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Abstract 

JMS is an API specification that defines a standard 

way for Java applications to access messaging services. 

All JMS products promise good performance and to 

properly support the QoS attributes specified in the 

standard, making it hard to choose between them. 
Customers who want to determine which JMS product 

best meets their requirements need a simple, effective and 

fair methodology for evaluating and comparing 

competing implementations. This paper presents an 

empirical methodology for evaluating the QoS 
implementation of a JMS product. We present a number 

of test scenarios and define metrics for measuring 

performance and message persistence. We then illustrate 

this methodology by using it to evaluate two leading JMS 

products. Our evaluation results show differences 

between these products in terms of their overall 
performance and the impact of various QoS attributes. 

The case study demonstrates that our empirical 

methodology is an effective and practical way to test the 

performance of JMS and other messaging systems. 

Keywords: JMS, QoS, throughput, Latency, Persistent 

1 Introduction 

JMS (Java Message Service) [1] is a specification 

from Sun Microsystems that defines a standard way for 

Java applications to access enterprise messaging 

infrastructure. The JMS API is based on the capabilities 

found in traditional asynchronous Message-Oriented 

Middleware (MOM) technologies, such as IBM’s MQ 

Series and TIBCO’s Rendezvous, and can be used to 

compose large-scale enterprise systems from loosely-

coupled component applications. The standard nature of 

the JMS API has led to its wide acceptance as a common 

messaging mechanism in the J2EE user community and it 

has become an important part of the J2EE framework. 

Several software vendors have released JMS-only 

products, while most vendors of well-established MOM 

products have implemented JMS interfaces and adapters. 

These JMS implementations all support the messaging 

functions and options as defined in the JMS specification 

but differ in their performance and the quality of their 

implementation.  

This paper presents an empirical methodology for 

evaluating JMS implementations. This methodology is 

based on a number of test scenarios and a set of metrics 

used for measuring performance and the quality of the 

persistent messaging implementation. We illustrate the 

methodology by using it to evaluate two leading JMS 

products. The results of our evaluation show differences 

between these products in terms of their support for QoS 

attributes, and we discuss the implications of these 

findings. The case study demonstrates that our empirical 

methodology is an effective and practical way to evaluate 

both the performance and the efficacy of the QoS 

implementation in messaging-oriented middleware 

products. 

The rest of this paper is organised as follows. Section 2 

gives an overview of MOM and JMS technologies. 

Section 3 presents an empirical approach to JMS 

evaluation. Section 4 demonstrates the use of this 

methodology by evaluating two JMS technologies and we 

conclude in Section 5. 

2 MOM vs. JMS 

MOM (Message-Oriented Middleware) is a key 

technology that is widely used for building enterprise 

applications and event-based systems. MOM technologies 

are typically used to bind together independent systems 

and components by exchanging asynchronous messages 

across connecting queues. 

 Figure 1 shows how MOM can be used within an 

organisation, integrating modern component-based 

applications with legacy applications and connecting local 
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applications with the business systems provided by 

business partners. 

Mainframe App Server

DB

3-Tier Application

Legacy

Apps

Figure 1 - Integration through messaging

The asynchronous nature of messaging technology 

provides the following advantages in system design, 

implementation and maintenance: 

• Flexibility: Messaging infrastructure decouples 

applications and lets them stay independent and 

autonomous. This provides the ability to flexibly 

update and/or integrate individual applications with 

little effects on the whole system or on other 

components. 

• Efficiency: Since the sender does not have to wait for 

a reply to a message, the sender can continue on with 

its work immediately after sending the message. This 

is especially important for operations that can take a 

long time to complete.  

• Robustness: The sender can send a message even if 

the network is down or the receiver is not available at 

the time. MOM can also provide a level of fault-

tolerance using persistent queues that allow unsent or 

unread messages to be recovered after system failures. 

• Tight Integration of Object Models: Each message can 

represent a complete object, including any composite 

elements that make up the object. Since the entire 

object is available locally, complex collaborations 

involving many method invocations can be 

implemented with little overhead. 

Although primarily an asynchronous technology, 

MOM can also be used to support synchronous 

communication models. In this case, the sender simply 

uses the MOM layer to send a request message to a 

receiver, and then waits for the receiver to send back a 

reply message. This feature provides some of the 

capabilities of conventional synchronous technologies, 

such as CORBA, COM+ or EJB, but only at some cost in 

transparency and functionality. It is worth noting that 

MOM-based synchronous messaging does not support 

traditional end-to-end transactions and considerable 

programming effort may be needed to ensure data 

consistency after failure. 

JMS (Java Message Service) is a Java interface 

specification from Sun Microsystems which provides a 

standard way for Java applications to access enterprise 

messaging infrastructure. 

A compliant JMS product is expected to support two 

forms of messaging: point-to-point (PTP) and 

publish/subscribe (Pub/Sub). PTP messaging is built 

around the concept of a queue – sending applications post 

messages to a queue and receiving applications retrieve 

these messages from this queue, or from another queue 

linked to this queue. Multiple receiving servers can be 

clustered in PTP applications to increase the processing 

capacity of the service. Pub/Sub messaging is built around 

the concept of a topic - message producers send messages 

to a specific topic and all message consumers who have 

registered their interest in this topic will receive a copy of 

relevant published messages. Both queue and topic are 

called destinations for messaging applications.  illustrates 

these two messaging mechanisms. It should be noted that 

in PTP any single message will be received by only one 

receiver, while in Pub/Sub all registered subscribers 

receive copies of all relevant published messages.  

Sender

Queue

Receiver

(a) PTP 

Topic

Pub

Sub

Sub

Sub

(b) Pub/Sub 

Figure 2 - PTP and Pub/Sub messaging 

JMS also defines a set of reliability attributes for 

messaging as a way of allowing developers to specify the 

QoS (Quality of Service) requirements of their 

applications. These attributes are: 

• Non-Persistent/Persistent: In non-persistent 

messaging, the MOM layer keeps pending messages 

only in memory buffers while they are waiting to be 

delivered. Non-persistent messaging gives the best 

performance due to its low overheads, but undelivered 

messages will be lost if the messaging system fails. In 
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persistent messaging, the MOM layer guarantees to 

deliver messages despite system/network failures. 

This is achieved by logging messages to persistent 

storage, such as a database or file, and recovering 

undelivered messages on system restart.  

• Nondurable/Durable: JMS defines two types of 

subscribers, nondurable and durable. A nondurable 

subscriber application will receive messages only 

when it is active. Durable subscriber applications 

receive all messages published on their registered 

topics or queues, including any messages that were 

published while the subscriber was inactive. Pub/Sub 

messaging is traditionally non-durable, while PTP 

messaging is inherently durable. 

• Non-transactional/Transactional: A messaging 

session can be specified as transactional or non-

transactional. A transaction is a set of message 

sending or receiving operations that are regarded as a 

single atomic unit of work. Note that messaging 

‘transactions’ only apply to the action of either 

sending or receiving a group of messages on a single 

system, not to the combined operations of sending and 

receiving across multiple parties in a distributed 

application. JMS can support two kinds of 

transactions: local and distributed. Local transactions 

only provide atomic message grouping and do not 

include updates to other resources within the 

transactional boundaries. Distributed transactions 

include both messaging and other transactional 

operations, such as database updates, within the scope 

of a single atomic transaction.  

3 Evaluation Methodology 

3.1 Test Scenarios 

As discussed in Section 1, queued messaging is 

typically used to loosely connect relatively independent 

applications. The most general form of this scenario is 

usually implemented using PTP messaging and co-

resident servers as shown in Figure 3 (a). Each 

participating system runs both its local applications and a 

messaging server that talks to other messaging servers 

that are running on other systems located elsewhere on 

the network. All applications send and receive messages 

using only their local (co-resident) message server.  

In some cases, such as internal EAI applications, we 

can also use single message server acting as a 

broker/intermediary between local but independent 

applications. This second scenario is shown in Figure 3 

(b). These applications can be co-resident with the 

messaging server or can run on separate systems. Since 

our evaluation just focuses on the basic performance of 

JMS messaging products, the second, simpler, scenario is 

used for conducting our PTP benchmarks. Performance 

testing using the first scenario has been discussed 

previously in [4]. We are planning to cover the 

performance of JMS messaging with multiple co-resident 

servers, along with the performance of JMS pub/sub 

implementations in future work. 

Senders 

Queue Receivers 

Queue 

JMS Server 

JMS Server 

(a) PTP co-resident messaging 

Senders 

Receivers 

Queue 

JMS Server 

(b) Internal EAI messaging 

Figure 3 - Two common scenarios using queues 

While [9] attempted to develop a general-purpose 

benchmark for messaging systems, in this paper we 

propose a simple test scenario to test the basic messaging 

capacity of the underlay messaging engine. The test 

consists of three logical components: senders, receivers 

and the JMS server. Each sender sends messages to a 

receiver via the JMS server. The sender application is a 

multi-threaded Java program used to generate a range of 

message injection rates (like the road speed of a manual 

car) by varying the number of sending threads (gear) and 

the sending rate of each thread (engine rpm). The variable 

sender-side message injection rate is achieved by having 

each sender thread wait for a specified period after 

sending a message. The receiver is also a multi-threaded 

Java application with a variable number of receiving 

threads. The receiving threads do not pause between 

messages and take messages from the JMS server as fast 

as they can, without any ‘thinking-time’ between receive 

calls.
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3.2 Evaluation Metrics 

We propose that the following four metrics should be 

used to evaluate a JMS product in order to cover different 

aspects of its overall performance:  

• Maximum sustainable throughput 

• Latency 

• Elapsed time taken to send batches of messages  

• Persistent message loss after recovery 

3.2.1 Maximum Sustainable Throughput 

The commonest performance metric used to evaluate 

the capacity of a messaging system is throughput, i.e. the 

average number of messages that can be delivered in 

some time period. Measuring throughput for messaging 

systems is not simple because of the effects of queuing 

and the feedback mechanisms used to implement flow 

control. Some previously published tests [5] have 

measured throughput by measuring how quickly 

messages can be sent, without ensuring that messages are 

received at the same rate. A side effect of this technique is 

that messages may be produced far faster than they can be 

consumed, causing a non-sustainable build-up of 

messages in the messaging server. Non-persistent 

messages will eventually fill up the memory made 

available for queues, and persistent messages will run out 

of allocated storage space – and both situations pose risks 

to the stability of the message server and the entire 

distributed system. In order to ensure stability, many JMS 

vendors implement ‘flow control’ mechanisms that limit 

resource usage under heavy load. The policies and 

mechanisms used for flow control differ between various 

JMS products, making it difficult to sensibly compare 

performance under stressful conditions [10, 11, 12]. 

Figure 4 shows the dynamic behaviours for a test run 

under normal messaging conditions and Figure 5 shows 

the effect of flow control. 

Figure 4 - Normal messaging 

To avoid the problems of excessive resource usage 

and flow control, the Maximum Sustainable Throughput 

(MST) metric from [4] is used to quantify the maximum 

throughput of a messaging server. MST is an equilibrium 

throughput level, the point where we can send and receive 

messages with no queues building up and without 

invoking flow control mechanisms. At or below this rate, 

the tests can run forever. Above it, messages are being 

queued somewhere, resulting in steadily increasing 

resource usage, and (hopefully) the eventual imposition of 

flow control.  

Figure 5 - Messaging under flow control 

Figure 6 shows the typical behaviour observed in our 

test system as the requested sending rate increases. 

Initially the JMS server is operating below its maximum 

capacity, the sending and receiving rates are equal, and 

the receiver is able to keep up with the requested sending 

rate. In this case however, when the requested sending 

rate approaches 300 messages/second, the JMS server 

reaches maximum capacity and the receiving rate stops 

increasing. The sending rate still keeps going up for a 

while longer but soon both sending and receiving rates 

level off (and may even decrease). The ‘turning point’ 

highlighted with the circle is the Maximum Sustainable 

Throughput that we define and present in this paper. 

Actual JMS products display varying performance 

characteristics for different configurations, but we believe 

that MST can be used to measure the basic throughput of 

all JMS messaging implementations.  
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Figure 6 - Requested actual sending/receiving rates 

We determine a value for MST by gradually 

increasing requested sending rate and the number of 

receiving threads, and measuring the resulting sending 

and receiving rates and latency for each test run. We also 

monitor both the queue sizes and the stability of the 

observed sending and receiving rates during the tests. We 

used the following observations to find approximate 

values for the MST point for each product under test: 

• Has the queue size begun to increase monotonically or 

vary periodically 

• Have the sending and receiving rates stopped being 

equal. 

• Are the sending and receiving rates equal but unstable.  

We repeated these MST tests for different message 

sizes and QoS settings. The QoS settings for JMS 

messaging considered in our evaluation framework were: 

• NPNT – Non-Persistent and Non-Transactional 

• PNT – Persistent and Non-Transactional  

• PT – Persistent and Transactional 

3.2.2 Messaging Latency 

In a messaging system, latency is defined as the time 

taken to deliver messages from the sender (publisher) to 

the receiver (subscriber). It is used to evaluate how 

efficiently a message server delivers messages from the 

viewpoint of its clients. Although messaging latency is 

easy to understand, it is difficult to measure precisely in a 

distributed environment without synchronised high-

precision clocks. Some time was spent investigating 

published solutions to this problem [6], [7] [8] but the 

local EAI scenario under test allowed for a simpler 

solution.  

In our test scenario, we run both the senders and 

receivers on the same machine so that the latency can be 

precisely measured using the same clock. The messaging 

latency is measured as follows. The sending process gets 

a timestamp (T1) and attaches it to the outgoing message 

as a JMS message property. When the receiver fetches the 

message from the queue, it gets another timestamp (T2).

The messaging latency can then be calculated as Latency

= T2 –T1. The following latency metrics are collected: 

• Minimum Latency 

• Maximum Latency 

• Average Latency 

• Latency Distribution 

3.2.3 Elapsed Time for Batch Messaging 

The batch messaging test is used to evaluate how well 

the JMS server can handle sending or receiving a batch 

(or burst) of messages. The metric for used this evaluation 

is elapsed time, i.e. the total time taken to sending and 

receive a specific number of messages under different 

QoS settings.  

3.2.4 Persistent Message Recovery Test 

Messages are normally configured as persistent 

because they are critical for the effective or correct 

operation of an enterprise. These messages, such as 

customer orders and invoices, cannot be lost once they 

have been put into a queue, and must survive server 

failures.  

To determine how well the products under test 

actually meet the recovery requirements imposed by 

persistent messaging, we designed the following three test 

cases. In all of these tests we started sending and 

receiving messages, forced the JMS server to fail in some 

way and then checked to make sure no messages were 

lost after recovery had completed. The tests conducted 

were: 

• Killing the JMS server process 

• Rebooting the JMS server machine  

• Turning off the power to the JMS server machine and 

then powering it back on again. 

Each sent message was assigned a unique serial 

number (stored in the message body) and the receiving 

application checked these on message receipt to make 

sure that none were lost on recovery. The following 

metrics were obtained: 

• The number of messages sent (S) 

• The number of messages received (R) 

• The number of messages recovered after recovery 

(RFF) 
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The following measures can be used to determine if 

the JMS product can properly recover persistent 

messages: 

• S-R+RFF = 0 means that all messages were logged 

and recovered successfully and no messages were lost.  

• S-R+RFF > 0 means that (S-R-RFF) messages were 

lost during the failure and recovery process. 

4 Case Study 

In this section, we apply the test scenarios and 

evaluation metrics described in Section 3 to evaluate two 

commercial JMS products. 

4.1 Test Description 

All tests are conducted under the following rules: 

• The JMS server and the client applications are run on 

different machines to remove the effects of the client 

CPU demands on the server performance. 

• Both sending and receiving client applications run on 

the same machine so that latency can be precisely 

measured using the same clock.  

• The queues are emptied before each test run. 

• Receivers are always started first and are waiting for 

incoming messages before the sending applications 

are started. 

• The MST and Latency tests are run using a 1 minute 

warm-up period, followed by 5 minutes of 

measurement and a 1-minute cool-down period. 

Throughput is observed during the measurement 

period to ensure that the JMS performance remains 

stable.  

• No other applications are running or using the 

resources on any of the systems under test. The CPU 

load on the client machine should be under 30% to 

ensure that it is not limiting factor in the tests.  

• The same hardware platform, operating system and 

network configuration are used for all tests. 

• Each test is run multiple times to assure the 

repeatability of the results 

The configuration of the computers used in the tests is 

shown in Table 1. The computers used for the tests were 

connected over a 100MB/s switched LAN. Write caching 

for disk I/Os was not enabled for either of the computers 

used in the tests. 

Table 1 - Configurations for test platforms 

JMS Server Sender/Receiver 

Model Dell Precision 610MT Dell PowerEdge  
6450/700 

CPU 2x450MHz Pentium II 4x700Mhz Intel PIII 
Xeon 

Memory 0.5GB 4GB 

Disk 1x18GB Seagate 
SCSI

1x18GB Seagate 
SCSI

OS MS W2K Server SP2 MS W2K Server SP2 

4.2 Test Results - Throughput 

In this section, we present the throughput results based 

on our evaluation metrics. Due to license restrictions, we 

cannot name the actual commercial products under test 

and will use JMS A and JMS B to represent the two 

products instead. 

Table 2 lists the maximum sustainable throughputs in 

Messages Per Second (MPS) for the two JMS products 

tested, using different message sizes and QoS settings. 

Note that since one of the two products tested does not 

support distributed transactions, we had to perform a local 

transaction test (PLT) rather than more general 

transactional tests. As shown in Table 2, JMS A 

outperforms JMS B for NPNT tests across all message 

sizes. The server CPU utilisation reached 100% for both 

products, indicating that CPU capacity was the limiting 

factor in these NPNT tests and that JMS A was slightly 

more efficient.  

JMS A continues performs better than JMS B for PNT 

tests. However, significant performance drops for JMS A 

are observed in the PLT tests across all message sizes, 

making JMS B superior to JMS A in this case. This 

indicates that the cost for transaction support in JMS A is 

much higher than for JMS B. During the tests for both 

PNT and PLT, high disk I/O utilisation was observed and 

the CPU usage was between 30~50%. We infer that in 

these cases the disk I/O requirements for logging 

persistent messages becomes the performance bottleneck. 

Figure 7 shows the MST values obtained for different 

QoS messaging attributes using 1KB messages.  
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Table 2 – Maximum sustainable throughput

QoS MsgSize JMS A JMS B 

64B 1200 1000 

NPNT 1KB 1100 900 

4KB 800 700 

64B 500 400

PNT 1KB 460 380

4KB 430 350

64B 190 350 

PLT 1KB 180 300 

4KB 160 250 
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p
u
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 M
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S
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JMS B

Figure 7 - MST for different QoS (msg size=1KB) 

The JMS specification defines the set of required QoS 

attributes, not how they should be implemented, and so 

vendors implement this functionality in different ways, 

resulting in different levels of performance. Whatever 

technologies are used, persistent messaging has to not 

lose messages and these performance results should be 

seen in the light of the persistent test results presented in 

Section 4.5. 

4.3 Test Results - Latency  

Messaging latencies were also measured when the 

above throughput tests were being conducted. The 

latencies reported here can be regarded as possibly a 

worst case, as they were obtained at maximum sustainable 

throughput. A system running at lower message injection 

rates may well have lower latencies or a tighter spread of 

latencies. The latency results at the MST point are shown 

in Table 3. 

Table 3 – Messaging latencies (in milliseconds) 

Message Messaging NPNT PNT PLT

Size Latency JMS A JMS B JMS A JMS B JMS A JMS B 

  Min 0 0 0 0 15 0 

64B  Average 7 9 40 13 133 23 

  Max 63 187 210 187 469 203 

Min 0 0 0 0 15 0

1KB Average 10 13 55 19 139 29

Max 109 125 328 172 438 219

  Min 0 0 0 0 31 0 

4KB  Average 18 55 65 26 164 30 

  Max 294 266 328 203 484 219 
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Figure 8 - Latency distributions (message size 1KB) 

Latencies increase as message sizes go up, and with 

more demanding QoS requirements. This is 

understandable and consistent with the throughput test 

results. While the latencies for JMS-A increase greatly 

(about 400% from NPNT to PNT and 200% from PNT to 

PLT), we did not see the same significant latency increase 

for JMS B (less than 100% for both cases). The small 

increases in latency displayed by JMS B may be related to 

the message recovery problems seen in the persistence 

tests (see Section 4.5). 

In addition to the statistical results shown in Table 3, 

we also collected information on the latency distributions 

observed in each test run by using a distribution index 

operation, distribution_data[latency/Bucket]++, to 

minimise both computation and memory costs. Some of 

latency distribution test results (for a 1KB message size) 

are provided in Figure 8.  

As shown in Figure 8 (a) and (b), for NPNT messages 

about 80% of latencies for both JMS-A and B are tightly 

distributed in a range between 0 and 50 milliseconds. This 

confirms the higher throughputs and shorter latencies in 

NPNT tests for the two products. However, the latency 

distributions begin to spread for both PNT and PLT tests 

for both products as shown in Figure 8 (c) (d) (e) and (f). 

In particular, the latency distribution for JMS-A is much 

broader than for JMS B. These results are consistent with 

the simple statistical latency results shown in Table 3. 
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4.4 Test Results - Batch Messaging  

Batch tests were carried out by sending a specified 

number of messages from a single client thread. The 

elapsed time to send and receive all of these messages was 

measured.  

As shown in Figure 9, while the elapsed time 

increased with the number of sent messages, JMS-A looks 

more efficient than JMS B for NPNT batch messaging. 

This agrees with our throughput testing results presented 

in Section 4.2.  

0

250

500

750

1000

100 500 1000

Num. of messages to send

E
la

p
s
e
d

 t
im

e
 (

m
s
)

JMS A

JMS B

Figure 9 - NPNT batch sending (msg size=64B) 

However, for persistent messaging, we got complete 

different results. Figure 10 shows the PNT batch 

messaging results for the two JMS products. These results 

show that the JMS A client takes much longer than JMS 

B’s to send the specified number of messages, reflecting 

its significantly higher persistent messaging overheads.  
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Figure 10 - PNT batch sending (msg size=64B) 

We obtained similar results for the PLT tests. We ran 

the same batch messaging tests for PLT with different 

number of messages sent within each transaction. These 

tests were run with transaction group sizes of 1, 10 and 50 

messages. Figure 11 and Figure 12 illustrate the test 

results for JMS A and B respectively. The test results for 

both JMS A and B show, as expected, that bigger group 

sizes for each transaction improve overall transaction 

performance as the overhead of transaction management 

is distributed across more messages. More discussions on 

the influence of transactional grouping on messaging 

performance can be found in [9, 10]. 

The PLT tests show great differences between the 

performance of JMS A and JMS B, with JMS B being 

about 5 times faster for group sizes of 10 and 50 

messages. These differences have to been seen in the light 

of the persistence test results reported in Section 4.5. 
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Figure 11 - JMS A - PLT batch testing results 
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Figure 12 - JMS B - PLT batch testing results 

4.5 Test Results - Persistent Message Recovery  

Finally, we report on the results of the persistence tests 

for the two JMS products using the test scenario and 

evaluation criteria described in Section 3.2. To build up 

the queue, we used two senders to continuously put 

persistent messages the queue and one receiver taking 

messages out of the queue. The results of these 

persistence tests are shown in Table 4. 

Table 4 - Persistent test results 

Test Cases JMS A JMS B 

I. Kill Server Pass Pass 

II. Reboot Pass Fail 

III. Power Off Pass Fail 
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While JMS A passed all the persistence tests with no 

messages lost, JMS B passed only Test Case I and failed 

to pass Test Case II and III. It seems that JMS B does not 

log persistent messages properly, which results in the loss 

of some messages on recovery in two of the failure cases. 

These persistence test results probably explain why JMS 

B performs significant better than JMS A for PNT and 

PLT tests in latency and batch messaging tests. It should 

be noted that the server machine was not using write 

caching so the missing messages were not simply lost 

when the disk controller was reset. 

5 Conclusion

Completely and fairly evaluating JMS 

technologies/products is a useful, yet challenging, task. In 

this paper, we presented an empirical approach to 

evaluating the performance of JMS, looking particularly 

at the impact of QoS attributes. The MST metric was used 

to evaluate the throughput of two commercial JMS 

products. Both senders and receivers were deployed on 

the same powerful machine so that messaging latency 

could be precisely measured. In addition to the common 

statistical data (max, min and average), latency 

distribution was also measured. The capacity of JMS 

server handling a stream of messages was also evaluated 

by measuring the elapsed time taken to send and receive a 

batch of messages. Three failover test cases were used to 

evaluate how well the JMS servers were able to handle the 

recovery of persistent messages after failure. This case 

study shows that our evaluation approach is able to 

quantify the QoS performance of JMS products through 

testing and to give insights into the reasons for the 

observed performance. Future work is to apply the 

evaluation approach proposed in this paper to test other 

JMS scenarios, such as co-located PTP servers and 

pub/sub messaging. 
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