
In the next chapter, we provide a gentle introduction to the field of cost-conscious active

learning, including defining pertinent terms. We do so in the context of a survey of existing literature,

with a particular focus on cost-conscious active learning techniques. Since this dissertation is an

ensemble of papers that were either previously published or that will be submitted for publication,

Chapter 3 provides an overview that ties each of the chapters together as a part of the bigger picture.

The subsequent chapters comprise the individual papers, which are followed by conclusions in

Chapter 11.

3



Chapter 2

A Survey of Practical, Cost-Conscious Active Learning

A recent survey found that 80% of respondents that were collecting annotated data for

NLP tasks did not use active learning (AL); 60% of them would not consider using AL in future

projects [90]. One of the single biggest reasons (20.5% of participants) for not using AL was that

participants were not convinced that AL would actually reduce the cost of annotation for their

project. We deduce from this survey that a major impediment to the widespread adoption of active

learning for annotating corpora is a disconnect between research and practice. After all, some

theory has shown active learning to be capable of exponentially decreasing the labeling effort [29].

Indeed, active learning research has largely ignored a number of practical issues, not the least of

which is the actual costs of annotation, as previously noted. In this chapter, we outline these aspects

while presenting representative work for each aspect. The current survey is not intended to cover

all aspects of active learning in general; for such a survey the reader is referred to Settles [79] and

Olsson [62], the latter being focused on active learning for natural language processing.

2.1 Supervised Machine Learning

We begin with a brief overview of supervised machine learning, principally to define pertinent terms

as a means of introducing active learning.

Learning is often defined as improvement in performance with experience. In traditional

classroom settings, students are commonly evaluated using standardized tests at the beginning of

the school year and again at the end. After a year’s worth of lessons, homework, exams, etc., most

students’ scores improve between the pre-test and the post-test. Similarly, machine learning is the
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ability of a computer to improve its performance on a task when given data (which can be seen as

“experience”). Not unlike the classroom setting, a “task” consists of mapping an instance from an

input (or problem) space X to an answer from the output (or solution) space Y ; the method of

evaluation of the performance of a computer on a task is usually task-dependent; accuracy, precision,

and recall are common metrics. Besides the Syriac example from the previous chapter, consider the

following additional examples:

Spam Detection. Flag unwanted email messages as spam or not-spam; X is the set of all possible

messages and Y = {spam,not spam}.

Part-of-Speech (POS) Tagging. Not unlike grade-school grammar class, this problem consists of

identifying the part-of-speech (i.e., noun, verb, preposition, etc.) of each word in a corpus.

These annotations can aid the study of corpora, as well as improve performance of other

tasks such as machine translation or parsing. In this task, X could be the set of all English

words and Y is the set of all part-of-speech tags. More commonly, X is the infinite set of all

English sentences and Y would be the infinite set of tag sequences.

Named Entity Recognition. This task consists of finding all the proper nouns in a sentence.

Named entity recognition is used to identify gene names in scientific papers or the names of

persons of interest in surveillance applications. X is the set of all possible sentences and Y

is the set of all possible proper nouns.

Machine Translation. Translating a sentence in the source language to the target language; X is

the infinite set of all possible sentences in the source language and Y is the infinite set of all

possible sentences in the target language.

Parsing. Similar to the dreaded “sentence diagrams” from English class, this task consists of

building a tree-like structure that groups words into phrases and phrases into higher-level

phrases; X is the infinite set of all English sentences and Y is the infinite set of all trees.

Facial Recognition. Match faces to people for authentication or photo tagging; X is the set of all

possible images and Y is the (finite) set of all recognizable people in a database.
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When provided with instances and their solutions (e.g., email messages that have been flagged as

spam or not-spam), computers can learn to map instances from the input space to the output space

(e.g., can mark email messages as spam). This process is called supervised learning, which we

define more formally in section 2.2.

As previously mentioned, a major obstacle to corpus creation is the cost associated with

obtaining annotations from the output space for the corresponding samples from the input space,

which usually requires an expert human annotator. To illustrate, consider the full Penn Treebank

(i.e., not just the Wall Street Journal section). Obtaining the unannotated sentences in today’s

digital world would be trivial. In contrast, it reportedly took three years for four annotators with

graduate-level experience in linguistics working 15 hours a week to provide tags for the 4.5 million

words of text [56]. Contrast this effort to the amount of time it would take to scrape 4.5 million

words from the web. The techniques that we discuss are particularly applicable when obtaining

annotations is costly relative to the cost of obtaining instances.

The cost-reduction strategy that we focus on for the purposes of this dissertation is active

learning (aka selective sampling and optimal experimental design). Let us return to the analogy

of traditional pedagogy.1 The examples that a teacher typically selects to illustrate concepts are

rarely random but rather carefully selected to be particularly informative (without being overly

time-consuming to explain); homework is rarely randomly selected for the same reason. This way,

the teacher needs to present fewer examples on the board and can assign less homework while

achieving similar performance from the students. This process is similar in spirit to active learning:

rather than randomly selecting instances to train models, we can instead carefully select examples

that are most beneficial and least costly. If we are successful, we will achieve similar levels of

performance to randomly selecting instances, while reducing the cost of obtaining those annotations;

or, equivalently, we will achieve higher levels of performance at the same cost. In fact, active learning

has long been known to reduce the cost of training machine learning models, in theory: under

certain not-necessarily reasonable conditions, it can be shown that active learning exponentially
1The analogy here, though informative, is technically deficient in the sense that the students do not select the

examples.
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reduces the number of labels required to train a model compared to standard supervised learning

[20, 21, 29].

2.2 Formal Definitions

We now define traditional active learning formally, by first contrasting it with a formal definition of

passive learning (standard supervised machine learning). For these definitions, we limit ourselves to

the case were there is a single, infallible annotator (i.e., “oracle”), which assumption will be further

addressed as a part of this dissertation. As a matter of notation, we use parentheses () to indicate

tuples and angled brackets hi to indicate a sequence. The symbol⇠ signifies that a variable is drawn

from the specified distribution. For instance, x⇠ X means that x is drawn from the distribution of X .

Lastly, we use � to represent the append operation for sequences.

2.2.1 Supervised Machine Learning

Formally, we define a machine learning model as a function f : X 7! Y . Let FX ,Y be the set

of all such functions for X and Y . We further let X and Y be random variables with ranges

X and Y , respectively. Then a training set is a sample from the joint distribution of X and Y

(this distribution is task and domain dependent). Let DX ,Y be the set of all possible training sets

for X and Y . Thus, a supervised learner for input space X and output space Y is a function

g : DX ,Y 7!FX ,Y ; let GX ,Y be the set of all such functions for X and Y .

The example that will be used throughout this dissertation is the English POS tagging

task. The training set that we use is the Wall Street Journal (WSJ) section of the Penn Treebank

(PTB) [56], which contains approximately 1 million words of English with their corresponding

part-of-speech tags across approximately 40,000 sentences. We let X be the set of all possible

English sentences and Y be the set of all possible tag sequences. Therefore, the PTB is a member

of DX ,Y and contains about 40,000 samples from p(X ,Y ). The model that we use is a Maximum

Entropy Markov Model (MEMM) [71];2 it takes as input an English sentence and outputs the tags
2The features we use are based on Toutanova and Manning [92].
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annotator-initiated approach, the paradigm shift brings to light a new problem: annotators must wait

for the computation to be performed. This “wait cost” may involve direct costs and/or opportunity

costs. Chapter 9, published in the Proceedings of the NAACL HLT 2010 Workshop on Active

Learning for Natural Language Processing, 2010 [35], is the first work of which we are aware to

account for this cost. The chapter focuses on a solution to eliminating wait cost, which involves,

among other things, performing computation while the annotator is at work. This “parallelization”

of effort is the focus of the title of the chapter, “Parallel Active Learning” (we also mention how the

computation itself can be parallelized). We call this framework the “no-wait” framework.

The last remaining issue within the scope of this dissertation is that of “multiple, fallible

annotators of differing levels of accuracy and cost.” Chapter 8 extends the “no-wait” framework

to allow for multiple annotators, and evaluates results using 20 identical oracles. Chapter 10

(unsubmitted manuscript) further extends that work for use with multiple, fallible annotators of

differing levels of accuracy and cost. We present a Bayesian model that is designed to simultaneously

infer ground truth annotations from noisy annotations, infer each individual annotator’s accuracy,

and predict its own accuracy on unseen data (without the use of a held-out set). We have also

extended ROI-based active learning to the multiple annotator environment. The detailed design of

these approaches is presented in Chapter 10, but experimentation remains for future work.

Most of our work has been done using maximum entropy Markov models—a class of

sequence models. Using sequence models in active learning often involves the computation of

expectations. If done naı̈vely, computing expected values would require time exponential in the

length of the sequence. Instead, approximations are often used. In Appendix A, we present

an approach to efficiently computing expectations exactly in sequence models using dynamic

programming.

Taken as a whole, these chapters introduce cost-conscious active learning (i.e., the class

of algorithms we call ROI). We show that these techniques can reduce the cost of annotation in

realistic environments.
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Chapter 4

Active Learning for Part-of-Speech Tagging: Accelerating Corpus Annotation†

Abstract

In the construction of a part-of-speech annotated corpus, we are constrained by a fixed budget. A

fully annotated corpus is required, but we can afford to label only a subset. We train a Maximum

Entropy Markov Model tagger from a labeled subset and automatically tag the remainder. This

paper addresses the question of where to focus our manual tagging efforts in order to deliver an

annotation of highest quality. In this context, we find that active learning is always helpful. We

focus on Query by Uncertainty (QBU) and Query by Committee (QBC) and report on experiments

with several baselines and new variations of QBC and QBU, inspired by weaknesses particular to

their use in this application. Experiments on English prose and poetry test these approaches and

evaluate their robustness. The results allow us to make recommendations for both types of text and

raise questions that will lead to further inquiry.

4.1 Introduction

We are operating (as many do) on a fixed budget and need annotated text in the context of a larger

project. We need a fully annotated corpus but can afford to annotate only a subset. To address

our budgetary constraint, we train a model from a manually annotated subset of the corpus and

automatically annotate the remainder. At issue is where to focus manual annotation efforts in order
†Eric Ringger, Marc Carmen, Robbie Haertel, Kevin Seppi, Deryle Lonsdale, Peter McClanahan, James Carroll, and

Noel Ellison. Assessing the costs of machine-assisted corpus annotation through a user study. In Proceedings of the

international Conference on Language Resources and Evaluations, 2008.
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to produce a complete annotation of highest possible quality. A follow-up question is whether these

techniques work equally well on different types of text.

In particular, we require part-of-speech (POS) annotations. In this paper we employ a

state-of-the-art tagger on both prose and poetry, and we examine multiple known and novel active

learning (or sampling) techniques in order to determine which work best in this context. We show

that the results obtained by a state-of-the-art tagger trained on a small portion of the data selected

through active learning can approach the accuracy attained by human annotators and are on par with

results from exhaustively trained automatic taggers.

In a study based on English language data presented here, we identify several active learning

techniques and make several recommendations that we hope will be portable for application to other

text types and to other languages. In section 4.2 we briefly review the state of the art approach to

POS tagging. In section 4.3, we survey the approaches to active learning employed in this study,

including variations on commonly known techniques. Section 4.4 introduces the experimental

regime and presents results and their implications. Section 4.5 draws conclusions and identifies

opportunities for follow-up research.

4.2 Part of Speech Tagging

Labeling natural language data with part-of-speech tags can be a complicated task, requiring much

effort and expense, even for trained annotators. Several efforts, notably the Alembic workbench

[23] and similar tools, have provided interfaces to aid annotators in the process.

Automatic POS tagging of text using probabilistic models is mostly a solved problem but

requires supervised learning from substantial amounts of training data. Previous work demonstrates

the suitability of Hidden Markov Models for POS tagging [9, 49]. More recent work has achieved

state-of-the-art results with Maximum entropy conditional Markov models (MaxEnt CMMs, or

MEMMs for short) [71, 92, 93]. Part of the success of MEMMs can be attributed to the absence of

independence assumptions among predictive features and the resulting ease of feature engineering.
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To the best of our knowledge, the present work is the first to present results using MEMMs in an

active learning framework.

An MEMM is a probabilistic model for sequence labeling. It is a Conditional Markov Model

(CMM as illustrated in Figure 4.1) in which a Maximum Entropy (MaxEnt) classifier is employed

to estimate the probability distribution p(ti|w, t1...i�1)⇡ pME(ti|wi, fi, ti�1, ti�2) over possible labels

for each element in the sequence—in our case, for each word wi in a sentence w. The MaxEnt

model is trained from labeled data and has access to any predefined attributes (represented here

by the collection fi) of the entire word sequence and to the labels of previous words (t1...i�1). Our

implementation employs an order-two Markov assumption so the classifier has access only to the

two previous tags ti�1, ti�2. We refer to the features (wi, fi, ti�1, ti�2) from which the classifier

predicts the distribution over tags as “the local trigram context”.

A Viterbi decoder is a dynamic programming algorithm that applies the MaxEnt classifier to

score multiple competing tag-sequence hypotheses efficiently and to produce the best tag sequence,

according to the model. We approximate Viterbi very closely using a fast beam search. Essentially,

the decoding process involves sequential classification, conditioned on the (uncertain) decisions of

the previous local trigram context classifications. The chosen tag sequence t̂ is the tag sequence

maximizing the following quantity:

t̂ = argmax
t

P(t|w)

= argmax
t

n

’
i=1

pME(ti|wi, fi, ti�1, ti�2).

The features used in this work are reasonably typical for modern MEMM feature-based POS

tagging and consist of a combination of lexical, orthographic, contextual, and frequency-based

information. In particular, for each word the following features are defined: the textual form of the

word itself, the POS tags of the preceding two words, and the textual form of the following word.

Following Toutanova and Manning [92] approximately, more information is defined for words that
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Figure 4.1: Simple Markov order 2 CMM, with focus on the i-th hidden label (or tag).

are considered rare (which we define here as words that occur fewer than fifteen times). We consider

the tagger to be near-state-of-the-art in terms of tagging accuracy.

4.3 Active Learning

The objective of this research is to produce more high quality annotated data with less human

annotator time and effort. Active learning is an approach to machine learning in which a model is

trained with the selective help of an oracle. The oracle provides labels on a sufficient number of

“tough” cases, as identified by the model. Easy cases are assumed to be understood by the model and

to require no additional annotation by the oracle. Many variations have been proposed in the broader

active learning and decision theory literature under many names, including “active sampling” and

“optimal sampling.”

In active learning for POS tagging, as in other applications, the oracle can be a human. For

experimental purposes, a human oracle is simulated using pre-labeled data, where the labels are

hidden until queried. To begin, the active learning process requires some small amount of training

data to seed the model. The process proceeds by identifying the data in the given corpus that should

be tagged first for maximal impact.

4.3.1 Active Learning in the Language Context

When considering the role of active learning, we were initially drawn to the work in active learning

for classification. In a simple configuration, each instance (document, image, etc.) to be labeled
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can be considered to be independent. However, for active learning for the POS tagging problem we

considered the nature of human input as an oracle for the task. As an approximation, people read

sentences as propositional atoms, gathering contextual cues from the sentence in order to assemble

the meaning of the whole. Consequently, we thought it unreasonable to choose the word as the

granularity for active learning. Instead, we begin with the assumption that a human will usually

require much of the sentence or at least local context from the sentence in order to label a single

word with its POS label. While focusing on a single word, the human may as well label the entire

sentence or at least correct the labels assigned by the tagger for the sentence. Consequently, the

sentence is the granularity of annotation for this work. (Future work will question this assumption

and investigate tagging a word or a subsequence of words at a time.) This distinguishes our work

from active learning for classification since labels are not drawn from a fixed set of labels. Rather,

every sentence of length n can be labeled with a tag sequence drawn from a set of size T n, where T

is the size of the per-word tag set. Granted, many of the options have very low probability.

To underscore our choice of annotating at the granularity of a sentence, we also note that

a maximum entropy classifier for isolated word tagging that leverages attributes of neighboring

words–but is blind to all tags–will underperform an MEMM that includes the tags of neighboring

words (usually on the left) among its features. Previous experiments demonstrate the usefulness of

tags in context on the standard Wall Street Journal data from the Penn Treebank [57]. A MaxEnt

isolated word tagger achieves 93.7% on words observed in the training set and 82.6% on words

unseen in the training set. Toutanova and Manning [92] achieves 96.9% (on seen) and 86.9% (on

unseen) with an MEMM. They surpassed their earlier work in 2003 with a “cyclic dependency

network tagger,” achieving 97.2%/89.05% (seen/unseen) [93]. The generally agreed upon upper

bound is around 98%, due to label inconsistencies in the Treebank. The main point is that effective

use of contextual features is necessary to achieve state of the art performance in POS tagging.

In active learning, we employ several sets of data that we refer to by the following names:

Initial Training the small set of data used to train the original model before active learning starts

Training data that has already been labeled by the oracle as of step i in the learning cycle
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Unannotated data not yet labeled by the oracle as of step i

Test (specifically Development Test) labeled data used to measure the accuracy of the model at

each stage of the active learning process. Labels on this set are held in reserve for comparison

with the labels chosen by the model. It is the accuracy on this set that we report in our

experimental results in Section 4.4.

Note that the Training set grows at the expense of the Unannotated set as active learning progresses.

Active Learning for POS Tagging consists of the following steps:

1. Train a model with Initial Training data

2. Apply model to Unannotated data

3. Compute potential informativeness of each sentence

4. Remove top n sentences with most potential informativeness from Unannotated data and give

to oracle

5. Add n sentences annotated (or corrected) by the oracle to Training data

6. Retrain model with Training data

7. Return to step 2 until stopping condition is met.

There are several possible stopping conditions, including reaching a quality bar based on

accuracy on the Test set, the rate of oracle error corrections in the given cycle, or even the cumulative

number of oracle error corrections. In practice, the exhaustion of resources, such as time or money,

may completely dominate all other desirable stopping conditions.

Several methods are available for determining which sentences will provide the most

information. Expected Value of Sample Information (EVSI) [69] would be the optimal approach

from a decision theoretic point of view, but it is computationally prohibitive and is not considered

here. We also do not consider the related notion of query-by-model-improvement or other methods

[2, 75]. While worth exploring, they do not fit in the context of this current work and should be
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considered in future work. We focus here on the more widely used Query by Committee (QBC) and

Query by Uncertainty (QBU), including our new adaptations of these.

Our implementation of maximum entropy training employs a convex optimization procedure

known as LBFGS. Although this procedure is relatively fast, training a model (or models in the case

of QBC) from scratch on the training data during every round of the active learning loop would

prolong our experiments unnecessarily. Instead we start each optimization search with a parameter

set consisting of the model parameters from the previous iteration of active learning (we call this

“Fast MaxEnt”). In practice, this converges quickly and produces equivalent results.

4.3.2 Query by Committee

Query by Committee (QBC) was introduced by Seung et al. [82]. Freund et al. [29] provided a

careful analysis of the approach. Engelson and Dagan [27] experimented with QBC using HMMs

for POS tagging and found that selective sampling of sentences can significantly reduce the number

of samples required to achieve desirable tag accuracies. Unlike the present work, Engelson & Dagan

were restricted by computational resources to selection from small windows of the Unannotated set,

not from the entire Unannotated set. Related work includes learning ensembles of POS taggers, as

in the work of Brill and Wu [10], where an ensemble consisting of a unigram model, an N-gram

model, a transformation-based model, and an MEMM for POS tagging achieves substantial results

beyond the individual taggers. Their conclusion relevant to this paper is that different taggers

commit complementary errors, a useful fact to exploit in active learning. QBC employs a committee

of N models, in which each model votes on the correct tagging of a sentence. The potential

informativeness of a sentence is measured by the total number of tag sequence disagreements

(compared pair-wise) among the committee members. Possible variants of QBC involve the number

of committee members, how the training data is split among the committee members, and whether

the training data is sampled with or without replacement.

A potential problem with QBC in this application is that words occur with different frequen-

cies in the corpus. Because of the potential for greater impact across the corpus, querying for the
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Figure 4.2: Distribution over tags for the word “hurdle” in italics. The local trigram context is in
boldface.

tag of a more frequent word may be more desirable than querying for the tag of a word that occurs

less frequently, even if there is greater disagreement on the tags for the less frequent word. We

attempted to compensate for this by weighting the number of disagreements by the corpus frequency

of the word in the full data set (Training and Unannotated). Unfortunately, this resulted in worse

performance; solving this problem is an interesting avenue for future work.

4.3.3 Query by Uncertainty

The idea behind active sampling based on uncertainty appears to originate with Thrun and Möller

[87]. QBU has received significant attention in general. Early experiments involving QBU were

conducted by Lewis and Gale [51] on text classification, where they demonstrated significant benefits

of the approach. Lewis and Catlett [50] examined its application for non-probabilistic learners in

conjunction with other probabilistic learners under the name “uncertainty sampling.” Anderson and

Moore [2] explored QBU using HMMs and concluded that it is sometimes advantageous. We are

not aware of any published work on the application of QBU to POS tagging. In our implementation,

QBU employs a single MEMM tagger. The MaxEnt model comprising the tagger can assess the

probability distribution over tags for any word in its local trigram context, as illustrated in the

example in Figure 4.2.

In Query by Uncertainty (QBU), the informativeness of a sample is assumed to be the uncer-

tainty in the predicted distribution over tags for that sample, that is the entropy of

pME(ti|wi, fi, ti�1, ti�2). To determine the potential informativeness of a word, we can measure
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the entropy in that distribution. Since we are selecting sentences, we must extend our measure of

uncertainty beyond the word.

4.3.4 Adaptations of QBU

There are several problems with the use of QBU in this context:

• Some words are more important; i.e., they contain more information perhaps because they

occur more frequently.

• MaxEnt estimates per-word distributions over tags, not per-sentence distributions over tag

sequences.

• Entropy computations are relatively costly.

We address the first issue in a new version of QBU which we call “Weighted Query by Uncertainty”

(WQBU). In WQBU, per-word uncertainty is weighted by the word’s corpus frequency.

To address the issue of estimating per-sentence uncertainty from distributions over tag

sequences, we have considered several different approaches. The per-word (conditional) entropy is

defined as follows:

H(Ti|wi, fi, ti�1, ti�2) =� Â
ti2Tagset

pME(ti|wi, fi, ti�1, ti�2) · log pME(ti|wi, fi, ti�1, ti�2)

where Ti is the random variable for the tag ti on word wi, and the features of the context in which wi

occurs are denoted, as before, by the collection fi and the prior tags ti�1, ti�2. It is straightforward

to calculate this entropy for each word in a sentence from the Unannotated set, if we assume that

previous tags ti�1, ti�2 are from the Viterbi (best) tag sequence (for the entire sentence) according

to the model.

For an entire sentence, we estimate the tag-sequence entropy by summing over all possible

tag sequences. However, computing this estimate exactly on a 25-word sentence, where each word

can be labeled with one of 35 tags, would require 3525 = 3.99 ·1038 steps. Instead, we approximate
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the per-sentence tag sequence distribution entropy by summing per-word entropy:

Ĥ(T |w)⇡� Â
wi2w

H(Ti|wi, fi, ti�1, ti�2)

This is the approach we refer to as QBU in the experimental results section. We have

experimented with a second approach that estimates the per-sentence entropy of the tag-sequence

distribution by Monte Carlo decoding. Unfortunately, current active learning results involving this

MC POS tagging decoder are negative on small Training set sizes, so we do not present them here.

Another alternative approximation worth pursuing is computing the per-sentence entropy using the

n-best POS tag sequences. Very recent work by Mann and McCallum [55] proposes an approach in

which exact sequence entropy can be calculated efficiently. Further experimentation is required to

compare our approximation to these alternatives.

An alternative approach that eliminates the overhead of entropy computations entirely is to

estimate per-sentence uncertainty with 1�P(t̂), where t̂ is the Viterbi (best) tag sequence. We call

this scheme QBUV. In essence, it selects a sample consisting of the sentences having the highest

probability that the Viterbi sequence is wrong. To our knowledge, this is a novel approach to active

learning.

4.4 Experimental Results

In this section, we examine the experimental setup, the prose and poetry data sets, and the results

from using the various active learning algorithms on these corpora.

4.4.1 Setup

The experiments focus on the annotation scenario posed earlier, in which budgetary constraints afford

only some number x of sentences to be annotated. The x-axis in each graph captures the number

of sentences. For most of the experiments, the graphs present accuracies on the (Development)
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Test set. Later in this section, we present results for an alternate metric, namely number of words

corrected by the oracle.

In order to ascertain the usefulness of the active learning approaches explored here, the results

are presented against a baseline in which sentences are selected randomly from the Unannotated

set. We consider this baseline to represent the use of a state-of-the-art tagger trained on the same

amount of data as the active learner. Due to randomization, the random baseline is actually distinct

from experiment to experiment without any surprising deviations. Also, each result curve in each

graph represents the average of three distinct runs.

Worth noting is that most of the graphs include active learning curves that are run to

completion; namely, the rightmost extent of all curves represents the exhaustion of the Unannotated

data. At this extreme point, active learning and random sample selection all have the same Training

set. In the scenarios we are targeting, this far right side is not of interest. Points representing smaller

amounts of annotated data are our primary interest.

In the experiments that follow, we address several natural questions that arise in the course

of applying active learning. We also compare the variants of QBU and QBC. For QBC, committee

members divide the training set (at each stage of the active learning process) evenly. All committee

members and final models are MEMMs. Likewise, all variants of QBU employ MEMMs.

4.4.2 Data Sets

The experiments involve two data sets in search of conclusions that generalize over two very

different kinds of English text. The first data set consists of English prose from the POS-tagged

one-million-word Wall Street Journal text in the Penn Treebank (PTB) version 3. We use a random

sample of the corpus constituting 25% of the traditional training set (sections 2-21). Initial Training

data consists of 1% of this set. We employ section 24 as the Development Test set. Average sentence

length is approximately 25 words.

Our second experimental set consists of English poetry from the British National Corpus

(BNC) [31, 41, 70]. The text is also fully tagged with 91 parts of speech from a different tag set
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100 200 400 800 1600 3200 6400
QBU 76.26 86.11 90.63 92.27 93.67 94.65 95.42
QBUV 76.65 85.09 89.75 92.24 93.72 94.96 95.60
QBC 76.19 85.77 89.37 91.78 93.49 94.62 95.36
Base 76.57 82.13 86.68 90.12 92.49 94.02 95.19

Table 4.1: The best models (on PTB WSJ data) with various amounts of annotation (columns).

than the one used for the PTB. The BNC XML data was taken from the files B1C.xml, CBO.xml,

and H8R.xml. This results in a set of 60,056 words and 8,917 sentences.

4.4.3 General Results

To begin, each step in the active learning process adds a batch of 100 sentences from the Unannotated

set at a time. Figure 4.3 demonstrates (using QBU) that the size of a query batch is not significant

in these experiments.

The primary question to address is whether active learning helps or not. Figure 4.4 demon-

strates that QBU, QBUV, and QBC all outperform the random baseline in terms of total, per-word

accuracy on the Test set, given the same amount of Training data. Figure 4.5 is a close-up version

of Figure 4.4, placing emphasis on points up to 1000 annotated sentences. In these figures, QBU

and QBUV vie for the best performing active learning algorithm. These results appear to give some

useful advice captured in Table 4.1. The first column in the table contains the starting conditions.

The remaining columns indicate that for between 800–1600 sentences of annotation, QBUV takes

over from QBU as the best selection algorithm.

The next question to address is how much initial training data should be used; i.e., when

should we start using active learning? The experiment in Figure 4.6 demonstrates (using QBU)

that one should use as little data as possible for Initial Training Data. There is always a significant

advantage to starting early. In the experiment documented in this figure, a batch query size of one

was employed in order to make the point as clearly as possible. Larger batch query sizes produce

a graph with similar trends as do experiments involving larger Unannotated sets and other active

learners.
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Figure 4.3: Varying the size of the query batch in active learning yields identical results after the
first query batch.

Figure 4.4: The best representatives of each type of active learner beat the baseline. QBU and
QBUV trade off the top position over QBC and the Baseline.
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Figure 4.5: Close-up of the low end of the graph from Figure 4.4. QBUV and QBU are nearly tied
for best performance. this figure, a batch query size of one was employed in order to make the
point as clearly as possible. Larger batch query sizes produce a graph with similar trends as do
experiments involving larger Unannotated sets and other active learners.

Figure 4.6: Start active learning as early as possible for a head start.
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Figure 4.7: QBUV is superior to QBU overall, but QBU is better for very low counts. Both are
superior to the random baseline and the Longest Sentence (LS) baseline.

4.4.4 QBC Results

An important question to address for QBC is what number of committee members produces the

best results? There was no significant difference in results from the QBC experiments when using

between 3 and 7 committee members. For brevity we omit the graph.

4.4.5 QBU Results

For Query by Uncertainty, the experiment in Figure 4.7 demonstrates that QBU is superior to QBUV

for low counts, but that QBUV slightly overtakes QBU beyond approximately 300 sentences. In

fact, all QBU variants, including the weighted version, surpassed the baseline. WQBU has been

omitted from the graph, as it was inferior to straight-forward QBU.

4.4.6 Results on the BNC

Next we introduce results on poetry from the British National Corpus. Recall that the feature set

employed by the MEMM tagger was optimized for performance on the Wall Street Journal. For the

experiment presented in Figure 4.8, all data in the Training and Unannotated sets is from the BNC,

but we employ the same feature set from the WSJ experiments. This result on the BNC data shows
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Figure 4.8: Active learning results on the BNC poetry data. Accuracy of QBUV, QBU, and QBC
against the random baseline. QBU and QBUV are nearly indistinguishable.

first of all that tagging poetry with this tagger leaves a final shortfall of approximately 8% from the

WSJ results. Nonetheless and more importantly, the active learning trends observed on the WSJ still

hold. QBC is better than the baseline, and QBU and QBUV trade off for first place. Furthermore,

for low numbers of sentences, it is overwhelmingly to one’s advantage to employ active learning for

annotation.

4.4.7 Another Perspective

Next, briefly consider a different metric on the vertical axis. In Figure 4.9, the metric is the total

number of words changed (corrected) by the oracle. This quantity reflects the cumulative number of

differences between the tagger’s hypothesis on a sentence (at the point in time when the oracle is

queried) and the oracle’s answer (over the training set). It corresponds roughly to the amount of

time that would be required for a human annotator to correct the tags suggested by the model. This

figure reveals that QBUV makes significantly more changes than QBU, QBC, or LS (the Longest

Sentence baseline). Hence, the superiority of QBU over QBUV, as measured by this metric, appears

to outweigh the small wins provided by QBUV when measured by accuracy alone. That said, the

random baseline makes the fewest changes of all. If this metric (and not some combination with

accuracy) were our only consideration, then active learning would appear not to serve our needs.
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Figure 4.9: Cumulative number of corrections made by the oracle for several competitive active
learning algorithms. QBU requires fewer corrections than QBUV.

This metric is also a measure of how well a particular query algorithm selects sentences that

especially require assistance from the oracle. In this sense, QBUV appears most effective.

4.5 Conclusions

Active learning is a viable way to accelerate the efficiency of a human annotator and is most effective

when done as early as possible. We have presented state-of-the-art tagging results using a fraction

of the labeled data. QBUV is a cheap approach to performing active learning, only to be surpassed

by QBU when labeling small numbers of sentences. We are in the midst of conducting a user study

to assess the true costs of annotating a sentence at a time or a word at a time. We plan to incorporate

these specific costs into a model of cost measured in time (or money) that will supplant the metrics

reported here, namely accuracy and number of words corrected. As noted earlier, future work will

also evaluate active learning at the granularity of a word or a subsequence of words, to be evaluated

by the cost metric.
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4.6 Errata

This chapter corrects two errors in the references section of the published version of this paper.

First, the reference to Raiffa and Schlaifer [69] now has the correct year. Second, there were two

citations to Roy and McCallum [75] with different titles; we have retained only the correct citation.
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In addition, the published version of this paper contains an incorrect date for the publication

by Raiffa and Schlaifer [69] which has been updated for this version.
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Chapter 8

An Analytic and Empirical Evaluation of Return-on-Investment-Based Active Learning

Abstract

Return-on-Investment (ROI) is a cost-conscious approach to active learning (AL) that considers

both estimates of cost and of benefit in active sample selection. In this chapter, we investigate the

conditions for successful cost-conscious AL using ROI by proving the conditions under which ROI

would optimize the area under the cost/benefit curve. We then empirically measure the degree to

which optimality is jeopardized in practice when the conditions are violated. We find that the more

linearly related a benefit estimator is to true benefit, the better it performs when paired with an

imperfect cost estimate in ROI. Lastly, we use our analysis to explain the mixed results of previous

work. Our results show that ROI can indeed successfully reduce total annotation costs.

8.1 Introduction

In active learning (AL), sample selection algorithms sequentially choose instances, or “samples,”

to be labeled/annotated by an oracle; each annotated instance results in a measurable benefit (e.g.,

increase in model accuracy) and incurs a specific cost (e.g., time needed to obtain the label).

Unfortunately, until recently, AL research has ignored the fact that instances have varying costs.

Recent decision-theoretic approaches (e.g., Liang et al. [52]) can incorporate per-instance cost,

but typically ignore it during experimentation, due in part to the difficulty of subtracting cost

from benefit when they are measured in different units [24, 36]. Return-on-investment (ROI) is a

cost-conscious technique that avoids this requirement by selecting the instance x⇤ having maximum
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net benefit per unit cost, i.e.,

x⇤ = argmax
x

bene f it(x)� cost(x)
cost(x)

= argmax
x

bene f it(x)
cost(x)

. (8.1)

This approach to AL was independently proposed by Donmez and Carbonell [24], Haertel et al.

[36], and Settles et al. [81]; in addition, Tomanek and Hahn [89] evaluated the effectiveness of ROI.

Unfortunately, the results are mixed. In addition, despite its intuitive appeal and recent attention

as a practical cost-conscious algorithm, there has been little theoretical justification for ROI in the

context of AL.

The purpose of this chapter is to provide an initial theoretical analysis of ROI that allows us

to explain its behavior in a practical environment. We also empirically assess the degree to which

violated conditions affect the overall performance of ROI.

The chapter is organized as follows: related work is presented in Section 2. Section 3

examines the conditions under which ROI would be optimal. Section 4 discusses the experimental

methodology. Section 5 experimentally assesses the extent to which the conditions hold in practice,

but outside the context of AL while Section 5 explores the overall effect on AL. Finally, Section 6

presents our conclusions and future work.

8.2 Related Work

The very essence of active learning is to select the next “best” instance to be annotated. This, of

course, raises the question as to which selection function is optimal. Cohn et al. [17] derive a

solution for selecting the instance that minimizes model variance. A related class of solutions based

on optimal experimental design use Fisher information to select the optimal instance [98]. However,

these approaches fail to account for problems in which instances are not equally costly to annotate.

Decision theory offers an elegant framework for (greedily) selecting the next best instance

based on utility and which can handle variable query costs; some examples include Liang et al. [52],
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Anderson and Moore [2], Margineantu [58], and Kapoor et al. [46]. In this framework, the optimal

instance is the one which has maximum net utility, i.e., utility less cost. However, this approach

requires that net utility and cost be in the same units. This requirement is particularly problematic

when heuristics (such as entropy) are used to approximate expected utility.

Another approach, borrowed from the financial industry, is return-on-investment (ROI)

[24, 36, 81]. ROI is related to the decision theoretic approach [36]; however, unlike the decision

theoretic approach, ROI does not require conversion between units of utility (benefit) and cost.

ROI has explicitly been employed with mixed results on a variety of tasks. Donmez and

Carbonell [24] show positive results with ROI on face detection, letter recognition, spam detection,

and high revenue detection tasks, but do not evaluate ROI using variable instance costs. Settles

et al. [81] evaluate ROI on entity-relation tagging, speculative text classification, and information

extraction. They limit themselves to an N-best approximation to entropy for the sequence labeling

tasks, but ROI does not outperform basic AL. Haertel et al. [36] show positive performance of

ROI on English part-of-speech tagging. Finally, Tomanek and Hahn [89] find that ROI slightly

outperforms two new cost-conscious algorithms when an appropriate benefit function is used.

In short, ROI is a promising approach to cost-conscious AL that can account for variable

instance cost without requiring cost and benefit to be in the same units. However, unlike optimal

experiment design and decision theory, the theoretical underpinnings of ROI for AL have hitherto

remained largely unexplored and the mixed results require reconciliation.

8.3 Theoretical Analysis of ROI

The fact that ROI was successful in some previous work indicates that it is doing something right.

The purpose of this section is to investigate those reasons by providing a bottom-up theoretical

justification for ROI. That is, this section proposes Area Under the cost/benefit Curve (AUC) as a

suitable objective function and then enumerates a set of conditions that, if true, would lead to ROI

maximizing AUC. As a result of the bottom-up derivation, the assumptions made are somewhat
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strong, but we dedicate the next two sections to analyzing the degree to which they hold in practice

and their effect on results in practice.

We begin with a brief set of definitions. AL algorithms sequentially select instances from

a set of unlabeled instances U (“the pool”). As an instance x 2 U is annotated with label y, it

results in a measurable benefit and also incurs a specific cost.1 In general, the benefit and cost

of obtaining a particular annotation may depend on previously obtained annotations. Thus, we

define total benefit and cumulative cost to be functions (b(·) and c(·), respectively) of a sequence

of labeled data L = h(x1,y1), . . . ,(xn,yn)i. For simplicity, we assume that the cost to annotate an

instance is independent of its order, although it can be shown that this assumption has no bearing on

the final analysis. Therefore, c(L1...i) = Âi0 c(Li0).

There are multiple metrics for comparing the performance of AL algorithms. In a real

annotation project, the only metric that matters is the final benefit that is achieved. However,

the algorithm must be selected before annotation begins and the algorithm is chosen based on

the outcomes of prior experiments under similar circumstances. Due to the inherent uncertainty

surrounding the applicability of the results to the new annotation project, selecting an algorithm

based on the difference in benefit at any one specific cost (e.g., the budget available for the new

project) is dangerous. Instead, the trends over sufficiently large ranges of cost should be considered.

This information is conveyed in a cost/benefit curve (a generalization of standard learning

curves) which parametrically plots b(L1...i) against c(L1...i) for i 2 {1, . . . , |L|}. All previous work

of which we are aware evaluate AL using cost/benefit curves or derivations thereof. In general,

curves that tend to the upper-left corner of the graph are preferable, even when they end at the same

point as other curves. This notion of preference can be formalized into an objective function in

which AUC is to be maximized. Note that Settles and Craven [80] and Baldridge and Osborne [6]

use AUC to evaluate AL algorithms.

We now formally define AUC. Assuming linear interpolation between discrete neighboring

points, AUC is the sum of the area of the right trapezoids defined by adjacent points on the curve.
1For the purposes of this section, we follow previous work in assuming a single annotator.
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Chapter 9

Parallel Active Learning: Eliminating Wait Time with Minimal Staleness†

Abstract

A practical concern for Active Learning (AL) is the amount of time human experts must wait for the

next instance to label. We propose a method for eliminating this wait time independent of specific

learning and scoring algorithms by making scores always available for all instances, using old (stale)

scores when necessary. The time during which the expert is annotating is used to train models and

score instances–in parallel–to maximize the recency of the scores. Our method can be seen as a

parameterless, dynamic batch AL algorithm. We analyze the amount of staleness introduced by

various AL schemes and then examine the effect of the staleness on performance on a part-of-speech

tagging task on the Wall Street Journal. Empirically, the parallel AL algorithm effectively has a

batch size of one and a large candidate set size but eliminates the time an annotator would have

to wait for a similarly parameterized batch scheme to select instances. The exact performance of

our method on other tasks will depend on the relative ratios of time spent annotating, training, and

scoring, but in general we expect our parameterless method to perform favorably compared to batch

when accounting for wait time.
†Robbie Haertel, Paul Felt, Eric Ringger, and Kevin Seppi. Parallel active learning: Eliminating wait time with

minimal staleness. In Proceedings of the HLT-NAACL 2010 Workshop on Active Learning for Natural Language

Processing, pages 3341. Association for Computational Linguistics, 2010.
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Also, the use of batch AL causes instances to be chosen without the benefit of all of the most

recently annotated instances, a phenomenon we call staleness and formally define in Section 9.2.

Finally, in batch AL, the computer is left idle while the annotator is working and vice-versa.

We present a parallel, parameterless solution that can eliminate wait time irrespective of the

scoring algorithm and training method. Our approach is based on the observation that instances can

always be available for annotation if we are willing to serve instances that may have been selected

without the benefit of the most recent annotations. By having the computer learner do work while

the annotator is busy annotating, we are able to mitigate the effects of using these older annotations.

The rest of this paper will proceed as follows: Section 9.2 defines staleness and presents

a progression of four AL algorithms that strike different balances between staleness and wait

time, culminating in our parallelized algorithm. We explain our methodology and experimental

parameters in Section 9.3 and then present experimental results and compare the four AL algorithms

in Section 9.4. Conclusions and future work are presented in Section 9.5.

9.2 From Zero Staleness to Zero Wait

We work within a pool- and score-based AL setting in which the active learner selects the next

instance from an unlabeled pool of data U . A scoring function s (aka scorer) assigns instances a

score using a model q trained on the labeled data A ; the scores serve to rank the instances. Lastly,

we assume that an unerring oracle provides the annotations. These concepts are demonstrated in

Algorithm 3.

In this section, we explore the trade-off between staleness and wait time. In order to do so,

it is beneficial to quantitatively define staleness, which we do in the context of Algorithm 3. After

each model q is trained, a stamp is associated with that q that indicates the number of annotated

instances used to train it (see line 3). The staleness of an item is defined to be the difference between

the current number of items in the annotated set and the stamp of the scorer that assigned the

instance a score. This concept can be applied to any instance, but it is particularly informative to

speak of the staleness of instances at the time they are actually annotated (we will simply refer
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Input: A seed set of annotated instances A , a set of pairs of unannotated instances and their
initial scores S , scoring function s , the candidate set size N, and the batch size B

Result: A is updated with the instances chosen by the AL process as annotated by the oracle
1 while S 6= /0 do
2 q  TrainModel(A )

3 stamp |A |
4 C  ChooseCandidates(S ,N)

5 K  {(c[inst],s(c[inst],q)) | c 2 C }
6 S  S�C[K
7 T  pairs from K with c[score] in the top B scores
8 for t 2T do
9 S  S � t

10 staleness |A|� stamp // unused

11 A  A [Annotate(t)
12 end
13 end

Algorithm 3: Pool- and score-based active learner.

to this as staleness, disambiguating when necessary; see line 10). Intuitively, an AL scheme that

chooses instances having less stale scores will tend to produce a more accurate ranking of instances.

9.2.1 Zero Staleness

There is a natural trade-off between staleness and the amount of time an annotator must wait for

an instance. Consider Algorithm 3 when B = 1 and N = • (we refer to this parameterization as

zerostale). In line 8, a single instance is selected for annotation (|T |= B = 1); the staleness of this

instance is zero since no other annotations were provided between the time it was scored and the

time it was removed. Therefore, this algorithm will never select stale instances and is the only way

to guarantee that no selected instances are stale.

However, the zero staleness property comes with a price. Between every instance served to

the annotator, a new model must be trained and every instance scored using this model, inducing

potentially large waiting periods. Therefore, the following options exist for reducing the wait time:

1. Optimize the learner and scoring function (including possible parallelization)

2. Use a different learner or scoring function
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These principles lead to Algorithm 4, which we call parallel (for clarity, we have omitted

steps related to concurrency). AnnotateLoop represents the tireless oracle who constantly requests

instances. The call to Annotate is a surrogate for the actual annotation process and most importantly,

the time spent in this method is the time required to provide annotations. Once an annotation is

obtained, it is placed on a shared buffer B where it becomes available for training. While the

annotator is, in effect, a producer of annotations, TrainLoop is the consumer which simply retrains

models as annotated instances become available on the buffer. This buffer is analogous to the batch

used for training in Algorithm 3. However, the size of the buffer changes dynamically based on

the relative amounts of time spent annotating and training. Finally, ScoreLoop endlessly scores

instances, using new models as soon as they are trained. The set of instances scored with a given

model is analogous to the candidate set in Algorithm 3.

9.3 Experimental Design

Because the performance of the parallel algorithm and the “worst-case” cost analysis depend on

wait time, we hold computing resources constant, running all experiments on a cluster of Dell

PowerEdge M610 servers equipped with two 2.8 GHz quad-core Intel Nehalem processors and 24

GB of memory.

All experiments were on English part of speech (POS) tagging on the POS-tagged Wall Street

Journal text in the Penn Treebank (PTB) version 3 [56]. We use sections 2-21 as initially unannotated

data and randomly select 100 sentences to seed the models. We employ section 24 as the set on

which tag accuracy is computed, but do not count evaluation as part of the wait time. We simulate

annotation costs using the cost model from Ringger et al. [74]: cost(s) = (3.80 · l +5.39 · c+12.57),

where l is the number of tokens in the sentence, and c is the number of pre-annotated tags that

need correction, which can be estimated using the current model. We use the same model for

pre-annotation as for scoring.

We employ the return on investment (ROI) AL framework introduced by Haertel et. al

(2008). This framework requires that one define both a cost and benefit estimate and selects instances
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Input: A seed set of annotated instances A , a set of pairs of unannotated instances and their
initial scores S , and a scoring function s

Result: A is updated with the instances chosen by the AL process as annotated by the oracle

1 B /0, q  null
2 Start(AnnotateLoop)

3 Start(TrainLoop)

4 Start(ScoreLoop)

5 procedure AnnotateLoop()
6 while S 6= /0 do
7 t c from S having max c[score]
8 S  S � t
9 B B[Annotate(t)

10 end
11 end
12 procedure TrainLoop()
13 while S 6= /0 do
14 q  TrainModel(A )

15 A  A [B
16 B /0
17 end
18 end
19 procedure ScoreLoop()
20 while S 6= /0 do
21 c ChooseCandidate(S )

22 S  S �{c}[{(c[inst],s(c[inst],q))|c 2S }
23 end
24 end

Algorithm 4: parallel

that maximize bene f it(x)�cost(x)
cost(x) . For simplicity, we estimate cost as the length of a sentence. Our

benefit model estimates the utility of each sentence as follows: bene f it(s) = � log(maxt p(t|s))

where p(t|s) is the probability of a tagging given a sentence. Thus, sentences having low average

(in the geometric mean sense) per-tag probability are favored. We use a maximum entropy Markov

model to estimate these probabilities, to pre-annotate instances, and to evaluate accuracy.
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Chapter 10

A Design for Multi-Annotator Active Learning

Abstract

Active learning in practice often involves multiple, noisy annotators. These annotations can be

used to infer a ground truth annotation, learn each individual annotator’s accuracy, and estimate the

accuracy of the machine predicted annotations. In addition, existing methods for selecting instances

for annotation are not always applicable or effective with multiple annotators. While previous work

has examined some of these issues, no work has attempted to address them all—especially not with

a unified approach. In this chapter, we describe a simple and intuitive Bayesian model of annotation

that is designed to infer ground truth and estimate accuracies. We then describe how this model can

be used in an active learning setting to select instances for annotation. We are particularly interested

in the annotator-initiated case in which annotators request instances to annotate “on-demand”.

Our solution includes the use of return-on-investment to pick an annotator-specific instance for

annotation.

10.1 Introduction

In this final chapter, we address the issue of active learning with multiple, fallible annotators

with differing costs and accuracies. We are specifically interested in annotation environments in

which annotators request instances to annotate on-demand, which we call annotator-initiated active

learning (see Chapter 2). All known real-world annotation tasks operate in this manner. This chapter

presents a detailed solution to this problem and describes a set of experiments designed to highlight

the strengths and weaknesses of the approach.
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10.3.1 Model

Given a set of instances and the annotations for these instances (each instance may have zero or

more annotations), we are interested in the task of inferring a ground truth label, each annotator’s

accuracy, as well as the accuracy of the machine on the data that lacks annotations (without holding

out any data).

The model that we will use to address the first three tasks mentioned in the introduction

(i.e., everything but the selection task) is based on a Bayesian model we proposed in previous

work [13, 14], but which we extend and more fully develop in this work. The model is based

on three main principles: (1) the true labels are unobservable, (2) the machine itself should be

considered an annotator, and (3) all annotations may carry useful information. We additionally

assume that annotations are independent of one another given the true (unobservable) label. Since

we do not explicitly exclude multiple annotations from the same annotator on the same instance,

this independence assumptions extends to such annotations.

Figure 10.1 presents the model. We abbreviate the Dirichlet distribution as Dir, the symmet-

ric Dirichlet distribution as SymDir, the categorical distribution (i.e., a multinomial distribution with

size parameter equal to one) as Cat, and the multinomial distribution as Mulitnom, parameterized

by size and probabilities. In addition, | · |1 denotes the L1-norm. The relevant constants for the

model are: J is the number of annotators, K is the number of labels, N is the number of instances,

and F is the number of features.

In addition, we adopt the following notational conventions. In statistics, random variables

are typically rendered in capital (Roman) letters, while values that they can assume are presented in

lowercase, e.g., Yi = yi. However, following common practice, we are sloppy with the distinction,

typically preferring the lowercase letters for both so long as context allows for proper disambiguation.

We also use lowercase p to represent both pmfs and pdfs.

We assume that for the ith data instance xxxi, the annotations aaai j are conditionally i.i.d. of each

other and the instance (xxxi) given the (unknown) label yi, whose a priori distribution is qqq . Therefore,

the annotations for each instance can be represented as count vectors for each annotator, i.e., aaai j is a
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qqq

µµµk aaa jk

fff k

Yi

Mi

XXXi

AAAi j

i = 1 . . .N

k = 1 . . .K
j = 1 . . .J

j = 1 . . .J

k = 1 . . .K

k = 1 . . .K

qqq ⇠ SymDir(bq ), dim(qqq) = K
µµµk ⇠ Dir(bbbµk), dim(µµµk) = K
fff k ⇠ SymDir(bf ), dim(fff k) = F

aaa jk ⇠ Dir(bbba jk), dim(aaa jk) = K

yi|qqq ⇠Cat(qqq), yi 2 {1 . . .K}
mi|yi,µµµ ⇠Cat(µµµyi

), mi 2 {1 . . .K}
xxxi|mi,fff ⇠Multinom(|xxxi|1,fff mi

), dim(xxxi) = F
aaai j|yi,aaa j ⇠Multinom(|aaai j|1,aaa j,yi), dim(aaai j) = K

Figure 10.1: Generative Bayesian model for inferring ground truth from multiple annotators while
modeling their individual accuracies.

vector of length K that holds the counts of the number of times annotator j labeled instance i with

each distinct label (typically, the vector is all zeroes—no annotations—or all zeroes with a single

one, but the model does not explicitly disallow the case where an annotator provides more than one

annotation for the same instance).

Imagine that, in addition to the human annotations, we were to use an off-the-shelf classifier

to produce machine predictions from each of the raw (unlabeled) data instances, xxxi. We could

then treat this prediction as yet another label from an imperfect annotator. In fact, we could use

this annotation on instances for which no human annotations are available. In our model, each

mi roughly represents this notion of a features-only, machine annotation, which contrasts with the

ground truth label, yi.
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We would also like to capture the accuracy of each annotator and the machine (recall that we

essentially treat the machine as another annotator). Each of the aaa j represents the “label confusion

matrix” for the jth annotator, i.e., the probability that the jth annotator will select annotation k0 when

the true label is k. The machine’s accuracy is similarly encapsulated by µµµ .

This model can be seen as a conglomeration of ideas from previous work. First, if we

consider only the nodes M and X , then we have a class-conditional classifier (e.g., Naı̈ve Bayes);

including priors over µµµ and fff produces the Bayesian extension (c.f. Meilǎ and Heckerman [60],

Walker and Ringger [94]). This class of model, of course, is not capable of directly incorporating

multiple annotations. Item response models, such as the model proposed by Dawid and Skene

[22], do take into account the annotations A, but they do not consider the machine as an annotator;

consequently, Y is the only other random variable in their model (inference is done in a frequentist

setting where qqq and aaa are not random variables, but constants to be learned). Smyth et al. [84]

augment David and Skene’s model to incorporate the features XXX . However, they ignore M; instead,

XXX depends directly on Y . This prevents them from learning the accuracy of the model. Furthermore,

they, too, take a frequentist approach and therefore treat fff , qqq , and aaa as constants. Carpenter

[12] proposes a model that is essentially a Bayesian version of Dawid and Skene’s model [22];

Pasternack and Roth [67] also present essentially that same model. Carroll et al. [14] propose a

similar Bayesian model that accounts for the data XXX and makes the same independence assumptions

about Y and AAA. However, their model does not treat the machine as an annotator (our M) and their

model of XXX ,Y is conditional, not generative.

10.3.2 Inference

In our generative Bayesian model that includes all of the needed data and hidden variables, the

solution to the first three tasks from the introduction (i.e., ground truth, annacc, and machacc)

become simply a matter of posterior inference. To select a label for the ith instance, we simply find

the most probable label given all of the observations (across all instances), i.e., argmaxy p(Yi =

y|aaa,xxx). Similarly, the distribution over accuracies for annotator j is simply the posterior distribution
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of aaa j given the observations, i.e., p(aaa j|aaa,xxx). Although these distributions cannot be computed

analytically, approximate inference techniques such as Gibbs sampling or variational inference can

be employed to approximate the distributions.

In this work, we construct a Gibbs sampler for inference. Liu [54] provides both empirical

and theoretical evidence supporting the superiority of collapsed and block samplers to traditional

Gibbs sampler. Thus, we analytically integrate out all of the parameters of the model (qqq , µµµ , fff , aaa)

to construct a collapsed sampler and we jointly sample yi and mi. These variables, in particular,

are highly correlated and stand to benefit most from blocking. Since each sample from a block of

categorical variables requires time exponential in the number of variables (assuming the same size

domain), these pairs are the only variables we sample in blocks.

The derivation of the complete conditionals (the probability of yi and mi given all other

random variables to be sampled) is in Appendix B; here we simply present the distributions.

For notational simplicity, we define the following count variables, which are disambiguated

by the letters of their subscripts. For the purpose of the complete conditionals, each count variable

excludes the counts associated with the instance corresponding to the complete conditional (indexed

by i):

nq
k =

N

Â
i0 6=i

(yi0 = k)

nµ
kk0 =

N

Â
i0 6=i

(yi0 = k^mi0 = k0)

na
jkk0 =

N

Â
i0 6=i

a111(yi0=k)
i0 jk0

nf
k f =

N

Â
i0 6=i

x111(mi0= j)
i0 f .

That is, nq
k is the number of instances currently labeled k; nµ

kk0 is the number of instances labeled k

that have a features-based prediction (i.e., r.v. M) of k0; na
jkk0 is the number of times that annotator j
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chose annotation k0 on instances labeled k; and nf
k f is the number of times feature f occurs with

instances having a feature-based prediction of k.

Using these count variables, the complete conditionals are:

[Yi = c,Mi = d] µ (bq +nq
c )

1
’K

k0=1 G(bµ +nµ
ck0)

(bµ +nµ
cd)

1
ÂK

k0=1(bµ +nµ
ck0)

·
J

’
j=1

1
⇣

ÂK
k0=1 ba j +na

jck0

⌘(ÂK
k0=1 ai jk0)

K

’
k0=1

⇣
ba j +na

jck0

⌘(ÂK
k0=1 ai jk0)

· 1
⇣

ÂF
f=1

⇣
bf +nf

d f

⌘⌘(ÂF
f=1 xi f )

F

’
f=1

⇣
bf +nf

d f

⌘(ÂF
f=1 xi f )

(10.1)

where the notation x(n) represents the rising factorial defined as x(n)
de f
= x(x+1)(x+2) . . .(x+n�1).

10.3.3 Instance Selection

To address the problem of instance selection with multiple annotators in an annotator-initiated

environment (i.e., selection), we extend ROI-based active learning to the multi-annotator case.

Specifically, we maintain a priority queue of instances for each annotator in which the priority

is a ROI-score computed from the expected benefit and cost of employing a particular annotator

on a particular instance. Expected benefit can be approximated using samples from the posterior

obtained from Gibbs sampling. Specifically, given S samples of yi from the posterior, each sample

denoted as y(s)i , the expected benefit (denoted as function b(·)) is:

E [b(yi|x,a)]⇡
1
S

S

Â
s=1

b(y(s)i |x,a). (10.2)

In the limit as S approaches infinity, the approximation approaches the true value of the expecta-

tion [30].

This scheme allows for different combinations of annotators and instances to result in

different expected benefits and costs, as desired. Similar to our analysis of ROI in Chapter 8, this
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Chapter 11

Conclusions and Future Work

Annotation projects such as the one that the Maxwell Institute is undertaking for the

Syriac project (see Chapter 1) are being initiated at an unprecedented rate, presumably due to

the corresponding technological explosion which has provided the tools, hardware, bandwidth,

and storage needed by these products at (large) scale. Yet the number of projects is not the only

thing growing rapidly. In the age of “big data,” raw corpora are so immense that complete manual

annotation is simply impossible. However, a feasible portion of a corpus may be manually annotated

and the rest of the corpus automatically annotated using machine learning methods trained on the

hand annotated data. Although the labor to undertake such projects can be costly, the majority

of annotation projects decide not to use active learning as a cost-saving approach (see Tomanek

and Olsson [90]). The biggest reason for their aversion to active learning is a lack of confidence

in the technique for reducing annotation costs in practice. This dissertation has begun to address

these concerns by developing new methods for active learning that reduce annotation costs in more

realistic environments.

One mismatch between research and practice is historical in nature. Active learning was

initially proposed as a learning protocol, i.e., as a means of training a model (it was inductive, in the

terminology of Chapter 2) using fewer instances. With the increase in costly annotation projects,

active learning came to be seen as a potential means of producing annotated corpora at lower overall

cost. Chapter 4 is the first to explicitly propose the use of transductive active learning for annotation

purposes: active learning is used to obtain a high quality model at lower cost (as in previous work),

which is subsequently used to annotate the remainder of the corpus. On the surface, this suggestion
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and effectively. Alternatively, benefit estimates may be able to be learned, much like we showed it

possible to learn cost estimates in Chapter 8.

Finally, in Chapter 10, we presented a design for active learning with multiple annotators and

suggested several methods for validating the approach that should be carried out in future work. In

addition, we hinted at the possibility of using benefit and cost functions that are annotator-dependent.

While we did use annotator-specific cost functions, our benefit function did not directly take

into account annotator-specific information (e.g., accuracy). Using a per-annotator greedy-EVSI

approach is promising, albeit expensive, but tractable—particularly if sampling is used [75].
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Appendix A

Efficient Computation of Expectations Using Latent Variable Markov Models

Abstract

Latent variable Markov models (LVMMs), which include hidden Markov models, conditional

Markov models, maximum entropy Markov models, and conditional random fields, are an important

class of models that are used for sequence modeling problems such as named-entity recognition,

segmentation, part-of-speech tagging, speech recognition, gene prediction, etc. In scenarios such as

active and semi-supervised learning, it is often necessary to compute expectations such as entropy,

utility, accuracy, etc. using these models. We show how two general classes of expectations for

LVMMs can be computed efficiently using dynamic programming, even when constraining the

expectations. When used to derive entropy for CRFs, the resulting dynamic programming algorithm

requires half as many passes as a previous solution built specifically for computing entropy.

A.1 Introduction

Latent variable Markov models (LVMMs) are graphical models in which the latent variables y

form a chain wherein each yt is directly connected only to its predecessor yt�1 (higher order

Markov models can be converted to order-1 Markov models). Examples of such models include

hidden Markov models (HMMs), conditional Markov models (such as a maximum entropy Markov

model), and linear-chain CRFs. Such models are useful for many sequence modeling problems

including named-entity recognition, segmentation, part-of-speech tagging, speech recognition, gene

prediction, etc. Typically, the distribution of interest is the conditional distribution p(y|x), where

the x are the known data, usually one data point per latent variable. The conditional distribution of
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LVMMs is in fact that of a linear-chain CRF:

p(y|x) = 1
Z(x)

T

’
t=1

yt(yt ,yt�1,x),

where the yt are potential functions, and Z(x) is the partition function (for a review of CRFs, see

Sutton and McCallum [85]). An LVMM is an HMM if yt(yt ,yt�1,x) = p(xt |yt)p(yt |yt�1), in which

case Z(x) = p(x); an LVMM is a CMM if y(yt ,yt�1,x) = p(yt |yt�1,x), in which case Z(x) = 1.

It is frequently necessary to compute expectations of functions of the latent variables y,

given the data x, i.e.:

EY|x [ f (y,x)] = Â
y

p(y|x) f (y,x).

One example of such an expectation for sequences is entropy, which is useful for computing

uncertainty in active learning [11, 80] or performing semi-supervised learning in linear-chain

CRFs [55]. Another common function that is computed in expectation is utility (such as expected

accuracy), which can be useful in active learning [36, 75].

Unfortunately, naı̈ve computation of such expectations is exponential in the length of the

sequence, in general. Previous work (see below) has shown that entropy can be computed in

time linear in the length of the sequence using dynamic programming. In this work, we more

generally show that expectations of certain classes of functions can be computed in linear time.

Specifically, we investigate the cases where the function to be expected over is either a product

or a sum of functions of each individual latent variable yt and its predecessor yt�1. To the best

of our knowledge, this work represents the first attempt at presenting an efficient algorithm for

expectations of general classes of functions for LVMMs. When our general approach is applied to

derive a dynamic programming solution to computing entropy for CRFs, the result requires half

as many passes of dynamic programming as a previously proposed solution built specifically for

computing entropy.

144



A.2 Previous Work

Previous work has examined efficient methods specifically for computing entropy in LVMMs:

Hernando et al. [38] investigated the case for HMMs, Busby and Ringger [11] independently

derived the same for CMMs, and Mann and McCallum [55] present a solution for CRFs in the

context of semi-supervised learning using entropy regularization. The latter was also adapted to

allow for the entropy of a sequence, holding constant some of the latent variables. Although she

uses a different, more complex model, Hwa [43] presents an algorithm for the efficient calculation

of tree entropy using an inside-outside-like algorithm.

A.3 Forward Probability

We begin with a brief review of forward probability, which is defined for HMMs as at(yt)
de f
=

p(xh1...ti,yt). Although with different semantics, the forward variables can be defined more generally

for linear-chain CRFs as:

at(yt)
de f
= Â

yh1...t�1i

t

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

= Â
yt�1

yt(yt ,yt�1,x) · Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

= Â
yt�1

yt(yt ,yt�1,x)at�1(yt�1), (A.1)

with a base case of a1(y1) = y1(y1,y0,x1) (y0 is the initial state). This recurrence relation can

elegantly and efficiently be implemented using dynamic programming (c.f. Rabiner and Juang [68]).

Forward probability is needed to compute the normalizing constant Z(x) = ÂyT aT (yT ) in

CRFs, which, as previously noted, is p(x) in the case of HMMs. It also is needed to compute the

marginal probabilities p(yt |x).
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A.4 Product of Functions

Suppose the function f (·) to be expected over has the form

f (y,x) =
T

’
t

g(yt ,yt�1,x),

for some function g(·) (for brevity, we hereafter omit the x). The expectation is:

EY|x[ f (y)] = Â
y

p(y|x) f (y)

= Â
y

1
Z(x)

T

’
t=1

yt(yt ,yt�1,x) ·
T

’
t=1

g(yt ,yt�1)

=
1

Z(x)Â
y

T

’
t=1

yt(yt ,yt�1,x) ·g(yt ,yt�1). (A.2)

Now, let

pt(yt)
de f
= Â

yh1...t�1i

t

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)g(yt 0 ,yt 0�1). (A.3)

Comparing equations A.2 and A.3, we can see that

EY|x[ f (y)] =
1

Z(x)Â
yT

pT (yT ). (A.4)

A recurrence relation can be established from equation A.3:

pt(yt) = Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1)

· Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)g(yt 0 ,yt 0�1)

= Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1)pt�1(yt�1),
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with a base case of pt�1 = 1. From this relation, a linear-time dynamic programming solution

analogous to the forward algorithm can be used to compute the expectation. Note that the forward

algorithm is needed to compute Z(x) for final computation of equation A.4.

A.5 Sum of Functions

Suppose the function f (·) to be expected over has the form

f (y,x) = Â
t

g(yt ,yt�1,x), (A.5)

for some function g(·) (for brevity, we once again omit the x hereafter). The expectation is:

EY|x[ f (y)] = Â
y

p(y|x) f (y)

= Â
y

1
Z(x)

"
T

’
t=1

yt(yt ,yt�1,x)

#
·
"

T

Â
t=1

g(yt ,yt�1)

#
. (A.6)

Now, let

st(yt)
de f
= Â

yh1...t�1i

"
t

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

#
·
"

t

Â
t 0=1

g(yt 0 ,yt 0�1)

#
. (A.7)

From equations A.6 and A.7, it follows that EY|x[ f (y)] = 1
Z(x) ÂyT sT (yT ).

By pushing the appropriate sums inside the product and splitting the sum of functions, we

can establish the following recurrence relation:

st(yt) = Â
yt�1

"
yt(yt ,yt�1,x) · Â

yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x) ·
"

g(yt ,yt�1)+
t�1

Â
t 0=1

g(yt 0 ,yt 0�1)

##

= Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1) ·
"

Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x)

#

+ Â
yt�1

yt(yt ,yt�1,x)

"

Â
yh1...t�2i

t�1

’
t 0=1

yt 0(yt 0 ,yt 0�1,x) ·
t�1

Â
t 0=1

g(yt 0 ,yt 0�1)

#

= Â
yt�1

yt(yt ,yt�1,x)g(yt ,yt�1)at�1(yt�1)+ Â
yt�1

yt(yt ,yt�1,x)st�1(yt�1), (A.8)
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with a base case of s0(yt) = 0. This recurrence relation can be implemented using a dynamic

programming solution analogous to the forward algorithm, and require computation of the forward

variables.

A common example is entropy:

f (y) =� log p(y|x)

=� log
⇢

1
Z(x)’

t
yt(yt ,yt�1,x)

�

= logZ(x)�Â
t

logyt(yt ,yt�1,x).

Now let g(yt ,yt�1) = logyt(yt ,yt�1,x). Then due to linearity,

EY|x[ f (y)] = logZ(x)�EY|x


Â
t

g(yt ,yt�1)

�
; (A.9)

equation A.8 provides the solution to the latter expectation and yields the same recursive relation

as reported by Busby and Ringger [11]. Although the resultant relation differs from Mann and

McCallum [55] and Hernando et al. [38], they are equivalent and share similarities. For instance,

Hernando et al. [38] solution requires simultaneous computation of the forward probability and the

recursive entropy. The main conceptual difference is that their solution mathematically incorporates

logZ(x) during recursion. We note that by applying our more general solution to the specific case

of entropy, the resultant solution requires a single pass of the forward algorithm and an additional

pass for recursive entropy; this contrasts to the four passes required by the approach of Mann and

McCallum [55] which could equate to significant gains in practice for problems with a large output

space or large datasets.

A.6 Extensions and Conclusions

In this section, we consider a special case of the sum of functions as well as an extension to the

basic algorithm that can account for constraints.
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As a special case of equation A.5, consider the case when the function g(·) depends only on

the current latent variable yt (as is the case with accuracy), only the marginal p(yt |x) is necessary:

EY|x


Â
t

g(yt)

�
= Â

y
p(y|x)Â

t
g(yt)

= Â
t

Â
y

p(y|x)g(yt)

= Â
t

Â
yt

Â
y\t

p(y\t ,yt |x)g(yt)

= Â
t

Â
yt

g(yt)Â
y\t

p(y\t ,yt |x)

= Â
t

Â
yt

p(yt |x)g(yt)

The marginal probability itself can be computed using the forward and backward probabilities. In

many cases, this may be simpler to implement, if methods are already available that compute the

marginal.

Accuracy and utility are examples of this type of function. In the case of accuracy, g(yt) =

1(yt = ŷt), where ŷt is the gold standard.

Another extension is based on what Mann and McCallum [55] call subsequence constrained

entropy: some of the labels of a sequence are observed and others are not. The sum in the expectation

is only over assignments of unobserved variables and the full joint probability of all variables p(y|x)

is used. The more general expectations presented herein can also be constrained in a similar fashion;

the only change required is that for the recursive relation for the known Yt , we omit the sum over

possible assignments to that value and simply use the known value.

In conclusion, when using LVMMs, it is possible to efficiently compute expectations of two

classes of functions: products and sums of functions of the individual latent variables and their

predecessors. This generic approach is more efficient than some previously published approaches

for entropy and is easily adapted to computing expectations using subsequence constraints. Future
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work could focus on similar generalizations for expectations using trees or other structured models.

150



Appendix B

Derivation of the Complete Conditionals for the Multiple Annotator Model

In this appendix, we derive the complete conditionals for the collapsed and blocked Gibbs

sampler for the model presented in Figure 10.1. For this sampler, it is necessary to derive the

complete conditional distributions of Yi and Mi (a block), given the values of all the other Y s and Ms,

denoted yyy¬i and mmm¬i, respectively (the parameters are analytically integrated out in the collapsed

model). The complete conditionals, p(yi,mi|yyy¬i,mmm¬i,aaa,xxx), are denoted in shorthand as [yi,mi].

We begin with the joint distribution over all random variables in the model:

p(qqq ,µµµ,aaa,fff ,yyy,mmm,aaa,xxx)

= p(qqq |bq )

 
K

’
k=1

p(µµµk|bbbµk)

! 
J

’
j=1

K

’
k=1

p(aaa jk|bbba jk)

! 
K

’
k=1

p(fff k|bf )

!

·
 

N

’
i=1

p(yi|qqq)p(mi|yi,µµµ)

 
J

’
j=1

p(aaai j|yi,aaa j)

!
p(xxxi|mi,fff)

!

µ

 
K

’
k=1

q bq�1
k

! 
K

’
k=1

K

’
k0=1

µbµk�1
kk0

! 
J

’
j=1

K

’
k=1

K

’
k0=1

a
ba jk�1
jkk0

! 
K

’
k=1

F

’
f=1

f bf�1
k f

!

·
 

N

’
i=1

qyi µyimi

 
J

’
j=1

|aaai j|1!
’K

k=1 ai jk!

K

’
k=1

aai jk
jyik

! 
|xxxi|1!

’F
f=1 xi f !

F

’
f=1

f xi f
mi f

!!

where | · |1 denotes the L1-norm. Also note that the normalizing constants for the Dirichlet distribu-

tions have been absorbed into the constant of proportionality.
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For notational brevity, we define the following count variables, which are disambiguated by

their superscripts ( is an indicator function)

nq
k =

N

Â
i

(yi = k)

nµ
kk0 =

N

Â
i

(yi = k^mi = k0)

na
jkk0 =

N

Â
i

a111(yi=k)
i jk0

nf
k f =

N

Â
i

x111(mi= j)
i f .

That is, nq
k is the number of instances currently labeled k; nµ

kk0 is the number of instances labeled k

that have a features-based prediction (i.e., r.v. M) of k0; na
jkk0 is the number of times that annotator j

chose annotation k0 on instances labeled k; and nf
k f is the number of times feature f occurs with

instances having a feature-based prediction of k.
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Next, we apply the commutative property of multiplication and combine like terms:

p(qqq ,µµµ,aaa,fff ,yyy,mmm,aaa,xxx) µ

 
K

’
k=1

q bq�1
k

! 
N

’
i=1

qyi

! 
K

’
k=1

K

’
k0=1

µbµk�1
kk0

! 
N

’
i=1

µyimi

!

·
 

J

’
j=1

K

’
k=1

K

’
k0=1

a
ba jk�1
jkk0

! 
N

’
i=1

J

’
j=1

|aaai j|1!
’K

k=1 ai jk!

K

’
k=1

aai jk
jyik

!

·
 

K

’
k=1

F

’
f=1

f bf�1
k f

! 
N

’
i=1

|xxxi|1!
’F

f=1 xi f !

F

’
f=1

f xi f
mi f

!

µ
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’
k=1

q bq�1
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! 
K

’
k=1

q nq
k
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K

’
k=1
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’
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kk0
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K
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k0=1

µ
nq

kk0
kk0
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·
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a
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J

’
j=1

|aaai j|1!
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F
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k f
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Since we are interested in a fully collapsed sampler wherein all of the parameters are

integrated out:

p(yyy,mmm,aaa,xxx) =
Z

. . .
Z

p(qqq ,µµµ,aaa,fff ,yyy,mmm,aaa,xxx)dqqq dµµµ daaa dfff

µ

 Z K

’
k=1

q bq+nq
k�1

k dqqq
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K

’
k=1

Z K
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bµ+nµ

kk0�1
kk0 dµµµk
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·
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!

The last step follows from the definition of the pdf of a Dirichlet distribution, in particular, the

values of the integrals in the equation are the normalizing constant of the Dirichlet distribution.

We define a block sampler in which yi and mi are sampled jointly. First, we note that the

multinomial coefficients are constant within the complete conditionals, since aaa and xxx are given.

Next, let yyy¬i = {y j| j 6= i}; mmm¬i is similarly defined. Please note that in the following equations,

we have redefined the count variables defined previously (i.e., nq
k ,n

µ
kk0 ,n

a
jkk0 ,n

f
k f ) to exclude counts

from the current instance (i), i.e., they are sums over yyy¬i and mmm¬i; we then manually add in the
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appropriate counts from the current instance.

[Yi = c,Mi = d]
de f
= p(Yi = c,Mi = d|yyy¬i,mmm¬i,aaa,xxx)
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To simplify, we eliminate the products whose index involves the exclusion of c or d. To do

so, we simply multiply by unity, e.g.,

g(c)’
k 6=c

f (k) = g(c)
f (c)
f (c) ’

k 6=c
f (k)

= g(c)
1

f (c)’
k

f (k)

µ g(c)
f (c)

.

Noting that the sum in the denominator of the first term of equation B.1 is constant (Âk 6=c nq
k +nc+1

is equal to the number of instances) and can be dropped, the result of applying the aforementioned
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simplification is:
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Let x(n)
de f
= x(x+ 1) . . .(x+ n� 1) be the rising factorial. Note that G(x+n)

G(x) = x(n). After

re-ordering the numerators and denominators to identify rising factorials and noting that x(1) = x,

we are left with:
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These are the complete conditionals as presented in equation 10.1.
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[5] Shilpa Arora, Eric Nyberg, and Carolyn P. Rosé. Estimating annotation cost for active learning
in a multi-annotator environment. In Proceedings of the HLT-NAACL 2009 Workshop on
Active Learning for Natural Language Processing, pages 18–26, Boulder, Colorado, June
2009. Association for Computational Linguistics.

[6] Jason Baldridge and Miles Osborne. Active learning and the total cost of annotation. Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing, 2004.

[7] Jason Baldridge and Alexis Palmer. How well does active learning actually work?: Time-based
evaluation of cost-reduction strategies for language documentation. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing, pages 296–305.
Association for Computational Linguistics, 2009.

[8] Markus Becker, Ben Hachey, Beatrice Alex, and Claire Grover. Optimising selective sampling
for bootstrapping named entity recognition. In Proceedings of the the International Conference
on Machine Learning Workshop on Learning with Multiple Views, 2005.

[9] Thorsten Brants. TnT: A statistical part-of-speech tagger. In Proceedings of the Sixth Confer-
ence on Applied Natural Language Processing, pages 224–231. Association for Computational
Linguistics, 2000.

158



[10] Eric Brill and Jun Wu. Classifier combination for improved lexical disambiguation. In
Proceedings of the 17th International Conference on Computational Linguistics, volume 1,
pages 191–195. Association for Computational Linguistics, 1998.

[11] George Busby and Eric K. Ringger. An exact, efficient algorithm for computing the condi-
tional label sequence entropy. Technical Report NLP-TR5, Computer Science Department,
Brigham Young University, 2007. URL http://nlp.cs.byu.edu/doc/techreports/TR5/

BYUNLP-TR5.pdf.

[12] Bob Carpenter. Multilevel bayesian models of categorical data annotation. Unpublished
manuscript, 2008.

[13] James L. Carroll. A Bayesian decision theoretical approach to supervised learning, selective
sampling, and empirical function optimization. PhD thesis, Brigham Young University, 2010.

[14] James L Carroll, Robbie Haertel, Peter McClanahan, Eric Ringger, and Kevin Seppi. Modeling
the annotation process for ancient corpus creation. In Petr Zemánek, Jost Gippert, Hans-
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