
QoS Evaluation of JMS: An Empirical Approach

Shiping Chen and Paul Greenfield

CSIRO Information and Communication Technologies Centre, Australia

{Shiping.Chen, Paul.Greenfield}@csiro.au

Abstract

JMS is an API specification that defines a standard

way for Java applications to access messaging services.

All JMS products promise good performance and to

properly support the QoS attributes specified in the

standard, making it hard to choose between them.
Customers who want to determine which JMS product

best meets their requirements need a simple, effective and

fair methodology for evaluating and comparing

competing implementations. This paper presents an

empirical methodology for evaluating the QoS
implementation of a JMS product. We present a number

of test scenarios and define metrics for measuring

performance and message persistence. We then illustrate

this methodology by using it to evaluate two leading JMS

products. Our evaluation results show differences

between these products in terms of their overall
performance and the impact of various QoS attributes.

The case study demonstrates that our empirical

methodology is an effective and practical way to test the

performance of JMS and other messaging systems.

Keywords: JMS, QoS, throughput, Latency, Persistent

1 Introduction

JMS (Java Message Service) [1] is a specification

from Sun Microsystems that defines a standard way for

Java applications to access enterprise messaging

infrastructure. The JMS API is based on the capabilities

found in traditional asynchronous Message-Oriented

Middleware (MOM) technologies, such as IBM’s MQ

Series and TIBCO’s Rendezvous, and can be used to

compose large-scale enterprise systems from loosely-

coupled component applications. The standard nature of

the JMS API has led to its wide acceptance as a common

messaging mechanism in the J2EE user community and it

has become an important part of the J2EE framework.

Several software vendors have released JMS-only

products, while most vendors of well-established MOM

products have implemented JMS interfaces and adapters.

These JMS implementations all support the messaging

functions and options as defined in the JMS specification

but differ in their performance and the quality of their

implementation.

This paper presents an empirical methodology for

evaluating JMS implementations. This methodology is

based on a number of test scenarios and a set of metrics

used for measuring performance and the quality of the

persistent messaging implementation. We illustrate the

methodology by using it to evaluate two leading JMS

products. The results of our evaluation show differences

between these products in terms of their support for QoS

attributes, and we discuss the implications of these

findings. The case study demonstrates that our empirical

methodology is an effective and practical way to evaluate

both the performance and the efficacy of the QoS

implementation in messaging-oriented middleware

products.

The rest of this paper is organised as follows. Section 2

gives an overview of MOM and JMS technologies.

Section 3 presents an empirical approach to JMS

evaluation. Section 4 demonstrates the use of this

methodology by evaluating two JMS technologies and we

conclude in Section 5.

2 MOM vs. JMS

MOM (Message-Oriented Middleware) is a key

technology that is widely used for building enterprise

applications and event-based systems. MOM technologies

are typically used to bind together independent systems

and components by exchanging asynchronous messages

across connecting queues.

 Figure 1 shows how MOM can be used within an

organisation, integrating modern component-based

applications with legacy applications and connecting local

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

applications with the business systems provided by

business partners.

Mainframe App Server

DB

3-Tier Application

Legacy

Apps

Figure 1 - Integration through messaging

The asynchronous nature of messaging technology

provides the following advantages in system design,

implementation and maintenance:

• Flexibility: Messaging infrastructure decouples

applications and lets them stay independent and

autonomous. This provides the ability to flexibly

update and/or integrate individual applications with

little effects on the whole system or on other

components.

• Efficiency: Since the sender does not have to wait for

a reply to a message, the sender can continue on with

its work immediately after sending the message. This

is especially important for operations that can take a

long time to complete.

• Robustness: The sender can send a message even if

the network is down or the receiver is not available at

the time. MOM can also provide a level of fault-

tolerance using persistent queues that allow unsent or

unread messages to be recovered after system failures.

• Tight Integration of Object Models: Each message can

represent a complete object, including any composite

elements that make up the object. Since the entire

object is available locally, complex collaborations

involving many method invocations can be

implemented with little overhead.

Although primarily an asynchronous technology,

MOM can also be used to support synchronous

communication models. In this case, the sender simply

uses the MOM layer to send a request message to a

receiver, and then waits for the receiver to send back a

reply message. This feature provides some of the

capabilities of conventional synchronous technologies,

such as CORBA, COM+ or EJB, but only at some cost in

transparency and functionality. It is worth noting that

MOM-based synchronous messaging does not support

traditional end-to-end transactions and considerable

programming effort may be needed to ensure data

consistency after failure.

JMS (Java Message Service) is a Java interface

specification from Sun Microsystems which provides a

standard way for Java applications to access enterprise

messaging infrastructure.

A compliant JMS product is expected to support two

forms of messaging: point-to-point (PTP) and

publish/subscribe (Pub/Sub). PTP messaging is built

around the concept of a queue – sending applications post

messages to a queue and receiving applications retrieve

these messages from this queue, or from another queue

linked to this queue. Multiple receiving servers can be

clustered in PTP applications to increase the processing

capacity of the service. Pub/Sub messaging is built around

the concept of a topic - message producers send messages

to a specific topic and all message consumers who have

registered their interest in this topic will receive a copy of

relevant published messages. Both queue and topic are

called destinations for messaging applications. illustrates

these two messaging mechanisms. It should be noted that

in PTP any single message will be received by only one

receiver, while in Pub/Sub all registered subscribers

receive copies of all relevant published messages.

Sender

Queue

Receiver

(a) PTP

Topic

Pub

Sub

Sub

Sub

(b) Pub/Sub

Figure 2 - PTP and Pub/Sub messaging

JMS also defines a set of reliability attributes for

messaging as a way of allowing developers to specify the

QoS (Quality of Service) requirements of their

applications. These attributes are:

• Non-Persistent/Persistent: In non-persistent

messaging, the MOM layer keeps pending messages

only in memory buffers while they are waiting to be

delivered. Non-persistent messaging gives the best

performance due to its low overheads, but undelivered

messages will be lost if the messaging system fails. In

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

persistent messaging, the MOM layer guarantees to

deliver messages despite system/network failures.

This is achieved by logging messages to persistent

storage, such as a database or file, and recovering

undelivered messages on system restart.

• Nondurable/Durable: JMS defines two types of

subscribers, nondurable and durable. A nondurable

subscriber application will receive messages only

when it is active. Durable subscriber applications

receive all messages published on their registered

topics or queues, including any messages that were

published while the subscriber was inactive. Pub/Sub

messaging is traditionally non-durable, while PTP

messaging is inherently durable.

• Non-transactional/Transactional: A messaging

session can be specified as transactional or non-

transactional. A transaction is a set of message

sending or receiving operations that are regarded as a

single atomic unit of work. Note that messaging

‘transactions’ only apply to the action of either

sending or receiving a group of messages on a single

system, not to the combined operations of sending and

receiving across multiple parties in a distributed

application. JMS can support two kinds of

transactions: local and distributed. Local transactions

only provide atomic message grouping and do not

include updates to other resources within the

transactional boundaries. Distributed transactions

include both messaging and other transactional

operations, such as database updates, within the scope

of a single atomic transaction.

3 Evaluation Methodology

3.1 Test Scenarios

As discussed in Section 1, queued messaging is

typically used to loosely connect relatively independent

applications. The most general form of this scenario is

usually implemented using PTP messaging and co-

resident servers as shown in Figure 3 (a). Each

participating system runs both its local applications and a

messaging server that talks to other messaging servers

that are running on other systems located elsewhere on

the network. All applications send and receive messages

using only their local (co-resident) message server.

In some cases, such as internal EAI applications, we

can also use single message server acting as a

broker/intermediary between local but independent

applications. This second scenario is shown in Figure 3

(b). These applications can be co-resident with the

messaging server or can run on separate systems. Since

our evaluation just focuses on the basic performance of

JMS messaging products, the second, simpler, scenario is

used for conducting our PTP benchmarks. Performance

testing using the first scenario has been discussed

previously in [4]. We are planning to cover the

performance of JMS messaging with multiple co-resident

servers, along with the performance of JMS pub/sub

implementations in future work.

Senders

Queue Receivers

Queue

JMS Server

JMS Server

(a) PTP co-resident messaging

Senders

Receivers

Queue

JMS Server

(b) Internal EAI messaging

Figure 3 - Two common scenarios using queues

While [9] attempted to develop a general-purpose

benchmark for messaging systems, in this paper we

propose a simple test scenario to test the basic messaging

capacity of the underlay messaging engine. The test

consists of three logical components: senders, receivers

and the JMS server. Each sender sends messages to a

receiver via the JMS server. The sender application is a

multi-threaded Java program used to generate a range of

message injection rates (like the road speed of a manual

car) by varying the number of sending threads (gear) and

the sending rate of each thread (engine rpm). The variable

sender-side message injection rate is achieved by having

each sender thread wait for a specified period after

sending a message. The receiver is also a multi-threaded

Java application with a variable number of receiving

threads. The receiving threads do not pause between

messages and take messages from the JMS server as fast

as they can, without any ‘thinking-time’ between receive

calls.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

3.2 Evaluation Metrics

We propose that the following four metrics should be

used to evaluate a JMS product in order to cover different

aspects of its overall performance:

• Maximum sustainable throughput

• Latency

• Elapsed time taken to send batches of messages

• Persistent message loss after recovery

3.2.1 Maximum Sustainable Throughput

The commonest performance metric used to evaluate

the capacity of a messaging system is throughput, i.e. the

average number of messages that can be delivered in

some time period. Measuring throughput for messaging

systems is not simple because of the effects of queuing

and the feedback mechanisms used to implement flow

control. Some previously published tests [5] have

measured throughput by measuring how quickly

messages can be sent, without ensuring that messages are

received at the same rate. A side effect of this technique is

that messages may be produced far faster than they can be

consumed, causing a non-sustainable build-up of

messages in the messaging server. Non-persistent

messages will eventually fill up the memory made

available for queues, and persistent messages will run out

of allocated storage space – and both situations pose risks

to the stability of the message server and the entire

distributed system. In order to ensure stability, many JMS

vendors implement ‘flow control’ mechanisms that limit

resource usage under heavy load. The policies and

mechanisms used for flow control differ between various

JMS products, making it difficult to sensibly compare

performance under stressful conditions [10, 11, 12].

Figure 4 shows the dynamic behaviours for a test run

under normal messaging conditions and Figure 5 shows

the effect of flow control.

Figure 4 - Normal messaging

To avoid the problems of excessive resource usage

and flow control, the Maximum Sustainable Throughput

(MST) metric from [4] is used to quantify the maximum

throughput of a messaging server. MST is an equilibrium

throughput level, the point where we can send and receive

messages with no queues building up and without

invoking flow control mechanisms. At or below this rate,

the tests can run forever. Above it, messages are being

queued somewhere, resulting in steadily increasing

resource usage, and (hopefully) the eventual imposition of

flow control.

Figure 5 - Messaging under flow control

Figure 6 shows the typical behaviour observed in our

test system as the requested sending rate increases.

Initially the JMS server is operating below its maximum

capacity, the sending and receiving rates are equal, and

the receiver is able to keep up with the requested sending

rate. In this case however, when the requested sending

rate approaches 300 messages/second, the JMS server

reaches maximum capacity and the receiving rate stops

increasing. The sending rate still keeps going up for a

while longer but soon both sending and receiving rates

level off (and may even decrease). The ‘turning point’

highlighted with the circle is the Maximum Sustainable

Throughput that we define and present in this paper.

Actual JMS products display varying performance

characteristics for different configurations, but we believe

that MST can be used to measure the basic throughput of

all JMS messaging implementations.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

Throughput

0

100

200

300

400

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Injection rate

A
c
tu

a
l
ra

te

Sending Rate

Receiving Rate

Figure 6 - Requested actual sending/receiving rates

We determine a value for MST by gradually

increasing requested sending rate and the number of

receiving threads, and measuring the resulting sending

and receiving rates and latency for each test run. We also

monitor both the queue sizes and the stability of the

observed sending and receiving rates during the tests. We

used the following observations to find approximate

values for the MST point for each product under test:

• Has the queue size begun to increase monotonically or

vary periodically

• Have the sending and receiving rates stopped being

equal.

• Are the sending and receiving rates equal but unstable.

We repeated these MST tests for different message

sizes and QoS settings. The QoS settings for JMS

messaging considered in our evaluation framework were:

• NPNT – Non-Persistent and Non-Transactional

• PNT – Persistent and Non-Transactional

• PT – Persistent and Transactional

3.2.2 Messaging Latency

In a messaging system, latency is defined as the time

taken to deliver messages from the sender (publisher) to

the receiver (subscriber). It is used to evaluate how

efficiently a message server delivers messages from the

viewpoint of its clients. Although messaging latency is

easy to understand, it is difficult to measure precisely in a

distributed environment without synchronised high-

precision clocks. Some time was spent investigating

published solutions to this problem [6], [7] [8] but the

local EAI scenario under test allowed for a simpler

solution.

In our test scenario, we run both the senders and

receivers on the same machine so that the latency can be

precisely measured using the same clock. The messaging

latency is measured as follows. The sending process gets

a timestamp (T1) and attaches it to the outgoing message

as a JMS message property. When the receiver fetches the

message from the queue, it gets another timestamp (T2).

The messaging latency can then be calculated as Latency

= T2 –T1. The following latency metrics are collected:

• Minimum Latency

• Maximum Latency

• Average Latency

• Latency Distribution

3.2.3 Elapsed Time for Batch Messaging

The batch messaging test is used to evaluate how well

the JMS server can handle sending or receiving a batch

(or burst) of messages. The metric for used this evaluation

is elapsed time, i.e. the total time taken to sending and

receive a specific number of messages under different

QoS settings.

3.2.4 Persistent Message Recovery Test

Messages are normally configured as persistent

because they are critical for the effective or correct

operation of an enterprise. These messages, such as

customer orders and invoices, cannot be lost once they

have been put into a queue, and must survive server

failures.

To determine how well the products under test

actually meet the recovery requirements imposed by

persistent messaging, we designed the following three test

cases. In all of these tests we started sending and

receiving messages, forced the JMS server to fail in some

way and then checked to make sure no messages were

lost after recovery had completed. The tests conducted

were:

• Killing the JMS server process

• Rebooting the JMS server machine

• Turning off the power to the JMS server machine and

then powering it back on again.

Each sent message was assigned a unique serial

number (stored in the message body) and the receiving

application checked these on message receipt to make

sure that none were lost on recovery. The following

metrics were obtained:

• The number of messages sent (S)

• The number of messages received (R)

• The number of messages recovered after recovery

(RFF)

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

The following measures can be used to determine if

the JMS product can properly recover persistent

messages:

• S-R+RFF = 0 means that all messages were logged

and recovered successfully and no messages were lost.

• S-R+RFF > 0 means that (S-R-RFF) messages were

lost during the failure and recovery process.

4 Case Study

In this section, we apply the test scenarios and

evaluation metrics described in Section 3 to evaluate two

commercial JMS products.

4.1 Test Description

All tests are conducted under the following rules:

• The JMS server and the client applications are run on

different machines to remove the effects of the client

CPU demands on the server performance.

• Both sending and receiving client applications run on

the same machine so that latency can be precisely

measured using the same clock.

• The queues are emptied before each test run.

• Receivers are always started first and are waiting for

incoming messages before the sending applications

are started.

• The MST and Latency tests are run using a 1 minute

warm-up period, followed by 5 minutes of

measurement and a 1-minute cool-down period.

Throughput is observed during the measurement

period to ensure that the JMS performance remains

stable.

• No other applications are running or using the

resources on any of the systems under test. The CPU

load on the client machine should be under 30% to

ensure that it is not limiting factor in the tests.

• The same hardware platform, operating system and

network configuration are used for all tests.

• Each test is run multiple times to assure the

repeatability of the results

The configuration of the computers used in the tests is

shown in Table 1. The computers used for the tests were

connected over a 100MB/s switched LAN. Write caching

for disk I/Os was not enabled for either of the computers

used in the tests.

Table 1 - Configurations for test platforms

JMS Server Sender/Receiver

Model Dell Precision 610MT Dell PowerEdge
6450/700

CPU 2x450MHz Pentium II 4x700Mhz Intel PIII
Xeon

Memory 0.5GB 4GB

Disk 1x18GB Seagate
SCSI

1x18GB Seagate
SCSI

OS MS W2K Server SP2 MS W2K Server SP2

4.2 Test Results - Throughput

In this section, we present the throughput results based

on our evaluation metrics. Due to license restrictions, we

cannot name the actual commercial products under test

and will use JMS A and JMS B to represent the two

products instead.

Table 2 lists the maximum sustainable throughputs in

Messages Per Second (MPS) for the two JMS products

tested, using different message sizes and QoS settings.

Note that since one of the two products tested does not

support distributed transactions, we had to perform a local

transaction test (PLT) rather than more general

transactional tests. As shown in Table 2, JMS A

outperforms JMS B for NPNT tests across all message

sizes. The server CPU utilisation reached 100% for both

products, indicating that CPU capacity was the limiting

factor in these NPNT tests and that JMS A was slightly

more efficient.

JMS A continues performs better than JMS B for PNT

tests. However, significant performance drops for JMS A

are observed in the PLT tests across all message sizes,

making JMS B superior to JMS A in this case. This

indicates that the cost for transaction support in JMS A is

much higher than for JMS B. During the tests for both

PNT and PLT, high disk I/O utilisation was observed and

the CPU usage was between 30~50%. We infer that in

these cases the disk I/O requirements for logging

persistent messages becomes the performance bottleneck.

Figure 7 shows the MST values obtained for different

QoS messaging attributes using 1KB messages.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

Table 2 – Maximum sustainable throughput

QoS MsgSize JMS A JMS B

64B 1200 1000

NPNT 1KB 1100 900

4KB 800 700

64B 500 400

PNT 1KB 460 380

4KB 430 350

64B 190 350

PLT 1KB 180 300

4KB 160 250

0

300

600

900

1200

NPNT PNT PLT

QoS

T
h

ro
u

g
h

p
u

t
in

 M
P

S

JMS A

JMS B

Figure 7 - MST for different QoS (msg size=1KB)

The JMS specification defines the set of required QoS

attributes, not how they should be implemented, and so

vendors implement this functionality in different ways,

resulting in different levels of performance. Whatever

technologies are used, persistent messaging has to not

lose messages and these performance results should be

seen in the light of the persistent test results presented in

Section 4.5.

4.3 Test Results - Latency

Messaging latencies were also measured when the

above throughput tests were being conducted. The

latencies reported here can be regarded as possibly a

worst case, as they were obtained at maximum sustainable

throughput. A system running at lower message injection

rates may well have lower latencies or a tighter spread of

latencies. The latency results at the MST point are shown

in Table 3.

Table 3 – Messaging latencies (in milliseconds)

Message Messaging NPNT PNT PLT

Size Latency JMS A JMS B JMS A JMS B JMS A JMS B

 Min 0 0 0 0 15 0

64B Average 7 9 40 13 133 23

 Max 63 187 210 187 469 203

Min 0 0 0 0 15 0

1KB Average 10 13 55 19 139 29

Max 109 125 328 172 438 219

 Min 0 0 0 0 31 0

4KB Average 18 55 65 26 164 30

 Max 294 266 328 203 484 219

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

0%

20%

40%

60%

80%

100%

0 80 160 240 320 400

Latency in msec

D
is

tr
ib

u
ti

o
n

s
 i
n

 %

0%

20%

40%

60%

80%

100%

0 80 160 240 320 400

Latency in msec

D
is

tr
ib

u
ti

o
n

s
 i
n

 %

(a) JMS A: NPNT (b) JMS B: NPNT

0%

20%

40%

60%

80%

100%

0 80 160 240 320 400

Latency in msec

D
is

tr
ib

u
ti

o
n

s
 i
n

 %

0%

20%

40%

60%

80%

100%

0 80 160 240 320 400
Latency in msec

D
is

tr
ib

u
ti

o
n

s
 i
n

 %
(c) JMS A: PNT (d) JMS B: PNT

0%

20%

40%

60%

80%

100%

0 80 160 240 320 400

Latency in msec

D
is

tr
ib

u
ti

o
n

s
 i
n

 %

0%

20%

40%

60%

80%

100%

0 80 160 240 320 400

Latency in msec

D
is

tr
ib

u
ti

o
n

s
 i
n

 %

(e) JMS A: PLT (f) JMS B: PLT

Figure 8 - Latency distributions (message size 1KB)

Latencies increase as message sizes go up, and with

more demanding QoS requirements. This is

understandable and consistent with the throughput test

results. While the latencies for JMS-A increase greatly

(about 400% from NPNT to PNT and 200% from PNT to

PLT), we did not see the same significant latency increase

for JMS B (less than 100% for both cases). The small

increases in latency displayed by JMS B may be related to

the message recovery problems seen in the persistence

tests (see Section 4.5).

In addition to the statistical results shown in Table 3,

we also collected information on the latency distributions

observed in each test run by using a distribution index

operation, distribution_data[latency/Bucket]++, to

minimise both computation and memory costs. Some of

latency distribution test results (for a 1KB message size)

are provided in Figure 8.

As shown in Figure 8 (a) and (b), for NPNT messages

about 80% of latencies for both JMS-A and B are tightly

distributed in a range between 0 and 50 milliseconds. This

confirms the higher throughputs and shorter latencies in

NPNT tests for the two products. However, the latency

distributions begin to spread for both PNT and PLT tests

for both products as shown in Figure 8 (c) (d) (e) and (f).

In particular, the latency distribution for JMS-A is much

broader than for JMS B. These results are consistent with

the simple statistical latency results shown in Table 3.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

4.4 Test Results - Batch Messaging

Batch tests were carried out by sending a specified

number of messages from a single client thread. The

elapsed time to send and receive all of these messages was

measured.

As shown in Figure 9, while the elapsed time

increased with the number of sent messages, JMS-A looks

more efficient than JMS B for NPNT batch messaging.

This agrees with our throughput testing results presented

in Section 4.2.

0

250

500

750

1000

100 500 1000

Num. of messages to send

E
la

p
s
e
d

 t
im

e
 (

m
s
)

JMS A

JMS B

Figure 9 - NPNT batch sending (msg size=64B)

However, for persistent messaging, we got complete

different results. Figure 10 shows the PNT batch

messaging results for the two JMS products. These results

show that the JMS A client takes much longer than JMS

B’s to send the specified number of messages, reflecting

its significantly higher persistent messaging overheads.

0

4000

8000

12000

16000

100 500 1000

Num. of messages to send

W
a
ll
ti

m
e
 i
n

 m
s
e
c JMS A

JMS B

Figure 10 - PNT batch sending (msg size=64B)

We obtained similar results for the PLT tests. We ran

the same batch messaging tests for PLT with different

number of messages sent within each transaction. These

tests were run with transaction group sizes of 1, 10 and 50

messages. Figure 11 and Figure 12 illustrate the test

results for JMS A and B respectively. The test results for

both JMS A and B show, as expected, that bigger group

sizes for each transaction improve overall transaction

performance as the overhead of transaction management

is distributed across more messages. More discussions on

the influence of transactional grouping on messaging

performance can be found in [9, 10].

The PLT tests show great differences between the

performance of JMS A and JMS B, with JMS B being

about 5 times faster for group sizes of 10 and 50

messages. These differences have to been seen in the light

of the persistence test results reported in Section 4.5.

0

10000

20000

30000

40000

50000

100 500 1000
Num. of messages to send

E
la

p
s
e
d

 t
im

e
 (

m
s
)

Gsize = 1

Gsize = 10

Gsize = 50

Figure 11 - JMS A - PLT batch testing results

0

1000

2000

3000

4000

5000

100 500 1000
Num. of messages to send

E
la

p
s
e
d

 t
im

e
 (

m
s
)

Gsize = 1

Gsize = 10

Gsize = 50

Figure 12 - JMS B - PLT batch testing results

4.5 Test Results - Persistent Message Recovery

Finally, we report on the results of the persistence tests

for the two JMS products using the test scenario and

evaluation criteria described in Section 3.2. To build up

the queue, we used two senders to continuously put

persistent messages the queue and one receiver taking

messages out of the queue. The results of these

persistence tests are shown in Table 4.

Table 4 - Persistent test results

Test Cases JMS A JMS B

I. Kill Server Pass Pass

II. Reboot Pass Fail

III. Power Off Pass Fail

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

While JMS A passed all the persistence tests with no

messages lost, JMS B passed only Test Case I and failed

to pass Test Case II and III. It seems that JMS B does not

log persistent messages properly, which results in the loss

of some messages on recovery in two of the failure cases.

These persistence test results probably explain why JMS

B performs significant better than JMS A for PNT and

PLT tests in latency and batch messaging tests. It should

be noted that the server machine was not using write

caching so the missing messages were not simply lost

when the disk controller was reset.

5 Conclusion

Completely and fairly evaluating JMS

technologies/products is a useful, yet challenging, task. In

this paper, we presented an empirical approach to

evaluating the performance of JMS, looking particularly

at the impact of QoS attributes. The MST metric was used

to evaluate the throughput of two commercial JMS

products. Both senders and receivers were deployed on

the same powerful machine so that messaging latency

could be precisely measured. In addition to the common

statistical data (max, min and average), latency

distribution was also measured. The capacity of JMS

server handling a stream of messages was also evaluated

by measuring the elapsed time taken to send and receive a

batch of messages. Three failover test cases were used to

evaluate how well the JMS servers were able to handle the

recovery of persistent messages after failure. This case

study shows that our evaluation approach is able to

quantify the QoS performance of JMS products through

testing and to give insights into the reasons for the

observed performance. Future work is to apply the

evaluation approach proposed in this paper to test other

JMS scenarios, such as co-located PTP servers and

pub/sub messaging.

6 References

[1] M. Hapner, et al. Java Message Service (JMS) Specification

v1.1, http://java.sun.com/products/jms/docs.html

Sun Microsystems Inc. April 2002

[2] P. Tran, P. Greenfield, I. Gorton. Behaviour and

performance of message-oriented middleware systems, Proc.

Of the 22nd Conference on Distributed Computing

Workshop, p645-650, Vienna Austria, July 2002.

[3] D. Kou and D. Palmer. Automated Analysis of Java

Message Service Providers. Middleware2001 IFIP/ACM Int.

Conference on Distributed Systems Platforms

[4] M. Aspnas and T. Langbacka. A monitoring system for a

transputer-based multiprocessor.

Proc. of Transputer’91, p78-93, IOS Press, 1991

[5] M. Raynal and M. Singhal. Logic Time: Capturing causality

in distributed systems. IEEE J. of COMPUTER, p49-56,

Feb. 1996

[6] L. Yen and T. Huang. Resetting vector clocks in distributed

systems. IEEE J. of Parallel and Distributed Computing

(JPDC) v43, p15-20, 1997

[7] S. Chen and I. Gorton. A predictive performance model to

estimate the contention cost in application servers. Proc. of

the 9th Asia Pacific Software Engineering Conference

(ASPEC2002), p435-440, Gold Cost Australia

[8] S. Chen and J. Xue, Partition and schedule loops on NOWs,

Elsevier Journal of Computer Communication, 22(11),

p1017-1033. 1999, Elsevier, Netherlands

[9] A. Carzaniga and A.L. Wolf. A Benchmark suit for

distributed publish/subscribe systems. Technical Report CU-

CS-927-02, Dept of Compuer Science, Uni. Of Colaorado,

Jan. 2003.

[10] A. Bhandari. Flow Control in JMS Messaging. White paper,

Mpulse Technologies Inc. 2003

http://www.mpulsetech.com/prod/FlowControl.pdf

[11] B.A. Sanders. An asynchronous, distributed flow control

algorithm for rate allocation in computer networks.

IEEE/ACM Transaction on Computers, 7(37), p779-787,

July 1988.

[12] S. H. Low and D. E. Lapley. Optimization flow control:

basic algorithm and convergence. IEEE/ACM Transaction

on Networking 7(6), p. 861-874, Dec. 1999

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10

