

ASAM : Automatic Architecture Synthesis and
Application Mapping
Citation for published version (APA):
Jozwiak, L., Lindwer, M., Corvino, R., Meloni, P., Micconi, L., Madsen, J., ... Raffo, L. (2012). ASAM : Automatic
Architecture Synthesis and Application Mapping. In Proceedings of the 15th Euromicro Conference on Digital
System Design (DSD'12), 5-8 September 2012, Cesme, Izmir, Turkey (pp. 216-225). Brussels: IEEE Computer
Society. DOI: 10.1109/DSD.2012.28

DOI:
10.1109/DSD.2012.28

Document status and date:
Published: 01/01/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 29. Jun. 2019

https://doi.org/10.1109/DSD.2012.28
https://research.tue.nl/en/publications/asam--automatic-architecture-synthesis-and-application-mapping(868412d0-e531-4a4c-88f6-7d7126e437bb).html

 1



Abstract — This paper focuses on mastering the automatic ar-

chitecture synthesis and application mapping for heterogeneous

massively-parallel MPSoCs based on customizable application-

specific instruction-set processors (ASIPs). It presents an over-

view of the research being currently performed in the scope of

the European project ASAM (Architecture Synthesis and Appli-

cation Mapping) of the ARTEMIS program. The paper briefly

presents the results of our analysis of the main problems to be

solved and challenges to be faced in the design of such heteroge-

neous MPSoCs. It explains which system, design, and electronic

design automation (EDA) concepts seem to be adequate to resolve

the problems and address the challenges. Finally, it introduces

and briefly discusses the design-flow and its main stages pro-

posed by the ASAM project consortium to enable an effective and

efficient solution of these problems.

Index Terms— embedded systems, heterogeneous multi-

processor system-on-chip (MPSoC), customizable ASIPs, archi-

tecture synthesis, MPSoC and ASIP design automation;

I. INTRODUCTION

The recent spectacular progress in semiconductor technologies

has enabled implementation of increasingly complex multi-

processor systems on single chips (MPSoCs), and has facili-

tated rapid progress in mobile and autonomous computing, as

well as, wire-less and wired communication. New important

opportunities have been created: the traditional applications

can now be served much better, and numerous new sorts of

systems became technologically feasible and economically

justified. A big stimulus has been created towards develop-

ment of various kinds of embedded systems. Examples of the

new systems include various measurement, monitoring, con-

trol, multi-media and communication systems that can be put

on or embedded in mobile, remote, poorly accessible or dan-

gerous objects, installations, machines or devices, in home,

office or hospital equipment, or even implanted in human or

animal body.

However, in parallel to creation of unusual new opportu-

nities, the spectacular advances in microelectronics and infor-

mation technology introduced unusual silicon and system

complexity. This complexity results in a number of new diffi-

cult issues to be addressed such as:

- ensuring high-quality and validation of the highly complex

systems;

- adequately addressing the MPSoC energy crisis, and in-

creased leakage power;

- resolving the interconnect scalability problems and on-chip

communication problems;

- adequately accounting for the dominating influence of inter-

connects and communication on major physical system

characteristics (area, speed, energy consumption);

- substantially decreasing the high system development and

production costs, and long development times.

Due to the progress in semiconductor technologies and

processor architectures, requirements of many applications,

demanding sophisticated hardware solutions in the past, can be

satisfied by software implementations executed on modern

micro-, signal-, graphic- and other processors. There are how-

ever many new highly-demanding embedded applications in

several fields (e.g. multimedia and entertainment, communica-

tions and networking, consumer electronics, medical and other

instrumentation, monitoring and control systems, advanced

machinery, automotive, military, etc.) for which the straight-

forward software solutions are not satisfactory. For these high-

ly-demanding applications increasingly complex and sophisti-

cated MPSoCs are required to perform real-time computations

to extremely tight schedules, with high demands regarding

energy, area, costs and development efficiency. Moreover,

many of the MPSoCs are required to be highly flexible. The

modern complex embedded applications typically include

many various parts and numerous different algorithms involv-

ing various kinds of information processing. They are from

their very nature heterogeneous. Consequently, to implement

these complex and demanding heterogeneous applications

effectively and efficiently, the heterogeneous application-

specific multi-processor system approach should be used.

 This paper focuses on mastering the MPSoC architecture

design for such highly-demanding embedded applications. It

presents an overview of the research being currently per-

formed in the scope of the European project ASAM (Architec-

ture Synthesis and Application Mapping for heterogeneous

MPSoCs based on adaptable ASIPs) of the ARTEMIS pro-

gram. The paper briefly presents the results of our analysis of

ASAM: Automatic Architecture Synthesis and

Application Mapping

Lech JOZWIAK
1
, Menno LINDWER

2
, Rosilde CORVINO

1
, Paolo MELONI

3
, Laura MICCONI

4
, Jan

MADSEN
4
, Erkan DIKEN

1
, Deepak GANGADHARAN

4
, Roel JORDANS

1
, Sebastiano POMATA

3
,

Paul POP
4
, Giuseppe TUVERI

3
, Luigi RAFFO

3

1
Technische Universiteit Eindhoven;

2
Intel;

3
 Università degli Studi di Cagliari;

4
 Danmarks Tekniske

Universitet

 2

the main problems that have to be solved and challenges to be

faced in the design of such heterogeneous MPSoCs. It ex-

plains which system, design, and electronic design automation

(EDA) concepts seem to be adequate to resolve the problems

and address the challenges. Finally, it introduces and briefly

discusses the design-flow and its main stages proposed by the

ASAM project consortium to enable effective and efficient

solution of these problems.

II. ASIP-BASED MPSOC TECHNOLOGY

The architecture platform targeted in the ASAM project is a

configurable and extensible for specific applications hetero-

geneous multi-ASIP platform. In particular, the project tar-

gets the MPSoC platforms of its industrial partner In-

tel/SiliconHiv (SH) involving generic customizable ASIPs that

can be optimized for various application fields. Each ASIP is

composed of an actual processor core (core) and core I/O

(coreio) that together form a VLIW machine capable of exe-

cuting parallel software with a single thread of control (see

Fig.1). An ASIP includes a VLIW datapath controlled by a

sequencer that uses status and control registers and executes

programs from the local program memory. The data path con-

tains functional units organized in several parallel scalar

and/or vector issue slots connected via programmable input

and output interconnections to several registers organized in

register files. The functional units perform computations on

intermediate data stored in the register files. The coreio pro-

vides the access to the local memory and I/O subsystem ena-

bling an easy integration of the ASIP in any larger system,

which can access to the devices in coreio via master/slave in-

terfaces. The local memories collaboration with particular

issue slots enables scalar access for the scalar slots and vector

or block access for the vector slots. Both SIMD and MIMD

processing can be realized. The ASIPs are configurable and

extensible. The numbers, kinds and parameter settings of func-

tional units, issue slots, register files, memories, interfaces,

etc. can be freely selected. Moreover, new functional units,

issue slots, etc., specific for a particular application, can be

developed and added.

 The parameters to be explored and set in the system-level

design of an ASIP-based MPSoC include: the number and

types of ASIPs, the number, type and size of global memories,

the scheduling and mapping of the application parts to the

selected ASIPs and their data to the selected memories, and

the system-level architecture and parameters of the global

communication structure. The parameters to be explored and

set to create an optimized ASIP architecture include: the num-

ber and type of issue slots and (scalar or vector) instructions

inside the issue slots, the number and type of issue slot clus-

ters to optimize parallelism exploitation and communication

between the issue slots, the number and size of register files,

the type and data width, and local memories, the architecture

and the parameters of the local communication structure, etc.

Several such different ASIPs, each customized for a par-

ticular part of a complex application, can be interconnected

with global memories and possible hardware accelerators and

other digital or analog sub-systems using a configurable heter-

ogeneous interconnection network, and implemented on one

chip. Several such powerful ASIPs with approximately 100

issue slots in total, each for 64-way vector processing, can be

placed on a single chip implemented in 22 nm CMOS tech-

nology. When operated at 400-600MHz, these ASIPs can de-

liver more than 1 Tops/s, with power consumption far below

the upper limit of mobile devices. The ASIP-based customiza-

ble for specific applications heterogeneous MPSoC platform

enables efficient application-specific exploitation of various

Figure 1 Generic ASIP architecture of the targeted MPSoC platform.

 3

kinds of parallelism: the multiple ASIPs serve the coarse-grain

parallelism exploitation at the task level, while the ASIP’s

parallel issue slots, custom instructions and their hardware

serve the fine-grained acceleration.

The adaptable ASIP-based MPSoC technology addresses

several fundamental development challenges of electronic

systems for modern highly-demanding embedded applications:

- it is able to deliver a high performance, high flexibility and

low energy consumption at the same time;

- it is relevant for a very broad range of application domains;

- it is applicable to several implementation technologies, e.g.:

SOC or ASIC, structured ASIC, and FPGA.

It is especially suitable for complex applications involving

different kinds of processing with various kinds of parallelism

and being highly demanding regarding physical and economic

characteristics. Provided an effective and efficient highly au-

tomated customization technology will become available

(what is targeted by the ASAM project), it will become possi-

ble to build the adaptable ASIP-based MPSoCs at substantial-

ly lower costs and with shorter times to market than the hard-

wired ASICs or programmable MPSoCs based on custom pro-

cessors built from scratch.

III. ISSUES AND CHALLENGES OF THE ASIP-BASED MPSOC

DEVELOPMENT

The systemic realizations of complex and highly demanding
applications, for which the customizable multi-ASIP MPSoC
technology is especially suitable, demand the performance and
energy usage levels comparable to those of ASICs, while re-
maining small-size and cost-effective. Satisfaction of these
stringent and often conflicting application demands requires
construction of highly-optimized hardware architectures and
corresponding software structures mapped on the architectures.
This can be achieved through an efficient exploitation of dif-
ferent kinds of parallelism involved in these applications, im-
plementation of critical parts of their information processing in
application-specific hardware, as well as, efficient trade-off
exploitation among various design characteristics, and between
solutions considered at different design levels and for different
system parts.
 Unfortunately, in the traditional embedded system devel-

opment approaches, the major development activities are usu-

ally largely disjoint and performed by different teams using

different supporting tools. This leads to inefficiencies, errors,

and costly reiterations in the design process. Moreover, the

traditional algorithm and software development approaches

require an existing and stable computation platform (HW plat-

form, compilers etc.), while for the modern embedded systems

as MPSoCs based on adaptable ASIPs the hardware and soft-

ware architectures have to be application-specific, and must be

developed largely in parallel. Unfortunately, the efficiency of

the required parallel HW and SW development is much too

low with the currently available development technology due

to lack of effective automated methods of industrial strength

for many MPSoC design problems, and weak interoperability

of the HW/SW architecture design, and hardware synthesis

tools. The inefficiencies identified above result in a substan-

tially lower than attainable quality of the resulting systems,

much longer than necessary development time, and much

higher development costs.

 Although some application analysis, restructuring and
compilation tools and ASIP configuration frameworks exist
(see Section IV), most of them miss the design decision layer.
The ASIP configuration semantics provide some IP libraries,
tools to generate and analyze architecture, and tools to generate
corresponding hardware descriptions, but assume customiza-
tion decisions taken by a human designer and denoted in an
appropriate way. However, they miss the tools for automated
customization decision making, and the collaboration among
the different tools. Also, most of them are devoted to a single
ASIP customization. However, many modern applications in-
clude many various parts and numerous different algorithms
involving various kinds of information processing with various
kinds of parallelism (task-level, loop-level, opera-
tion/instruction-level, and data parallelism). They are from
their very nature complex and heterogeneous and require het-
erogeneous application-specific multi-processor system ap-
proach. In a customizable multi-ASIP MPSoC its various
ASIPs have to be customized together, and in a strict relation to
the selection of the number of ASIPs, as well as to the schedul-
ing and mapping of the application’s required computations on
the particular ASIPs. The MPSoC macro- and the micro-
architectures, at multi-ASIP system level and at the single
ASIP processor level, are strictly interrelated. Important trade-
offs have to be resolved regarding the granularity of individual
processing cells, and between the amount of parallelism and
resources at each of the two architecture levels. Moreover, at
both architecture levels, the optimized parallel software struc-
tures have to be implemented on the corresponding optimized
for them parallel hardware structures.

The two architecture levels are strongly interwoven also

through their relationships with the memory and communica-

tion structures. Each micro-/macro-architecture combination

with a different parallel computation structure organization

requires different compatible memory and communication

architectures. For instance, exploitation of more data parallel-

ism in a computing unit micro-architecture requires a simulta-

neous access to memories in which the data reside (with e.g.

vector, multi-bank or multi-port memories) and a simultane-

ous transmission of the data (with e.g. multiple interconnects).

The requirement of simultaneous access and transmission rad-

ically increases the memory and communication hardware.

Additionally, many modern applications (e.g. various commu-

nication, multimedia, networking or encryption applications)

require hardware implementation of algorithms that involve

complex interrelationships between the data and computing

operations and require complex memory accesses and com-

plex communication between the memories and computing

units in the related hardware. For applications of this kind, the

main design problems are related to an adequate resolution of

memory and communication bottlenecks and to decreasing the

memory and communication hardware complexity, which has

to be achieved through an adequate memory and communica-

tion structure design. Moreover, for applications of this kind,

the memory and communication structure design, and the mi-

cro-architecture design for computing units cannot be per-

formed independently, because they substantially influence

each other.

Finally, the existing methods and tools of custom instruc-

tion-set construction or extension are devoted to a single proc-

essor, usually a simple RISC processor with one issue slot,

 4

and not to several VLIW processors, each with several issue

slots.

In consequence, optimization of the perfor-

mance/resources trade-off required by a particular application

can only be achieved through a careful construction of an ade-

quate application-specific macro-/micro-architecture combina-

tion. The aim here is thus to find an adequate balance between

the number of parallel processors, the complexity of the inter-

processor communication, and the intra-processor parallelism

and complexity. To achieve this aim, based on the application

analysis and restructuring several promising macro-

architecture/micro-architecture combinations have to be auto-

matically constructed and evaluated in an iterative process,

and finally, the best of them has to be selected for an actual

realization.

IV. CONTRIBUTION AND RELATED WORKS

The main aim of the ASAM project is to considerably enhance
the design efficiency of the ASIP-based MPSoCs for highly
demanding applications, while substantially improving the
result quality. This aim is being realized through development
of a coherent system-level design-space exploration and syn-
thesis flow, and automatic analysis, synthesis and rapid proto-
typing environment implementing the flow that will provide
efficient exploration of the architecture and application map-
ping alternatives and tradeoffs. Based on the application, com-
puting platform and parametric requirement analysis, the
ASAM flow will efficiently partition a given complex applica-
tion and select the most appropriate ASIP types for different
application parts, creating this way the MPSoC macro-
architecture; subsequently, it will reuse, instantiate, and extend
the ASIPs with new application-specific hardware, developing
this way the ASIP micro-architecture. Moreover, in corre-
spondence with the macro- and micro-architecture design, it
will restructure the application’s software and implement the
software on the so constructed application-specific multi-
processor platform. Finally, it will analyze and validate the
design through a rapid prototyping.

System design is actually the definition of the required

system quality, in the sense of providing a satisfactory answer

to the questions: “What new (or modified) quality is re-

quired?” and “How can it be achieved?”. Therefore the re-

search of the ASAM project builds on the methodology of

quality-driven model-based system design proposed in [1].
Moreover, the ASAM project builds on the platform-based
design of heterogeneous multi-processor embedded systems
[1], [2], ASIP design methods [3–9], hardware compilation
techniques [2], and software analysis, re-structuring and compi-
lation techniques [2], [10].

With respect to the MPSoC macro-architecture synthesis,

the project exploits the quality-driven model-based system-

level design exploration and architecture synthesis approach

[2], [11], and modeling, emulation, estimation and design ex-

ploration concepts [2], [11–13], earlier developed by some of

the project partners. The new macro-architecture DSE meth-

odology and supporting tools will enable an effective and effi-

cient reuse of a generic architecture platform, modeling of

platform in the form of an abstract architecture template, ge-

neric architecture template instantiation, abstract requirement

modeling, and application process scheduling and mapping on

the generic architecture template instance when observing the

constraints objectives and tradeoffs of the requirement model.

 The ASIP micro-architecture exploration and synthesis

will perform the actual ASIP construction for a given applica-

tion part, when re-using the existing application-class specific

generic customizable ASIP IP cores. It is perhaps the most

difficult task in the design of a system based on customizable

ASIPs. It has to reveal the parallel computation and data struc-

tures of a given application part that can be execut-

ed/processed concurrently on separated hardware clusters and

local register files, and construct the corresponding instruction

set hardware clusters, register files, memories, and other pro-

cessor parts, when adequately accounting for hardware reuse

and satisfying the application’s constraints, design objectives

and trade-offs. The existing commercial and academic devel-

opments in this field do not provide adequate support for this

critical part of the designers’ work (see e.g. [2]). Therefore,

new methods and prototype tools are being developed in the

scope of the project to much better reflect the actual problems

to be solved and better address their required solutions.

As explained in the previous section, there are very strong

interrelations between the macro- and micro-architecture syn-

thesis. Therefore, ASAM architecture synthesis method con-

siders the macro-architecture and micro-architecture synthesis

as one coherent complex system architecture synthesis task,

and not two separate tasks, as in the state-of-the-art methods.

There are common aims and a strong consistent collaboration

between the two sub-tasks. The macro-architecture synthesis

proposes a certain number of customizable ASIPs of several

types with a part of the application assigned to each of the

proposed ASIPs. The micro-architecture synthesis customizes

each of the ASIPs, together with its local memories, commu-

nication and other blocks, and correspondingly restructures its

software to execute the assigned application part as effective

and efficient as possible. Subsequently, the restructured appli-

cation part software is compiled, and the RTL-level HDL de-

scriptions of the customized ASIPs are automatically generat-

ed and synthesized to an actual hardware design. From several

stages of its application restructuring and ASIP design, includ-

ing the actual HW/SW implementation, the micro-architecture

synthesis provides feedback to the macro-architecture synthe-

sis on the physical characteristics of each particular sub-

system implemented with each ASIP core. This way the mi-

cro-/macro-architecture trade-off exploitation is enabled, and

after several iterations an optimized MPSoC architecture is

constructed.
 A complete MPSoC architecture involves of course the ade-
quately selected and instantiated ASIPs, as well as, adequate
global memory and communication structures. As explained in
the previous section an effective and efficient design of the
memory and communication structures is especially important
for many modern applications that involve massive parallelism
and algorithms with complex interrelationships between the
data and computing operations. While current research in this
area is mainly focused on the separate design of memory and
interconnection systems, ASAM project considers the mutual
relationships between interconnections, memories and proces-
sors. The memory and communication structures will be opti-
mized in an iterative refinement process, when accounting for
the application-specific memory-processor communication and

 5

the technology related memory and communication features,
such as power dissipation or area. Regarding the global
memory and communication structures the project builds on
recent results of some of the project partners [14–16].
 From the above it should be clear that the ASAM design

flow and its tools will implement an actual coherent HW/SW

co-design process through performing a quality-driven simul-

taneous co-tuning of the application software and processing

platform architecture to produce HW/SW systems highly op-

timized for a specific application. They will also implement

the macro-architecture and micro-architecture synthesis as one

coherent complex task, and perform the application-specific

synthesis of processor, memory and communication architec-

tures in a strict collaboration to ensure their compatibility and

effectively exploit the trade-offs among the different design

aspects. In consequence, ASAM design methods and tools

have to deal with decisions regarding a huge number of archi-

tectural aspects and values of customization parameters.

 To effectively and efficiently cope with such a massive

combination of design choices, ASAM exploits the abstrac-

tion, separation of concerns and quality-driven design decision

making principles through introducing several abstraction lev-

els in the design flow, decomposing the complex design prob-

lem into a hierarchical network of simpler sub-problems (is-

sues), ordering the consideration of the sub-problems, and

using various abstract and partial models when solving partic-

ular sub-problems [1]. The methods and tools used for each

level/issue deal with a sub-set of correlated design concerns,

and collaborate with each other in a well-defined coherent way

to together deliver a high-quality application-specific HW/SW

system design.

 To our knowledge, the ASIP-based MPSoC design problem

as formulated above is not yet explored in any of the previous-

ly performed and published works. The related research in the

MPSoC, ASIP, application analysis and restructuring, and

other areas considers only some of the sub-problems of the

adaptable ASIP-based MPSoC design in isolation. In result,

the partial problems considered by related research and their

proposed solutions are much simpler, and the proposed partial

solutions are usually not directly useful in the much more

complex context of ASAM.

 As stated in [17], ASIP auto-customization design methods

can be sub-divided into configuration-based and specification-

based. The configuration-based methods use well defined pro-

cessors optimized for an application field. Only a few parame-

ters are left to enable customization of the processor to re-

quirements of a specific application. This simplifies the DSE,

but reduces the possibilities of tuning. The configuration-

based approach is exploited by Tensilica Extensa Configurable

Core [8], ARC Configurable Cores [7], etc. The specification-

based methods provide the possibility to entirely describe a

processor based on an abstract model that only defines the

general design rules, when using an Architecture Description

Languages (ADLs) that allows describing the relevant (appli-

cation-specific) aspects of the ASIP architecture at several

abstraction levels. Specification-based methods and corre-

sponding ADLs include EXPRESSION [6] and its

EXPRESSION ADL [18], CoWare Processor Designer [5]

using LISA ADL [19], Target Compiler Technology [4] using

nML ADL [20] and Intel/Silicon Hive [3] using TIM language

for the ASIP architecture description and HSD language for

the MPSoC system-level architecture description (e.g. global

communication, processors synchronization, etc.). Most of

these methods and related tools target the design of systems

involving only a single ASIP.

Although the existing ASIP customization frameworks in-

volve a rich set of tools for application analysis, application

re-targetable compilation, as well as, single ASIP architecture

configuration, and automatic HDL generation, they usually

lack any automated architecture design-space exploration and

decision support, even for a single ASIP. That is why such an

effective and efficient highly automated DSE and decision

support is targeted by the ASAM project, additionally not lim-

ited to a single ASIP, but for the multi-ASIP systems.

 Other related works focus on the application code trans-

formations [21] to improve the application software mapping

onto a fixed architecture optimized to a broader application

area, e.g. DSP or GPU. Their results are not directly applica-

ble to the combined software and hardware structuring of the

adaptable ASIP-based systems. Yet other works target the

processor Instruction Set Extension (ISE) [22] and related

hardware extension. Some of them try to explore and exploit

the effect of loop transformations [23], e.g. unrolling, on the

ISE generation. They are however devoted to a single proces-

sor, usually a simple RISC processor with one issue slot and

not to a complex VLIW processor with several different issue

slots. Moreover, most of them are very simplistic. The con-

struction or extension is based on some proxy attributes and

optimization objectives, on a kind of simplified application

analysis, and performed without actually accounting for the

related data-path and control-path implementation. For in-

stance, it is usually performed without accounting for the ef-

fects and trade-offs of hardware sharing by various instruc-

tions. In result, the proxy formulations of the custom instruc-

tion set construction problems and their suggested solutions do

not reflect well the actual problems to be solved and their re-

quired solutions.

Many published research results [1], [11], [24] and system

design frameworks, e.g. Metropolis [25], Daedalus etc., target

the heterogeneous MPSoC design, but none of them addresses

the adaptable ASIP-based MPSoCs design being the target of

ASAM, with all its complexity and difficult to solve issues as

described in this paper. Nevertheless, some of the valuable

ideas and general methodologies developed in this research

can and will be reused for ASAM purposes. In particular,

ASAM project builds on the methodology of quality-driven

model-based system design proposed by Jóźwiak [1].

 Most importantly however, to our knowledge, none of the

published methods, tools or frameworks implements an actual

coherent HW/SW co-design process through a combined sim-

ultaneous structuring of the application software and pro-

cessing platform architecture. Also, most of them focus on the

processing unit design and application mapping, and underes-

timate the importance of the memory and communication ar-

chitecture design for the demanding modern application im-

plementation. Although [17] proposes to use profiling tech-

niques to customize memory hierarchy and infer Instruction

Set Architecture design (i.e. instruction opcodes, instruction

encoding, memory/register addressing modes and data types),

in ASAM on the top of this we explore the effect of loop

 6

transformations on the Data Transfer and Storage Mechanism

[21] in order to benefit from previous advances in design au-

tomation for ASICs. To our knowledge, no former research

addressed the problem of the combined concurrent processor,

memory and communication architecture exploration and syn-

thesis.

 Further extensive discussion of related research can be

found in the overview papers [2] and [24].

V. DESIGN FLOW

A simplified view of the ASAM design flow is presented in

Figure 1. The flow involves four main stages corresponding

to main design issues and abstraction layers:

- system DSE (macro-architecture),

- ASIP DSE (micro-architecture),

- GC&M DSE, and

- HW/SW synthesis and rapid prototyping.

Each of these stages communicates and collaborates with the

remaining stages directly or through the system DSE. All to-

gether they realize the quality-driven evolutionary system en-

gineering process briefly described above, stepwise transform-

ing the initial high-level application specification (given by

application C code, parametric requirements and representa-

tive input stimuli) and generic platform specification (repre-

senting structural constraints and given by templates of gener-

ic ASIP-based MPSoC and its modules) into a HW/SW ASIP-

based MPSoC prototype or the final ASIP-based MPSoC de-

sign.

 The ASAM architecture design flow implements the con-

cept of service-oriented EDA system. Each of its main stages

and their parts can be requested for and provides some ser-

vices for some other stages or parts. The whole collaboration

among the stages and their parts is organized as requests and

answers to requests for specific services. This enables clear

organization of the system, and specifically, of the collabora-

tion among its stages and parts, as well as, results in a high

flexibility in relation to the EDA system extension or modifi-

cation through adding new or modifying services.

 The stages of the ASAM design flow also communicate and

collaborate with the basic SH design flow which provides sev-

eral services to them, such as IP library, HW and SW genera-

tion and compilation, HW and HW/SW simulation etc. In par-

ticular, each stage of the flow can get from the IP library an

existing IP, use it (e.g. for simulation or emulation) or custom-

ize it according to requirements and insert the customized IP

into the IP library. The flow execution is originally determined

by its primary inputs (i.e. application behavior specification,

parametric and structural requirements, and representative

input stimuli) and the user control inputs (not represented in

Figure 2 ASAM design flow.

 7

Fig. 2). However with the progress of execution it is more and

more influenced by the results of previous explorations. This

is necessary a. o. to ensure the exploration effectiveness and

efficiency, and in particular, to avoid lengthy or endless reiter-

ations.

 System DSE takes as its inputs: an application C-code, par-

ametric and structural requirements, and representative test-

benches and stimuli for the application behavior, simulation or

emulation in the rapid prototyping environment. It is responsi-

ble for the total design of the multi-ASIP MPSoC. It directly

performs the system-level DSE for the multi-ASIP MPSoC

and defines its structure composed of several ASIPs (which

include their local memories and communication), global

memories and global communication among the ASIPs. In

performing this task, it asks for specific services from the

ASIP DSE and the GC&M DSE. These services can range

from coarse parameter estimation to an optimized design of

subsystem. It also asks for services from the rapid prototyping

(light color arrows in Fig. 2). The request can be to perform

simulation or emulation of a complete proposed HW/SW

ASIP-based MPSoC or of its single parts. When asking for a

service, the system DSE specifies the kind of service request-

ed (not represented in Fig. 2), as well as, the behavioral, para-

metric and structural requirements, and input stimuli related to

a given design part and the service requested. Through directly

performing the system-level DSE and using the analysis and

synthesis services of ASIP DSE, GC&M DSE, rapid prototyp-

ing and basic SH design flow, the system DSE produces as its

output a final optimized ASIP-based MPSoC design.

 ASIP DSE takes as its inputs the kind of service requested

by the System DSE, as well as, the behavioral, parametric and

structural requirements, and input stimuli related to a given

design part defined by one ASIP and application part mapped

on it by the System DSE. It is responsible for the total design

of a single HW/SW ASIP-based part of the MPSoC. It directly

performs the ASIP DSE which consists of the actual coherent

HW/SW co-design through simultaneous co-tuning of the ap-

plication software part assigned to a given ASIP and ASIP

architecture. In performing this task, it asks for specific ser-

vices from the HW and SW synthesis and rapid prototyping,

as well as, from the SH design flow. In satisfying a service

request it provides its outputs (ranging from a coarse parame-

ter estimation to a design of a complete optimized ASIP-based

HW/SW sub-system) to the requesting System DSE.

GC&M (GC&M) DSE accepts analogous inputs, performs

analogous tasks and collaborates analogously with its sur-

roundings as the ASIP DSE, but does it in relation to the glob-

al memories and global communication sub-system instead of

ASIPs.

HW and SW synthesis and rapid prototyping accept as

their input service requests from the System DSE, ASIP DSE

and GC&M DSE, as well as, the architecture description lan-

guage (ADL)-based specification of the designed MPSoCs or

their parts, and corresponding application C-code. From the

ADL descriptions the HW synthesis automatically generates

corresponding refined hardware description language (HDL)

based hardware specification and SW synthesis generates the

corresponding software structures and compiles the C-code. In

this way a complete HW/SW (sub-) system design is pro-

duced. Rapid prototyping accepts as its inputs the HW, SW

or HW/SW designs and performs their simulation or emula-

tion. All parts use specific services of the SH design flow. In

answer to the service requests, the HW and SW synthesis and

rapid prototyping provides the results of the HW or SW syn-

thesis or prototyping results to the requesting flow stage.

 In the next sections each of the main flow stages will be

discussed more precisely.

VI. MAIN STAGES OF THE ASAM FLOW

A. System Level DSE

The System Level (SL) DSE is in charge of developing the

MPSoC macro-architecture, deciding the number and kind of

ASIPs, the global memories, their interconnections and map-

ping of different application tasks into ASIPs and of their data

into memories. The original application code is modeled for

the SL DSE, as a task graph (TG): the code is partitioned into

tasks (T) for extracting the task level and inter-task (pipe-

line) parallelism. The partitioned application is generated by

commercial tools [26]. The communication between the tasks

is modeled through Message Tasks (MT), which represent the

amount of data to be exchanged. The SL DSE performs the

mapping and scheduling of application and data access

through the mapping and scheduling of the Tasks and Message

Tasks on ASIPs and interconnection resources, respectively.

Moreover, the SL DSE has the role of collecting the partial

results from the different DSE entities (ASIP DSE and GC&M

DSE) and combining them together to verify the performances

of the entire system.

Figure 3 System Level DSE

An initial instance of the computing platform model is defined

according to the total number of tasks in the application TG,

which defines the upper bound for the number of ASIPs. The

initial platform model assumes the use of a bus for the global

communication (this limitation is later relaxed during the

GC&M DSE). The SL DSE can be divided into two main

phases: Probabilistic and Deterministic DSE (cf.

Figure 3).

Partitioned Application

(Task Graph)
Designer’s

constraints

Probabilistic
DSE

Deterministic
DSE

phase 1

phase 2

phase 3

Communication
and

Memory DSE

Final ASIP-based

MPSoC design

 8

Probabilistic DSE: This is the most challenging phase of the

SL DSE; it has to solve a kind of chicken-and-egg problem in

which an adequate application mapping and scheduling need

to be established without any initial knowledge of the macro

and micro-architecture of the multi-ASIP platform. In fact, the

ASIP-level DSE needs information about mapping and stimu-

li/parameters for the definition of the micro-architecture of

each single ASIP. At the same time, the System-level DSE

needs information on single ASIP micro-architectures to get a

reasonably precise performance estimation of an application

mapping/scheduling solution. The different micro-

architectures that can be identified during the micro-level

ASIP design are called ASIP configurations. The number of

possible ASIP configurations is huge and challenging to iden-

tify. Therefore, it is not feasible to perform a macro-level DSE

through taking into account all the possible ASIP configura-

tions. This issue is solved through the implementation of a

Probabilistic Estimation Method. The performances that can

be obtained by an application part (e.g. a single task initially)

executing on different configurations of the same ASIP are

modeled through a stochastic variable and its probability dis-

tribution. Depending on the performances (e.g., execution

time, energy consumption) that have to be evaluated during

the DSE, corresponding stochastic variables have to be de-

fined. For example, we use the Worst Case Execution Time

(WCET) as one of the stochastic variables to estimate the per-

formance. The cumulative distribution function (CDF) of the

WCET is defined using two points ([lWCET,uWCET]) that

represent the lower (lWCET) and upper (uWCET) boundaries

of the performances for the execution of a given application

part on all the possible configurations of an ASIP. These val-

ues are calculated by analyzing each task (application part):

the WCET is computed for a hypothetical sequential execution

on a simple sequential ASIP instance (uWCET, the slowest

execution) and for a parallel execution on a parallel ASIP in-

stance with the non-constrained resources (lWCET, the fastest

execution possible). Such values are provided by the first

phase of the ASIP level DSE. A CDF is drawn between such

two values to model the distribution of a given performance

parameter for all possible configurations (whose number and

individual performances are yet unknown). A CDF is built for

each application part mapped to an ASIP and for each of the

performance parameters that have to be evaluated. A CDF is

also built for each of the Message Tasks and their mapping on

the interconnection network. Different mapping solutions can

then be proposed and analyzed: the CDFs of the different tasks

and message tasks are then combined together according to the

mapping and execution order of the tasks, and a CDF of the

total task graph is computed (for each performance parame-

ter), taking into account both the task level and the pipeline

parallelism. Each mapping solution is then evaluated accord-

ing to the design constraints and objectives (e.g. execution

deadline in case of the WCET). The mapping solutions with

the highest probability of meeting the constraints are selected

for further consideration.

The mapping results obtained in such a way are then passed to

the ASIP level DSE and to the GC&M DSE that can respec-

tively start the actual synthesis of each single ASIP, according

to the mapped tasks. The (partial) micro-architecture synthesis

results are then returned to the SL DSE that can repeat its DSE

on the basis of this more precise information received. This

phase is repeated until the task performances are modeled as

stochastic variables, that is until the design of all ASIPs mem-

ories and their communications have been sufficiently decid-

ed, i.e. a bounded subset of the most promising specific con-

figurations has been identified.

Deterministic DSE is in charge of performing a design explo-

ration similar to the one of the previous phase, but with much

more precise information on the computing platform and its

parts. This phase works with concrete ASIP, memory and

communication configurations and verifies the actual perfor-

mances of the global ASIP-based system. The interaction be-

tween the different stages and phases of the design flow is

repeated until the entire design constraints are satisfied or it

becomes clear that it is impossible to satisfy them given the

available resources.

B. ASIP level DSE

The micro-level ASIP DSE, presented in Figure 4, aims at

exploring and selecting optimized parallel software structure

and the corresponding ASIP architecture for an application

part assigned to a single ASIP by the system-level DSE. Due

to the high number of application restructuring and ASIP cus-

tomization parameters, a synthesis method with a reduced

exploration complexity is necessary. To perform an early

pruning of the design space, the ASIP DSE process is subdi-

vided into three main phases:

Phase1, which performs application analysis and coarse ASIP

characterization,

Phase2, which performs application parallelization and map-

ping, as well as, design of top-level ASIP architecture involv-

ing parallel processing, communication and storage, and

Phase3, which performs instruction set synthesis and refined

application restructuring.

The services of these three phases are provided to the SL DSE

flow or directly to the end-user. They can be executed sepa-

rately or in combination, depending on the level of analysis

and synthesis details required from the ASIP DSE. A given

phase can also ask the successive phases for services.

Phase1: application analysis and coarse ASIP characteri-

zation provides information on the upper bound and lower

bound of the worst-case execution time (WCET) of an appli-

cation part. The WCET values are used by the SL DSE for a

rapid initial evaluation of the proposed application partitioning

and by the following phases of the ASIP level DSE to infer the

design requirements of the application sub-parts. The applica-

tion analysis also detects the type of processing (vector/scalar)

and the hot-spots (e.g. bottlenecks or frequently executed sub-

parts) of the analyzed application part. This information can

be used to decide the kind and amount of effort devoted to the

optimization of the ASIP architecture for individual sub-parts

of the application.

 9

Phase2: application parallelization and mapping and top –

level ASIP architecture synthesis aims at analyzing the ap-

plication part with respect to the medium-level parallelism

concerns (e.g. data dependencies, available loop-level and data

parallelism, etc) and at proposing optimized parallel software

structures and corresponding coarse hardware architectures for

the ASIP processing issue slots, internal memories and com-

munication. For instance, an application transformation such

as loop fusion, which reduces the loop control overhead and

the application run-time, corresponds to the instantiation in

hardware of several parallel issue slots with their own associ-

ated register files storing locally accessed data. Several other

data-oriented application transformations, mainly loop trans-

formations as tiling, vectorization, unrolling etc., are explored

in this phase. In correspondence to them, the parallelism and

data related hardware design decisions are taken, in relation to

the number, kind (vector/scalar) and size of ASIP issue slots,

the number, kind and size of internal memories and register

files, the mapping of processing to issue slots and of data to

memories, as well as, the ASIP local communication structure.

This is usually the most decisive step in the whole ASIP archi-

tecture design process, as the parallelism exploration, schedul-

ing and mapping decisions influence the ASIP main parame-

ters to a high degree. The result of this phase is a one or sev-

eral promising coarse design(s) of the ASIP with a refined

communication and storage micro-architecture and a general

instruction set partitioned over the ASIP parallel issue slots.

Phase 2 is further explained in [27–29].

Phase3: precise issue slot synthesis and application re-

structuring mainly involves the identification and selection of

an application specific instruction set for each of the ASIP

issue slots, and the related data-path and controller optimiza-

tion. The identification of instruction set candidates corre-

sponds to a partitioning of the DFG of an application basic

block in several sub-graphs that cover the whole original DFG

and match some instructions in an instruction library. The se-

lection of the best candidates is performed with respect to de-

sign optimization criteria such as area occupancy, execution

time or throughput, and energy consumption. If after the ini-

tial selection and related data path synthesis the selected in-

struction set does not meet the design requirements, an in-

struction set extension can be proposed. In the extension pro-

cess, sub-graphs corresponding to some hotspots of the origi-

nal DFG are identified, realized in hardware and included in

the instruction library, before performing a new phase of the

instruction set identification and selection using the extended

instruction library.

After finishing the synthesis of a single ASIP based sub-

system, the generation of the TIM and/or HDL code describ-

ing the ASIP and of the associated optimized C-code for the

embedded software is performed.

C. Global memory and communication DSE

The main aim of this step is the exploration and optimization

of the global interconnection and memory structures for a mul-

ti-ASIP system. This is performed through an iterative con-

struction and refinement of the interconnect and memory

structures driven by the constraints and objectives decided by

the macro-architectural level. In particular, the mapping of the

application tasks at macro-architecture level is used to produce

a communication graph. Using this graph as input, the micro-

architectural memory and communication optimization itera-

tively proposes and evaluates candidate interconnect and

memory architectural configurations, characterizes them using

simulation-based methods and, when needed, accesses the

lower-level prototyping infrastructure to endorse the simula-

tion-based characterization. This way, a Pareto front of con-

figurations is selected and serves as a feedback to the upper

level, as depicted in Figure 5. The selected design points are

characterized in terms of timing, area and energy consump-

tion, when exploiting the support for technology awareness

described in Section D. In this way, the macro-architectural

layer gets information for a multi-objective architectural opti-

mization.

GM&C configurations are compositions of different function-

al blocks, such as:

• FIFO-based point-to-point connections

• Single-layer shared bus

• Multi-layer bus subsystems

• NoC modules

• Shared Parallel memory modules

In this way architectural configurations compliant with a wide

variety of system-level designs (number of processors, com-

munication graphs, number and size of global memories) can

be composed.

D. Rapid prototyping platform

The main role of the prototyping infrastructure of ASAM is to

provide an accurate executable FPGA-based model, capable of

Figure 5 FPGA prototyping

HDL generation

Macro-

Architectural
specification

NoC Micro-

Architectural
specification

Module level technology-

aware characterization

Area/Energy models

A
S

IP

M
o
d
u
le

-le
v
e
l

H
D

L

T
o
p
l
le

v
e
l
H

D
L

FPGA back-end implementation
(commercial tools)

N
o
C

M
o
d
u
le

-
le

v
e
l

H
D

L

O
th

e
r
IP

s

M
o
d
u
le

-le
v
e
l

H
D

L

Applicationexecution
On the FPGA platform

Cycle counters

Activity counters

IP core HDL

library

tech

library

F
o
r
c
u
s
to

m
 e

x
te

n
s
io

n
s
e
le

c
tio

n

M
e
tric

s
fo

r
m

ic
ro

-
a
n
d
 m

a
c
ro

-
a
rc

h
ite

c
tu

ra
lre

fin
e
m

e
n
t

Extension builder
Application

binaries

System-level

builder

NoC HDL

builder

ASIP HDL

builder

ASIP Micro-

Architectural
specification(s)

Custom

extension
specification(s)

Figure 4 ASIP level DSE

 10

reducing the gap between the estimation of the performances

considered during the early steps of the design flow and those

really measurable after the implementation. The developed

platform is composed of several ASAM sub-tools that interact

with each other and of several commercial tools. It takes dif-

ferent inputs being micro- and macro-architectural specifica-

tions that drive the HDL generation step. The macro-

architectural description is provided as input to describe the

top-level view of the system, by means of a proprietary for-

mat. The micro-architectural description is related to both the

topology of interconnect and memories, and the processor

architectural configuration (or several configurations, in case

of multi-core heterogeneous systems). The ASIP architecture

is described using a proprietary language TIM. The intercon-

nect topology description is provided using an in-house devel-

oped format that can be translated by a dedicated utility in a

completely configured HDL description. The interconnect

topology can be instantiated as a black-box in the HSD sys-

tem-level description, so that its HDL code can be comforta-

bly linked to the system for synthesis.

The HDL generation step envisions the code instrumentation

for performances evaluation. The industrial tool-chain for

ASIP design has been customized, in order to allow for auto-

matic instantiation of hardware counters inside the proces-

sor/system RTL code, for computing the event counts, i.e.

counting the number of accesses to each functional block in

the ASIP processor, memory or interconnect structure, and

cycle counts, e.g. a number of clock cycles needed to execute

a given application on a given architecture. Analytic models

have been developed within the project (through performing

training sets of experiments for a given technology) in order to

translate the counts obtained from the FPGA prototyping

hardware implementation into the technology development

energy and execution time figures. Adequate custom Tcl

scripts have been developed to enable, without further user

intervention or adaptation, the correct hardware structures to

be created and memory-mapped to be accessed during soft-

ware execution.

Furthermore a retargeted compilation tool-chain with com-

plete awareness of the ASIP processors/system specifications,

and thus able to correctly exploit the hardware resources, has

been deployed. The RTL description of a system, optimized

for the FPGA implementation, can be synthesized and imple-

mented on FPGA exploiting commercial tools. At this point,

the target application is compiled by means of the ASIP soft-

ware compilation tool-chain, retargeted according to the ASIP

processors/system specifications, and executed on the FPGA

platform, to collect the relevant metrics at the end of the exe-

cution. For the sake of manageability and data exchange be-

tween the different phases of the flow, a co-simulation ap-

proach exploiting the SysGen toolbox by Xilinx and Matlab

has been adopted. This cooperation allows executing the soft-

ware on the FPGA board, and then to collect the evaluation

data from a host workstation, accessing dedicated shared-

memory structures that are instantiated in the MATLAB

workspace. The metrics collected from the FPGA, can be

translated into technology relevant figures, enabling a pre-

estimations of the quality-of-results achievable with a prospec-

tive ASIC implementation. In the prototyping tool-flow this

objective is achieved with the usage of accurate area/energy

models. The models consist in a set of analytic expressions,

able to calculate the area occupation and the energy consump-

tion of each functional block inside a processor as a function

of the architectural parameters and of the activity rate. The

expressions have been defined, within the project, studying the

dependency of area and energy on the mentioned variables, for

every ASIP functional block. The models have to be calibrated

for each target technology considered for implementation. The

expressions have to be characterized over a training set of pro-

cessor configurations. The ASIPs in the training set must be

implemented at layout-level and the area occupation and ener-

gy consumption must be analyzed to build a table of coeffi-

cients to be filled in the expressions. The coefficients typically

represent area and energy values “normalized” to the design

parameters and to the activity rates. Obviously, the area mod-

el is activity-independent, while the energy dissipation de-

pends on the functional block activity, i.e. on the number cy-

cles during which the considered functional block was enabled

or accessed (in case of memory and register files). Once the

models have been preliminary calibrated for a given technolo-

gy library, they can be used to back-annotate values obtained

from the previously mentioned hardware counters, adequately

connected to the relevant signals in the FPGA prototype. In

this way, it is possible to perform a detailed technology-aware

evaluation of every ASIP configuration under prototyping.

Moreover, the prototyping tool-flow has been enriched with a

novel support for the multi-design point characterization, to

enable the extensive exploitation of FPGAs within the micro-

and macro-architectural DSE. The general idea is to overcome

the important time limitation in FPGA-based design due to the

time-consuming synthesis phase. With this aim an over-

dimensioned architectural description is defined including a

number of different configurations to be explored, and imple-

mented on the FPGA. Consequently, through the usage of

custom-developed tools, the tool-flow is capable of executing

application binaries compiled for all the candidate architectur-

al configurations on the same over-dimensioned FPGA proto-

type, leading to significant time savings in the architectural

configurations exploration and selection. A complete and de-

tailed description of these methodologies can be found in [30].

VII. CONCLUSION

In the former sections an overview has been presented of the

research results of the European project. Due to a limited

length of the paper, we had to focus on only the main unsolved

problems and only the main solution concepts. Many more

research results have been produced by the ASAM consortium

than these once briefly discussed in this paper. They include

results related to such important problems as energy consump-

tion management, application analysis and restructuring or

actual automatic coherent SW and HW co-development. More

information on the research results from ASAM can be found

in several already published papers with links to them at the

ASAM home-page (http://www.asam-project.org/), a few

more specific papers in this conference [27–29], [31], [32],

and several papers under preparation that will be published

soon.

http://www.asam-project.org/

 11

VIII. ACKNOWLEDGEMENT

The work on this paper has been performed in the scope of the

ASAM project of the European ARTEMIS Research Program

and has been partly supported by the ARTEMIS Joint Under-

taking under grant no. 100265.

REFERENCES
[1] L. Jozwiak, “Quality-driven design in the system-on-a-chip era:

Why and how?,” Journal of Systems Architecture, vol. 47, no. 3-4,
pp. 201-224, Apr. 2001.

[2] L. Jóźwiak, N. Nedjah, and M. Figueroa, “Modern development

methods and tools for embedded reconfigurable systems: A survey,”
Integration, the VLSI Journal, vol. 43, no. 1, pp. 1-33, Jan. 2010.

[3] SiliconHive and Intel, “Silicon Hive.” [Online]. Available:

http://www.siliconhive.com.
[4] Target, “Target Compiler Technology.” [Online]. Available:

http://www.retarget.com/index.php.

[5] CoWare and (Synopsys), “CoWare Processor Design.” [Online].
Available:

http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pag

es/default.aspx.
[6] University of California Irvine, “EXPRESSION.” [Online]. Availa-

ble: http://www.ics.uci.edu/~express/.

[7] ARC-Inc. and (Synopsys), “ARC Configurable Cores.” [Online].
Available:

http://www.synopsys.com/IP/ProcessorIP/Pages/default.aspx.

[8] Tensilica, “Tensilica - Xtensa Customizable Processors.” [Online].
Available: http://www.tensilica.com/products/xtensa-

customizable.htm.

[9] O. Schliebusch, H. Meyr, and R. Leupers, Optimized ASIP Synthesis
from Architecture Description Language Models. Springer, 2010, p.

207.

[10] R. Leupers and P. Marwedel, Retargetable Compiler Technology for
Embedded Systems - Tools and Applications. Springer, 2001.

[11] L. Jozwiak and S. Ong, “Quality-driven model-based architecture

synthesis for real-time embedded SoCs,” Journal of Systems Archi-
tecture, vol. 54, no. 3-4, pp. 349-368, Mar. 2008.

[12] S. Mahadevan, F. Angiolini, J. Sparso, L. Benini, and J. Madsen, “A

Reactive and Cycle-True IP Emulator for MPSoC Exploration,”
IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 27, no. 1, pp. 109-122, Jan. 2008.

[13] A. S. Tranberg-Hansen and J. Madsen, “A service based component
model for composing and exploring MPSoC platforms,” in 2008

First International Symposium on Applied Sciences on Biomedical

and Communication Technologies, 2008, pp. 1-5.
[14] S. Murali et al., “Synthesis of Predictable Networks-on-Chip-Based

Interconnect Architectures for Chip Multiprocessors,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 15, no.
8, pp. 869-880, Aug. 2007.

[15] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, and L. Benini, “A
Layout-Aware Analysis of Networks-on-Chip and Traditional Inter-

connects for MPSoCs,” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, vol. 26, no. 3, pp. 421-434,
Mar. 2007.

[16] L. Jóźwiak and Y. Jan, “Communication and Memory Architecture

Design of Application-specific High-end Multi-processors,” VLSI

Design.

[17] K. Karuri and R. Leupers, Application Analysis Tools for ASIP

Design: Application Profiling and Instruction-set Customization.
Springer, 2011, p. 232.

[18] a. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau,

“EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability,” in date, 1999, p. 485.

[19] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration

for Embedded Processors with LISA. Springer, 2002, p. 244.
[20] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set

processors using nML,” in Proceedings the European Design and

Test Conference. ED&TC 1995, pp. 503-507.
[21] F. Catthoor, K. Danckaert, S. Wuytack, and N. D. Dutt, “Code

transformations for data transfer and storage exploration prepro-

cessing in multimedia processors,” IEEE Design & Test of Comput-
ers, vol. 18, no. 3, pp. 70-82, 2001.

[22] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot,

“Constraint-Driven Identification of Application Specific Instruc-
tions in the DURASE System,” pp. 194-203, 2009.

[23] A. C. Murray, R. V. Bennett, B. Franke, and N. Topham, “Code

transformation and instruction set extension,” ACM Transactions on
Embedded Computing Systems, vol. 8, no. 4, pp. 1-31, Jul. 2009.

[24] D. Densmore and R. Passerone, “A Platform-Based Taxonomy for

ESL Design,” IEEE Design & Test of Computers, vol. 23, no. 5, pp.
359-374, May 2006.

[25] UCBerkeley, “Metropolis: Design Environment for Heterogeneous

Systems.” [Online]. Available:
http://embedded.eecs.berkeley.edu/metropolis/platform.html.

[26] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E.

Deprettere, “System Design Using Kahn Process Networks: The
Compaan/Laura Approach,” p. 10340, Feb. 2004.

[27] R. Corvino, A. Gamatié, M. Geilen, and L. Jozwiak, “Design space

exploration in application-specific hardware synthesis for multiple
communicating nested loops.,” in SAMOS 2012, 2012.

[28] R. Corvino, E. Diken, A. Gamatié, and L. Jozwiak, “Transformation

based exploration of data parallel architecture for customizable
hardware: A JPEG encoder case study.,” in DSD 2012, 2012.

[29] R. Corvino and A. Gamatié, “Abstract clocks for the DSE of data

intensive applications on MPSoCs,” in in ISPA 2012 - 4th IEEE In-
ternational Workshop on Multicore and Multithreaded Architec-

tures and Algorithms, 2012.

[30] P. Meloni, S. Pomata, G. Tuveri, M. Lindwer, and L. Raffo, “Ex-
ploiting Binary Translation for Fast ASIP Design Space Exploration

on FPGAs,” in Proceedings of the Int. Conference on Design, Au-
tomation, and Test in Europe (DATE’12 - in press), 2012.

[31] R. Jordans, R. Corvino, and L. Jozwiak, “Algorithm Parallelism

Estimation for Constraining Instruction-Set Synthesis for VLIW
Processors,” in DSD 2012, 2012.

[32] E. Diken, R. Jordans, R. Corvino, and L. Jozwiak, “Application

Analysis Driven ASIP-based System Synthesis for ECG,” in Em-
bedded World Conference, 2011.

