W1|Y l1) ≤ ℓεℓ, (51)

whereεℓ → 0 as ℓ grows. We have used the invertibility property of the deterministic multiple access

channel in (50), and (51) follows from the Fano’s inequality, and the fact thatD1 can decode the message

sent byS1. Therefore, we haveH(Γl1|Y
′ℓ
1 ,Γl2) ≤ ℓεℓ. Hence,

H(Y
′ℓ
2 |Y ′ℓ

1 ,Γl2) ≤ H(Y
′ℓ
2 ,Γl1|Y

′ℓ
1 ,Γl2)

= H(Y
′ℓ
2 |Γl1, Y

′ℓ
1 ,Γ2) +H(Γl1|Y

′ℓ
1 ,Γl2)

≤ H(Y
′ℓ
2 |Γl1) + ℓεℓ

= H(M22X
ℓ
2|M12X

ℓ
2) + ℓεℓ

≤ ℓ(m22 −m12)
+ + ℓεℓ. (52)

Replacing the upper bounds for each term in (49), we get

R1 +R2 ≤ max(m11,m12) + n12 + (m22 −m12)
+. (53)
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It is worth mentioning that the cut-set bound forΩs = {S1, S2} andΩd = {A,B,D1,D2} gives us

R1 +R2 ≤ max(m11 +m22,m12), (54)

which is looser than the genie-aided bound.

(DZZ-6)R1+R2 ≤ max(n11, n12)+(n22−n12)++m12: The last inequality captures the maximum

flow of information from the relays to the destinations. Intuitively, this inequality says that the number

of interfering bits can get neutralized atD1 cannot exceed the minimum ofm12 andn12. In order to

make this intuition formal, we provideΓl1, the partial information aboutW2 which is available atA, as

side information forD1. We then have

ℓ(R1 +R2) ≤ I(Y l1, Y l2;Xl1,Xl2) = H(Y l1, Y l2)

≤ H(Y l1, Y l2,Γl1)

≤ H(Y l1) +H(Γl1) +H(Y l2|Y l1,Γl1).

Again, we can simply upper bound the first two terms by the rankof the corresponding matrices. In

order to bound the last term, similar to the proof of (DZZ-5), we use the following bounding technique.

H(Γl2|Y l1,Γℓ
1) = H(Y l1 −N11X

′ℓ
1 |Y l1,Γl1)

≤ H(X
′ℓ
1 |Y l1,Γl1)

≤ H(Y
′ℓ
1 |Y l1,Γl1)

= H(M11Xl1 + Γl1|Y l1,Γl1)

≤ H(Xl1|Y l1,Γl1)

≤ H(Xl1|Y l1)

≤ H(W1|Y l1) ≤ ℓεℓ, (55)

where (55) follows from the Fano’s inequality. This inequality can be used as

H(Y l2|Y l1,Γl1) ≤ H(Y l2,Γl2|Y l1,Γl1)

= H(Y l2|Γl2, Y l1,Γl1) +H(Γl2|Y l1,Γl1)

≤ H(Y l2|Γl2) + ℓεℓ

= H(N22X
′ℓ
2 |N12X

′ℓ
2 ) + ℓεℓ

≤ ℓ(n22 − n12)
+ + ℓεℓ. (56)
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Therefore, we have

R1 +R2 ≤ max(n11, n12) +m12 + (n22 − n12)
+. (57)

Again, it is easy to show that this bound is tighter than the cut-set bound forΩs = {S1, S2, A,B} and

Ωd = {D1,D2},

R1 +R2 ≤ max(n11 + n22, n12). (58)

This completes the proof of the converse part of Theorem 3.

VII.2 The Achievability Proof

In this part we will show that all rate pairs satisfying inequalities (DZZ-1)-(DZZ-6) are achievable.

In particular, we introduce a coding scheme which achieves such rates. Our coding strategy provides

the interference neutralization at the destination. This is performed by splitting the messages into two

parts, namelyprivate and functional parts. The private sub-messages can be decoded at the relays, and

forwarded to the destinations. The functional sub-messageof the second source can be also decoded at

B. However,A only receives a combination (xor) of the functional sub-messages, and cannot decode

them. It only forwards such combination on proper (power) levels such that the interference caused by the

functional sub-message ofS2 get neutralized over the second layer of the network, andD1 can decode

the sub-message of its interest.

Our analysis is based on characterizing the number ofpureandcombinedbits can be sent through each

layer of the network. In the following we focus on one layer ofthe network, and obtain an achievable

rate region for these numbers. Next, we use this region to build the encoding scheme for theZZ network,

and obtain an achievable rate region, which matches with theouter bound.

Definition 4: Consider a deterministicZ network, with gains(n11, n12, n22). as shown in Figure 14.

Each of the transmitters has a set of information bits to transmit to the receivers. This set forFi

includesΥi private bits andΥ0 functional bits, namely,Wi,P = {Wi,P (1), . . . ,Wi,P (Υi)} andWi,N =

{Wi,N (1), . . . ,Xi,N (Υ0)}. The second receiver wishes to receive all the private and functional bits of

F2, while the first receiver is interested in receiving the private bits ofF1, and thexor of the functional

bits of F1 andF2. More precisely, denoting bŷWi the set of bitsGi is interested in, we have

Ŵ1 = W1,P ∪ {W̃1,N (j) , W1,N (j)⊕W2,N (j) : j = 1, . . . ,Υ0},

Ŵ2 = W2,P ∪W2,N .
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We term this network with the described decoding demands as deterministicZ-neutralization network.

The goal is the characterize the set achievable tuples(Υ0,Υ1,Υ2).

F1

F2

G1

G2

{W1,N (1), . . . ,W1,N (Υ0)}

{W1,P (1), . . . ,W1,P (Υ1)}

{W2,N (1), . . . ,W2,N (Υ0)}

{W2,P (1), . . . ,W2,P (Υ2)}

{W1,N (1)⊕W2,N (1), . . . ,W1,N (Υ0)⊕W2,N (Υ0)}

{W1,P (1), . . . ,W1,P (Υ1)}

{W2,N (1), . . . ,W2,N (Υ0)}

{W2,P (1), . . . ,W2,P (Υ2)}

Fig. 14. A deterministicZ-neutralization network with the message demands.

The following lemma gives an achievable rate region for the deterministicZ-neutralization network.

The proof of this lemma can be found in Appendix C.

Lemma 5: Consider the deterministicZ-neutralization network defined in Definition 4 with channel

gains(n11, n12, n22) (see Figure 14). Any rate tuple(Υ0,Υ1,Υ2) satisfying

Υ0 ≤ λ , min{n11, n12, n22}, (59)

Υ0 +Υ1 ≤ n11, (60)

Υ0 +Υ2 ≤ n22, (61)

Υ0 +Υ1 +Υ2 ≤ µ , max{n11, n12, n22, n11 + n22 − n12}. (62)

is achievable for this network.

Now, having an achievable rate region for the deterministicZ-neutralization network, we are ready to

present the coding scheme and analyze its rate region for theZZ network.

Recall that theZZ network consists of two cascadedZ network. In first layer, the source nodes split

their message into private and functional parts. They can send these parts to the relays as long as their

rates belong to the achievable rate region of the first layer given in Lemma 5. Once the relays receive these

sub-messages, forward them to the destination nodes using the same scheme for the private and functional

sub-messages. This can be done if the rate tuple for the sub-messages satisfy the corresponding inequalities

for the second layer as well. Note that functional bits received at the destination arẽW1,N (j)⊕W2,N (j) =

[W1,N (j) ⊕W2,N (j)] ⊕W2,N (j) = W1,N (j). Therefore, the interference of these bits get neutralized,

and pure information bits will be received at the destination.
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The achievable rate region of this scheme is given by

RDZZ
ach =

{

(R1, R2) :∃Υ0,Υ1,Υ2 ≥ 0,

R1 = Υ0 +Υ1,

R2 = Υ0 +Υ2,

Υ0 ≤ min{λm, λn},

Υ0 +Υ1 ≤ min{m11, n11},

Υ0 +Υ2 ≤ min{m22, n22},

Υ0 +Υ1 +Υ2 ≤ min{µm, µn}
}

(63)

Here we used subscriptsm and n to denoteλ and µ parameters of the first and the second layer of

the network, respectively. Applying Fourier-Motzkin elimination on this set to project it on the(R1, R2)

plane, gives us the rate region claimed in the theorem.

VIII. D ISCUSSION

Interference management is perhaps the most fundamental open problem in wireless networks. The

recent progress in (approximate) characterization of the interference channel capacity and the utility of

the deterministic approach inspired the questions studiedin this paper. Even though the interference-relay

networks studied in this work were special, they revealed several new features needed for information

transmission. In particular, the interference neutralization and network flow decomposition techniques

were uncovered through the study ofZZ andZS networks. We also saw the importance of using structured

lattice codes for interference neutralization. Moreover,we believe that the neutralization technique is

robust to channel uncertainties and one could get partial neutralization in such situations. This is a topic

of ongoing work on this topic. We also believe that the outer bounding techniques developed in this

work could have more general applicability in the wireless multiple-unicast problem. The two-unicast

problem in arbitrary layered wireless networks would be a natural next step arising out of our work. The

deterministic approach for this problem has already provided some interesting new techniques [17]. In

summary we believe that the deterministic approach is a promising methodology to make progress on

the wireless multiple-unicast problem.
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APPENDIX A

THE GAUSSIAN ZS NETWORK

A.1 The Outer Bound

In the following we will prove each of the inequalities in (GZS-1)-(GZS-10), separately. We will use

the notation as shown in Figure 15, and assume that the rate pair (R1, R2) can be achieved with small

enough decoding error probability using a code of lengthℓ.

S1

S2

A

B

D1

D2

√
g11

√
h11

√
g22

√
h22

√
g12

√
h21

x1

x2

y′1

y′2

x′1

x′2

y1

y2

z′1

z′2

z1

z2

Fig. 15. The GaussianZS network.

Lemma 6: Any achievable rate pair(R1, R2) satisfies

ℓR1 ≤ I(xℓ1; y
ℓ
1) + ℓεℓ, (A.1)

ℓR2 ≤ I(xℓ2; y
ℓ
2) + ℓεℓ, (A.2)

ℓ(R1 +R2) ≤ I(xℓ1, x
ℓ
2; y

ℓ
1, y

ℓ
2) + ℓεℓ. (A.3)

Note thatεℓ → 0 asℓ grows.

This lemma is a consequence of the Fano’s lemma combined withthe decodability requirements imposed

by the problem, and its proof is given in Appendix C.

Most of the inequalities in (GZS-1)-(GZS-10) are cut-set type bounds, although the proof presented

here are slightly different than the standard argument. However, the sum-rate bounds in (GZS-3) and

(GZS-10) are different from the well known cut-set bounds. Thesetwo bounds are in general tighter

than the cut values for the corresponding cuts. This is because the decoders are inherently allowed to

cooperate in deriving a cut-set bound, while individual decoding abilities are imposed in this problem. In

the following we first present the proofs of (GZS-3) and (GZS-10), which are more involved, and then

prove the cut-set type bounds.
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a) The proofs of non-cut-set type bounds:

• (GZS-3) R1+R2 <
1
2 log(1+g11+g12)+

1
2 log

(

1 + g22
g12

)

: We start with Lemma 6 for the sum-rate

which implies

ℓ(R1 +R2) ≤ I(xℓ1, x
ℓ
2; y

ℓ
1, y

ℓ
2) + ℓεℓ

≤ I(xℓ1, x
ℓ
2; y

′ℓ
1 , y

′ℓ
2 ) + ℓεℓ (A.4)

= I(xℓ1, x
ℓ
2; y

′ℓ
1 ) + I(xℓ1, x

ℓ
2; y

′ℓ
2 |y

′ℓ
1 ) + ℓεℓ

≤ ℓ

2
log(1 + g11 + g12) + h(y

′ℓ
2 |y

′ℓ
1 )− h(y

′ℓ
2 |y

′ℓ
1 , x

ℓ
1, x

ℓ
2) + ℓεℓ, (A.5)

where (A.4) follows from the data processing inequality. Now, note that

h(y
′ℓ
2 ,W1|y

′ℓ
1 ) = h(y

′ℓ
2 |y

′ℓ
1 ) +H(W1|y

′ℓ
1 , y

′ℓ
2 )

= H(W1|y
′ℓ
1 ) + h(y

′ℓ
2 |W1, y

′ℓ
1 )

≤ H(W1|yℓ1) + h(y
′ℓ
2 |W1, y

′ℓ
1 ).

Therefore,

h(y
′ℓ
2 |y

′ℓ
1 ) ≤ h(y

′ℓ
2 |W1, y

′ℓ
1 ) + ℓεℓ

≤ h(y
′ℓ
2 |xℓ1, y

′ℓ
1 ) + ℓεℓ (A.6)

= h(y
′ℓ
2 |xℓ1,

√
g12x

ℓ
2 + z

′ℓ
1 ) + ℓεℓ (A.7)

≤ h(
√
g22x

ℓ
2 + z

′ℓ
2 |
√
g12x

ℓ
2 + z

′ℓ
1 ) + ℓεℓ

= h(
√
g22x

ℓ
2 + z

′ℓ
2 −

√
g22√
g12

(
√
g12x

ℓ
2 + z

′ℓ
1 )|

√
g12x

ℓ
2 + z

′ℓ
1 ) + ℓεℓ

≤ h(z
′ℓ
2 −

√
g22√
g12

z
′ℓ
1 ) + ℓεℓ

=
ℓ

2
log(2πe)

(

1 +
g22
g12

)

+ ℓεℓ, (A.8)

where (A.6) holds sincexℓ1 is a function ofW1, and in (A.7) we used the invertibility property of

the functionyℓ1 =
√
g11x

ℓ
1 +

√
g12x

ℓ
2 + z

′ℓ
1 . Replacingh(y

′ℓ
2 |y

′ℓ
1 ) from (A.8) in (A.5), we get the

desired bound.

• (GZS-10) R1 + R2 <
1
2 log

(

1 + h11

h21

)

+ ℓ
2 log(1 + h21 + h22 + 2

√
h21h22): The sum-rate can be
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upper bounded as in Lemma 6. Next, we have

ℓ(R1 +R2) ≤ I(xℓ1, x
ℓ
2; y

ℓ
1, y

ℓ
2) + ℓεℓ

≤ I(x
′ℓ
1 , x

′ℓ
2 ; y

ℓ
1, y

ℓ
2) + ℓεℓ

= I(x
′ℓ
1 , x

′ℓ
2 ; y

ℓ
2) + I(x

′ℓ
2 ; y

ℓ
1|yℓ2) + I(x

′ℓ
1 ; y

ℓ
1|x

′ℓ
2 , y

ℓ
2) + ℓεℓ. (A.9)

The first term in (A.9) can be simply upper bounded as

I(x
′ℓ
1 , x

′ℓ
2 ; y

ℓ
2) ≤

ℓ

2
log(1 + h21 + h22 + 2

√

h21h22). (A.10)

In order to bound the second term, we can use the fact thatW2 can be decoded fromyℓ2, and write

I(x
′ℓ
2 ; y

ℓ
1,W2|yℓ2) = I(x

′ℓ
2 ; y

ℓ
1|yℓ2) + I(x

′ℓ
2 ;W2|yℓ1, yℓ2)

= I(x
′ℓ
2 ; y

ℓ
1|W2, y

ℓ
2) + I(x

′ℓ
2 ;W2|yℓ2)

≤ I(x
′ℓ
2 ; y

ℓ
1|W2, y

ℓ
2) +H(W2|yℓ2)

≤ I(x
′ℓ
2 ; y

ℓ
1|yℓ2,W2) + ℓεℓ.

Therefore,

I(x
′ℓ
2 ; y

ℓ
1|yℓ2) ≤ I(x

′ℓ
2 ; y

ℓ
1|yℓ2,W2) + ℓεℓ ≤ I(y

′ℓ
2 ; y

ℓ
1|yℓ2,W2) + ℓεℓ = ℓεℓ, (A.11)

where the second inequality follows from the fact thatx
′ℓ
2 is a function ofy

′ℓ
2 , and (A.11) holds

sincey
′ℓ
2 andyℓ1 are independent ifW2 is given.

Finally, we bound the last term as follows.

I(x
′ℓ
1 ; y

ℓ
1|x

′ℓ
2 , y

ℓ
2) = I(x

′ℓ
1 ; y

ℓ
1|x

′ℓ
2 ,

√

h21x
′ℓ
1 + zℓ2)

= h(
√

h11x
′ℓ
1 + zℓ1|x

′ℓ
2 ,

√

h21x
′ℓ
1 + zℓ2)− h(yℓ1|x

′ℓ
2 ,

√

h21x
′ℓ
1 + zℓ2, x

′ℓ
1 )

≤ h(
√

h11x
′ℓ
1 + zℓ1 −

√
h11√
h21

(
√

h21x
′ℓ
1 + zℓ2))− h(zℓ1)

≤ ℓ

2
log

(

1 +
h11
h12

)

. (A.12)

Replacing the bound derived for the three terms, (A.10), (A.11), and (A.12) in (A.9), we get the

desired bound.
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b) The proofs of cut-set type bounds:

• (GZS-1) R1 <
1
2 log(1 + g11): We start by Lemma 6, and write

ℓR1 = I(xℓ1; y
ℓ
1) + ℓεℓ

≤ I(xℓ1; y
′ℓ
1 ) + ℓεℓ (A.13)

≤ I(xℓ1;x
ℓ
2, y

′ℓ
1 ) + ℓεℓ

= I(xℓ1;x
ℓ
2) + I(xℓ1; y

′ℓ
1 |xℓ2) + ℓεℓ (A.14)

≤ ℓ

2
log(1 + g11) + ℓεℓ (A.15)

where (A.13) follows from the data-processing inequality for the Markov chainxℓ1 ↔ y
′ℓ
1 ↔ x

′ℓ
1 ↔

yℓ1, and in (A.14) we used the fact thatxℓ1 andxℓ2 are independent. It is worth mentioning that this

inequality essentially bounds the maximum flow that can be transmitted through the cutΩs = {S1}
andΩd = {S2, A,B,D1,D2}.

• (GZS-2) R2 <
1
2 log(1 + g12 + g22): Again starting from Lemma 6, we have

ℓR2 ≤ I(xℓ2; y
ℓ
2) + ℓεℓ

≤ I(xℓ2; y
′ℓ
1 , y

′ℓ
2 ) + ℓεℓ (A.16)

≤ I(xℓ2;x
ℓ
1, y

′ℓ
1 , y

′ℓ
2 ) + ℓεℓ

= I(xℓ2;x
ℓ
1) + I(xℓ2; y

′ℓ
1 , y

′ℓ
2 |xℓ1) + ℓεℓ

= h(y
′ℓ
1 , y

′ℓ
2 |xℓ1)− h(y

′ℓ
1 , y

′ℓ
2 |xℓ1, xℓ2) + ℓεℓ

≤ h(
√
g12x

ℓ
2 + z

′ℓ
1 ,

√
g22x

ℓ
2 + z

′ℓ
2 )− h(z

′ℓ
1 , z

′ℓ
2 ) + ℓεℓ

≤ ℓ

2
log(1 + g12 + g22) + ℓεℓ, (A.17)

where the data processing inequality implies (A.16) for theMarkov chainxℓ2 ↔ (y
′ℓ
1 , y

′ℓ
2 ) ↔

(x
′ℓ
1 , x

′ℓ
2 ) ↔ yℓ1. Note that this bound is essentially the cut-set bound for the cutΩs = {S2} and

Ωd = {S1, A,B,D1,D2}.
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• (GZS-4) R2 <
1
2 log(1 + g12) +

1
2 log(1 + h22): Again we use Lemma 6 to upper boundR2 as

ℓR2 ≤ I(xℓ2; y
ℓ
2) + ℓεℓ

≤ I(x
′ℓ
2 , x

ℓ
2;x

ℓ
1, y

′ℓ
1 , y

ℓ
2) + ℓεℓ

= I(x
′ℓ
2 , x

ℓ
2;x

ℓ
1) + I(x

′ℓ
2 , x

ℓ
2; y

′ℓ
1 , y

ℓ
2|xℓ1) + ℓεℓ

= I(x
′ℓ
2 , x

ℓ
2; y

′ℓ
1 |xℓ1) + I(x

′ℓ
2 , x

ℓ
2; y

ℓ
2|xℓ1, y

′ℓ
1 ) + ℓεℓ

= I(xℓ2; y
′ℓ
1 |xℓ1) + I(x

′ℓ
2 ; y

′ℓ
1 |xℓ1, xℓ2) + I(x

′ℓ
2 ; y

ℓ
2|xℓ1, y

′ℓ
1 ) + I(xℓ2; y

ℓ
2|xℓ1, y

′ℓ
1 , x

′ℓ
2 ) + ℓεℓ (A.18)

= I(xℓ2; y
′ℓ
1 |xℓ1) + I(x

′ℓ
2 ; y

ℓ
2|xℓ1, y

′ℓ
1 ) + ℓεℓ

≤ ℓ

2
log(1 + g12) +

ℓ

2
log(1 + h22) + ℓεℓ. (A.19)

Note that we used the fact that the second and fourth terms in (A.18) are zero. This follows from

I(x
′ℓ
2 ; y

′ℓ
1 |xℓ1, xℓ2) ≤ I(x

′ℓ
2 ; y

′ℓ
1 −√

g11x
ℓ
1 −

√
g12x

ℓ
2|xℓ1, xℓ2) = I(x

′ℓ
2 ; z

′ℓ
1 |xℓ1, xℓ2) = 0,

and

I(xℓ2; y
ℓ
2|xℓ1, y

′ℓ
1 , x

′ℓ
2 ) ≤ I(xℓ2; y

ℓ
2|xℓ1, x

′ℓ
1 , x

′ℓ
2 )

≤ I(xℓ2; y
ℓ
2 −

√

h21x
′ℓ
1 −

√

h22x
′ℓ
2 |xℓ1, x

′ℓ
1 , x

′ℓ
2 )

≤ I(xℓ2; z
ℓ
2|xℓ1, x

′ℓ
1 , x

′ℓ
2 ) = 0.

• (GZS-5) R1 +R2 <
1
2 log(1 + g22) +

1
2 log(1 + h11 + h21):

We start from Lemma 6 and write

ℓ(R1 +R2) ≤ I(yℓ1, y
ℓ
2;x

ℓ
1, x

ℓ
2) + ℓεℓ (A.20)

≤ I(yℓ1, y
ℓ
2;x

′ℓ
1 , x

ℓ
2) + ℓεℓ

≤ I(yℓ1, y
ℓ
2, y

′ℓ
2 ;x

′ℓ
1 , x

ℓ
2) + ℓεℓ

= I(y
′ℓ
2 ;x

ℓ
2) + I(y

′ℓ
2 ;x

′ℓ
1 |xℓ2) + I(yℓ1, y

ℓ
2;x

′ℓ
1 , x

ℓ
2|y

′ℓ
2 ) + ℓεℓ

= I(y
′ℓ
2 ;x

ℓ
2) + I(yℓ1, y

ℓ
2;x

′ℓ
1 , x

ℓ
2|x

′ℓ
2 ) + ℓεℓ

= I(y
′ℓ
2 ;x

ℓ
2) + h(yℓ1, y

ℓ
2|x

′ℓ
2 )− h(yℓ1, y

ℓ
2|xℓ2, x

′ℓ
1 , x

′ℓ
2 ) + ℓεℓ

≤ I(y
′ℓ
2 ;x

ℓ
2) + h(

√

h11x
′ℓ
1 + zℓ1,

√

h21x
′ℓ
1 + zℓ2)− h(zℓ1, z

ℓ
2) + ℓεℓ

≤ ℓ

2
log(1 + g22) +

ℓ

2
log(1 + h11 + h21) + ℓεℓ (A.21)
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where (A.20) follows from the data processing inequality for the Markov chain(xℓ1, x
ℓ
2) ↔ (y

′ℓ
1 , y

′ℓ
2 ) ↔

(x
′ℓ
1 , x

′ℓ
2 ) ↔ (yℓ1, y

ℓ
2). Note that this bound essentially captures the maximum flow of information

through the cutΩs = {S1, S2, A} andΩd = {B,D1,D2}.

• (GZS-6) R1 +R2 <
1
2 log(1 + g11 + g12) +

1
2 log(1 + h22):

Similar to the previous bounds, we start from Lemma 6 and write

R1 +R2 ≤ I(yℓ1, y
ℓ
2;x

ℓ
1, x

ℓ
2) + ℓεℓ

≤ I(y
′ℓ
1 , y

ℓ
2;x

ℓ
1, x

ℓ
2) + ℓεℓ (A.22)

≤ I(y
′ℓ
1 , y

ℓ
2;x

ℓ
1, x

ℓ
2, x

′ℓ
2 ) + ℓεℓ

= I(y
′ℓ
1 ;x

ℓ
1, x

ℓ
2) + I(y

′ℓ
1 ;x

′ℓ
2 |xℓ1, xℓ2) + I(yℓ2;x

′ℓ
2 |y

′ℓ
1 ) + I(yℓ2;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , x

′ℓ
2 ) + ℓεℓ (A.23)

= I(y
′ℓ
1 ;x

ℓ
1, x

ℓ
2) + I(yℓ2;x

′ℓ
2 |y

′ℓ
1 ) + ℓεℓ

≤ ℓ

2
log(1 + g11 + g12) + I(yℓ2;x

′ℓ
2 |y

′ℓ
1 ) + ℓεℓ. (A.24)

Note that in (A.22) we used the data processing inequality. An argument similar to that is used in

the proof of (GZS-4) shows that the second and fourth terms in (A.23) are zero.Now, we have

I(yℓ2;x
′ℓ
2 |y

′ℓ
1 ) = h(yℓ2|y

′ℓ
1 )− h(yℓ2|x

′ℓ
2 , y

′ℓ
1 )

≤ h(yℓ2|x
′ℓ
1 )− h(yℓ2|x

′ℓ
1 , x

′ℓ
2 , y

′ℓ
1 )

= h(
√

h22x
′ℓ
2 + zℓ2|x

′ℓ
1 )− h(zℓ2|x

′ℓ
1 , x

′ℓ
2 , y

′ℓ
1 )

≤ h(
√

h22x
′ℓ
2 + zℓ2)− h(zℓ2)

≤ ℓ

2
log(1 + h22) (A.25)

Finally, we obtain the desired bound by replacing (A.25) in (A.24). It is worth mentioning that this

bound is the same as the cut-set bound for the cutΩs = {S1, S2, B} andΩd = {A,D1,D2}.

• (GZS-7) R1 <
1
2 log(1 + h11): Using Lemma 6 and the data processing inequality, we can write

ℓR1 ≤ I(x
′ℓ
1 ; y

ℓ
1) + ℓεℓ ≤ I(x

′ℓ
1 ; y

ℓ
1) + ℓεℓ ≤

ℓ

2
log(1 + h11) + ℓεℓ. (A.26)

• (GZS-8) R2 <
1
2 log(1 + h21 + h22 + 2

√
h21h22): Starting from Lemma 6 and applying the data

processing inequality for the Markov chainxℓ2 ↔ (y
′ℓ
1 , y

′ℓ
2 ) ↔ (x

′ℓ
1 , x

′ℓ
2 ) ↔ yℓ2, we have

ℓR2 ≤ I(xℓ2; y
ℓ
2) + ℓεℓ ≤ I(x

′ℓ
1 , x

′ℓ
2 ; y

ℓ
2) + ℓεℓ ≤

ℓ

2
log(1 + h21 + h22 + 2

√

h21h22) + ℓεℓ. (A.27)

Note thatx
′ℓ
1 andx

′ℓ
2 are not independent. However, their variance is upper bounded by (

√
h21 +

√
h22)

2.
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• (GZS-9) R2 <
1
2 log(1+ g22)+

1
2 log(1+ h21): Consider the cut which partitions the network into

Ωs = {S1, S2, A,D1} andΩd = {B,D2}. We have

ℓR2 ≤ I(xℓ2; y
ℓ
2) + ℓεℓ

≤ I(x
′ℓ
1 , x

ℓ
2; y

′ℓ
2 , y

ℓ
2) + ℓεℓ

= I(xℓ2; y
′ℓ
2 ) + I(x

′ℓ
1 ; y

′ℓ
2 |xℓ2) + I(x

′ℓ
1 ; y

ℓ
2|y

′ℓ
2 ) + I(xℓ2; y

ℓ
2|y

′ℓ
2 , x

′ℓ
1 ) + ℓεℓ (A.28)

= I(xℓ2; y
′ℓ
2 ) + I(x

′ℓ
1 ; y

ℓ
2|y

′ℓ
2 ) + ℓεℓ

= I(xℓ2; y
′ℓ
2 ) + I(x

′ℓ
1 ; y

ℓ
2|y

′ℓ
2 , x

′ℓ
2 ) + ℓεℓ

≤ ℓ

2
log(1 + g22) +

ℓ

2
log(1 + h21) + ℓεℓ. (A.29)

We again used an argument similar to that is used in proof of (GZS-4) to show that the second and

fourth terms in (A.28) are zero.

This completes the proof of the outer bound in Theorem 2.

A.2 The Achievability Part

In this section we provide an encoding scheme for the Gaussian ZS network, and show that the rate

region that can be achieved using this scheme is only a constant bit gap away from the outer bound.

Large Channel Gains:In this part, we assume that all channel gains are at least1, i.e., gij ≥ 1,

andhij ≥ 1. Note that if any of the gains are small, then either one of therates are small (of the order

of our constant bit gap), or the cross links are negligible. We will discuss these cases later.

The encoding scheme proposed for the GaussianZS network consists of two separate parts. We first

split the message of the second source nodes asW1 = U
(1)
1 andW2 = (U

(1)
2 , U

(2)
2 , U

(3)
2 ), whereU (1)

2

can be decoded at both relay nodesA andB, andU (2)
2 andU (3)

2 can be decoded only atA andB,

respectively (see Figure 10). Denoting the rate of messageW
(j)
i by Υi,j, the following rate constraints

are imposed by this message splitting

R1 = Υ1,1, (A.30)

R2 = Υ2,1 +Υ2,2 +Υ2,3. (A.31)

An achievable rate region for this message splitting is given in Lemma 1.

In the second layer of the network (see Figure 11), relay nodeA further splits its messages as follows:

W1 = U
(1)
1 =

(

V
(1)
1 , V

(2)
1

)

, U (1)
2 =

(

V
(1)
2 , V

(2)
2

)

, andU (2)
2 =

(

V
(3)
2 , V

(4)
2

)

. A similar message splitting
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is also performed at nodeB to obtainU (1)
2 =

(

V
(1)
2 , V

(2)
2

)

andU (3)
2 = V

(5)
2 . This message splitting

imposes the following rate equations

Υ1,1 = Θ1,1 +Θ1,2, (A.32)

Υ2,1 = Θ2,1 +Θ2,2, (A.33)

Υ2,2 = Θ2,3 +Θ2,4, (A.34)

Υ2,3 = Θ2,5, (A.35)

whereΘi,j denotes the rate of the messageV (j)
i . Next, the relay nodes have to convey the messages to

the destination nodes such thatD1 can decodeV (1)
1 , V (2)

1 , V (1)
2 and V (3)

2 , andD2 be able to decode

V
(1)
1 , V (1)

2 , V (2)
2 , V (3)

2 , V (4)
2 andV (5)

2 . An achievable rate region for this transmission scenario is given

in Lemma 2.

Putting the rate constraints in Lemma 1 and Lemma 2 together with the equations in (A.30)-(A.31)
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and (A.32)-(A.35), we obtain the following achievable rateregion for the GaussianZS network.

RGZS
ach =

{

(R1, R2) : ∃Υ1,1,Υ2,1,Υ2,2,Υ2,3,Θ1,1,Θ1,2,Θ2,1,Θ2,2,Θ2,3,Θ2,4,Θ2,5 ≥ 0, (A.36)

R1 = Υ1,1,

R2 = Υ2,1 +Υ2,2 +Υ2,3,

Υ1,1 = Θ1,1 +Θ1,2,

Υ2,1 = Θ2,1 +Θ2,2,

Υ2,2 = Θ2,3 +Θ2,4,

Υ2,3 = Θ2,5,

Υ1,1 ≤
(
1

2
log (1 + g11)−

1

2

)+

,

Υ2,2 ≤
(
1

2
log

(

1 +
g12
g22

)

− 1

2

)+

,

Υ2,1 +Υ2,2 ≤
(
1

2
log (1 + g12)−

1

2

)+

,

Υ1,1 +Υ2,1 +Υ2,2 ≤
(
1

2
log (1 + g11 + g12)−

1

2

)+

,

Υ2,3 ≤
(
1

2
log

(

1 +
g22
g12

)

− 1

2

)+

,

Υ2,1 +Υ2,3 ≤
(
1

2
log (1 + g22)−

1

2

)+

,

Θ1,1 +Θ1,2 +Θ2,1 +Θ2,3 ≤
(
1

2
log (1 + h11)−

1

2

)+

,

Θ1,2 ≤
(
1

2
log

(

1 +
h11
h12

)

− 1

2

)+

,

Θ2,4 ≤
(
1

2
log

(

1 +
h21
h11

)

− 1

2

)+

,

Θ1,1 +Θ2,3 +Θ2,4 ≤
(
1

2
log (1 + h21)−

1

2

)+

,

Θ2,5 ≤
(
1

2
log (1 + h22)−

1

2

)+

,

Θ1,1 +Θ2,1 +Θ2,2 +Θ2,3 +Θ2,4 +Θ2,5 ≤
(
1

2
log (1 + h21 + h22)−

1

2

)+ }

.

We apply the Fourier-Motzkin elimination on this region, toproject it on the coordinatedR1 andR2,

and obtain the following rate region. After some simplifications, we get
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RGZS
ach =

{

(R1, R2) :R1 ≤
(
1

2
log (g11)−

1

2

)+

,

R2 ≤
(
1

2
log (g12 + g22)−

1

2

)+

,

R1 +R2 ≤
(
1

2
log (g11 + g12) +

1

2
log

(
g22
g12

)

− 1

2

)+

,

R2 ≤
(
1

2
log (g12) +

1

2
log (h22)−

1

2

)+

,

R1 +R2 ≤
(
1

2
log (g22) +

1

2
log (h11 + h21)−

1

2

)+

,

R1 +R2 ≤
(
1

2
log (g11 + g12) +

1

2
log (h22)−

1

2

)+

,

R1 ≤
(
1

2
log (h11)−

1

2

)+

,

R2 ≤
(
1

2
log (h21 + h22)−

1

2

)+

,

R2 ≤
(
1

2
log (g22) +

1

2
log (h21)−

1

2

)+

,

R1 +R2 ≤
(
1

2
log (h21 + h22) +

1

2
log

(
h11
h21

)

− 1

2

)+ }

.

Note that this rate region is characterized by a set of constraints which are similar to the inequalities

in the definition ofRGZS, except for the additive constants, and the fact thatlog(1 + x) is replaced by

log(x). Note that sincex ≥ 1, we have

1

2
log(1 + x)− 1

2
log(x) ≤ 1

2
. (A.37)

Hence, the difference between the RHS’s of two sets of inequalities do not exceed1 for R1, and3/2 for

R2 andR1 + R2. Therefore, for any rate pair(R1, R2) ∈ RGZS, we have(R1 − 1, R2 − 1.5) ∈ RGZS
ach .

This completes the proof.

Small Channel Gains:We will show in this part that if any of the channel gains are small, then the

outer bound in Theorem 2 is still within a constant bit gap of an achievable rate region. This argument is

based on the analysis of the same network, in which all the links with gain smaller than1 are removed.

One can show that the capacity region of this modified networkis within a constant gap from that of

the original one. On the other hand, we can argue that the gap between the achievable rate pairs of

the modified network and the outer bound in Theorem 2 is bounded by a constant. Therefore, we can
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conclude that if(R1, R2) ∈ RGZS then(R1 − δ1, R2 − δ2) is achievable for the original network, where

δ1 = 1 andδ2 = 1.5.

The main intuition behind this argument is the fact that since all the nodes are assumed to have power

constraint equal to1, the flow of information through a link with gain not exceeding 1 is upper bounded

by 1
2 log(1 + SNR) ≤ 1

2 log(1 + 1) = 1
2 bit. Therefore, by removing such links from the network, the

achievable rates change by at most1
2 bit. On the other hand, the incoming signals over small channel

gains may act as an interference on the original network, which cause a total noise power not exceeding

1. Therefore, by doubling the noise variances of the originalnetwork, we guarantee that capacity region

of the modified network is always smaller than that of the original one.

The advantage of analyzing the modified network instead of the original one is that some of the links

are removed in the modified network, which convert it to simpler network to analyze.

A precise analysis of the modified networks requires considering several cases separately. However,

similar techniques and ideas will be used for all cases. In the following we present one illustrating

example, and skip the details for the other cases.

Example 5:Consider the GaussianZS network in Figure 3(a), and assume thatg12 = 0. Therefore,

the first layer of the network would be two parallel links as shown in Figure 16, whereE[z̃
′2
1 ] = 2.

Moreover, the rate region in (GZS-1)-(GZS-10) will be reduced to

S1

S2

A

B

D1

D2

√
g11

√
h11

√
g22

√
h22

√
h21

x1

x2

y′1

y′2

x′1

x′2

y1

y2

z̃′1

z′2

z1

z2

Fig. 16. A modifiedZS network obtained assumingg12 = 0.
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R1 ≤
1

2
log(1 + g11) (A.38)

R2 ≤
1

2
log(1 + g12) (A.39)

R1 ≤
1

2
log(1 + h11) (A.40)

R2 ≤
1

2
log(1 + h22) (A.41)

R1 +R2 ≤
1

2
log(1 + h21 + h22 + 2

√

h21h22) +
1

2
log

(

1 +
h11
h21

)

. (A.42)

The encoding strategy for this network is fairly simple. Let(R1, R2) be a rate pair satisfying (A.38)-

(A.42). The goal is to show that(R1 − 1, R2 − 1) is achievable. Since(R1 − 1, R2 − 1) satisfies (A.38)

and (A.39), transmission over the first layer of the network from the source nodes to the relays is simply

done using random Gaussian codes.

The second layer of the network is a GaussianS network. Once the relays decode the messages received

from the first layer of the network, they encode them using an encoding strategy similar to that of the

Z network in Example 4 in Section III. Note that the sum-rate bounds in (A.42) and the outer bound of

the S network are slightly different. However, their differenceis upper bounded by

1

2
log(1 + h21 + h22 + 2

√

h21h22)−
1

2
log(1 + h21 + h22) =

1

2
log

(

1 +
2
√
h21h22

1 + h21 + h22

)

<
1

2
log(1 + 1) =

1

2
. (A.43)

Therefore, the loss caused by this difference is at most1
2 bit, and(R1 − 1, R2 − 1) would be achievable.

On the other hand, as we argued before, the capacity of the modified network is an inner bound for the

original one, and hence,(R1 − 1, R2 − 1) is achievable for theZS network as well.

APPENDIX B

THE GAUSSIAN ZZ NETWORK

B.1 The Outer Bound

In the following we present the proof for each of the inequalities in (GZZ1)-(GZZ6), separately. We

again present the GaussianZZ network in Figure 17, to clarify the notation used in the proof. In particular,

we use two variables, which are the noisy signals received atA andD1 through the cross links assuming

the direct links were absent, namely,

γ1 =
√
g12x2 + z′1,

γ2 =
√

h12x
′
2 + z1.
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Note thaty′1 =
√
g11x1 + γ1 andy1 =

√
h11x

′
1 + γ2.

Suppose that the rate pair(R1, R2) is achieved with a small decoding error probabilityεℓ using a code

of length ℓ. The following chains of inequalities provide upper boundson the individual rates as well

as the sum-rate. We again use Lemma 6, which essentially captures the decodability requirements of the

network.

S1

S2

A

B

D1

D2

√
g11

√
h11

√
g22

√
h22

√
g12

√
h12

x1

x2

y′1

y′2

x′1

x′2

y1

y2

z′1

z′2

z1

z2

γ1 γ2

Fig. 17. The GaussianZZ network.

The individual rate bounds in (GZZ1)-(GZZ4) have the same structure as the cut-set bound, although

we derive them through a slightly different argument. However, the two sum-rate bounds in (GZZ5)

and (GZZ6) are conceptually different than the cut-set bounds. These two bounds which are tighter than

cut-set bounds are derived through a genie-aided argument;that is, we assume that the signal sent over

the cross link of one layer is given by a genie to the receiver of the other layer (relay nodeA in layer 1

and destination nodeD1 in layer 2). Therefore, we present the proofs of (GZZ5) and (GZZ6) first. The

more standard cut-set type bounds are provided later for completeness.

a) The proof of the genie-aided bounds:

• (GZZ5) R1 + R2 ≤ 1
2 log(1 + g11 + g12) +

1
2 log

(

1 + g22
g12

)

+ 1
2 log(1 + h12): We start with the
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sum-rate inequality in Lemma 6, and write

ℓ(R1 +R2) ≤ I(yℓ1, y
ℓ
2;x

ℓ
1, x

ℓ
2) + ℓεℓ

≤ I(y
′ℓ
1 , y

′ℓ
2 ;x

ℓ
1, x

ℓ
2) + ℓεℓ

≤ I(y
′ℓ
1 , y

′ℓ
2 , γ

ℓ
2;x

ℓ
1, x

ℓ
2) + ℓεℓ

= I(y
′ℓ
1 , γ

ℓ
2;x

ℓ
1, x

ℓ
2) + I(y

′ℓ
2 ;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2) + ℓεℓ

≤ I(y
′ℓ
1 , γ

ℓ
2;x

ℓ
1, x

ℓ
2) + I(y

′ℓ
2 , γ

ℓ
1;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2) + ℓεℓ

= I(y
′ℓ
1 , γ

ℓ
2;x

ℓ
1, x

ℓ
2) + I(γℓ1;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2) + I(y

′ℓ
2 ;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2) + ℓεℓ

= I(y
′ℓ
1 , γ

ℓ
2;x

ℓ
1, x

ℓ
2) + I(γℓ1;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2) + I(y

′ℓ
2 ;x

ℓ
2|y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2) + I(y

′ℓ
2 ;x

ℓ
1|xℓ2, y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2) + ℓεℓ.

(B.1)

Each of the terms in (B.1) can be bounded as follows. In order to bound the first term, we can

simply write

I(y
′ℓ
1 , γ

ℓ
2;x

ℓ
1, x

ℓ
2) = I(γℓ2;x

ℓ
1, x

ℓ
2) + I(y

′ℓ
1 ;x

ℓ
1, x

ℓ
2|γℓ2)

= I(γℓ2;x
ℓ
1, x

ℓ
2) + h(y

′ℓ
1 |γℓ2)− h(y

′ℓ
1 |xℓ1, xℓ2, γℓ2)

≤ I(γℓ2;x
ℓ
1, x

ℓ
2) + h(y

′ℓ
1 )− h(y

′ℓ
1 |xℓ1, xℓ2) (B.2)

= I(γℓ2;x
ℓ
1, x

ℓ
2) + I(y

′ℓ
1 ;x

ℓ
1, x

ℓ
2)

≤ I(γℓ2;x
′ℓ
2 ) + I(y

′ℓ
1 ;x

ℓ
1, x

ℓ
2) (B.3)

=
ℓ

2
log(1 + h12) +

ℓ

2
log(1 + g11 + g12), (B.4)

where in (B.2) we have used the fact that conditioning decreases the entropy, and the Markov chain

γℓ2 ↔ x
′ℓ
2 ↔ y

′ℓ
2 ↔ (xℓ1, x

ℓ
2) ↔ y

′ℓ
1 . Also (B.3) follows from the same Markov chain.

For the second term, we can write

I(γℓ1;x
ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2) = I(y

′ℓ
1 − γℓ1;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2)

= I(
√
g11x

ℓ
1;x

ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2)

≤ I(W1;x
ℓ
1, x

ℓ
2|y

′ℓ
1 , γ

ℓ
2)

≤ H(W1|y
′ℓ
1 , γ

ℓ
2)

≤ H(W1|yℓ1) ≤ ℓεℓ, (B.5)

where the last inequality holds sinceyℓ1 =
√
h11x

′ℓ
1 + γℓ2 = f1(y

′ℓ
1 ) + γℓ2 = f2(y

′ℓ
1 , γ

ℓ
2).
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In order to bound the third term in (B.1) we can write

I(y
′ℓ
2 ;x

ℓ
2|y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2) = h(xℓ2|y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2)− h(xℓ2|y

′ℓ
1 , y

′ℓ
2 , γ

ℓ
1, γ

ℓ
2)

≤ h(xℓ2|γℓ1)− h(xℓ2|y
′ℓ
1 , y

′ℓ
2 , γ

ℓ
1, γ

ℓ
2) (B.6)

= h(xℓ2|γℓ1)− [h(xℓ2, t
ℓ
1|y

′ℓ
1 , y

′ℓ
2 , γ

ℓ
2)− h(tℓ1|y

′ℓ
1 , y

′ℓ
2 , γ

ℓ
2)]

= h(xℓ2|γℓ1)− [h(xℓ2, t
ℓ
1|y

′ℓ
1 , y

′ℓ
2 )− h(tℓ1|y

′ℓ
1 , y

′ℓ
2 )] (B.7)

= h(xℓ2|γℓ1)− h(xℓ2|y
′ℓ
1 , y

′ℓ
2 , γ

ℓ
1)

= h(xℓ2|γℓ1)− h(xℓ2|xℓ1, y
′ℓ
2 , γ

ℓ
1) (B.8)

= h(xℓ2|γℓ1)− [h(xℓ2|y
′ℓ
2 , γ

ℓ
1) + h(xℓ1|xℓ2, y

′ℓ
2 , γ

ℓ
1)− h(xℓ1|y

′ℓ
2 , γ

ℓ
1)]

= h(xℓ2|γℓ1)− h(xℓ2|y
′ℓ
2 , γ

ℓ
1) (B.9)

= I(y
′ℓ
2 ;x

ℓ
2|γℓ1)

= h(y
′ℓ
2 |γℓ1)− h(y

′ℓ
2 |γℓ1, xℓ2)

= h(y
′ℓ
2 |γℓ1)− h(y

′ℓ
2 |xℓ2) (B.10)

= h(y
′ℓ
2 −

√
g22
g12

γℓ1|γℓ1)− h(y
′ℓ
2 −√

g22x
ℓ
2|xℓ2)

= h(z
′ℓ
2 −

√
g22
g12

z
′ℓ
1 |γℓ1)− h(z

′ℓ
2 |xℓ2)

≤ h(z
′ℓ
2 −

√
g22
g12

z
′ℓ
1 )− h(z

′ℓ
2 ) (B.11)

=
ℓ

2
log

(

1 +
g22
g12

)

, (B.12)

where in (B.6) we have used the fact that conditioning reduces the differential entropy, and (B.7)

holds due to the Markov chain(xℓ2, t
ℓ
1) ↔ (y

′ℓ
1 , y

′ℓ
2 ) ↔ γℓ2. Then in (B.8) we replaced(y

′ℓ
1 , γ

ℓ
1) by

(xℓ1, γ
ℓ
1) since there is an one-to-one map,y

′ℓ
1 =

√
g11x

ℓ
1 + tℓ1, between these joint variables, and

in (B.9) we used the fact thatxℓ1 is independent of(xℓ2, y
′ℓ
2 , t

ℓ
1) to concludeh(xℓ1|xℓ2, y

′ℓ
2 , γ

ℓ
1) =

h(xℓ1|y
′ℓ
2 , γ

ℓ
1) = h(x). Also (B.10) holds due to the Markov chainy

′ℓ
2 ↔ xℓ2 ↔ γℓ1. Finally, (B.11) is

true due to removing conditioning and the fact thatz′2 is independent ofx2.

Finally for the last term in (B.1) we have
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I(y
′ℓ
2 ;x

ℓ
1|xℓ2, y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2) ≤ I(y

′ℓ
2 ;W1|xℓ2, y

′ℓ
1 , γ

ℓ
1, γ

ℓ
2)

≤ H(W1|xℓ2, y
′ℓ
1 , γ

ℓ
1, γ

ℓ
2)

≤ H(W1|y
′ℓ
1 , γ

ℓ
2)

≤ H(W1|yℓ1) (B.13)

≤ ℓεℓ, (B.14)

where (B.13) is due to the fact thatyℓ1 =
√
h11x

′ℓ
1 + γℓ2 = f1(y

′ℓ
1 ) + γℓ2 = f2(y

′ℓ
1 , γ

ℓ
2) is a function

of (y
′ℓ
1 , γ

ℓ
2), and (B.14) is just the Fano’s inequality.

Replacing (B.4), (B.5), (B.12), and (B.14) in (B.1), we get

R1 +R2 ≤
1

2
log(1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)

+
1

2
log(1 + h12) + 3ℓεℓ. (B.15)

• (GZZ6) Before proving this inequality, we present a lemma which will be used in this proof. We

will present the proof of this lemma later in Appendix C.

Lemma 7: LetX1 andX2 be two (arbitrarily correlated) random variables with variance constraints

E[X2
1 ] = σ21 andE[X2

2 ] = σ22, which form a Markov chainX1 ↔ Γ ↔ X2 for some random variable

Γ. Also assume thatZ is a zero-mean unit variance Gaussian random variable independent ofX1,

X2 andΓ. Then the conditional differential entropy ofY = X1 +X2 + Z is upper bounded by

h(Y |Γ) ≤ 1

2
log 2πe(1 + σ21 + σ22). (B.16)

Now, in order to prove (GZZ5), we start with Lemma 6.

ℓ(R1 +R2) ≤ I(yℓ1, y
ℓ
2;x

ℓ
1, x

ℓ
2) + ℓεℓ

≤ I(yℓ1, y
ℓ
2, γ

ℓ
1;x

ℓ
1, x

ℓ
2) + ℓεℓ

= I(yℓ1, γ
ℓ
1;x

ℓ
1, x

ℓ
2) + I(yℓ2;x

ℓ
1, x

ℓ
2|yℓ1, γℓ1) + ℓεℓ

= I(γℓ1;x
ℓ
1, x

ℓ
2) + I(yℓ1;x

ℓ
1, x

ℓ
2|γℓ1) + I(yℓ2;x

ℓ
1, x

ℓ
2|yℓ1, γℓ1) + ℓεℓ. (B.17)

Sinceγℓ1 is independent ofxℓ1, the first term can be simply bounded as

I(γℓ1;x
ℓ
1, x

ℓ
2) = I(γℓ1;x

ℓ
2) + I(tℓ;xℓ1|xℓ2) = I(γℓ1;x

ℓ
2) + I(z

′ℓ
1 ;x

ℓ
1|xℓ2) ≤

ℓ

2
log(1 + g12). (B.18)
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For the second term we can write

I(yℓ1;x
ℓ
1, x

ℓ
2|γℓ1) = h(yℓ1|γℓ1)− h(yℓ1|xℓ1, xℓ2, γℓ1)

≤ h(yℓ1|γℓ1)− h(yℓ1|x
′ℓ
1 , x

′ℓ
2 ) (B.19)

= h(yℓ1|γℓ1)− h(zℓ1|x
′ℓ
1 , x

′ℓ
2 )

= h(
√

h11x
′ℓ
1 +

√

h12x
′ℓ
2 + zℓ1|γℓ1)− h(zℓ1)

≤ ℓ

2
log

(

2πe(1 + h11 + h12)
)

− ℓ

2
log 2πe (B.20)

=
ℓ

2
log(1 + h11 + h12), (B.21)

where (B.19) follows from the Markov chainyℓ1 ↔ (x
′ℓ
1 , x

′ℓ
2 ) ↔ (xℓ1, x

ℓ
2, γ

ℓ
1). In (B.20) we have

used Lemma 7 fortℓ1, x
′ℓ
1 andx

′ℓ
2 which form a Markov chain, since

I(x
′ℓ
1 ;x

′ℓ
2 |tℓ1) ≤ I(y

′ℓ
1 ; y

′ℓ
2 |tℓ1) = I(

y
′ℓ
1 − tℓ1√
g11

; y
′ℓ
2 |tℓ1) = I(xℓ1; y

′ℓ
2 |tℓ1) = h(xℓ1|tℓ1)− h(xℓ1|tℓ1, y

′ℓ
2 ) = 0.

The third term can be further upper bounded by

I(yℓ2;x
ℓ
1, x

ℓ
2|yℓ1, γℓ1) = h(yℓ2|yℓ1, γℓ1)− h(yℓ2|xℓ1, xℓ2, yℓ1, γℓ1)

≤ h(yℓ2|yℓ1, γℓ1)− h(yℓ2|x
′ℓ
2 ) (B.22)

≤ h(yℓ2|yℓ1, γℓ1)− h(yℓ2|x
′ℓ
2 , x

′ℓ
1 , y

ℓ
1, γ

ℓ
1) (B.23)

= I(yℓ2;x
′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

≤ I(yℓ2, γ
ℓ
2;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

= I(γℓ2;x
′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1) + I(yℓ2;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1, γℓ2), (B.24)

where both (B.22) and (B.23) follow from the Markov chainyℓ2 ↔ x
′ℓ
2 ↔ (xℓ1, y

ℓ
1, γ

ℓ
1). Now, we

have
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I(γℓ2;x
′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1) = I(yℓ1 − γℓ2;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

= I(
√

h11x
′ℓ
1 ;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

≤ I(y
′ℓ
1 ;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1) (B.25)

≤ I(y
′ℓ
1 − tℓ1;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

= I(
√
g11x

ℓ
1;x

′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

≤ I(W1;x
′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1)

≤ H(W1|yℓ1) ≤ ℓεℓ, (B.26)

where (B.25) follows from the fact thatx
′ℓ
1 is a function ofy

′ℓ
1 . Finally,

I(yℓ2;x
′ℓ
1 , x

′ℓ
2 |yℓ1, γℓ1, γℓ2) = h(yℓ2|yℓ1, γℓ1, γℓ2)− h(yℓ2|yℓ1, γℓ1, γℓ2, x

′ℓ
1 , x

′ℓ
2 )

= h(yℓ2 −
√

h22
h12

γℓ2|yℓ1, γℓ1, γℓ2)− h(yℓ2 −
√

h22x
′ℓ
2 |yℓ1, γℓ1, γℓ2, x

′ℓ
1 , x

′ℓ
2 )

= h(zℓ2 −
√

h22
h12

zℓ1|yℓ1, γℓ1, γℓ2)− h(zℓ2|yℓ1, γℓ1, γℓ2, x
′ℓ
1 , x

′ℓ
2 )

≤ h(zℓ2 −
√

h22
h12

zℓ1)− h(zℓ2) (B.27)

=
ℓ

2
log

(

1 +
h22
h12

)

. (B.28)

Here, in (B.27) we have used the fact that conditioning decreases the differential entropy, and the

fact thatzℓ2 is independent of(yℓ1, γ
ℓ
1, γ

ℓ
2, x

′ℓ
1 , x

′ℓ
2 ). Replacing (B.18), (B.21), (B.26), and (B.28) in

(B.17), we will obtain the desired inequality.

b) The proofs of cut-set type bounds:

May 5, 2010 DRAFT



50

• (GZZ1) R1 ≤ 1
2 log(1 + g11): The individual rate bound can be simply obtained from

ℓR1 = I(xℓ1; y
ℓ
1) + ℓεℓ

≤ I(xℓ1; y
′ℓ
1 , y

′ℓ
2 ) + ℓεℓ (B.29)

= I(xℓ1; y
′ℓ
1 |y

′ℓ
2 ) + I(xℓ1; y

′ℓ
2 ) + ℓεℓ

= h(y
′ℓ
1 |y

′ℓ
2 )− h(y

′ℓ
1 |xℓ1, y

′ℓ
2 ) (B.30)

≤ h(y
′ℓ
1 |xℓ2)− h(z

′ℓ
1 |xℓ1, y

′ℓ
2 )

= h(
√
g11x

ℓ
1 + z

′ℓ
1 )− h(z

′ℓ
1 ) + ℓεℓ

≤ ℓ

2
log(1 + g11) + ℓεℓ,

where (B.29) follows from the data processing inequality for the Markov chainxℓ1 ↔ (y
′ℓ
1 , y

′ℓ
2 ) ↔ yℓ1,

and (B.30) follows from the Markov chainy
′ℓ
1 ↔ xℓ2 ↔ y

′ℓ
2 ). Note thatεℓ → 0 as ℓ grows. It

is worth mentioning that this bound is similar to the cut-setbound for the cutΩs = {S1} and

Ωd = {S2, A,B,D1,D2}.

• (GZZ2) R2 ≤ 1
2 log(1 + g22):

For the second rate bound, we can start with Lemma 6 and write

ℓR2 ≤ I(xℓ2; y
ℓ
2) + ℓεℓ ≤ I(xℓ2; y

′ℓ
2 ) + ℓεℓ ≤

ℓ

2
log(1 + g22) + ℓεℓ,

where we have used the data processing inequality and the Markov chainxℓ2 ↔ y
′ℓ
2 ↔ x

′ℓ
2 ↔ yℓ2 in

the second inequality. Note that this bound captures the maximum flow of information through the

cut specified byΩs = {S2} andΩd = {S1, A,B,D1,D2}.

• (GZZ3) R1 ≤ 1
2 log(1+h11): In order to prove this upper bound, we use the cut-set bound for the

cut Ωs = {S1, S2, A,B,D2} andΩd = {D1}.

ℓR1 ≤ I(x
′ℓ
1 ; y

ℓ
1|x

′ℓ
2 ) + ℓεℓ

= h(yℓ1|x
′ℓ
2 )− h(yℓ1|x

′ℓ
1 , x

′ℓ
2 ) + ℓεℓ

= h(
√

h11x
′ℓ
1 + zℓ1|x

′ℓ
2 )− h(zℓ1|x

′ℓ
1 , x

′ℓ
2 ) + ℓεℓ

≤ h(
√

h11x
′ℓ
1 + zℓ1)− h(zℓ1) + ℓεℓ

≤ ℓ

2
log(1 + h11) + ℓεℓ.

• (GZZ4) R2 ≤ 1
2 log(1 + h22): Starting from Lemma 6, we can write

ℓR2 ≤ I(x
′ℓ
2 ; y

ℓ
2) + ℓεℓ ≤ I(x

′ℓ
2 ; y

ℓ
2) + ℓεℓ ≤

1

2
log(1 + h22) + ℓεℓ,
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where the second inequality follows from the data processing inequality for the Markov chain

xℓ2 ↔ y
′ℓ
2 ↔ x

′ℓ
2 ↔ yℓ2.

This shows that the rate region in Theorem 4 is an outer bound for the achievable region region of the

GaussianZZ network.

B.2 The Achievability Part

In this section we present an encoding/decoding scheme, andderive an achieve rate region for this

strategy. We then show that the gap between the boundary of this achievable rate region and that of the

outer bound presented in Theorem 4 is upper bounded by a constant.

Similar to the GaussianZS network, we only consider the large channel gain case, wherewe assume

that all the channel gains are lower bounded by1. A similar argument to that we used for theZS network

shows that for small channel gain cases the network is reduced to a simple one and its gap analysis is

fairly simple.

We essentially use the result of Lemma 3 as an achievable rateregion for theZ-neutralization network.

We use notation(λg, µg) and (λh, µh) to distinguish betweenλ andµ parameters of the first and the

second layers of the network.

In the first layer of the network, each source node splits its message into two parts, namely, functional

and private parts,W1 =
(

U
(0)
1 , U

(1)
1

)

andW2 =
(

U
(0)
2 , U

(1)
2

)

, where the functional parts, have the same

rate, i.e., Υ1,0 = Υ2,0 = Υ0. Both transmitters use a common lattice code to encode theirfunctional

sub-messages intox1,0 = ψ(U
(0)
1 ) andx2,0 = ψ(U

(0)
2 ), whereψ is the one-to-one encoding map induced

by the lattice code. We define the partial-invertible function by

φ
(

U
(0)
1 , U

(0)
2

)

= ψ−1
(

ψ(U
(0)
1 ) + ψ(U

(0)
2 )

)

= ψ−1(x1,0 + x2,0). (B.31)

We denote the rates of the private sub-messages byΥ1 andΥ2, whereΥi = Ri − Υ0, for i = 1, 2.

The goal is to encode and forward messages toA andB in such a way thatA can decodeU (1)
1 and

φ(U
(0)
1 , U

(0)
2 ), andB can decodeU (0)

2 andU (1)
2 . Based on Lemma 3, this can be done provided that

Υ0 ≤
(
1

2
log (λg)−

1

2

)+

,

Υ0 +Υ1 ≤
(
1

2
log (g11)− 1

)+

,

Υ0 +Υ2 ≤
(
1

2
log (g22)− 1

)+

,

Υ0 +Υ1 +Υ2 ≤
(
1

2
log (µg)−

3

2

)+

.
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The second layer of the network is anotherZ-neutralization network with transmittersA andB, and

receiversD1 andD2. We useV (0)
1 = ψ−1

(

ψ(U
(0)
1 ) + ψ(U

(0)
2 )

)

, V (1)
1 = U

(1)
1 as the functional and

private messages of the first relay node, andV
(0)
2 = ψ−1(−x2,0) = ψ−1(−ψ(U (0)

2 )) andV (1)
2 = U

(1)
2 for

the functional and private messages of second relay. Denoting the corresponding rates byΘ0, Θ1, and

Θ2, we have

Θi = Υi, i = 0, 1, 2. (B.32)

The goal is to encode and send these messages to the destinations, such thatD1 can decodeφ(V (0)
1 , V

(0)
2 )

and V (1)
1 , andD2 can decodeV (0)

2 and V (1)
2 . Again we use the achievable rate region proposed in

Lemma 3.

Θ0 ≤
(
1

2
log (λh)−

1

2

)+

,

Θ0 +Θ1 ≤
(
1

2
log (h11)− 1

)+

,

Θ0 +Θ2 ≤
(
1

2
log (h22)− 1

)+

,

Θ0 +Θ1 +Θ2 ≤
(
1

2
log (µh)−

3

2

)+

.

Note that the first destination observesφ(V (0)
1 , V

(0)
2 ), which is equivalent to

φ
(

V
(0)
1 , V

(0)
2

)

= ψ−1
(

ψ(V
(0)
1 ) + ψ(V

(0)
2 )

)

= ψ−1
(

ψ(U
(0)
1 ) + ψ(U

(0)
2 )− ψ(U

(0)
2 )

)

(B.33)

= U
(0)
1 . (B.34)

Therefore, combining it withV (1)
1 = U

(1)
1 , the first destination node can decodeW1. The second

destination nodeD2 hasV (0)
2 andV (1)

2 = U
(1)
2 , and can compute

ψ−1
(

−ψ(V (0)
2 )

)

= U
(0)
2 , (B.35)

and hence it decodesW2.
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This scheme can reliably transmit the messages with rate pair in

RGZZ
ach =

{

(R1, R2) :∃ Υ0,Υ1,Υ2,Θ0,Θ1,Θ2 ≥ 0, (B.36)

R1 = Θ0 +Θ1,

R2 = Θ0 +Θ2,

Θi = Υi, i = 0, 1, 2,

Υ0 ≤
(
1

2
log (λg)−

1

2

)+

,

Υ0 +Υ1 ≤
(
1

2
log (g11)− 1

)+

,

Υ0 +Υ2 ≤
(
1

2
log (g22)− 1

)+

,

Υ0 +Υ1 +Υ2 ≤
(
1

2
log (µg)−

3

2

)+

,

Θ0 ≤
(
1

2
log (λh)−

1

2

)+

,

Θ0 +Θ1 ≤
(
1

2
log (h11)− 1

)+

,

Θ0 +Θ2 ≤
(
1

2
log (h22)− 1

)+

,

Θ0 +Θ1 +Θ2 ≤
(
1

2
log (µh)−

3

2

)+ }

. (B.37)

It only remains to apply Fourier-Motzkin elimination to project this region onto(R1, R2). This gives

us

RGZZ
ach =

{

(R1, R2) :R1 ≤
(
1

2
log (g11)− 1

)+

,

R1 ≤
(
1

2
log (h11)− 1

)+

,

R2 ≤
(
1

2
log (g22)− 1

)+

,

R2 ≤
(
1

2
log (h22)− 1

)+

,

R1 +R2 ≤
(
1

2
log (µg) +

1

2
log (λh)−

3

2

)+

,

R1 +R2 ≤
(
1

2
log (µh) +

1

2
log (λg)−

3

2

)+ }

.
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Note that the RHS’s of the sum-rate bounds depend on the orderof the channel gains. For most of possible

orderings, these two inequalities would be consequences ofthe individual rate bounds. For example, if

λh = h22, then the last bound is implied by the first and fourth bounds,sinceµg ≥ g11. It can be shown

in general thatRGZZ
ach is equivalent to

RGZZ
ach =

{

(R1, R2) :R1 ≤
(
1

2
log(g11)− 1

)+

,

R1 ≤
(
1

2
log(g22)− 1

)+

,

R2 ≤
(
1

2
log(h11)− 1

)+

,

R2 ≤
(
1

2
log(h22)− 1

)+

,

R1 +R2 ≤
(
1

2
log(µg) +

1

2
log(h12)−

3

2

)+

,

R1 +R2 ≤
(
1

2
log(µh) +

1

2
log(g12)−

3

2

)+ }

.

Now, note thatg11 ≥ 1, g12 ≥ 1, andg22 ≥ 1. These imply

1

2
log(1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)

≤ 1

2
log(3max{g11, g12}) +

1

2
log

(
2max{g12, g22}

g12

)

≤ 1

2
log

(
max{g11, g12} ·max{g22, g12}

g12

)

+
1

2
log 6

≤ 1

2
log(µh,Z) +

1

2
log 6. (B.38)

We also have

1

2
log(1 + x) ≤ 1

2
log(x) +

1

2
(B.39)

for all x ≥ 1. Applying (B.38) and (B.39), we obtain the following achievable rate region, which is a
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subset ofRGZZ
ach .

RGZZ
ach,2=

{

(R1, R2) :R1 ≤
(
1

2
log(1 + g11)−

3

2

)+

,

R2 ≤
(
1

2
log(1 + g22)−

3

2

)+

,

R1 ≤
(
1

2
log(1 + h11)−

3

2

)+

,

R2 ≤
(
1

2
log(1 + h22)−

3

2

)+

,

R1 +R2 ≤
(
1

2
log(1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)

+
1

2
log(1 + h12)−

7

2

)+

,

R1 +R2 ≤
(
1

2
log(1 + h11 + h12) +

1

2
log

(

1 +
h22
h12

)

+
1

2
log(1 + g12)−

7

2

)+ }

Therefore, for any rate pair(R1, R2) ∈ RGZZ, the rate pair(R1 − 1
4 log 12, R2 − 1

4 log 12) belongs to

RGZZ
ach,2, and therefore can be achieved using the proposed encoding scheme.

APPENDIX C

PROOF OFLEMMAS

Discussion of Example 4 in Section III:The converse proof is fairly simple and follows from a

similar argument we used to prove (GZS-1), (GZS-2), and (GZS-3) in Appendix A.

In the following we will present an encoding strategy which guarantees to achieve rate pair(R1 −
1
2 , R2 − 1

2), provided that(R1, R2) ∈ RZ. This gives us an approximate capacity characterization for the

GaussianZ network. In order to do this, we consider the following two cases.

Case A:g12 ≥ g22

Assume(R1, R2) be an achievable rate pair. Then, the first receiverG1 is able to decodeW1 sent at

rateR1, and remove the signal associated toW1 from its received signal. The remaining signal provides

a higherSNR to decodeW2 than the signal received atG2. Therefore, in this particular regime, the first

receive would be able to decode both messages. Hence, we havea Gaussian multiple access channel

from F1 andF2 to G1, combined with a line network fromF2 to G2. Therefore, the intersection of the
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rate regions of the Gaussian MAC and the line networks is simply achievable. That is

RZ
ach,A =

{

(R1, R2) : R1 ≤
1

2
log (1 + g11) , R2 ≤

1

2
log (1 + g12) , R1 +R2 ≤

1

2
log (1 + g11 + g12)

}

⋂

{

(R1, R2) : R2 ≤
1

2
log (1 + g22)

}

=
{

(R1, R2) : R1 ≤
1

2
log (1 + g11) , R2 ≤

1

2
log (1 + g22) , R1 +R2 ≤

1

2
log (1 + g11 + g12)

}

.

(C.1)

Note that the individual rate bounds inRZ andRZ
ach,A are the same. Moreover, the difference between

the sum rate bounds is bounded by

1

2
log

(

1 +
g22
g12

)

≤ 1

2
log (1 + 1) =

1

2
. (C.2)

Therefore, the gap between each boundary point ofRZ andRZ
ach,A is at most12 bit.

Case B:g12 ≤ g22:

The encoding scheme we introduce for this case is similar to Han-Kobayashi’s scheme for2-user

interference channel. We first split the second messageW2 into the common and private parts,W2 =

(W c
2 ,W

p
2 ), with ratesRc

2 andRp
2, respectively, whereW c

2 can be decoded at both receivers andW p
2 is

only decodable atG2. Sub-messagesW1, W c
2 , andW p

2 are encoded by corresponding randomly generated

Gaussian codes tox1, xc
2 andxp

2, and the resulting codewords are sent over the channel.

We allocateαp = 1/g12 fraction of the transmission power available atF2 to W p
2 , and the remaining

powerαc = 1− αp is allocated toW c
2 . Therefore, we have

x2 =
√
αcx

p
2 +

√
αcx

p
2.

The first receiver,G1, decodesW1 andW c
2 treatingW p

2 as noise. Therefore, the effective noise power

received atG1 would beE[
√
g12αpxp+ z1]

2 = 2. According to the capacity region of Gaussian multiple

access channel, this can be done provided that

R1 ≤ 1
2 log

(
1 + g11

2

)
,

Rc
2 ≤ 1

2 log
(
1+g12

2

)

,

R1 +Rc
2 ≤ 1

2 log
(
1+g11+g12

2

)

.

(C.3)

The second decoder first decodesW c
2 treatingW p

2 as noise. It then removes the corresponding codeword

from the received signal, and decodesW p
2 . This can be done as long as

Rc
2 ≤ 1

2 log
(

1+g22
1+g22/g12

)

,

Rp
2 ≤ 1

2 log
(

1 + g22
g12

)

.
(C.4)
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Note that we have two upper bounds forRc
2. However, it is easy to show that 1+g22

1+g22/g12
≥ 1+g12

2 ,

for 1 ≤ g12 ≤ g22, and therefore, the first bound dominates the second one. Using Fourier-Motzkin

elimination to write the achievable region in terms ofR1 andR2 = Rc
2+R

p
2, and after some simplification,

we get that the region

RZ
ach,B=

{

(R1, R2) :R1 ≤
1

2
log (1 + g11)−

1

2
, (C.5)

R2 ≤
1

2
log (1 + g22)−

1

2
, (C.6)

R1 +R2 ≤
1

2
log (1 + g11 + g12) +

1

2
log

(

1 +
g22
g12

)

− 1

2
.
}

. (C.7)

is achievable. Therefore, if(R1, R2) ∈ RZ, then(R1 − 1
2 , R2 − 1

2) is achievable.

Proof of Lemma 1 in Section V:The following achievability scheme simply uses superposition

encoding of sub-messages atF2, and a successively decode and cancel strategy atG1 andG2. We use a

random codebook with a proper number of codewords, generated according to a zero-mean unit-variance

Gaussian distribution for each message. A proper power allocation for the messages at the transmitters

allow the decoders to apply a decode and cancel strategy. We denote the codeword corresponding to the

messageU (j)
i by xi,j, and the power allocated to this message byαi,j.

The available power atF2 can be arbitrarily allocated to its sub-messages. In particular, we choose

the power coefficients so that they satisfyα2,2 ≤ 1/g22, α2,3 ≤ 1/g12, andα2,1 = 1 − α2,2 − α2,3. In

the decoding part,G1 andG2 treatU (3)
2 andU (2)

2 , respectively, as noise. Therefore, the total noise at

G1 andG2 would bez̃1 =
√
g12α2,3x2,3 + z1 and z̃2 =

√
g22α2,2x2,2 + z2. However, the effective noise

power cannot exceed2 sinceE[g12α2,3 + 1] ≤ 2 andE[g22α2,2 + 1] ≤ 2.

The receiverF1 observes a Gaussian multiple access channel (with noise power upper bounded by

2), whereU (1)
1 is sent by one user, and(U (1)

2 , U
(2)
2 ) is sent by the other user. The bounds in (7)-(10)

guarantee that these rates are achievable over the multipleaccess channel.

On the other hand, the channel fromF2 toG2 is Gaussian point-to-point channel with modified additive

noise. Therefore, any total rate not exceeding its capacitycan be reliably transmitted. This is condition

is fulfilled here sinceΥ2,1 +Υ2,3 satisfies (12). Finally, the bound on the power allocated toU
(3)
2 upper

bounds its rate as in (11).

Proof of Lemma 2 in Section V:Again, the achievability scheme we propose for the Gaussian

S interference network (illustrated in Figure 11) is based onsuperposition coding, and a successively

decode and cancel decoding strategy, such that the requirements of the problem are fulfilled. A proper
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power allocation is required to guarantee achievability ofthe rate tuples mentioned in this lemma.

Note thatG1 does not decodeV (2)
2 andV (4)

2 , and treats them as noise. We choose the total fraction of

power allocated toV (2)
2 andV (4)

2 to be at most1/h11, that isα2,2 + α2,4 ≤ 1/h11. Therefore, the total

noise power received atG1 is upper bounded asE[h11(α2,2 + α2,4) + 1] ≤ 2.

Similarly, V (2)
1 is treated as noise atG2. By bounding the fraction of power allocated to this sub-

message, we can upper bound the effective noise power observed atG2 by E[h11(α2,2 +α2,4) + 1] ≤ 2.

The point-to-point Gaussian channel fromF1 to G1 can support any sum-rate below its capacity as in

(13). Moreover,Θ1,2 is bounded above since its allocated power does not exceed1/h12.

On the other hand, we have a Gaussian multiple access channelfrom F1 andF2 to G2, with total noise

power not exceeding2. The bounds in (15)-(18) guarantee that the desired rates belong to the capacity

region of this channel, and therefore they are achievable. We skip the details of power allocation here,

but we point out that the achievability of the region is a consequence of the Gaussian multiple access

rate region achievability.

Proof of Lemma 3 in Section V:In this part we show that any rate tuple satisfying (21)-(24)is

achievable. The main idea of this proof can be summarized as follows.

• Use a common codebook with group structure, such as lattice codes, forW (0)
1 andW (0)

2 , which

maps them tox1,0 andx2,0

• Choose a proper power allocation forx1,0 andx2,0 such that they get received atG1 at the same

power level; More precisely, denoting their power allocation by α0 and β0, they should satisfy

g11α0 = g12β0. This condition guarantees that the two lattice points get scaled by the same factor,

and therefore the result is still a lattice point on the scaled lattice and can be decoded as long as

enough signal to noise ratio is provided.

• Use random Gaussian codebooks to encode the private sub-messages tox1,1 andx1,2, and use proper

power allocation,α1 andβ1.

The first receiverG1 needs to decode the partial-invertibleφ which we define as

φ
(

W
(0)
1 ,W

(0)
2

)

= ψ−1
(

ψ
(

W
(0)
1

)

+ ψ
(

W
(0)
1

))

= ψ−1 (x1,0 + x2,0)

whereψ is the one-to-one encoding function which maps the functional messages to the common lattice

codebook. Note that the group structure of the code impels that x1,0 + x2,0 is still a valid codeword. It

is easy to check that this function is partial-invertible.
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Let us define

η = min

{

g11, g12, g22,
g11g22
g12

}

. (C.8)

Depending on the minimizer inη, we identify four cases. In each case, the achievable rate region is a

polytope, with a certain number of corner points. It sufficesto show the achievability only for the cornet

points, since a standard time-sharing argument guaranteesachievability for the rest of the region.

The proof details for each corner point includes message splitting, and power allocation for sub-

messages such that the decoders be able to decode corresponding messages. In the following we describe

this strategy in details for the case whereη = g11. The extension of this method for other cases is

straight-forward, and therefore we skip it here to sake of brevity.

Case I. η = g11: It is clear from the definition ofη that in this caseg11 ≤ g12 ≤ g22, and

thereforeλ = g11 andµ = g22. Hence, the desired region is characterized by all non-negative rate tuples

(P0, P1, P2) satisfying

P0 + P1 ≤
1

2
log (g11) ,

P0 + P1 + P2 ≤
1

2
log (g22) .

This rate region is illustrated in Figure 18. It suffices to show that the corner pointsA, B andC are

achievable, since the pointsD andE are degenerated fromB andC, respectively.

P0

P1P2
A

B

C

D

E

Fig. 18. Achievable rate region of theZ-neutralization network whenη = g11.

• A : (P0, P1, P2) =
(
0, 0, 12 log (g22)− 3

2

)

The encoding strategy for this corner point is fairly simple. The second transmitter uses all its

available power to sendW (1)
2 , while the first transmitter keeps silent. That is,x1 = 0 andx2 = x2,1.

May 5, 2010 DRAFT



60

The first decoder has nothing to decode, and the second one candecodex2 from y2 as long as

P2 ≤ 1
2 log (1 + g22). It is clear that in particularP2 =

1
2 log (g22)− 3

2 is achievable.

• B : (P0, P1, P2) =
(
1
2 log (g11)− 1, 0, 12 log (g22)− 1

2 log (g11)− 1
2

)

The first encoder sends its lattice codeword with power allocationα0 = (g11 − 1)/g11. The second

encoder splits its private message intoW (1)
2 = (W

(1,1)
2 ,W

(1,2)
2 ) of ratesP2,1 andP2,2 whereP2 =

P2,1 + P2,2. Then it sends

x2 =
√

β1,1x2,1,1 +
√

β0x2,0 +
√

β1,2x2,1,2

where the power allocation coefficients are fixed to beβ1,2 = 1/g12, β0 = (g11 − 1)/g12, and

β1,1 = 1− β0 − β1,2. The signal received at the destinations are

y1 =
√
g11x1 +

√
g12x2 + z1,

=
√
g12 − g11x2,1,1 +

√

g11 − 1[x1,0 + x2,0] + x2,1,2 + z1, (C.9)

y2 =
√
g22x2 + z2,

=

√

g22(g12 − g11)

g12
x2,1,1 +

√

g22(g11 − 1)

g12
x2,0 +

√
g22
g12

x2,1,2 + z2. (C.10)

The first node decode and cancelx2,1,1, x̃0 = x1,0 + x2,0, andx2,1,2 in order, while the second

one performs the same decoding forx2,1,1, x2,0, andx2,1,2. It is easy to show that the ratesP2,1 =

1
2 log (g12/g11)−0.5, P0 =

1
2 log (g11)−1, andP2,2 =

1
2 log (g22/g12) are achievable, which implies

the private ratesP2 = P2,1 + P2,2 =
1
2 log (g22/g11)− 1

2 for the second transmitter.

• C : (P0, P1, P2) =
(
0, 12 log (g11)− 1, 12 log (g22)− 1

2 log (g11)− 1
2

)

For this rate tuple, the rate of the functional message is zero. The second transmitter splits its private

message similar to that of corner pointB. The transmission power is distributed between among

the sub-message asα0 = 0, α1 = 1, β1,2 = 1/g12, β0 = 0, andβ1,1 = 1− β1,2. A similar argument

to that of corner pointB shows that the ratesP2,1 = 1
2 log (g12/g11) − 0.5, P1 = 1

2 log (g11) − 1,

andP2,2 =
1
2 log (g22/g12) are achievable, which implies the achievability of the ratepoint C.

Proof of Lemma 4 in Section VI.2:Let (R1, R2) ∈ RDZS be an arbitrary rate pair which satisfies

(DZS-1)-(DZS-10). In particularR1 ≤ min{m11, n11}. We claim that(R1, R2) ∈ RDZS
1 (t)×RDZS

2 (t) for

t = R1, and therefore(R1, R2) is achievable using network decomposition. In order to do this we have

to show that anyR2 satisfying (DZS-1)-(DZS-10), fulfills the constraints in the definition ofRDZS
2 (R1).
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Using (DZS-2) and (DZS-3), we have

R2 ≤ min
(
max(m11,m12) + (m22 −m12)

+ −R1,max(m12,m22)
)

= min (max(m11,m12)−R1,m12) + (m22 −m12)
+

= m′
12(R1) + (m22 −m12)

+

≤ m′
12(R1) + (m′

22(R1)−m′
12(R1))

+ (C.11)

= max(m′
12(R1),m

′
22(R1)), (C.12)

where in (C.11) we have used the fact that

(min(a, b)−min(c, d))+ ≥ min
(
(a− c)+, (b− d)+

)
.

Moreover, sinceR2 satisfies (DZS-3), (DZS-5), and (DZS-8), we have

R2 ≤ min
(
max(m11,m12) + (m22 −m12)

+ −R1,m22 +max(n11, n21)−R1,m22 + n21
)

≤ min
(
max(m11,m12) + (m22 −m12)

+ −R1,m22

)
+min

(
max(n11, n21)−R1, n21

)
(C.13)

= m′
22(R1) + n′21(R1), (C.14)

where (C.13) holds since

min(a, b) + min(c, d) ≥ min(a, b+ c, b+ d),

for non-negativea, b, c, andd.

In order to show that the third constraint is satisfied, we canstart with (DZS-4), (DZS-6), and (DZS-10).

R2 ≤ min
(
max(m11,m12) + n22 +−R1,m12 + n22,max(n11, n21) + (n22 − n21)

+ −R1

)

≤ min
(
max(m11,m12) +−R1,m12

)
+min

(
max(n11, n21) + (n22 − n21)

+ −R1, n22
)

= m′
12(r1) + n′22(r1). (C.15)

Finally, using (DZS-8) and (DZS-10), we have

R2 ≤ min
(
max(n11, n21) + (n22 − n21)

+ − r1,max(n21, n22)
)

= min
(
max(n11, n21)− r1, n21

)
+ (n22 − n21)

+

= n′21(r1) + (n22 − n21)
+

≤ n′21(r1) + (n′22(r1)− n′21(r1))
+

= max(n′21(r1), n
′
22(r1)). (C.16)
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Putting inequalities in (C.12) and (C.14)-(C.16) togethershows thatR2 ∈ RDZS
2 (R1), and completes the

proof.

Proof of Lemma 5 in Section VII.2:

The coding strategy we present here is based a network decomposition, where the sub-nodes and the

links of the deterministicZ-interference network are partitioned into two disjoint sets. We analyze the

rate region of each network, and derive an achievable rate region for the original network based on this

analysis.

We just point out here that in this coding strategy, the second senderF2, never sends a bit on a sub-node

which is not received atG2, even ifn12 > n22.

The first partition of the networkN1, consists of those sub-nodes inG1 which are connected to one of

the topm11 sub-nodes ofF1 and one of the topm22 sub-nodes ofF2. All the sub-nodes in the network

which are related to (see Definition 3) any of these sub-nodesalso belong to the first network partition.

The remaining nodes and link form the second part of the network N2. It is clear that these two networks

are node-disjoint, and do not cause interference on each other.

We first characterize the number sub-nodes inG1 which belong toN1, by determining whether each

of them can receive a bit fromF1, F2, or both of them. We denote the number of levels inG1 which

are only connected to a transmitting level inF1 by k1. Similarly, the number of those only connected

to a a transmitting level (the topmin(n12, n22)) in F2 by k2. Finally, k0 denotes the number of levels

which are connected to transmitting levels of bothF1 andF2 (see Figure 19).

First, we derivek0. Enumerate the levels ofG1 from 1 (for the highest) toq (for the lowest). Letj

be the index of a sub-node inG1 belong toN1, i.e., it receives bits from bothF1 andF2. Its neighbors

in F1 andF2 (if there is any) are indexed byj + n11 − q and j + n12 − q, respectively. Therefore,j

belongs toN1 if and only if 1 ≤ j + n11 − q ≤ n11 and1 ≤ j + n12 − q ≤ min(n12, n22). Therefore,

the number of such sub-nodes is given by

k0 = [min{q, q − n12 + n22} −max{q − n11, q − n12}]+

= min{n11, n12, n22, (n11 + n22 − n12)
+}. (C.17)

It is clear from the definition ofk0 that the remainingn11−k0 lowest levels ofG1 are only connected

to sub-nodes ofF1, and hence,k1 = n11 − k0. Similarly, min{n12, n22} sub-nodes inG1 are receiving

information fromF2, wherek0 of them are also connected toF1. Therefore, the remaining sub-nodes

are only connected toG2. Thus,k2 = min{n12, n22} − k0.

We partition the network into two parts: The first part consists of thek0 sub-nodes ofG1 connected to
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F1

F2

G1

G2

k0 = 3

k1 = 1

k2 = 2

Fig. 19. A deterministicZ-neutralization network. The upper2 sub-nodes inG1 are only connected toF2, and therefore

k2 = 2. The next3 sub-nodes receive information from bothF1 andF2, and hencek0 = 3. Although the lowest sub-node is

also connected to both transmitters, it only receives information fromF1 sinceF2 keeps silent on its sub-nodes belown22.

bothF1 andF2, and sub-nodes connected to them. The remaining sub-nodes form the second partition of

the network. We characterize the achievable tuples for each, denoted by(Q′
0, Q

′
1, Q

′
2) and(Q′′

0, Q
′′
1 , Q

′′
2),

respectively. The fact that these two partitions are isolated allows us to conclude that the summation of

such achievable tuples is also achievable for the original network.

Consider the first partition of the network. It is clear that any of thek0 levels ofG1 connected to both

F1 andF2 and can be used to communicate a functional bit, sinceG1 naturally receives thexor of the

transmitting bits. On the other hand, such sub-node can be used to communicate one private bit from

any ofF1 or F2 to G1 by keeping the other one silent. Therefore, any rate tuple satisfying

Q′
0 +Q′

1 +Q′
2 ≤ k0 (C.18)

is achievable.

The non-interfered links of the second partition of the network can be used to send private bits from the

transmitters toG1 simultaneously. Moreover, each transmitter can use one of its non-interfering sub-nodes

to send a functional bit toG1, and then,G1 computes theirxor, after receiving them separately. This

can provide up tomin{k1, k2} new functional bits forG1. Moreover, the lower(n22 − n12)
+ sub-nodes

of F2 which are connected toG2 but not toG1 can be used to send private bits toG2 without causing

any interference atG1.
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Hence, this strategy can transmit any rate tuple satisfying

Q′′
0 ≤ min{k1, k2},

Q′′
0 +Q′′

1 ≤ k1,

Q′′
0 +Q′′

2 ≤ k2 + (n22 − n12)
+. (C.19)

Summing up the rates achieved on each partition of the network, we have arrive atQi = Q′
i + Q′′

i

for i = 0, 1, 2, where(Q′
0, Q

′
1, Q

′
2)’s and (Q′′

0, Q
′′
1 , Q

′′
2) satisfy (C.18) and (C.19), respectively. It only

remains to apply the Fourier-Motzkin elimination to project the rate region on the(Q0, Q1, Q2) space.

This gives us

Q0 ≤ k0 +min{k1, k2},

Q0 +Q1 ≤ k0 + k1,

Q0 +Q2 ≤ k0 + k2 + (n22 − n12)
+,

Q0 +Q1 +Q2 ≤ k0 + k1 + k2 + (n22 − n12)
+. (C.20)

Some simple manipulations show that the RHS’s of the inequalities in (C.20) are the same as that claimed

in the lemma.

Proof of Lemma 6 in Appendix A.1:As mentioned before, we will use the Fano’s inequality in

order to prove this lemma. We have

ℓR1 = H(W1) = I(W1; y
ℓ
1) +H(W1|yℓ1)

≤ I(W1; y
ℓ
1) + ℓeℓ (C.21)

≤ I(xℓ1; y
ℓ
1) + ℓeℓ, (C.22)

where (C.21) is implied by the Fano’s inequality, and in (C.22) we used the data processing inequality

for the Markov chainW1 ↔ xℓ1 ↔ yℓ1. Note that whereεℓ → 0 asℓ grows. The proofs of the other two

inequalities follow the same lines, and we skip them to sake of brevity.

Proof of Lemma 7 in Appendix B.1:Note thatZ is independent of everything else, andX1 andX2 are

conditionally independent. Without loss of generality we can also assume thatµi(γ) = E[Xi|Γ = γ] = 0

for ∀γ (otherwise for any givenΓ = γ, we can shiftXi by µi(γ), while the entropy does not change).

Let E[X2
i |Γ = γ] = σ2i (γ) for i = 1, 2. Therefore the conditional variance ofY can be bounded as

E[Y 2|Γ = γ] = E[(X1 +X2 + Z)2|Γ = γ] = σ21(γ) + σ22(γ) + 1. (C.23)
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Therefore,

h(Y |Γ) = EΓ[h(Y |Γ = γ)] = ET [h(X1 +X2 + Z|Γ = γ)]

≤ EΓ[log 2πe(σ
2
1(γ) + σ22(γ) + 1)] (C.24)

≤ log 2πe(EΓ[σ
2
1(γ) + σ22(γ) + 1]) (C.25)

= log 2πe(σ21 + σ22 + 1), (C.26)

where in (C.24) we have used the fact that Gaussian random variable has the maximum differential

entropy among all random variables with the same variance, and (C.25) follows from the concavity of

the functionlog(·). Finally, (C.26) is just the tower property,EΓ[E[X
2
i |Γ]] = E[X2

i ].
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