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Abstract: We review the impact of Grid Computing and Web Services on scientific computing, stressing 
the importance of the “data-deluge” that is driven by deployment of new instruments, sensors and 
satellites. This implies the need to integrate the naturally distributed data sources with large simulation 
engines offering parallel low latency communication and so to integrate parallel and Grid computing 
paradigms. We start with an overview of these and the evolving service architectures. We illustrate the 
identified areas of interest for Algorithms and the Grid with the specific example of SERVOGrid that 
supports earthquake science research. We comment on the appropriate messaging infrastructure for 
Grids and data assimilation and contrast it with MPI. 

1 Introduction: Trends in Simulation Research 
Over the last two decades, two very prominent trends may be noticed in many computing fields: the ever-
increasing distribution of computing power and the increasing importance of data-centric computing.  We 
consider the following timeline: 

• 1990-2000: The High Performance Computing and Communication (HPCC) initiative in the 
USA drove the development of parallel computing hardware and parallel algorithms.  Major 
algorithm successes were achieved for key scientific computing areas like partial differential 
equations and particle dynamics.  The use of Message Passing Interface (MPI) implementations 
dominated parallel computing application development. The importance of data was not 
emphasized 

• 1995-Present: Distributed and Web computing emerge and grow aggressively.  These tend to 
grow along two major lines: stateless, fault-tolerant, very loosely coupled Web applications based 
on the HTTP protocol and message exchanges (today referred to as the REST architecture 
[Fielding2000] when applied to network application programming), and more tightly coupled 
distributed object systems such as the Object Management Group’s CORBA [CORBA], Sun 
Microsystems’ Java RMI [RMI], Microsoft’s DCOM [DCOM], and the United States Department 
of Defense’s HLA [HLA].  Grid computing also begins to emerge from academic and 
government research communities. 

• 2000-Present: Web Service-oriented distributed computing begins to replace distributed object 
technologies. 

• 2000-Present: Core parallel computing academic research in the United States drops dramatically 
at the expense of distributed and Grid computing.  Parallel computing is continued by 
government efforts such as the Department of Energy’s ASCI program and the Department of 
Defense’s High Performance Computing Modernization Program. 

• 2003-Present: We see the emergence of the “Data Deluge” in many scientific fields.  The data 
storage, management, and processing requirements drive a number of fields, such as high energy 
physics [Allcock2002], meteorology and weather modeling [Gannon2004], and astronomy 
[Brunner2001], to adopt distributed computing approaches. We discuss the impact on geophysics 
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and earthquake science in more detail in this paper. Note that the data deluge is really “just 
Moore’s Law applied to Sensors” i.e. the increase in data is largely driven by the same 
technology driving forces that are giving the increase in computer performance. 

 
In this sequence of trends (parallel computing to distributed computing to data-deluged computing), each 
new trend builds upon, rather than replaces, the proceeding trends in layer-cake fashion.  For a recent 
overview of parallel computing, see [Dongarra2002].   Grid computing is surveyed in [Foster2003] and 
[Berman2003].  An earlier review of Grid computing is given in [Foster1998]. 

2 Grids and Virtual Organizations 

2.1 Introduction 
Grid computing has diverged quite far from its initial incarnation as meta-computing, or the assemblage 
of distributed parallel computers into a single large virtual parallel machine.  Such systems ultimately are 
limited by network communication speeds.  Instead, the aim of Grid computing is to build the distributed 
computing infrastructure to support so-called Virtual Organizations (VOs).  In a VO, many different 
member institutions can contribute resources to a single Grid, which may then be supported by a unified 
security infrastructure and information and monitoring system. These resources include computers, 
instruments, sensors, data repositories, networks and people. Useful services, such as secure, uniform 
remote access to high performance computing resources and secure, cross-institutional, reliable data 
management tools, can be built on top of this core infrastructure.  Today, such systems are often termed 
“cyberinfrastructure” [Atkins2003].  The development of cyberinfrastructure has been timely, as 
academic research funding has favored multi-disciplinary and multi-institutional teams of scientists.  
These trends in Grid computing to support “e-Science” [Berman2003] [UKeS-C] have been mirrored in 
the commercial world: distributed computing technology development has been driven by the commercial 
sector’s pressing need to integrate globally distributed enterprises.   

2.2 Styles of Grids 
Grid computing is a catch-all phrase that refers to several different types of distributed computing.  In 
order to clarify this picture, we find it useful to identify major Grid families [GapAnalysis].  As we shall 
see, this seemingly diverse collection of capabilities can be unified into a single coherent picture, based 
on Service Oriented Architecture principles [Booth2004].  

• Computational Grids: these are traditional Grids that are designed to provide support for high 
performance computing resources.  Such Grids are still quite popular and valuable. 

• Sensor and Data Grids: these are Grids that provide access to data and related metadata.  The data 
may be archival or real-time, collected in either case from sensors, scientific instruments, etc.  
Metadata, or “data about data” is also very important in these simulations.  Geographic 
Information Systems (GIS) described in sec. 5 provide an important sub-family in this group. 

• Collaborative Grids: these Grids support communication in all forms, ranging from document and 
message sharing to instant messaging to audio/video collaboration.  Group participation and data 
sharing are also important to these applications. 

• Peer-to-Peer, or Community Grids: these Grids apply principles of peer-to-peer computing (such 
as decentralized, dynamic organization) to scientific computing resource collections. 

• Semantic Grids: these Grids focus on information representation and management.  Such 
information management may be important for both human users as well as machine processing.  
Semantic information systems may support other styles of Grids: they are potentially an excellent 
way to manage multi-staged computing tasks (“workflow”) that must run in a distributed 
environment. 
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Grid applications in many fields must rely upon services that emerge from many of these families.  
Military command and control and civilian emergency preparedness and response for crisis management 
are two such examples.  In either case, Grid-based collaboration services must link participants, many of 
whom will be on unreliable networks.  Participants will need to rapidly assess data, so integration of data 
Grid services with computational processing is required.  We refer to these collections of Grid service 
families as a “Grid of Grids.” [Fox2004B] 

3 Service Oriented Architectures 
Around the beginning of the current decade, industry software developers began to place emphasis into 
Web Services at the expense of the distributed object technologies that dominated the 1990’s.  Similarly, 
Grid development began to align itself with Web Services shortly thereafter.  Motivating this shift was the 
desire for a loose coupling between distributed components. Distributed objects with an implicit 
relationship between interface and implementation and the coupling of components via remote procedure 
calls (RPC) proved hard to scale. 
 
Web Services are founded on core concepts that include the following [Booth2004] [WSGrids]: 

• Desirable capabilities may be accessed through remote services. 
• These services define a contract for interaction using the XML-based Web Service Description 

Language (WSDL) [Christensen2001]. 
• Requester agents (i.e. clients) interact with these services, or provider agents. 
• Requesters and providers communicate by exchanging messages, encoded in the XML-based 

Simple Object Access Protocol (SOAP) [Gudgin2003]. 
 
A key difference between Web Services and distributed object systems is that Web Services are 
essentially XML-document (or message) exchange systems.  The SOAP-enveloped messages are largely 
self-contained and self-descriptive.  A SOAP message may include, for example, all necessary 
information for its secure transmission.  This allows the message to be decoupled from, and transmitted 
over, any appropriate transport protocol.   It also allows the message to be decoupled from explicit point-
to-point connection protocols.  SOAP is purposefully constructed to be extensible.  Important extensions 
include reliability, security, and addressing. Later in Sec. 6 we will contrast messaging built SOAP with 
that familiar in parallel computing through MPI. 

4 The Impact of Grids on Algorithms 
As discussed above, Grid computing in its general sense does not replace or expand parallel computing in 
the classic “metacomputing” sense.  Thus we find Grid extensions of MPI to be only part of the solution 
with a richer model discussed in Sec. 6. Instead, Grids are geared toward resource management across 
organizations.  Parallel computing applications and hardware are examples of these resources as shown in 
Figure 1.  In this simple sense, implementations of parallel algorithms may exist untouched running on 
resource nodes in a Grid.  
 
The above assumes of course that Grids will be used to manage classic high performance computing 
applications. While this will remain an important style of Grids, data driven high performance computing 
applications of data assimilation and data mining are increasingly important.  These applications must 
rely upon external data sources (both real-time data streams and archival data) that typically are remote 
from the high performance computing resource.  
 
More generally, Grid-based algorithms may be developed to support the interconnections of loosely 
coupled distributed applications.  Such applications may consist of remote data source, a number of 
linked applications running on separate supercomputers, filtering programs for data format conversations 
between applications, and so forth.   Service oriented Grid computing offers the general architecture for 
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accomplishing these linkages.  Management of these loosely integrated applications is known as Grid 
workflow discussed in more detail in Sec. 6. Workflow builds on classic distributed programming models 
such as Linda [Carriero1989] and the data flow pioneered by AVS [Upson1989]. This type of Grid 

application includes “code-coupling” which supports multi-disciplinary simulations such as those linking 
aerodynamics and structures or ocean and atmosphere. These simulation coupling can of course be  

Figure 1: The figure illustrates the hub and spoke architecture for assimilating data using extreme 
scale computing. Distributed data sources use local clusters for adaptively filtering data, which is 
then transported using high-performance transport services to one or more centralized high 
performance computers. 
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combined with data assimilation. The latter is a key area where new algorithm work is critical. A typical 
scenario shown in Figure 1 can apply to scientific simulations such as weather forecasting with data from 
satellites and sensors; it can also be seen in financial modeling or military intelligence applications where 
data could be stock prices or electronic signals. The latter illustrate that new applications are enabled by 
the data-deluge and these need new algorithms. A good example is complex systems simulations for 
social science and biology, which up to now have not been major users of large scale computers. The 
capability of Grids to marshal their data implies the possibility of new algorithms for such simulations as 
those of biological organisms, the spread of disease and the response of critical infrastructure 
(transportation, energy, communication) to major disruptions from earthquakes, hurricanes or terrorists. 
 
Such applications must be able to address problems not typically encountered in classic parallel 
computing.  

• Applications must be fault tolerant, as failures become increasingly likely in Grid applications. 
• Applications must be able to tolerate millisecond (and preferably longer) communication 

latencies discussed in section 6 instead of microsecond messaging speeds in MPI [Fox2004A]. 
Note the need for latency tolerant algorithms to exploit distributed computing is well known. We 
don’t see any major developments here in new algorithms for traditional core scientific 
computing problems -- say solving partial differential equations or particle dynamics. These still 
need low latency i.e. classic parallel systems, for good performance. 
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• Information management becomes increasingly important, as workflow applications benefit from 
“late-binding”: decisions on which specific service instances to use are not made until needed. 

 
Generalizing the last point, we discuss in Sec. 6 that Grids are developing the best core technology to 
build Problem Solving Environments (PSE) as these need exactly the integration and management 
delivered by Grids and the multi-millisecond latency is typically not important in the initiation of a PSE 
or toolkit component. 
 
There are examples of important algorithms enabled and required by distributed environments. One 
example is the distributed hash tables used in scalable peer to peer lookup and less well known are 
distributed security algorithms to support dynamic communities. Data mining algorithms are already 
active areas of research and these are needed for the distributed system itself as for example in the 
analysis of denial of service attacks and other Internet activities. 
 
In the following section, we will draw upon our work in the NASA SERVOGrid project to make 
proceeding discussion concrete. We then discuss in Sec. 6 our research on high performance Internet 
messaging for Grids using the NaradaBrokering messaging system.   

5 SERVOGrid: Integrating Data and Computing Grids 
The NASA AIST funded SERVOGrid project is being designed and built to integrate scientific 
applications with data resources.  Users typically interact with the system using computational Web 
portals.  SERVOGrid is described in more detail in [Aktas2004].  See also [QuakeSim].  

5.1 SERVOGrid Applications 
The following is a partial list of SERVOGrid applications: 

• GeoFEST is a three-dimensional viscoelastic finite element model for calculating nodal 
displacements and tractions.  It allows for realistic fault geometry and characteristics, material 
properties, and body forces.    

o GeoFEST requires earthquake fault models as input data. 
• Virtual California (VC) simulates interactions between vertical strike-slip faults using an elastic 

layer over a viscoelastic half-space. 
o Virtual California requires earthquake fault and friction models as input data. 

• Pattern Informatics (PI) calculates regions of enhanced probability for future seismic activity 
based on the seismic record of the region. 

o Pattern Informatics requires seismic catalogs as input. 
• RDAHMM (for Regularized Deterministic Annealing Hidden Markov Model) is a time series 

analysis program based on Hidden Markov Modeling.  It produces feature vectors and 
probabilities for transitioning from one class to another.  

o RDAHMM may be applied to any time series data, such as GPS and seismic data. 
 

As can be seen from the list, these applications have increasingly interesting data requirements: GeoFEST 
and VC are traditional, parallel high performance computing applications that have external data 
requirements that may be fulfilled by agencies such as Earthscope or SCEC.  PI relies on seismic catalogs 
that are regularly updated, and RDAHMM relies upon regularly updated GPS catalogs.  RDAHMM is 
also an excellent candidate for real-time data analysis, as we will discuss. Typically in the code 
development phase of SERVOGrid applications, these data sets are downloaded by the code developers 
from online archives and stored locally in files.  However, when integrating these applications into Web 
portal environments, or otherwise attempting to automate the code execution phase, we must find an 
alternative strategy.  
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This application list is interesting in that includes classic scientific algorithms solving differential 
equations mixed with data-mining and analysis codes. These two classes interact with the classic 
simulations being used to test and motivate the data-mining. In the previous sections, we noted the 
importance of algorithms that support interactions with data; data-mining typically corresponds to codes 
that directly analyze data and data assimilation to codes where simulation and data are mixed. We see all 
these classes growing in importance with data assimilation being developed for SERVOGrid as the 
amount of real-time data increases. 

5.2 GIS Grid Services for SERVOGrid 
Implementations of Geographical Information Systems (GIS) standards provide Data Grid services that 
can be used to provide programming interfaces (as distinguished from human user interfaces) to data.  
Our efforts in building GIS Grid services are described in related publications, and we summarize briefly 
here.  We base our service implementations on the Open Geospatial Consortium (OGC)’s specifications.  
These are described in [Aydin2005] and more publications and reports are available from [CrisisGrid].  
Web Feature Services [Vretanos2002] are used to store archived data that may be used to describe 
abstract map features.  The WFS is a useful general purpose GIS archived data service: in SERVOGrid 
we typically use it to store archived records for GPS stations, seismic activity, and faults.   We have 
implemented Web Service versions of WFS that use both SOAP over HTTP and higher performance 
streaming data that are described in Section 6. Web Map Services [Beaujardierre2004] generate human 
readable maps from Web Feature Servers and other Web Map Servers.  Our approach to GIS Information 
Service deviates from the OGC specifications, since, by using a Web Service approach to information 
management, we may adopt more general Web Service information systems.  Finally, Sensor Web 
Enablement [SensorML] is a family of related specifications for describing sensors.  Our efforts here have 
focused on integrating NaradaBrokering messaging described in Sec. 6 with streaming GPS data. 

5.3 Integrating Pattern Informatics and GIS Grid Services: Programming the 
Grid 
The Pattern Informatics (PI) application [Tiampo2002] has been successfully used to forecast regions of 
increased probability for large seismic activity.  PI techniques have been applied regionally (to the 
Western United States and to Japan) and globally.  The PI application uses seismic archive data, such as 
provided by the Southern California Earthquake Center (SCEC) and the United States Geographical 
Survey’s Advanced National Seismic System (ANSS), as input data and generates a latitude/longitude 
grid of relative probability changes that may be superimposed on maps.   
 
Automated versions of PI may be integrated with GIS services in three ways: 

• Web Feature Services may be used retrieve seismic archives based on query filters such as 
latitude/longitude bounding boxes, event magnitude ranges, and time periods. 

• Web Map Services may be used to build interactive user interfaces and batch-style maps. 
• GIS Information services can be used to locate both Web Feature Services and Web Map 

Services that have the desired capabilities.  For example, one may locate a WFS that has the 
seismic records for the desired bounding box. 

 
These data web services may be coupled to “Execution Grid” style services that can be used to manage 
running applications.  This coupling is sometimes referred to as “service orchestration” or “Grid 
workflow.”   
 
Scientific workflow management described in Sec. 6 is an active field, and overviews are available from 
[Fox2005A].  Typically these tools are coupled to programming environments: Grid-enabled scripting 
languages and XML workflow expression languages are common, and are often coupled to visual 
programming tools. 
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HPSearch is our research effort in this area [HPSearch].  HPSearch collectively includes several 
constituent parts, including support for JavaScript-based Grid workflow scripting; distributed Web 
Services for workflow enactment; and Web Service wrappers that can be used to exchange events 
between Web Services and the HPSearch controlling engine.  HPSearch research focuses on two 
additional areas not usually accounted for in workflow systems: management of data streams and 
management of messaging (NaradaBrokering) networks. 
 
Figure 2 below illustrates the integration of HPSearch with GIS services and the PI code.  This is 
described in more detail in [Aydin2005].  Web Map Server clients initially generate requests for PI code 
runs by specifying time intervals, latitude and longitude bounding boxes, lower cutoff values for 
earthquake magnitudes used in the forecast, and the size of the latitude/longitude grid of the bounding 
box.  These request parameters are passed to the HPSearch master node (TRex in the figure), which first 
chooses an available HPSearch worker node (Danube) to execute the workflow.  The worker node is 
passed a URI name for the JavaScript workflow to be executed.  The worker node then manages the 
workflow chain: the desired seismic data (in GML format) is fetched from an appropriate Web Feature 
service and filtered into a format understandable by the PI code.  The filtered data is then collected and 
the PI code is launched.  PI output data (a grid of seismic “hot spots” forecasts) is then filtered back into 
GML feature data that may be suitably rendered by the Web Map Server.  The WS-Context server is used 
to keep track of the evolving state of this workflow: several components may register for interest in 
events, such as the notification of workflow completion.  
 
The individual components in Figure 2 represent separate Web Services running on distributed hosts.  The 
key element in this model is that the Web Services may be developed and maintained independently of 
each other.  Their combination into this particular application is ad-hoc.  HPSearch supplies the scripting 
control and the “glue” filters for this specific meta-application.  The PI application itself is a relatively 
small code, but more sophisticated parallel applications may be managed in a similar manner. 
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Figure 2 GIS Grid and Execution Grid services may be integrated into meta-applications using workflow 
orchestration tools such as HPSearch.  This represents a “two-level” programming model: applications are 
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wrapped as services that are in turn programmed (or scripted) on a Grid.  Dashed arrows represent actual 
data (file) flow.  Solid arrows indicate control messages sent by HPSearch.  Dot-dash arrows show messages 
transmitted through NaradaBrokering. 

Our evaluation of this meta-application revealed two not-surprising bottlenecks: HTTP is too inefficient 
for non-trivial data transport, and ASCII-based XML representation can lead to processing overheads as 
well as transport overheads.  We view both of these problems as opportunities for research.  Efficient 
transport of XML messages is the subject of the next section, and efficient XML processing is an active 
effort of research [Oh2005]. 

5.4 Providing Live GPS Data for Data Mining Applications 
The Pattern Informatics application is an example of file-based workflow, but these techniques may also 
be applied to real-time applications.  In this section we discuss work in progress to integrate GPS data 
streams with the RDAHMM application [Granat2002].  This work is part of a general research area in 
real-time change detection and data mining. 
 
RDAHMM may be used to analyze time series data to automatically determine underlying physical 
modes in the series.  For example, earthquakes and seismic activity in California may show up in nearby 
GPS stations maintained by the Southern California Integrated GPS Network (SCIGN).  RDAHMM may 
be trained to automatically detect these in archival GPS records.  RDAHMM may also be used to detect 
more subtle mode shifts in time series signals that are not easily discernable to the human eye.  Currently 
RDAHMM may be used to analyze GPS archival records, and we may apply workflow techniques to this 
problem that are similar to the PI application discussed above.   
 
However, we also see an opportunity for event change detection in real-time data.  RDAHMM service 
instances may be trained on archival GPS data to identify the station’s historical modes. A network of 
RDAHMM services may then be attached to GPS networks.  State changes in individual GPS stations 
may be detected in real-time, and interested subscribers can receive notification.  
 
A real-time version of RDAHMM is still in development, but we have recently completed an initial 
version of a real-time GPS filtering system that may be used to deliver data to RDAHMM.  This is 
illustrated in Figure 3.  Current support includes three GPS networks (OCRTN, RICRTN, and SDCRTN) 
with 28 GPS stations.  Raw data is collected by an RTD server maintained by Scripps Orbit and 
Permanent Array Center (SOPAC).  Each network is published on a separate network port in the binary 
RYO format.  Data rates are 1-2 Hz.  All stations in a particular network are published on the same port: 
the 12 GPS stations in OCRTN are all published on the same port, 7010, for example. 
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Figure 3 GPS real-time data filtering is accomplished using NaradaBrokering filter chains. 

 
Applications such as RDAHMM have two requirements for this data: GPS network streams should be 
decoupled into individual station streams, and the data streams should be converted into displacement 
values. We anticipate, with the adoption of OGC Sensor Web Enablement applications, that other 
applications may expect data in “Observations and Measurements” GML format.  We address these issues 
by building filter chains.  NaradaBrokering endpoints (simple Java programs) have been developed to 
accept data from the streaming ports 7010-7012.  This data is then published into a broker network on an 
appropriate topic (or channel) name.  See Figure 4 for a list of channels.  For example, RYO data from the 
OCRTN network is published to the SOPAC/GPS/Positions/OCRTN/RYO channel.  NaradaBrokering 
subscribers to this channel may receive this data directly.  One such subscriber is a RYO-to-ASCII filter, 
which converts data into text format.  This filter acts in turn as a publisher to the appropriate topic (such 
as SOPAC/GPS/Positions/OCRTN/ASCII), where interested subscribers may receive it.  We may add any 
number of additional filters in the filter chain, including GML converters and station decoupling filters.  
RDAHMM applications may similarly be wrapped to receive data on the appropriate channel, and publish 
interesting state change events. 
 
This work is described in more detail at [SensorGrid], which also includes simple demos and 
downloadable software. 
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Figure 4 GPS data filters use topics, or channels, to manage data routing using the NaradaBrokering 
software. 

Returning to Figure 1, we see data manipulation is depicted at the edges of the diagram (at the sources) 
before their integration and assimilation in the “central” simulation.  Our GPS filtering is equivalent to the 
edge filtering whereas Pattern Informatics is a typical central activity. This illustrates the algorithmic 
opportunity to identify decoupled parts of the analysis that can be placed on cost effective distributed 
platforms. In fact this decoupling is needed to match the volume of data to the simulation; otherwise the 
data deluge will overwhelm the simulation engine whose low latency interconnects make it powerful but 
more expensive per operation than distributed commodity analysis systems. Algorithms that optimally 
support this split into parallel assimilation and distributed filtering need further study. 

6 Messaging and Problem Solving Environments 

6.1 Messaging 
MPI and SOAP Messaging both send data from a source to a destination but there are important 
differences in requirements and functionality [Fox2003B]. In understanding the different approaches to 
message passing, it is useful to divide multi-processor (distributed memory) and general distributed 
systems into three classes. 

1. Classic massively parallel processor systems (MPP) with low-latency, high-bandwidth 
specialized networks. Here one aims to have message latencies in the order of one to a few 
microseconds and scalable bisection bandwidth. Ignoring latency, the time to communicate a 
word between two nodes should be a modest multiple (perhaps 20) of time taken to calculate a 
floating point result. This communication performance should be independent of number of nodes 
in system. 

2. Commodity clusters with high performance but non-optimized communication networks. 
Latencies can be in the 100-1000 microsecond range typical of simple socket based 
communication interfaces. 

3. Distributed or Grid systems with possibly very high inter-node bandwidth but the latency is 
typically 100 milliseconds or more as familiar from Internet travel times. 

 
Of course there is really a spectrum of systems with cost-performance increasing by 4 orders of 
magnitude or so as one goes from 1) to 3). Here we will focus on the endpoints (1) and (3) –- MPP’s and 
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the Grid –- and not worry about intermediate cases like 2) – straddling the “Rule of the Millisecond” 
dividing line [Fox2004A]. MPI especially is aimed at the class (1) with optimized native implementations 
exploiting particular features of the network hardware. Generic versions of PVM [PVM] and MPI [MPI] 
using socket based communication on a localized network illustrate (2). One ports MPI to the Grid as in 
MPICH-G2 [MPICH-G2] and PACX-MPI [PACX] so that one can offer a uniform programming model 
that supports the low latency MPI on parallel machines. However Grid systems support applications with 
different requirements than those of parallel computing and hence need messaging with different and 
greater functionality. Further the larger network latency allows one to add additional software 
functionality without adding significant overhead. 
 
In fact Grid messaging is more naturally related to message oriented middleware (MOM) [Bernstein1996] 
[MOM] and software overlay networks [Doval2003] than to MPI or PVM style messaging. The rich 
MOM infrastructure support messages that are self-describing and as well capture semantic intent. 
Depending on the application these messages can be made to encapsulate system conditions, method 
invocations, resource sharing, data interchange among others. Messages may also describe their 
correlation, dependency and causal relationships to other messages. The SOAP messaging used by Web 
Services illustrates this richer structure with a body containing the “real message” and separate headers 
corresponding to systems services including security, notification, virtualized addressing, fault tolerance, 
notification and special operations and relationship to resources. Processing this additional information 
typically takes a millisecond or so and adds significant functionality at insignificant fractional cost. In 
designing systems and algorithms for distributed systems it is important to understand this additional 
functionality and incorporate it into your architecture. Another difference between SOAP and MPI is that 
MPI only specifies interface and so interoperability between different MPI implementations requires 
additional work [IMPI].  SOAP however specifies both interfaces and message structure so broad 
interoperability can be achieved. This is a achieved at a performance cost that we return to in Sec 6.5. 

6.2 NaradaBrokering 
We have built a MOM style messaging system – NaradaBrokering [Pallickara2003, NaradaBrokering] –- 
that is designed to support traditional Web Services and SOAP but has an architecture that allows it to 
support high performance data transport as required for Scientific applications and described briefly in 
Sec. 6.5 [Fox2005B]. We suggest using this system whenever your application can tolerate 1-100 
millisecond latency in linking components. For applications that require lower latencies we recommend 
the use of MPI. 
 
The NaradaBrokering messaging infrastructure incorporates support for enterprise messaging 
specifications such as the Java Message Service [Happner2000]. It also incorporates support for Web 
Service specifications such as WS-Eventing [Microsoft2004a], WS-ReliableMessaging [Microsoft2004b] 
and WS-Reliability [OASIS2004]. The NaradaBrokering messaging infrastructure includes support for 
services such as reliable and ordered delivery. Services available within the messaging substrate also 
include replay support, recording, synchronized Network Time Protocol based timestamps, buffering and 
discovery of nodes.  

6.3 Workflow as the Programming Model for the Grid 
The Web Service (Grid) paradigm implicitly assumes a two-level Programming Mode. Here one builds a 
Service (similar in this respect to a “distributed object” or “computer program” running on a remote 
computer) using conventional technologies such as C++ Java or Fortran that provides a computation 
capability or supports data streaming from sensors and satellites or specialized database access such as 
JDBC. Such services accept and produce data from user files and databases. The Grid is built by 
coordinating such services assuming we have solved problem of programming the service internally. 
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The Grid discusses the composition of distributed services with the runtime interfaces to Grid extending a 
model familiar from UNIX pipes and data streams where one can use UNIX Shell, PERL or Python 
scripts to produce complex applications from core programs. Such interpretative environments are the 
single processor analog of Grid Programming. Some projects like GrADS from Rice University are 
looking at integration between service and composition levels but most efforts in the community look at 
each level (internal and external to services) separately [GrADS]. 
 
In programming SOAP and Web Services (the Grid) workflow describes linkage between services 
[Yu2005]. Since the various services, resources and other components are distributed, the linkage 
between them must be through the exchange of messages. This linkage is two-way and has both control 
and data using SOAP as described in Sec 6.1. The BPEL specification from Microsoft-IBM [BPEL4WS] 
is currently the preferred Web Service XML specification of workflow 

6.4 Problem Solving Environments 
 
Problem Solving Environments (PSEs) are environments integrating tools to tackle a particular class of 
problems with for example SERVOGrid as a PSE for earthquake science and PSEs are similar to portals 
familiar from Yahoo and other major Internet sites. There is a major effort [Fox2003A] [OGCE] to build 
Grid portals that are essentially PSEs to a suite of distributed services. We note that traditional PSEs used 
scripting languages to develop such environments while Grid portals are often implemented using 
messaging and workflow for the integration. This is an interesting example of the law of the millisecond 
discussed above. Should one use the sub –microsecond latency of scripting languages (using method call 
not message based component integration) or the one millisecond (local services) to many millisecond 
(distributed services) latency of messaging? 
 
Messaging has several advantages over scripting languages. First, collaboration between the distributed 
entities is trivial since it simply involves sharing of messages [Qiu2005]. The richness of collaborative 
interactions is dependent on the information encapsulated within these messages. Second, messaging-
based interactions engender greater modularity in the development of systems. For example, one could 
have separate classes or modules to deal with different types of messages. This greater modularity for 
messaging correspond to an easier (compared to a scripting approach) support model to both maintain an 
existing PSE and in particular to upgrade particular PSE components. We suggest looking at the system 
requirements and always linking components with the highest level (slowest) and hence easiest to support 
approach compatible with these requirements. More often and not PSE components can be linked by 
messaging and where the inevitable messaging overhead can be tolerated, we recommend using this and 
building components as services. We call this the “simple service approach” [Fox2004B] where one 
chooses to build services as small as is possible compatible with communication and bandwidth 
constraints. Both in parallel and distributed computing, the ratio of communication to computation in a 
service or parallel component depend on the ratio of surface to volume for the component which 
decreases as the size (volume) of the component increases [Fox1994]. 

6.5 Fast Web Service Communications 
Internet Messaging systems allow one to optimize message streams at the cost of startup time. Web 
Services can deliver the fastest possible interconnections with or without reliable messaging. The costs 
involved in reliable messaging for Web Services tend to be a little higher [Pallickara2005], since the 
dominant specifications WS-Reliability and WS-ReliableMessaging [Microsoft2004b] [OASIS2004] both 
mandate the storage of the SOAP message to stable storage prior to forwarding the message.  
 
Here we will leverage the XML and SOAP Infosets [Gudgin2003] [MSBinaryXML]; by separating the 
SOAP message context from its XML syntax, we can freely move between the binary and classic angle-
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bracketed representations of SOAP messages without content loss. We faithfully preserve the SOAP 
semantics but transport an equivalent binary optimized binary representation. There are several such 
efficient representations of XML Infosets including SOAP Message Transmission Optimization 
Mechanism [MTOM] and XML-binary Optimized Packing [XOP]. We are developing schemes which 
allow two endpoints to first negotiate the best-available transport using the fully interoperable SOAP 
representation [Oh2005] and then proceed to use it for transfers. To specify this process and to 
accommodate legacy systems that do not use the XML format, the Data Format Description Language 
[DFDL] is an XML-based language that describes the structure of binary and character-encoded files and 
data streams so that their format, structure, and metadata can be exposed. This can also be used in tandem 
while transferring binary data using SOAP. The NaradaBrokering substrate incorporates support for 
several transport protocols that can be leveraged to provide appropriate high performance protocols for 
the transfers of such large binary data. Currently one can choose between TCP, parallel TCP and UDP 
combined with SOAP level reliable messaging for fault tolerance. Since the substrate allows new 
transport protocols to be plugged in rather easily, support for newer transport schemes can easily be 
incorporated as they get developed.  
 
We believe that these strategies will at the cost of upfront overhead at the start of a stream allow systems 
like NaradaBrokering transport SOAP compatible messages with high bandwidth and a latency that will 
be insignificant on long streams. Of course sensors or the data from instruments always give such streams 
of data and so we believe Web services will support them with high performance. 

7 Summary and Conclusion 
We have reviewed the impact of the Grid computing and data-intensive computing on future algorithm 
development.  We must build upon parallel computing applications and high performance computing to 
integrate geographically distributed data sources.  The driving constraint that separates Grid computing 
from parallel computing is the so-called “rule of the millisecond.”  Grid application components must be 
tolerant of millisecond (or longer) communication latencies, but this constraint does not apply to the 
interior workings of specific components, which may be parallel applications.  This corresponds to a 
“two-level” programming model: components may be developed as parallel services implemented by 
conventional programming models, but the interaction of the services is specified by Grid workflow. 
Algorithms must be designed that support this rule. 
 
Grid components are developed as Web Services that follow the conventions of Service Oriented 
Architecture design.  In this model, Grid components are self-contained, have a well-defined 
programming interface defined in WSDL, and communicate using SOAP messaging.  The efficiency of 
SOAP messaging may be dramatically improved by adopting faster transport mechanisms, and by 
efficient representations as supported by the NaradaBrokering system. This leads to latencies of a 
millisecond (close by or within same machine) to 100 millisecond (distant) in communication but 
potentially very high bandwidths that should be respected by algorithms. 
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