
Algorithms and the Grid
Geoffrey C. Fox1, Mehmet S. Aktas2, Galip Aydin3, Harshawardhan Gadgil4, Shrideep Pallickara5,

Marlon E. Pierce6, and Ahmet Sayar7
Email: 1gcf@grids.ucs.indiana.edu, 2maktas@cs.indiana.edu, 3gaydin@cs.indiana.edu,

4hgadgil@cs.indiana.edu, 5spallick@indiana.edu, 6mpierce@cs.indiana.edu, and 7asayar@cs.indiana.edu

Community Grids Lab
Indiana University

Bloomington, IN 47404 USA

Abstract: We review the impact of Grid Computing and Web Services on scientific computing, stressing
the importance of the “data-deluge” that is driven by deployment of new instruments, sensors and
satellites. This implies the need to integrate the naturally distributed data sources with large simulation
engines offering parallel low latency communication and so to integrate parallel and Grid computing
paradigms. We start with an overview of these and the evolving service architectures. We illustrate the
identified areas of interest for Algorithms and the Grid with the specific example of SERVOGrid that
supports earthquake science research. We comment on the appropriate messaging infrastructure for
Grids and data assimilation and contrast it with MPI.

1 Introduction: Trends in Simulation Research
Over the last two decades, two very prominent trends may be noticed in many computing fields: the ever-
increasing distribution of computing power and the increasing importance of data-centric computing. We
consider the following timeline:

• 1990-2000: The High Performance Computing and Communication (HPCC) initiative in the
USA drove the development of parallel computing hardware and parallel algorithms. Major
algorithm successes were achieved for key scientific computing areas like partial differential
equations and particle dynamics. The use of Message Passing Interface (MPI) implementations
dominated parallel computing application development. The importance of data was not
emphasized

• 1995-Present: Distributed and Web computing emerge and grow aggressively. These tend to
grow along two major lines: stateless, fault-tolerant, very loosely coupled Web applications based
on the HTTP protocol and message exchanges (today referred to as the REST architecture
[Fielding2000] when applied to network application programming), and more tightly coupled
distributed object systems such as the Object Management Group’s CORBA [CORBA], Sun
Microsystems’ Java RMI [RMI], Microsoft’s DCOM [DCOM], and the United States Department
of Defense’s HLA [HLA]. Grid computing also begins to emerge from academic and
government research communities.

• 2000-Present: Web Service-oriented distributed computing begins to replace distributed object
technologies.

• 2000-Present: Core parallel computing academic research in the United States drops dramatically
at the expense of distributed and Grid computing. Parallel computing is continued by
government efforts such as the Department of Energy’s ASCI program and the Department of
Defense’s High Performance Computing Modernization Program.

• 2003-Present: We see the emergence of the “Data Deluge” in many scientific fields. The data
storage, management, and processing requirements drive a number of fields, such as high energy
physics [Allcock2002], meteorology and weather modeling [Gannon2004], and astronomy
[Brunner2001], to adopt distributed computing approaches. We discuss the impact on geophysics

 1

and earthquake science in more detail in this paper. Note that the data deluge is really “just
Moore’s Law applied to Sensors” i.e. the increase in data is largely driven by the same
technology driving forces that are giving the increase in computer performance.

In this sequence of trends (parallel computing to distributed computing to data-deluged computing), each
new trend builds upon, rather than replaces, the proceeding trends in layer-cake fashion. For a recent
overview of parallel computing, see [Dongarra2002]. Grid computing is surveyed in [Foster2003] and
[Berman2003]. An earlier review of Grid computing is given in [Foster1998].

2 Grids and Virtual Organizations

2.1 Introduction
Grid computing has diverged quite far from its initial incarnation as meta-computing, or the assemblage
of distributed parallel computers into a single large virtual parallel machine. Such systems ultimately are
limited by network communication speeds. Instead, the aim of Grid computing is to build the distributed
computing infrastructure to support so-called Virtual Organizations (VOs). In a VO, many different
member institutions can contribute resources to a single Grid, which may then be supported by a unified
security infrastructure and information and monitoring system. These resources include computers,
instruments, sensors, data repositories, networks and people. Useful services, such as secure, uniform
remote access to high performance computing resources and secure, cross-institutional, reliable data
management tools, can be built on top of this core infrastructure. Today, such systems are often termed
“cyberinfrastructure” [Atkins2003]. The development of cyberinfrastructure has been timely, as
academic research funding has favored multi-disciplinary and multi-institutional teams of scientists.
These trends in Grid computing to support “e-Science” [Berman2003] [UKeS-C] have been mirrored in
the commercial world: distributed computing technology development has been driven by the commercial
sector’s pressing need to integrate globally distributed enterprises.

2.2 Styles of Grids
Grid computing is a catch-all phrase that refers to several different types of distributed computing. In
order to clarify this picture, we find it useful to identify major Grid families [GapAnalysis]. As we shall
see, this seemingly diverse collection of capabilities can be unified into a single coherent picture, based
on Service Oriented Architecture principles [Booth2004].

• Computational Grids: these are traditional Grids that are designed to provide support for high
performance computing resources. Such Grids are still quite popular and valuable.

• Sensor and Data Grids: these are Grids that provide access to data and related metadata. The data
may be archival or real-time, collected in either case from sensors, scientific instruments, etc.
Metadata, or “data about data” is also very important in these simulations. Geographic
Information Systems (GIS) described in sec. 5 provide an important sub-family in this group.

• Collaborative Grids: these Grids support communication in all forms, ranging from document and
message sharing to instant messaging to audio/video collaboration. Group participation and data
sharing are also important to these applications.

• Peer-to-Peer, or Community Grids: these Grids apply principles of peer-to-peer computing (such
as decentralized, dynamic organization) to scientific computing resource collections.

• Semantic Grids: these Grids focus on information representation and management. Such
information management may be important for both human users as well as machine processing.
Semantic information systems may support other styles of Grids: they are potentially an excellent
way to manage multi-staged computing tasks (“workflow”) that must run in a distributed
environment.

 2

Grid applications in many fields must rely upon services that emerge from many of these families.
Military command and control and civilian emergency preparedness and response for crisis management
are two such examples. In either case, Grid-based collaboration services must link participants, many of
whom will be on unreliable networks. Participants will need to rapidly assess data, so integration of data
Grid services with computational processing is required. We refer to these collections of Grid service
families as a “Grid of Grids.” [Fox2004B]

3 Service Oriented Architectures
Around the beginning of the current decade, industry software developers began to place emphasis into
Web Services at the expense of the distributed object technologies that dominated the 1990’s. Similarly,
Grid development began to align itself with Web Services shortly thereafter. Motivating this shift was the
desire for a loose coupling between distributed components. Distributed objects with an implicit
relationship between interface and implementation and the coupling of components via remote procedure
calls (RPC) proved hard to scale.

Web Services are founded on core concepts that include the following [Booth2004] [WSGrids]:

• Desirable capabilities may be accessed through remote services.
• These services define a contract for interaction using the XML-based Web Service Description

Language (WSDL) [Christensen2001].
• Requester agents (i.e. clients) interact with these services, or provider agents.
• Requesters and providers communicate by exchanging messages, encoded in the XML-based

Simple Object Access Protocol (SOAP) [Gudgin2003].

A key difference between Web Services and distributed object systems is that Web Services are
essentially XML-document (or message) exchange systems. The SOAP-enveloped messages are largely
self-contained and self-descriptive. A SOAP message may include, for example, all necessary
information for its secure transmission. This allows the message to be decoupled from, and transmitted
over, any appropriate transport protocol. It also allows the message to be decoupled from explicit point-
to-point connection protocols. SOAP is purposefully constructed to be extensible. Important extensions
include reliability, security, and addressing. Later in Sec. 6 we will contrast messaging built SOAP with
that familiar in parallel computing through MPI.

4 The Impact of Grids on Algorithms
As discussed above, Grid computing in its general sense does not replace or expand parallel computing in
the classic “metacomputing” sense. Thus we find Grid extensions of MPI to be only part of the solution
with a richer model discussed in Sec. 6. Instead, Grids are geared toward resource management across
organizations. Parallel computing applications and hardware are examples of these resources as shown in
Figure 1. In this simple sense, implementations of parallel algorithms may exist untouched running on
resource nodes in a Grid.

The above assumes of course that Grids will be used to manage classic high performance computing
applications. While this will remain an important style of Grids, data driven high performance computing
applications of data assimilation and data mining are increasingly important. These applications must
rely upon external data sources (both real-time data streams and archival data) that typically are remote
from the high performance computing resource.

More generally, Grid-based algorithms may be developed to support the interconnections of loosely
coupled distributed applications. Such applications may consist of remote data source, a number of
linked applications running on separate supercomputers, filtering programs for data format conversations
between applications, and so forth. Service oriented Grid computing offers the general architecture for

 3

accomplishing these linkages. Management of these loosely integrated applications is known as Grid
workflow discussed in more detail in Sec. 6. Workflow builds on classic distributed programming models
such as Linda [Carriero1989] and the data flow pioneered by AVS [Upson1989]. This type of Grid

application includes “code-coupling” which supports multi-disciplinary simulations such as those linking
aerodynamics and structures or ocean and atmosphere. These simulation coupling can of course be

Figure 1: The figure illustrates the hub and spoke architecture for assimilating data using extreme
scale computing. Distributed data sources use local clusters for adaptively filtering data, which is
then transported using high-performance transport services to one or more centralized high
performance computers.

HPC
Simulation

Data Filter

Data Filter
Da

ta
Fi

lte
r

Data
Filter

Data
Filter

Distributed Filters
massage data
For simulation

Other

Grid

an
d W

eb

Serv
ice

s

Analysis
Control

Visualize

Data Deluged
Computing
Architecture

Grid

OGSA-DAI
OGSA-Sensor
Grid Services

Grid Data
Assimilation

combined with data assimilation. The latter is a key area where new algorithm work is critical. A typical
scenario shown in Figure 1 can apply to scientific simulations such as weather forecasting with data from
satellites and sensors; it can also be seen in financial modeling or military intelligence applications where
data could be stock prices or electronic signals. The latter illustrate that new applications are enabled by
the data-deluge and these need new algorithms. A good example is complex systems simulations for
social science and biology, which up to now have not been major users of large scale computers. The
capability of Grids to marshal their data implies the possibility of new algorithms for such simulations as
those of biological organisms, the spread of disease and the response of critical infrastructure
(transportation, energy, communication) to major disruptions from earthquakes, hurricanes or terrorists.

Such applications must be able to address problems not typically encountered in classic parallel
computing.

• Applications must be fault tolerant, as failures become increasingly likely in Grid applications.
• Applications must be able to tolerate millisecond (and preferably longer) communication

latencies discussed in section 6 instead of microsecond messaging speeds in MPI [Fox2004A].
Note the need for latency tolerant algorithms to exploit distributed computing is well known. We
don’t see any major developments here in new algorithms for traditional core scientific
computing problems -- say solving partial differential equations or particle dynamics. These still
need low latency i.e. classic parallel systems, for good performance.

 4

• Information management becomes increasingly important, as workflow applications benefit from
“late-binding”: decisions on which specific service instances to use are not made until needed.

Generalizing the last point, we discuss in Sec. 6 that Grids are developing the best core technology to
build Problem Solving Environments (PSE) as these need exactly the integration and management
delivered by Grids and the multi-millisecond latency is typically not important in the initiation of a PSE
or toolkit component.

There are examples of important algorithms enabled and required by distributed environments. One
example is the distributed hash tables used in scalable peer to peer lookup and less well known are
distributed security algorithms to support dynamic communities. Data mining algorithms are already
active areas of research and these are needed for the distributed system itself as for example in the
analysis of denial of service attacks and other Internet activities.

In the following section, we will draw upon our work in the NASA SERVOGrid project to make
proceeding discussion concrete. We then discuss in Sec. 6 our research on high performance Internet
messaging for Grids using the NaradaBrokering messaging system.

5 SERVOGrid: Integrating Data and Computing Grids
The NASA AIST funded SERVOGrid project is being designed and built to integrate scientific
applications with data resources. Users typically interact with the system using computational Web
portals. SERVOGrid is described in more detail in [Aktas2004]. See also [QuakeSim].

5.1 SERVOGrid Applications
The following is a partial list of SERVOGrid applications:

• GeoFEST is a three-dimensional viscoelastic finite element model for calculating nodal
displacements and tractions. It allows for realistic fault geometry and characteristics, material
properties, and body forces.

o GeoFEST requires earthquake fault models as input data.
• Virtual California (VC) simulates interactions between vertical strike-slip faults using an elastic

layer over a viscoelastic half-space.
o Virtual California requires earthquake fault and friction models as input data.

• Pattern Informatics (PI) calculates regions of enhanced probability for future seismic activity
based on the seismic record of the region.

o Pattern Informatics requires seismic catalogs as input.
• RDAHMM (for Regularized Deterministic Annealing Hidden Markov Model) is a time series

analysis program based on Hidden Markov Modeling. It produces feature vectors and
probabilities for transitioning from one class to another.

o RDAHMM may be applied to any time series data, such as GPS and seismic data.

As can be seen from the list, these applications have increasingly interesting data requirements: GeoFEST
and VC are traditional, parallel high performance computing applications that have external data
requirements that may be fulfilled by agencies such as Earthscope or SCEC. PI relies on seismic catalogs
that are regularly updated, and RDAHMM relies upon regularly updated GPS catalogs. RDAHMM is
also an excellent candidate for real-time data analysis, as we will discuss. Typically in the code
development phase of SERVOGrid applications, these data sets are downloaded by the code developers
from online archives and stored locally in files. However, when integrating these applications into Web
portal environments, or otherwise attempting to automate the code execution phase, we must find an
alternative strategy.

 5

This application list is interesting in that includes classic scientific algorithms solving differential
equations mixed with data-mining and analysis codes. These two classes interact with the classic
simulations being used to test and motivate the data-mining. In the previous sections, we noted the
importance of algorithms that support interactions with data; data-mining typically corresponds to codes
that directly analyze data and data assimilation to codes where simulation and data are mixed. We see all
these classes growing in importance with data assimilation being developed for SERVOGrid as the
amount of real-time data increases.

5.2 GIS Grid Services for SERVOGrid
Implementations of Geographical Information Systems (GIS) standards provide Data Grid services that
can be used to provide programming interfaces (as distinguished from human user interfaces) to data.
Our efforts in building GIS Grid services are described in related publications, and we summarize briefly
here. We base our service implementations on the Open Geospatial Consortium (OGC)’s specifications.
These are described in [Aydin2005] and more publications and reports are available from [CrisisGrid].
Web Feature Services [Vretanos2002] are used to store archived data that may be used to describe
abstract map features. The WFS is a useful general purpose GIS archived data service: in SERVOGrid
we typically use it to store archived records for GPS stations, seismic activity, and faults. We have
implemented Web Service versions of WFS that use both SOAP over HTTP and higher performance
streaming data that are described in Section 6. Web Map Services [Beaujardierre2004] generate human
readable maps from Web Feature Servers and other Web Map Servers. Our approach to GIS Information
Service deviates from the OGC specifications, since, by using a Web Service approach to information
management, we may adopt more general Web Service information systems. Finally, Sensor Web
Enablement [SensorML] is a family of related specifications for describing sensors. Our efforts here have
focused on integrating NaradaBrokering messaging described in Sec. 6 with streaming GPS data.

5.3 Integrating Pattern Informatics and GIS Grid Services: Programming the
Grid
The Pattern Informatics (PI) application [Tiampo2002] has been successfully used to forecast regions of
increased probability for large seismic activity. PI techniques have been applied regionally (to the
Western United States and to Japan) and globally. The PI application uses seismic archive data, such as
provided by the Southern California Earthquake Center (SCEC) and the United States Geographical
Survey’s Advanced National Seismic System (ANSS), as input data and generates a latitude/longitude
grid of relative probability changes that may be superimposed on maps.

Automated versions of PI may be integrated with GIS services in three ways:

• Web Feature Services may be used retrieve seismic archives based on query filters such as
latitude/longitude bounding boxes, event magnitude ranges, and time periods.

• Web Map Services may be used to build interactive user interfaces and batch-style maps.
• GIS Information services can be used to locate both Web Feature Services and Web Map

Services that have the desired capabilities. For example, one may locate a WFS that has the
seismic records for the desired bounding box.

These data web services may be coupled to “Execution Grid” style services that can be used to manage
running applications. This coupling is sometimes referred to as “service orchestration” or “Grid
workflow.”

Scientific workflow management described in Sec. 6 is an active field, and overviews are available from
[Fox2005A]. Typically these tools are coupled to programming environments: Grid-enabled scripting
languages and XML workflow expression languages are common, and are often coupled to visual
programming tools.

 6

HPSearch is our research effort in this area [HPSearch]. HPSearch collectively includes several
constituent parts, including support for JavaScript-based Grid workflow scripting; distributed Web
Services for workflow enactment; and Web Service wrappers that can be used to exchange events
between Web Services and the HPSearch controlling engine. HPSearch research focuses on two
additional areas not usually accounted for in workflow systems: management of data streams and
management of messaging (NaradaBrokering) networks.

Figure 2 below illustrates the integration of HPSearch with GIS services and the PI code. This is
described in more detail in [Aydin2005]. Web Map Server clients initially generate requests for PI code
runs by specifying time intervals, latitude and longitude bounding boxes, lower cutoff values for
earthquake magnitudes used in the forecast, and the size of the latitude/longitude grid of the bounding
box. These request parameters are passed to the HPSearch master node (TRex in the figure), which first
chooses an available HPSearch worker node (Danube) to execute the workflow. The worker node is
passed a URI name for the JavaScript workflow to be executed. The worker node then manages the
workflow chain: the desired seismic data (in GML format) is fetched from an appropriate Web Feature
service and filtered into a format understandable by the PI code. The filtered data is then collected and
the PI code is launched. PI output data (a grid of seismic “hot spots” forecasts) is then filtered back into
GML feature data that may be suitably rendered by the Web Map Server. The WS-Context server is used
to keep track of the evolving state of this workflow: several components may register for interest in
events, such as the notification of workflow completion.

The individual components in Figure 2 represent separate Web Services running on distributed hosts. The
key element in this model is that the Web Services may be developed and maintained independently of
each other. Their combination into this particular application is ad-hoc. HPSearch supplies the scripting
control and the “glue” filters for this specific meta-application. The PI application itself is a relatively
small code, but more sophisticated parallel applications may be managed in a similar manner.

Data Filter
(Danube)

PI Code Runner
(Danube)

Accumulate Data
Run PI Code
Create Graph
Convert RAW -> GML

WFS
(Gridfarm001)

WMS

HPSearch
(TRex)

HPSearch
(Danube)

GML
(Danube)

WS Context
(Tambora)

Figure 2 GIS Grid and Execution Grid services may be integrated into meta-applications using workflow
orchestration tools such as HPSearch. This represents a “two-level” programming model: applications are

 7

wrapped as services that are in turn programmed (or scripted) on a Grid. Dashed arrows represent actual
data (file) flow. Solid arrows indicate control messages sent by HPSearch. Dot-dash arrows show messages
transmitted through NaradaBrokering.

Our evaluation of this meta-application revealed two not-surprising bottlenecks: HTTP is too inefficient
for non-trivial data transport, and ASCII-based XML representation can lead to processing overheads as
well as transport overheads. We view both of these problems as opportunities for research. Efficient
transport of XML messages is the subject of the next section, and efficient XML processing is an active
effort of research [Oh2005].

5.4 Providing Live GPS Data for Data Mining Applications
The Pattern Informatics application is an example of file-based workflow, but these techniques may also
be applied to real-time applications. In this section we discuss work in progress to integrate GPS data
streams with the RDAHMM application [Granat2002]. This work is part of a general research area in
real-time change detection and data mining.

RDAHMM may be used to analyze time series data to automatically determine underlying physical
modes in the series. For example, earthquakes and seismic activity in California may show up in nearby
GPS stations maintained by the Southern California Integrated GPS Network (SCIGN). RDAHMM may
be trained to automatically detect these in archival GPS records. RDAHMM may also be used to detect
more subtle mode shifts in time series signals that are not easily discernable to the human eye. Currently
RDAHMM may be used to analyze GPS archival records, and we may apply workflow techniques to this
problem that are similar to the PI application discussed above.

However, we also see an opportunity for event change detection in real-time data. RDAHMM service
instances may be trained on archival GPS data to identify the station’s historical modes. A network of
RDAHMM services may then be attached to GPS networks. State changes in individual GPS stations
may be detected in real-time, and interested subscribers can receive notification.

A real-time version of RDAHMM is still in development, but we have recently completed an initial
version of a real-time GPS filtering system that may be used to deliver data to RDAHMM. This is
illustrated in Figure 3. Current support includes three GPS networks (OCRTN, RICRTN, and SDCRTN)
with 28 GPS stations. Raw data is collected by an RTD server maintained by Scripps Orbit and
Permanent Array Center (SOPAC). Each network is published on a separate network port in the binary
RYO format. Data rates are 1-2 Hz. All stations in a particular network are published on the same port:
the 12 GPS stations in OCRTN are all published on the same port, 7010, for example.

 8

Figure 3 GPS real-time data filtering is accomplished using NaradaBrokering filter chains.

Applications such as RDAHMM have two requirements for this data: GPS network streams should be
decoupled into individual station streams, and the data streams should be converted into displacement
values. We anticipate, with the adoption of OGC Sensor Web Enablement applications, that other
applications may expect data in “Observations and Measurements” GML format. We address these issues
by building filter chains. NaradaBrokering endpoints (simple Java programs) have been developed to
accept data from the streaming ports 7010-7012. This data is then published into a broker network on an
appropriate topic (or channel) name. See Figure 4 for a list of channels. For example, RYO data from the
OCRTN network is published to the SOPAC/GPS/Positions/OCRTN/RYO channel. NaradaBrokering
subscribers to this channel may receive this data directly. One such subscriber is a RYO-to-ASCII filter,
which converts data into text format. This filter acts in turn as a publisher to the appropriate topic (such
as SOPAC/GPS/Positions/OCRTN/ASCII), where interested subscribers may receive it. We may add any
number of additional filters in the filter chain, including GML converters and station decoupling filters.
RDAHMM applications may similarly be wrapped to receive data on the appropriate channel, and publish
interesting state change events.

This work is described in more detail at [SensorGrid], which also includes simple demos and
downloadable software.

 9

Figure 4 GPS data filters use topics, or channels, to manage data routing using the NaradaBrokering
software.

Returning to Figure 1, we see data manipulation is depicted at the edges of the diagram (at the sources)
before their integration and assimilation in the “central” simulation. Our GPS filtering is equivalent to the
edge filtering whereas Pattern Informatics is a typical central activity. This illustrates the algorithmic
opportunity to identify decoupled parts of the analysis that can be placed on cost effective distributed
platforms. In fact this decoupling is needed to match the volume of data to the simulation; otherwise the
data deluge will overwhelm the simulation engine whose low latency interconnects make it powerful but
more expensive per operation than distributed commodity analysis systems. Algorithms that optimally
support this split into parallel assimilation and distributed filtering need further study.

6 Messaging and Problem Solving Environments

6.1 Messaging
MPI and SOAP Messaging both send data from a source to a destination but there are important
differences in requirements and functionality [Fox2003B]. In understanding the different approaches to
message passing, it is useful to divide multi-processor (distributed memory) and general distributed
systems into three classes.

1. Classic massively parallel processor systems (MPP) with low-latency, high-bandwidth
specialized networks. Here one aims to have message latencies in the order of one to a few
microseconds and scalable bisection bandwidth. Ignoring latency, the time to communicate a
word between two nodes should be a modest multiple (perhaps 20) of time taken to calculate a
floating point result. This communication performance should be independent of number of nodes
in system.

2. Commodity clusters with high performance but non-optimized communication networks.
Latencies can be in the 100-1000 microsecond range typical of simple socket based
communication interfaces.

3. Distributed or Grid systems with possibly very high inter-node bandwidth but the latency is
typically 100 milliseconds or more as familiar from Internet travel times.

Of course there is really a spectrum of systems with cost-performance increasing by 4 orders of
magnitude or so as one goes from 1) to 3). Here we will focus on the endpoints (1) and (3) –- MPP’s and

 10

the Grid –- and not worry about intermediate cases like 2) – straddling the “Rule of the Millisecond”
dividing line [Fox2004A]. MPI especially is aimed at the class (1) with optimized native implementations
exploiting particular features of the network hardware. Generic versions of PVM [PVM] and MPI [MPI]
using socket based communication on a localized network illustrate (2). One ports MPI to the Grid as in
MPICH-G2 [MPICH-G2] and PACX-MPI [PACX] so that one can offer a uniform programming model
that supports the low latency MPI on parallel machines. However Grid systems support applications with
different requirements than those of parallel computing and hence need messaging with different and
greater functionality. Further the larger network latency allows one to add additional software
functionality without adding significant overhead.

In fact Grid messaging is more naturally related to message oriented middleware (MOM) [Bernstein1996]
[MOM] and software overlay networks [Doval2003] than to MPI or PVM style messaging. The rich
MOM infrastructure support messages that are self-describing and as well capture semantic intent.
Depending on the application these messages can be made to encapsulate system conditions, method
invocations, resource sharing, data interchange among others. Messages may also describe their
correlation, dependency and causal relationships to other messages. The SOAP messaging used by Web
Services illustrates this richer structure with a body containing the “real message” and separate headers
corresponding to systems services including security, notification, virtualized addressing, fault tolerance,
notification and special operations and relationship to resources. Processing this additional information
typically takes a millisecond or so and adds significant functionality at insignificant fractional cost. In
designing systems and algorithms for distributed systems it is important to understand this additional
functionality and incorporate it into your architecture. Another difference between SOAP and MPI is that
MPI only specifies interface and so interoperability between different MPI implementations requires
additional work [IMPI]. SOAP however specifies both interfaces and message structure so broad
interoperability can be achieved. This is a achieved at a performance cost that we return to in Sec 6.5.

6.2 NaradaBrokering
We have built a MOM style messaging system – NaradaBrokering [Pallickara2003, NaradaBrokering] –-
that is designed to support traditional Web Services and SOAP but has an architecture that allows it to
support high performance data transport as required for Scientific applications and described briefly in
Sec. 6.5 [Fox2005B]. We suggest using this system whenever your application can tolerate 1-100
millisecond latency in linking components. For applications that require lower latencies we recommend
the use of MPI.

The NaradaBrokering messaging infrastructure incorporates support for enterprise messaging
specifications such as the Java Message Service [Happner2000]. It also incorporates support for Web
Service specifications such as WS-Eventing [Microsoft2004a], WS-ReliableMessaging [Microsoft2004b]
and WS-Reliability [OASIS2004]. The NaradaBrokering messaging infrastructure includes support for
services such as reliable and ordered delivery. Services available within the messaging substrate also
include replay support, recording, synchronized Network Time Protocol based timestamps, buffering and
discovery of nodes.

6.3 Workflow as the Programming Model for the Grid
The Web Service (Grid) paradigm implicitly assumes a two-level Programming Mode. Here one builds a
Service (similar in this respect to a “distributed object” or “computer program” running on a remote
computer) using conventional technologies such as C++ Java or Fortran that provides a computation
capability or supports data streaming from sensors and satellites or specialized database access such as
JDBC. Such services accept and produce data from user files and databases. The Grid is built by
coordinating such services assuming we have solved problem of programming the service internally.

 11

The Grid discusses the composition of distributed services with the runtime interfaces to Grid extending a
model familiar from UNIX pipes and data streams where one can use UNIX Shell, PERL or Python
scripts to produce complex applications from core programs. Such interpretative environments are the
single processor analog of Grid Programming. Some projects like GrADS from Rice University are
looking at integration between service and composition levels but most efforts in the community look at
each level (internal and external to services) separately [GrADS].

In programming SOAP and Web Services (the Grid) workflow describes linkage between services
[Yu2005]. Since the various services, resources and other components are distributed, the linkage
between them must be through the exchange of messages. This linkage is two-way and has both control
and data using SOAP as described in Sec 6.1. The BPEL specification from Microsoft-IBM [BPEL4WS]
is currently the preferred Web Service XML specification of workflow

6.4 Problem Solving Environments

Problem Solving Environments (PSEs) are environments integrating tools to tackle a particular class of
problems with for example SERVOGrid as a PSE for earthquake science and PSEs are similar to portals
familiar from Yahoo and other major Internet sites. There is a major effort [Fox2003A] [OGCE] to build
Grid portals that are essentially PSEs to a suite of distributed services. We note that traditional PSEs used
scripting languages to develop such environments while Grid portals are often implemented using
messaging and workflow for the integration. This is an interesting example of the law of the millisecond
discussed above. Should one use the sub –microsecond latency of scripting languages (using method call
not message based component integration) or the one millisecond (local services) to many millisecond
(distributed services) latency of messaging?

Messaging has several advantages over scripting languages. First, collaboration between the distributed
entities is trivial since it simply involves sharing of messages [Qiu2005]. The richness of collaborative
interactions is dependent on the information encapsulated within these messages. Second, messaging-
based interactions engender greater modularity in the development of systems. For example, one could
have separate classes or modules to deal with different types of messages. This greater modularity for
messaging correspond to an easier (compared to a scripting approach) support model to both maintain an
existing PSE and in particular to upgrade particular PSE components. We suggest looking at the system
requirements and always linking components with the highest level (slowest) and hence easiest to support
approach compatible with these requirements. More often and not PSE components can be linked by
messaging and where the inevitable messaging overhead can be tolerated, we recommend using this and
building components as services. We call this the “simple service approach” [Fox2004B] where one
chooses to build services as small as is possible compatible with communication and bandwidth
constraints. Both in parallel and distributed computing, the ratio of communication to computation in a
service or parallel component depend on the ratio of surface to volume for the component which
decreases as the size (volume) of the component increases [Fox1994].

6.5 Fast Web Service Communications
Internet Messaging systems allow one to optimize message streams at the cost of startup time. Web
Services can deliver the fastest possible interconnections with or without reliable messaging. The costs
involved in reliable messaging for Web Services tend to be a little higher [Pallickara2005], since the
dominant specifications WS-Reliability and WS-ReliableMessaging [Microsoft2004b] [OASIS2004] both
mandate the storage of the SOAP message to stable storage prior to forwarding the message.

Here we will leverage the XML and SOAP Infosets [Gudgin2003] [MSBinaryXML]; by separating the
SOAP message context from its XML syntax, we can freely move between the binary and classic angle-

 12

bracketed representations of SOAP messages without content loss. We faithfully preserve the SOAP
semantics but transport an equivalent binary optimized binary representation. There are several such
efficient representations of XML Infosets including SOAP Message Transmission Optimization
Mechanism [MTOM] and XML-binary Optimized Packing [XOP]. We are developing schemes which
allow two endpoints to first negotiate the best-available transport using the fully interoperable SOAP
representation [Oh2005] and then proceed to use it for transfers. To specify this process and to
accommodate legacy systems that do not use the XML format, the Data Format Description Language
[DFDL] is an XML-based language that describes the structure of binary and character-encoded files and
data streams so that their format, structure, and metadata can be exposed. This can also be used in tandem
while transferring binary data using SOAP. The NaradaBrokering substrate incorporates support for
several transport protocols that can be leveraged to provide appropriate high performance protocols for
the transfers of such large binary data. Currently one can choose between TCP, parallel TCP and UDP
combined with SOAP level reliable messaging for fault tolerance. Since the substrate allows new
transport protocols to be plugged in rather easily, support for newer transport schemes can easily be
incorporated as they get developed.

We believe that these strategies will at the cost of upfront overhead at the start of a stream allow systems
like NaradaBrokering transport SOAP compatible messages with high bandwidth and a latency that will
be insignificant on long streams. Of course sensors or the data from instruments always give such streams
of data and so we believe Web services will support them with high performance.

7 Summary and Conclusion
We have reviewed the impact of the Grid computing and data-intensive computing on future algorithm
development. We must build upon parallel computing applications and high performance computing to
integrate geographically distributed data sources. The driving constraint that separates Grid computing
from parallel computing is the so-called “rule of the millisecond.” Grid application components must be
tolerant of millisecond (or longer) communication latencies, but this constraint does not apply to the
interior workings of specific components, which may be parallel applications. This corresponds to a
“two-level” programming model: components may be developed as parallel services implemented by
conventional programming models, but the interaction of the services is specified by Grid workflow.
Algorithms must be designed that support this rule.

Grid components are developed as Web Services that follow the conventions of Service Oriented
Architecture design. In this model, Grid components are self-contained, have a well-defined
programming interface defined in WSDL, and communicate using SOAP messaging. The efficiency of
SOAP messaging may be dramatically improved by adopting faster transport mechanisms, and by
efficient representations as supported by the NaradaBrokering system. This leads to latencies of a
millisecond (close by or within same machine) to 100 millisecond (distant) in communication but
potentially very high bandwidths that should be respected by algorithms.

8 Acknowledgements
This paper describes work that is supported by the Advanced Information Systems Technology Program
of NASA's Earth-Sun System Technology Office and the UK e-Science program’s Open Middleware
Infrastructure Institute (OMII).

9 References
[Aktas2004] Mehmet Aktas, Galip Aydin, Andrea Donnellan, Geoffrey Fox, Robert Granat , Lisa Grant,

Greg Lyzenga, Dennis McLeod, Shrideep Pallickara, Jay Parker, Marlon Pierce, John Rundle, Ahmet
Sayar, and Terry Tullis iSERVO: Implementing the International Solid Earth Research Virtual

 13

Observatory by Integrating Computational Grid and Geographical Information Web Services
Technical Report December 2004. Accepted for publication in Special Issue of Pure and Applied
Geophysics (PAGEOPH) for Beijing ACES Meeting July 2004
http://grids.ucs.indiana.edu/ptliupages/publications/ISERVO_ACES_PAGEOPH.pdf

[Allcock2002] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. Nefedova, D. Quesnal, S. Tuecke “Data Management and Transfer in High Performance
Computational Grid Environments.” Parallel Computing Journal, Vol. 28 (5), May 2002, pp. 749-
771.

[Atkins2003] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein, D. G.

Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright, “Revolutionizing Science and
Engineering Through Cyberinfrastructure.” Report of the National Science Foundation Blue-Ribbon
Advisory Panel on Cyberinfrastructure, January 2003. Available from
http://www.nsf.gov/cise/sci/reports/atkins.pdf.

[Aydin2005] Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,

Ahmet Sayar SERVOGrid Complexity Computational Environments (CCE) Integrated Performance
Analysis Technical report June 2005.
http://grids.ucs.indiana.edu/ptliupages/publications/gwpap243.pdf .

[Barish1999] Barish, B. C. and Weiss, R., Physics Today, Oct 1999, pp. 44-50; also

http://www.ligo.caltech.edu/

[Beaujardierre2004] de La Beaujardiere, Jeff, Web Map Service, OGC project document reference

number OGC 04-024.

[Berman2003] Berman, F., Fox, G., and Hey, T., (eds.). Grid Computing: Making the Global

Infrastructure a Reality, John Wiley & Sons, Chichester, England, ISBN 0-470-85319-0 (2003).
http://www.grid2002.org.

[Bernstein1996] Bernstein, Philip A. "Middleware: A Model for Distributed System Services,"

Communications of the ACM, February 1996, Vol. 39, No.2, pgs. 86 - 98.

[Booth2004] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D.

“Web Service Architecture.” W3C Working Group Note, 11 February 2004. Available from
http://www.w3c.org/TR/ws-arch.

[BPEL4WS] BPEL4WS: F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S.

Weerawarana, BPEL4WS, Business Process Execution Language for Web Services, Version 1.0.
Available from http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[Brunner2001] R. J. Brunner, S. G. Djorgovski, A. S. Szalay, eds., "Virtual Observatories of the Future,"

Astronomical Society of the Pacific Conference Series Vol 225, 2001.

[Carriero1989] Nicholas Carriero and David Gelernter Linda in Context, Communications of the ACM

32 , 4 (April 1989) pages 444 - 458

[Christensen2001] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001), Web Service

Description Language (WSDL) 1.1. W3C Note 15 March 2001.

 14

http://grids.ucs.indiana.edu/ptliupages/publications/ISERVO_ACES_PAGEOPH.pdf
http://www.nsf.gov/cise/sci/reports/atkins.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/gwpap243.pdf
http://www.ligo.caltech.edu/
http://www.grid2002.org/
http://www.w3c.org/TR/ws-arch
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

[CORBA] Common Object Request Broker Architecture Web Site: http://www.corba.org See also the
Object Management Group’s site, http://www.omg.org.

[CrisisGrid] GIS Research at the Community Grids Laboratory: http://www.crisisgrid.org.

[DCOM] Microsoft Distributed Component Object Model Technologies Web Site:

http://www.microsoft.com/com/default.mspx.

[DFDL] The Data Format Description Language (DFDL) working group.

https://forge.gridforum.org/projects/dfdl-wg/.

[Dongarra2002] The Sourcebook of Parallel Computing, Jack Dongarra, Ian Foster, Geoffrey Fox,

William Gropp, Ken Kennedy, Linda Torczon, Andy White, eds. Morgan Kaufmann, 2002.
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-871-0.

[Doval2003] OverLay Networks: A Scalable Alternative for P2P. Diego Doval and Donal O'Mahony.

IEEE INTERNET COMPUTING. July August 2003.

[Fielding2000] Roy T. Fielding, Architectural Styles and the Design of Network-based Software

Architectures, Dissertation, University of California, Irvine, 2000. Available from
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[Foster1998] Foster, I. and Kesselman, C., (eds.). The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann (1998).

[Foster2004] Foster, I. and Kesselman, C., (eds.) The Grid 2: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann (2004).

[Fox1994] Fox, G. C., Messina, P., Williams, R., “Parallel Computing Works!”, Morgan Kaufmann, San

Mateo Ca, 1994.

[Fox2003A] Geoffrey Fox, Dennis Gannon and Mary Thomas, Overview of Grid Computing

Environments, Chapter 20 of [Berman2003].

[Fox2003B] Geoffrey Fox Messaging Systems: Parallel Computing, the Internet and the Grid

Proceedings of EuroPVM/MPI 2003, pages 1-9 of Recent Advances in Parallel Virtual Machine and
Message Passing Interfaces, edited by Dongarra, Laforenza, Orlando, Springer LNCS 2840,
September 30 2003, http://grids.ucs.indiana.edu/ptliupages/publications/gridmp_fox.pdf

[Fox2004A] Geoffrey Fox, "Software Development Around a Millisecond" Computers in Science and

Engineering March/April 2004 p93-96
http://grids.ucs.indiana.edu/ptliupages/publications/cisejano4.pdf

[Fox2004B] Geoffrey Fox, “Grids of Grids of Simple Services” Computers in Science and Engineering

July/August 2004, p84-87 http://grids.ucs.indiana.edu/ptliupages/publications/Cisegridofgrids.pdf

[Fox2005A] Geoffrey Fox and Dennis Gannon (eds). Concurrency and Computation: Practice and

Experience. Upcoming special issue on Grid workflow based on GGF10 meeting at Berlin
http://www.extreme.indiana.edu/groc/ggf10-ww/. Editorial is Workflow in Grid Systems
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf.

 15

http://www.corba.org/
http://www.omg.org/
http://www.crisisgrid.org/
http://www.microsoft.com/com/default.mspx
https://forge.gridforum.org/projects/dfdl-wg/
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-871-0
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://grids.ucs.indiana.edu/ptliupages/publications/gridmp_fox.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/cisejano4.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cisegridofgrids.pdf
http://www.extreme.indiana.edu/groc/ggf10-ww/
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf

[Fox2005B] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, Building
Messaging Substrates for Web and Grid Applications to be published in special Issue on Scientific
Applications of Grid Computing in Philosophical Transactions of the Royal Society of London 2005
http://grids.ucs.indiana.edu/ptliupages/publications/RS-CGL-ColorOnlineSubmission-Dec2004.pdf

[Gannon2004] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simmhan, A. Slominski, On

Building Parallel and Grid Applications: Component Technology and Distributed Services,
Proceedings, Challenges of Large Applications in Distributed Environments (CLADE) In conjunction
with the 13th International Symposium on High Performance Distributed Computing (HPDC-13), pp.
44-51, June, 2004.

[GapAnalysis] Geoffrey Fox, David Walker, e-Science Gap Analysis, June 30 2003. Report UKeS-2003-

01, http://www.nesc.ac.uk/technical_papers/UKeS-2003-01/index.html.

[GrADS] GrADS (Grid Application Development Software Project http://www.hipersoft.rice.edu/grads/

[Granat2002]Granat, R., and A. Donnellan, A hidden Markov model tool for geophysical data

exploration, Pure and Appl. Geophys, 2271–2284, 2002.

[Gudgin2003] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H. (2003), SOAP

Version 1.2 Part 1: Messaging Framework. W3C Recommendation 24 June 2003. Available from
http://www.w3c.org/TR/soap12-part1/.

[Happner2000] Mark Happner, Rich Burridge and Rahul Sharma. Sun Microsystems. Java Message

Service Specification. 2000. http://java.sun.com/products/jms

[HLA] High Level Architecture (HLA), Defense Modeling and Simulation Office, United States

Department of Defense Web Site: https://www.dmso.mil/public/transition/hla/.

[HPSearch] Grid Service workflow and management http://www.hpsearch.org

[IMPI] Interoperable MPI http://impi.nist.gov/IMPI/.

[Microsoft2004a] Web Services Eventing. Microsoft, IBM & BEA.

http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[Microsoft2004b] Web Services Reliable Messaging Protocol (WS-ReliableMessaging)

ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf

[MOM] http://dsonline.computer.org/middleware/intro_MOM.html

[MPI] The Message Passing Interface Standard http://www-unix.mcs.anl.gov/mpi/standard.html

[MPICH-G2] MPICCH-G2: Grid-enabled implementation of the MPI v1.1 standard. http://www.nsf-

middleware.org/NMIR3/components/mpichg2.asp

[MSBinaryXML] Adam Bosworth, Don Box, Martin Gudgin, Mark Nottingham, David Orchard, Jeffrey

Schlimmer, Microsoft and BEA, XML, SOAP, and Binary Data
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.aspx?pull=/library/e
n-us/dnwebsrv/html/infoset_whitepaper.asp

 16

http://grids.ucs.indiana.edu/ptliupages/publications/RS-CGL-ColorOnlineSubmission-Dec2004.pdf
http://www.nesc.ac.uk/technical_papers/UKeS-2003-01/index.html
http://www.hipersoft.rice.edu/grads/
http://www.w3c.org/TR/soap12-part1/
http://java.sun.com/products/jms
https://www.dmso.mil/public/transition/hla/
http://www.hpsearch.org/
http://impi.nist.gov/IMPI/
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
http://dsonline.computer.org/middleware/intro_MOM.html
http://www-unix.mcs.anl.gov/mpi/standard.html
http://www.nsf-middleware.org/NMIR3/components/mpichg2.asp
http://www.nsf-middleware.org/NMIR3/components/mpichg2.asp
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.aspx?pull=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.aspx?pull=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp

[MTOM] SOAP Message Transmission Optimization Mechanism. Microsoft, IBM and BEA.
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

[NaradaBrokering] The NaradaBrokering Web Site: http://www.naradabrokering.org.

[OASIS2004] Web Services Reliable Messaging TC WS-Reliability. http://www.oasis-

open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf

[OGCE] Open Grid Computing Environment OGCE Portal Collaboration http://www.collab-

ogce.org/nmi/index.jsp

[Oh2005] Sangyoon Oh, Hasan Bulut, Ahmet Uyar, Wenjun Wu, Geoffrey Fox Optimized

Communication using the SOAP Infoset For Mobile Multimedia Collaboration Applications
Proceedings of the International Symposium on Collaborative Technologies and Systems CTS05 May
2005, St. Louis Missouri, USA.
http://grids.ucs.indiana.edu/ptliupages/publications/OptSOAP_CTS05.pdf

[PACX-MPI] Extending MPI for Computational Grids. Project Webpage
http://www.hlrs.de/organization/pds/projects/pacx-mpi/.

[Pallickara2003] Shrideep Pallickara and Geoffrey Fox NaradaBrokering: A Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware-2003. pp 41-61. Lecture Notes in Computer
Science 2672 Springer 2003, ISBN 3-540-40317-5
http://grids.ucs.indiana.edu/ptliupages/publications/NB-Framework.pdf

[Pallickara2005] Shrideep Pallickara, Geoffrey Fox, Beytullah Yildiz, Sangmi Lee Pallickara, Sima Patel

and Damodar Yemme An Analysis of the Costs for Reliable Messaging in Web/Grid Service
Environments Technical report June 2005 http://grids.ucs.indiana.edu/ptliupages/publications/Wsrm-
Performance.pdf

[PVM] The Parallel Virtual Machine. http://www.netlib.org/pvm3/

[Qiu2005] Xiaohong Qiu Message-based MVC Architecture for Distributed and Desktop Applications
Syracuse University PhD March 2 2005
http://grids.ucs.indiana.edu/ptliupages/publications/qiuPhDthesis.pdf.

[QuakeSim] The QuakeSim Project Web Site: http://quakesim.jpl.nasa.gov/

[RMI] Java Remote Method Invocation (Java RMI) Web Site: http://java.sun.com/products/jdk/rmi/.

[SensorGrid] Sensor Grid Research at the Community Grids Laboratory:

http://www.crisisgrid.org/html/sensorgrid.html.

[SensorML] Sensor Model Language (SensorML) Project Web Site: http://vast.nsstc.uah.edu/SensorML/.

[Tiampo2002] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein, W. Pattern dynamics and forecast

methods in seismically active regions. Pure Ap. Geophys. 159, 2429-2467 (2002).

[UKeS-C] NeSC: National e-Science centre for UK program at Edinburgh, http://www.nesc.ac.uk/

 17

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.naradabrokering.org/
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.collab-ogce.org/nmi/index.jsp
http://www.collab-ogce.org/nmi/index.jsp
http://grids.ucs.indiana.edu/ptliupages/publications/OptSOAP_CTS05.pdf
http://www.hlrs.de/organization/pds/projects/pacx-mpi/
http://grids.ucs.indiana.edu/ptliupages/publications/NB-Framework.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Wsrm-Performance.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Wsrm-Performance.pdf
http://www.netlib.org/pvm3/
http://grids.ucs.indiana.edu/ptliupages/publications/qiuPhDthesis.pdf
http://quakesim.jpl.nasa.gov/
http://java.sun.com/products/jdk/rmi/
http://www.crisisgrid.org/html/sensorgrid.html
http://vast.nsstc.uah.edu/SensorML/
http://www.nesc.ac.uk/

[Upson1989] Craig Upson, Thomas Faulhaber, Jr., David H. Laidlaw, David Schlegel, Jefrey Vroom,
Robert Gurwitz, Andries van Dam, The Application Visualization System: A Computational
Environment for Scientific Visualization, IEEE Comput. Graph. Appl., vol. 9, no. 4, 1989, pp 30-42.
IEEE Computer Society Press.

[Vretanos2002] Vretanos, P (ed.) (2002), Web Feature Service Implementation Specification, OpenGIS

project document: OGC 02-058, version 1.0.0.

[WSGrids] M. Atkinson et al., ‘Web Service Grids: An evolutionary approach’, Concurrency and

Computation: Practice and Experience 17, 377-389, 2005;
http://www.nesc.ac.uk/technical_papers/UKeS-2004-05.pdf (defines WS-I+)

[XOP] XML-binary Optimized Packing. Microsoft, IBM and BEA. http://www.w3.org/TR/2005/REC-

xop10-20050125/.

[Yu2005] Jia Yu and Rajkumar Buyya, A Taxonomy of Workflow Management Systems for Grid

Computing, Technical Report, GRIDS-TR-2005-1, Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Australia, March 10, 2005.
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

 18

http://www.nesc.ac.uk/technical_papers/UKeS-2004-05.pdf
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

	Algorithms and the Grid
	1 Introduction: Trends in Simulation Research
	2 Grids and Virtual Organizations
	2.1 Introduction
	2.2 Styles of Grids

	3 Service Oriented Architectures
	4 The Impact of Grids on Algorithms
	5 SERVOGrid: Integrating Data and Computing Grids
	5.1 SERVOGrid Applications
	5.2 GIS Grid Services for SERVOGrid
	5.3 Integrating Pattern Informatics and GIS Grid Services: P
	5.4 Providing Live GPS Data for Data Mining Applications

	6 Messaging and Problem Solving Environments
	6.1 Messaging
	6.2 NaradaBrokering
	6.3 Workflow as the Programming Model for the Grid
	6.4 Problem Solving Environments
	6.5 Fast Web Service Communications

	7 Summary and Conclusion
	8 Acknowledgements
	9 References

