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 

Abstract — This paper focuses on mastering the automatic ar-

chitecture synthesis and application mapping for heterogeneous 

massively-parallel MPSoCs based on customizable application-

specific instruction-set processors (ASIPs). It presents an over-

view of the research being currently performed in the scope of 

the European project ASAM (Architecture Synthesis and Appli-

cation Mapping) of the ARTEMIS program.  The paper briefly 

presents the results of our analysis of the main problems to be 

solved and challenges to be faced in the design of such heteroge-

neous MPSoCs. It explains which system, design, and electronic 

design automation (EDA) concepts seem to be adequate to resolve 

the problems and address the challenges.  Finally, it introduces 

and briefly discusses the design-flow and its main stages pro-

posed by the ASAM project consortium to enable an effective and 

efficient solution of these problems. 

 
Index Terms— embedded systems, heterogeneous multi-

processor system-on-chip (MPSoC), customizable ASIPs, archi-

tecture synthesis, MPSoC and ASIP design automation; 

I. INTRODUCTION 

The recent spectacular progress in semiconductor technologies 

has enabled implementation of increasingly complex multi-

processor systems on single chips (MPSoCs), and has facili-

tated rapid progress in mobile and autonomous computing, as 

well as, wire-less and wired communication. New important 

opportunities have been created: the traditional applications 

can now be served much better, and numerous new sorts of 

systems became technologically feasible and economically 

justified. A big stimulus has been created towards develop-

ment of various kinds of embedded systems. Examples of the 

new systems include various measurement, monitoring, con-

trol, multi-media and communication systems that can be put 

on or embedded in mobile, remote, poorly accessible or dan-

gerous objects, installations, machines or devices, in home, 

office or hospital equipment, or even implanted in human or 

animal body. 

However, in parallel to creation of unusual new opportu-

nities, the spectacular advances in microelectronics and infor-

mation technology introduced unusual silicon and system 

 
 

complexity. This complexity results in a number of new diffi-

cult issues to be addressed such as: 

- ensuring high-quality and validation of the highly complex 

systems; 

- adequately addressing the MPSoC energy crisis, and in-

creased leakage power; 

- resolving the interconnect scalability problems and on-chip 

communication problems; 

- adequately accounting for the dominating influence of inter-

connects and communication on major physical system 

characteristics (area, speed, energy consumption); 

- substantially decreasing the high system development and 

production costs, and long development times. 

Due to the progress in semiconductor technologies and 

processor architectures, requirements of many applications, 

demanding sophisticated hardware solutions in the past, can be 

satisfied by software implementations executed on modern 

micro-, signal-, graphic- and other processors. There are how-

ever many new highly-demanding embedded applications in 

several fields (e.g. multimedia and entertainment, communica-

tions and networking, consumer electronics, medical and other 

instrumentation, monitoring and control systems, advanced 

machinery, automotive, military, etc.) for which the straight-

forward software solutions are not satisfactory. For these high-

ly-demanding applications increasingly complex and sophisti-

cated MPSoCs are required to perform real-time computations 

to extremely tight schedules, with high demands regarding 

energy, area, costs and development efficiency. Moreover, 

many of the MPSoCs are required to be highly flexible. The 

modern complex embedded applications typically include 

many various parts and numerous different algorithms involv-

ing various kinds of information processing. They are from 

their very nature heterogeneous. Consequently, to implement 

these complex and demanding heterogeneous applications 

effectively and efficiently, the heterogeneous application-

specific multi-processor system approach should be used. 

 This paper focuses on mastering the MPSoC architecture 

design for such highly-demanding embedded applications. It 

presents an overview of the research being currently per-

formed in the scope of the European project ASAM (Architec-

ture Synthesis and Application Mapping for heterogeneous 

MPSoCs based on adaptable ASIPs) of the ARTEMIS pro-

gram. The paper briefly presents the results of our analysis of 
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the main problems that have to be solved and challenges to be 

faced in the design of such heterogeneous MPSoCs. It ex-

plains which system, design, and electronic design automation 

(EDA) concepts seem to be adequate to resolve the problems 

and address the challenges. Finally, it introduces and briefly 

discusses the design-flow and its main stages proposed by the 

ASAM project consortium to enable effective and efficient 

solution of these problems. 

II. ASIP-BASED MPSOC TECHNOLOGY 

The architecture platform targeted in the ASAM project is a 

configurable and extensible for specific applications hetero-

geneous multi-ASIP platform. In particular, the project tar-

gets the MPSoC platforms of its industrial partner In-

tel/SiliconHiv (SH) involving generic customizable ASIPs that 

can be optimized for various application fields. Each ASIP is 

composed of an actual processor core (core) and core I/O 

(coreio) that together form a VLIW machine capable of exe-

cuting parallel software with a single thread of control (see 

Fig.1). An ASIP includes a VLIW datapath controlled by a 

sequencer that uses status and control registers and executes 

programs from the local program memory. The data path con-

tains functional units organized in several parallel scalar 

and/or vector issue slots connected via programmable input 

and output interconnections to several registers organized in 

register files. The functional units perform computations on 

intermediate data stored in the register files. The coreio pro-

vides the access to the local memory and I/O subsystem ena-

bling an easy integration of the ASIP in any larger system, 

which can access to the devices in coreio via master/slave in-

terfaces. The local memories collaboration with particular 

issue slots enables scalar access for the scalar slots and vector 

or block access for the vector slots. Both SIMD and MIMD 

processing can be realized. The ASIPs are configurable and 

extensible. The numbers, kinds and parameter settings of func-

tional units, issue slots, register files, memories, interfaces, 

etc. can be freely selected. Moreover, new functional units, 

issue slots, etc., specific for a particular application, can be 

developed and added. 

 The parameters to be explored and set in the system-level 

design of an ASIP-based MPSoC include: the number and 

types of ASIPs, the number, type and size of global memories, 

the scheduling and mapping of the application parts to the 

selected ASIPs and their data to the selected memories, and 

the system-level architecture and parameters of the global 

communication structure. The parameters to be explored and 

set to create an optimized ASIP architecture include: the num-

ber and type of issue slots and (scalar or vector) instructions 

inside the issue slots, the number and type of issue slot clus-

ters to optimize parallelism exploitation and communication 

between the issue slots, the number and size of register files, 

the type and data width, and local memories, the architecture 

and the parameters of the local communication structure, etc. 

Several such different ASIPs, each customized for a par-

ticular part of a complex application, can be interconnected 

with global memories and possible hardware accelerators and 

other digital or analog sub-systems using a configurable heter-

ogeneous interconnection network, and implemented on one 

chip. Several such powerful ASIPs with approximately 100 

issue slots in total, each for 64-way vector processing, can be 

placed on a single chip implemented in 22 nm CMOS tech-

nology. When operated at 400-600MHz, these ASIPs can de-

liver more than 1 Tops/s, with power consumption far below 

the upper limit of mobile devices. The ASIP-based customiza-

ble for specific applications heterogeneous MPSoC platform 

enables efficient application-specific exploitation of various 

 
Figure 1 Generic ASIP architecture of the targeted MPSoC platform. 
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kinds of parallelism: the multiple ASIPs serve the coarse-grain 

parallelism exploitation at the task level, while the ASIP’s 

parallel issue slots,  custom instructions and their hardware 

serve the fine-grained acceleration. 

The adaptable ASIP-based MPSoC technology addresses 

several fundamental development challenges of electronic 

systems for modern highly-demanding embedded applications: 

- it is able to deliver a high performance, high flexibility and 

low energy consumption at the same time; 

- it is relevant for a very broad range of application domains; 

- it is applicable to several implementation technologies, e.g.: 

SOC or ASIC, structured ASIC, and FPGA. 

It is especially suitable for complex applications involving 

different kinds of processing with various kinds of parallelism 

and being highly demanding regarding physical and economic 

characteristics. Provided an effective and efficient highly au-

tomated customization technology will become available 

(what is targeted by the ASAM project), it will become possi-

ble to build the adaptable ASIP-based MPSoCs at substantial-

ly lower costs and with shorter times to market than the hard-

wired ASICs or programmable MPSoCs based on custom pro-

cessors built from scratch. 

III. ISSUES AND CHALLENGES OF THE ASIP-BASED MPSOC 

DEVELOPMENT 

The systemic realizations of complex and highly demanding 
applications, for which the customizable multi-ASIP MPSoC 
technology is especially suitable, demand the performance and 
energy usage levels comparable to those of ASICs, while re-
maining small-size and cost-effective. Satisfaction of these 
stringent and often conflicting application demands requires 
construction of highly-optimized hardware architectures and 
corresponding software structures mapped on the architectures. 
This can be achieved through an efficient exploitation of dif-
ferent kinds of parallelism involved in these applications, im-
plementation of critical parts of their information processing in 
application-specific hardware, as well as, efficient trade-off 
exploitation among various design characteristics, and between 
solutions considered at different design levels and for different 
system parts. 
 Unfortunately, in the traditional embedded system devel-

opment approaches, the major development activities are usu-

ally largely disjoint and performed by different teams using 

different supporting tools. This leads to inefficiencies, errors, 

and costly reiterations in the design process. Moreover, the 

traditional algorithm and software development approaches 

require an existing and stable computation platform (HW plat-

form, compilers etc.), while for the modern embedded systems 

as MPSoCs based on adaptable ASIPs the hardware and soft-

ware architectures have to be application-specific, and must be 

developed largely in parallel. Unfortunately, the efficiency of 

the required parallel HW and SW development is much too 

low with the currently available development technology due 

to lack of effective automated methods of industrial strength 

for many MPSoC design problems, and weak interoperability 

of the HW/SW architecture design, and hardware synthesis 

tools. The inefficiencies identified above result in a substan-

tially lower than attainable quality of the resulting systems, 

much longer than necessary development time, and much 

higher development costs. 

 Although some application analysis, restructuring and 
compilation tools and ASIP configuration frameworks exist 
(see Section IV), most of them miss the design decision layer. 
The ASIP configuration semantics provide some IP libraries, 
tools to generate and analyze architecture, and tools to generate 
corresponding hardware descriptions, but assume customiza-
tion decisions taken by a human designer and denoted in an 
appropriate way. However, they miss the tools for automated 
customization decision making, and the collaboration among 
the different tools. Also, most of them are devoted to a single 
ASIP customization. However, many modern applications in-
clude many various parts and numerous different algorithms 
involving various kinds of information processing with various 
kinds of parallelism (task-level, loop-level, opera-
tion/instruction-level, and data parallelism). They are from 
their very nature complex and heterogeneous and require het-
erogeneous application-specific multi-processor system ap-
proach. In a customizable multi-ASIP MPSoC its various 
ASIPs have to be customized together, and in a strict relation to 
the selection of the number of ASIPs, as well as to the schedul-
ing and mapping of the application’s required computations on 
the particular ASIPs. The MPSoC macro- and the micro-
architectures, at multi-ASIP system level and at the single 
ASIP processor level, are strictly interrelated. Important trade-
offs have to be resolved regarding the granularity of individual 
processing cells, and between the amount of parallelism and 
resources at each of the two architecture levels. Moreover, at 
both architecture levels, the optimized parallel software struc-
tures have to be implemented on the corresponding optimized 
for them parallel hardware structures. 

The two architecture levels are strongly interwoven also 

through their relationships with the memory and communica-

tion structures. Each micro-/macro-architecture combination 

with a different parallel computation structure organization 

requires different compatible memory and communication 

architectures. For instance, exploitation of more data parallel-

ism in a computing unit micro-architecture requires a simulta-

neous access to memories in which the data reside (with e.g. 

vector, multi-bank or multi-port memories) and a simultane-

ous transmission of the data (with e.g. multiple interconnects). 

The requirement of simultaneous access and transmission rad-

ically increases the memory and communication hardware. 

Additionally, many modern applications (e.g. various commu-

nication, multimedia, networking or encryption applications) 

require hardware implementation of algorithms that involve 

complex interrelationships between the data and computing 

operations and require complex memory accesses and com-

plex communication between the memories and computing 

units in the related hardware. For applications of this kind, the 

main design problems are related to an adequate resolution of 

memory and communication bottlenecks and to decreasing the 

memory and communication hardware complexity, which has 

to be achieved through an adequate memory and communica-

tion structure design. Moreover, for applications of this kind, 

the memory and communication structure design, and the mi-

cro-architecture design for computing units cannot be per-

formed independently, because they substantially influence 

each other.  

Finally, the existing methods and tools of custom instruc-

tion-set construction or extension are devoted to a single proc-

essor, usually a simple RISC processor with one issue slot, 
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and not to several VLIW processors, each with several issue 

slots.  

In consequence, optimization of the perfor-

mance/resources trade-off required by a particular application 

can only be achieved through a careful construction of an ade-

quate application-specific macro-/micro-architecture combina-

tion. The aim here is thus to find an adequate balance between 

the number of parallel processors, the complexity of the inter-

processor communication, and the intra-processor parallelism 

and complexity. To achieve this aim, based on the application 

analysis and restructuring several promising macro-

architecture/micro-architecture combinations have to be auto-

matically constructed and evaluated in an iterative process, 

and finally, the best of them has to be selected for an actual 

realization. 

  

IV. CONTRIBUTION AND RELATED WORKS 

The main aim of the ASAM project is to considerably enhance 
the design efficiency of the ASIP-based MPSoCs for highly 
demanding applications, while substantially improving the 
result quality. This aim is being realized through development 
of a coherent system-level design-space exploration and syn-
thesis flow, and automatic analysis, synthesis and rapid proto-
typing environment implementing the flow that will provide 
efficient exploration of the architecture and application map-
ping alternatives and tradeoffs. Based on the application, com-
puting platform and parametric requirement analysis, the 
ASAM flow will efficiently partition a given complex applica-
tion and select the most appropriate ASIP types for different 
application parts, creating this way the MPSoC macro-
architecture; subsequently, it will reuse, instantiate, and extend 
the ASIPs with new application-specific hardware, developing 
this way the ASIP micro-architecture. Moreover, in corre-
spondence with the macro- and micro-architecture design, it 
will restructure the application’s software and implement the 
software on the so constructed application-specific multi-
processor platform. Finally, it will analyze and validate the 
design through a rapid prototyping. 

System design is actually the definition of the required 

system quality, in the sense of providing a satisfactory answer 

to the questions: “What new (or modified) quality is re-

quired?” and “How can it be achieved?”. Therefore the re-

search of the ASAM project builds on the methodology of 

quality-driven model-based system design proposed in [1].  
Moreover, the ASAM project builds on the platform-based 
design of heterogeneous multi-processor embedded systems 
[1], [2], ASIP design methods [3–9], hardware compilation 
techniques [2], and software analysis, re-structuring and compi-
lation techniques [2], [10]. 

With respect to the MPSoC macro-architecture synthesis, 

the project exploits the quality-driven model-based system-

level design exploration and architecture synthesis approach 

[2], [11], and modeling, emulation, estimation and design ex-

ploration concepts [2], [11–13], earlier developed by some of 

the project partners. The new macro-architecture DSE meth-

odology and supporting tools will enable an effective and effi-

cient reuse of a generic architecture platform, modeling of 

platform in the form of an abstract architecture template, ge-

neric architecture template instantiation, abstract requirement 

modeling, and application process scheduling and mapping on 

the generic architecture template instance when observing the 

constraints objectives and tradeoffs of the requirement model. 

 The ASIP micro-architecture exploration and synthesis 

will perform the actual ASIP construction for a given applica-

tion part, when re-using the existing application-class specific 

generic customizable ASIP IP cores. It is perhaps the most 

difficult task in the design of a system based on customizable 

ASIPs. It has to reveal the parallel computation and data struc-

tures of a given application part that can be execut-

ed/processed concurrently on separated hardware clusters and 

local register files, and construct the corresponding instruction 

set hardware clusters, register files, memories, and other pro-

cessor parts, when adequately accounting for hardware reuse 

and satisfying the application’s constraints, design objectives 

and trade-offs. The existing commercial and academic devel-

opments in this field do not provide adequate support for this 

critical part of the designers’ work (see e.g. [2]). Therefore, 

new methods and prototype tools are being developed in the 

scope of the project to much better reflect the actual problems 

to be solved and better address their required solutions. 

As explained in the previous section, there are very strong 

interrelations between the macro- and micro-architecture syn-

thesis. Therefore, ASAM architecture synthesis method con-

siders the macro-architecture and micro-architecture synthesis 

as one coherent complex system architecture synthesis task, 

and not two separate tasks, as in the state-of-the-art methods. 

There are common aims and a strong consistent collaboration 

between the two sub-tasks. The macro-architecture synthesis 

proposes a certain number of customizable ASIPs of several 

types with a part of the application assigned to each of the 

proposed ASIPs. The micro-architecture synthesis customizes 

each of the ASIPs, together with its local memories, commu-

nication and other blocks, and correspondingly restructures its 

software to execute the assigned application part as effective 

and efficient as possible. Subsequently, the restructured appli-

cation part software is compiled, and the RTL-level HDL de-

scriptions of the customized ASIPs are automatically generat-

ed and synthesized to an actual hardware design. From several 

stages of its application restructuring and ASIP design, includ-

ing the actual HW/SW implementation, the micro-architecture 

synthesis provides feedback to the macro-architecture synthe-

sis on the physical characteristics of each particular sub-

system implemented with each ASIP core. This way the mi-

cro-/macro-architecture trade-off exploitation is enabled, and 

after several iterations an optimized MPSoC architecture is 

constructed. 
 A complete MPSoC architecture involves of course the ade-
quately selected and instantiated ASIPs, as well as, adequate 
global memory and communication structures. As explained in 
the previous section an effective and efficient design of the 
memory and communication structures is especially important 
for many modern applications that involve massive parallelism 
and algorithms with complex interrelationships between the 
data and computing operations. While current research in this 
area is mainly focused on the separate design of memory and 
interconnection systems, ASAM project considers the mutual 
relationships between interconnections, memories and proces-
sors. The memory and communication structures will be opti-
mized in an iterative refinement process, when accounting for 
the application-specific memory-processor communication and 
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the technology related memory and communication features, 
such as power dissipation or area. Regarding the global 
memory and communication structures the project builds on 
recent results of   some of the project partners [14–16]. 
 From the above it should be clear that the ASAM design 

flow and its tools will implement an actual coherent HW/SW 

co-design process through performing a quality-driven simul-

taneous co-tuning of the application software and processing 

platform architecture to produce HW/SW systems highly op-

timized for a specific application. They will also implement 

the macro-architecture and micro-architecture synthesis as one 

coherent complex task, and perform the application-specific 

synthesis of processor, memory and communication architec-

tures in a strict collaboration to ensure their compatibility and 

effectively exploit the trade-offs among the different design 

aspects. In consequence, ASAM design methods and tools 

have to deal with decisions regarding a huge number of archi-

tectural aspects and values of customization parameters. 

 To effectively and efficiently cope with such a massive 

combination of design choices, ASAM exploits the abstrac-

tion, separation of concerns and quality-driven design decision 

making principles through introducing several abstraction lev-

els in the design flow, decomposing the complex design prob-

lem into a hierarchical network of simpler sub-problems (is-

sues), ordering the consideration of the sub-problems, and 

using various abstract and partial models when solving partic-

ular sub-problems [1]. The methods and tools used for each 

level/issue deal with a sub-set of correlated design concerns, 

and collaborate with each other in a well-defined coherent way 

to together deliver a high-quality application-specific HW/SW 

system design. 

 To our knowledge, the ASIP-based MPSoC design problem 

as formulated above is not yet explored in any of the previous-

ly performed and published works. The related research in the 

MPSoC, ASIP, application analysis and restructuring, and 

other areas considers only some of the sub-problems of the 

adaptable ASIP-based MPSoC design in isolation. In result, 

the partial problems considered by related research and their 

proposed solutions are much simpler, and the proposed partial 

solutions are usually not directly useful in the much more 

complex context of ASAM.  

 As stated in [17], ASIP auto-customization design methods 

can be sub-divided into configuration-based and specification-

based. The configuration-based methods use well defined pro-

cessors optimized for an application field. Only a few parame-

ters are left to enable customization of the processor to re-

quirements of a specific application. This simplifies the DSE, 

but reduces the possibilities of tuning.  The configuration-

based approach is exploited by Tensilica Extensa Configurable 

Core [8], ARC Configurable Cores [7], etc. The specification-

based methods provide the possibility to entirely describe a 

processor based on an abstract model that only defines the 

general design rules, when using an Architecture Description 

Languages (ADLs) that allows describing the relevant (appli-

cation-specific) aspects of the ASIP architecture at several 

abstraction levels. Specification-based methods and corre-

sponding ADLs include EXPRESSION [6] and its 

EXPRESSION ADL [18], CoWare Processor Designer [5] 

using LISA ADL [19], Target Compiler Technology [4] using 

nML ADL [20] and Intel/Silicon Hive [3] using TIM language 

for the ASIP architecture description and HSD language for 

the MPSoC system-level architecture  description (e.g. global 

communication, processors synchronization, etc.). Most of 

these methods and related tools target the design of systems 

involving only a single ASIP. 

Although the existing ASIP customization frameworks in-

volve a rich set of tools for application analysis, application 

re-targetable compilation, as well as, single ASIP architecture 

configuration, and automatic HDL generation, they usually 

lack any automated architecture design-space exploration and 

decision support, even for a single ASIP. That is why such an 

effective and efficient highly automated DSE and decision 

support is targeted by the ASAM project, additionally not lim-

ited to a single ASIP, but for the multi-ASIP systems. 

 Other related works focus on the application code trans-

formations [21] to improve the application software mapping 

onto a fixed architecture optimized to a broader application 

area, e.g. DSP or GPU. Their results are not directly applica-

ble to the combined software and hardware structuring of the 

adaptable ASIP-based systems. Yet other works target the 

processor Instruction Set Extension (ISE) [22] and related 

hardware extension. Some of them try to explore and exploit 

the effect of loop transformations [23], e.g. unrolling, on the 

ISE generation. They are however devoted to a single proces-

sor, usually a simple RISC processor with one issue slot and 

not to a complex VLIW processor with several different issue 

slots. Moreover, most of them are very simplistic. The con-

struction or extension is based on some proxy attributes and 

optimization objectives, on a kind of simplified application 

analysis, and performed without actually accounting for the 

related data-path and control-path implementation. For in-

stance, it is usually performed without accounting for the ef-

fects and trade-offs of hardware sharing by various instruc-

tions. In result, the proxy formulations of the custom instruc-

tion set construction problems and their suggested solutions do 

not reflect well the actual problems to be solved and their re-

quired solutions. 

Many published research results [1], [11], [24] and system 

design frameworks, e.g. Metropolis [25], Daedalus etc., target 

the heterogeneous MPSoC design, but none of them addresses 

the adaptable ASIP-based MPSoCs design being the target of 

ASAM, with all its complexity and difficult to solve issues as 

described in this paper. Nevertheless, some of the valuable 

ideas and general methodologies developed in this research 

can and will be reused for ASAM purposes. In particular, 

ASAM project builds on the methodology of quality-driven 

model-based system design proposed by Jóźwiak [1]. 

 Most importantly however, to our knowledge, none of the 

published methods, tools or frameworks implements an actual 

coherent HW/SW co-design process through a combined sim-

ultaneous structuring of the application software and pro-

cessing platform architecture. Also, most of them focus on the 

processing unit design and application mapping, and underes-

timate the importance of the memory and communication ar-

chitecture design for the demanding modern application im-

plementation. Although  [17] proposes to use profiling tech-

niques to customize memory hierarchy and infer Instruction 

Set Architecture design (i.e. instruction opcodes, instruction 

encoding, memory/register addressing modes and data types), 

in ASAM on the top of this we explore the effect of loop 
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transformations on the Data Transfer and Storage Mechanism 

[21] in order to benefit from previous advances in design au-

tomation for ASICs. To our knowledge, no former research 

addressed the problem of the combined concurrent processor, 

memory and communication architecture exploration and syn-

thesis. 

 Further extensive discussion of related research can be 

found in the overview papers [2] and [24]. 

V. DESIGN FLOW 

A simplified view of the ASAM design flow is presented in 

Figure 1. The flow involves four main stages corresponding 

to main design issues and abstraction layers: 

- system DSE (macro-architecture), 

-  ASIP DSE (micro-architecture), 

- GC&M DSE, and 

- HW/SW synthesis and rapid prototyping. 

 

Each of these stages communicates and collaborates with the 

remaining stages directly or through the system DSE. All to-

gether they realize the quality-driven evolutionary system en-

gineering process briefly described above, stepwise transform-

ing the initial high-level application specification (given by 

application C code, parametric requirements and representa-

tive input stimuli) and generic platform specification (repre-

senting structural constraints and given by templates of gener-

ic ASIP-based MPSoC and its modules) into a HW/SW ASIP-

based MPSoC prototype or the final ASIP-based MPSoC de-

sign. 

 The ASAM architecture design flow implements the con-

cept of service-oriented EDA system. Each of its main stages 

and their parts can be requested for and provides some ser-

vices for some other stages or parts. The whole collaboration 

among the stages and their parts is organized as requests and 

answers to requests for specific services. This enables clear 

organization of the system, and specifically, of the collabora-

tion among its stages and parts, as well as, results in a high 

flexibility in relation to the EDA system extension or modifi-

cation through adding new or modifying services. 

 The stages of the ASAM design flow also communicate and 

collaborate with the basic SH design flow which provides sev-

eral services to them, such as IP library, HW and SW genera-

tion and compilation, HW and HW/SW simulation etc. In par-

ticular, each stage of the flow can get from the IP library an 

existing IP, use it (e.g. for simulation or emulation) or custom-

ize it according to requirements and insert the customized IP 

into the IP library. The flow execution is originally determined 

by its primary inputs (i.e. application behavior specification, 

parametric and structural requirements, and representative 

input stimuli) and the user control inputs (not represented in 

 
Figure 2 ASAM design flow. 
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Fig. 2). However with the progress of execution it is more and 

more influenced by the results of previous explorations. This 

is necessary a. o. to ensure the exploration effectiveness and 

efficiency, and in particular, to avoid lengthy or endless reiter-

ations. 

 System DSE takes as its inputs: an application C-code, par-

ametric and structural requirements, and representative test-

benches and stimuli for the application behavior, simulation or 

emulation in the rapid prototyping environment. It is responsi-

ble for the total design of the multi-ASIP MPSoC. It directly 

performs the system-level DSE for the multi-ASIP MPSoC 

and defines its structure composed of several ASIPs (which 

include their local memories and communication), global 

memories and global communication among the ASIPs. In 

performing this task, it asks for specific services from the 

ASIP DSE and the GC&M DSE. These services can range 

from coarse parameter estimation to an optimized design of 

subsystem. It also asks for services from the rapid prototyping 

(light color arrows in Fig. 2). The request can be to perform 

simulation or emulation of a complete proposed HW/SW 

ASIP-based MPSoC or of its single parts. When asking for a 

service, the system DSE specifies the kind of service request-

ed (not represented in Fig. 2), as well as, the behavioral, para-

metric and structural requirements, and input stimuli related to 

a given design part and the service requested. Through directly 

performing the system-level DSE and using the analysis and 

synthesis services of ASIP DSE, GC&M DSE, rapid prototyp-

ing and basic SH design flow, the system DSE produces as its 

output a final optimized ASIP-based MPSoC design. 

 ASIP DSE takes as its inputs the kind of service requested 

by the System DSE, as well as, the behavioral, parametric and 

structural requirements, and input stimuli related to a given 

design part defined by one ASIP and application part mapped 

on it by the System DSE. It is responsible for the total design 

of a single HW/SW ASIP-based part of the MPSoC. It directly 

performs the ASIP DSE which consists of the actual coherent 

HW/SW co-design through simultaneous co-tuning of the ap-

plication software part assigned to a given ASIP and ASIP 

architecture. In performing this task, it asks for specific ser-

vices from the HW and SW synthesis and rapid prototyping, 

as well as, from the SH design flow. In satisfying a service 

request it provides its outputs (ranging from a coarse parame-

ter estimation to a design of a complete optimized ASIP-based 

HW/SW sub-system) to the requesting System DSE.  

GC&M (GC&M) DSE accepts analogous inputs, performs 

analogous tasks and collaborates analogously with its sur-

roundings as the ASIP DSE, but does it in relation to the glob-

al memories and global communication sub-system instead of 

ASIPs. 

HW and SW synthesis and rapid prototyping accept as 

their input service requests from the System DSE, ASIP DSE 

and GC&M DSE, as well as, the architecture description lan-

guage (ADL)-based specification of  the designed MPSoCs or 

their parts, and corresponding application C-code. From the 

ADL descriptions the HW synthesis automatically generates 

corresponding refined hardware description language (HDL) 

based hardware specification and SW synthesis generates the 

corresponding software structures and compiles the C-code. In 

this way a complete HW/SW (sub-) system design is pro-

duced. Rapid prototyping accepts as its inputs the HW, SW 

or HW/SW designs and performs their simulation or emula-

tion. All parts use specific services of the SH design flow. In 

answer to the service requests, the HW and SW synthesis and 

rapid prototyping provides the results of the HW or SW syn-

thesis or prototyping results to the requesting flow stage. 

 In the next sections each of the main flow stages will be 

discussed more precisely.   

VI. MAIN STAGES OF THE ASAM FLOW 

A. System Level DSE 

The System Level (SL) DSE is in charge of developing the 

MPSoC macro-architecture, deciding the number and kind of 

ASIPs, the global memories, their interconnections and map-

ping of different application tasks into ASIPs and of their data 

into memories. The original application code is modeled for 

the SL DSE, as a task graph (TG): the code is partitioned into 

tasks (T) for extracting the task level and inter-task (pipe-

line) parallelism. The partitioned application is generated by 

commercial tools [26]. The communication between the tasks 

is modeled through Message Tasks (MT), which represent the 

amount of data to be exchanged. The SL DSE performs the 

mapping and scheduling of application and data access 

through the mapping and scheduling of the Tasks and Message 

Tasks on ASIPs and interconnection resources, respectively. 

Moreover, the SL DSE has the role of collecting the partial 

results from the different DSE entities (ASIP DSE and GC&M 

DSE) and combining them together to verify the performances 

of the entire system. 

 
 

 

Figure 3 System Level DSE 

An initial instance of the computing platform model is defined 

according to the total number of tasks in the application TG, 

which defines the upper bound for the number of ASIPs. The 

initial platform model assumes the use of a bus for the global 

communication (this limitation is later relaxed during the 

GC&M DSE). The SL DSE can be divided into two main 

phases: Probabilistic and Deterministic DSE (cf.  

Figure 3).  
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Probabilistic DSE: This is the most challenging phase of the 

SL DSE; it has to solve a kind of chicken-and-egg problem in 

which an adequate application mapping and scheduling need 

to be established without any initial knowledge of the macro 

and micro-architecture of the multi-ASIP platform. In fact, the 

ASIP-level DSE needs information about mapping and stimu-

li/parameters for the definition of the micro-architecture of 

each single ASIP. At the same time, the System-level DSE 

needs information on single ASIP micro-architectures to get a 

reasonably precise performance estimation of an application 

mapping/scheduling solution. The different micro-

architectures that can be identified during the micro-level 

ASIP design are called ASIP configurations. The number of 

possible ASIP configurations is huge and challenging to iden-

tify. Therefore, it is not feasible to perform a macro-level DSE 

through taking into account all the possible ASIP configura-

tions. This issue is solved through the implementation of a 

Probabilistic Estimation Method. The performances that can 

be obtained by an application part (e.g. a single task initially) 

executing on different configurations of the same ASIP are 

modeled through a stochastic variable and its probability dis-

tribution. Depending on the performances (e.g., execution 

time, energy consumption) that have to be evaluated during 

the DSE, corresponding stochastic variables have to be de-

fined. For example, we use the Worst Case Execution Time 

(WCET) as one of the stochastic variables to estimate the per-

formance. The cumulative distribution function (CDF) of the 

WCET is defined using two points ([lWCET,uWCET]) that 

represent the lower (lWCET) and upper (uWCET) boundaries 

of the performances for the execution of a given application 

part on all the possible configurations of an ASIP. These val-

ues are calculated by analyzing each task (application part): 

the WCET is computed for a hypothetical sequential execution 

on a simple sequential ASIP instance (uWCET, the slowest 

execution) and for a parallel execution on a parallel ASIP in-

stance with the non-constrained resources (lWCET, the fastest 

execution possible). Such values are provided by the first 

phase of the ASIP level DSE. A CDF is drawn between such 

two values to model the distribution of a given performance 

parameter for all possible configurations (whose number and 

individual performances are yet unknown). A CDF is built for 

each application part mapped to an ASIP and for each of the 

performance parameters that have to be evaluated. A CDF is 

also built for each of the Message Tasks and their mapping on 

the interconnection network. Different mapping solutions can 

then be proposed and analyzed: the CDFs of the different tasks 

and message tasks are then combined together according to the 

mapping and execution order of the tasks, and a CDF of the 

total task graph is computed (for each performance parame-

ter), taking into account both the task level and the pipeline 

parallelism. Each mapping solution is then evaluated accord-

ing to the design constraints and objectives (e.g. execution 

deadline in case of the WCET).  The mapping solutions with 

the highest probability of meeting the constraints are selected 

for further consideration.  

The mapping results obtained in such a way are then passed to 

the ASIP level DSE and to the GC&M DSE that can respec-

tively start the actual synthesis of each single ASIP, according 

to the mapped tasks. The (partial) micro-architecture synthesis 

results are then returned to the SL DSE that can repeat its DSE 

on the basis of this more precise information received. This 

phase is repeated until the task performances are modeled as 

stochastic variables, that is until the design of all ASIPs mem-

ories and their communications have been sufficiently decid-

ed, i.e. a bounded subset of the most promising specific con-

figurations has been identified.  

 

Deterministic DSE is in charge of performing a design explo-

ration similar to the one of the previous phase, but with much 

more precise information on the computing platform and its 

parts. This phase works with concrete ASIP, memory and 

communication configurations and verifies the actual perfor-

mances of the global ASIP-based system. The interaction be-

tween the different stages and phases of the design flow is 

repeated until the entire design constraints are satisfied or it 

becomes clear that it is impossible to satisfy them given the 

available resources.  

B. ASIP level DSE 

The micro-level ASIP DSE, presented in Figure 4, aims at 

exploring and selecting optimized parallel software structure 

and the corresponding ASIP architecture for an application 

part assigned to a single ASIP by the system-level DSE. Due 

to the high number of application restructuring and ASIP cus-

tomization parameters, a synthesis method with a reduced 

exploration complexity is necessary. To perform an early 

pruning of the design space, the ASIP DSE process is subdi-

vided into three main phases:  

 

Phase1, which performs application analysis and coarse ASIP 

characterization,  

 

Phase2, which performs application parallelization and map-

ping, as well as, design of top-level ASIP architecture involv-

ing parallel processing, communication and storage, and  

 

Phase3, which performs instruction set synthesis and refined 

application restructuring.  

 

The services of these three phases are provided to the SL DSE 

flow or directly to the end-user. They can be executed sepa-

rately or in combination, depending on the level of analysis 

and synthesis details required from the ASIP DSE. A given 

phase can also ask the successive phases for services.  

 

Phase1: application analysis and coarse ASIP characteri-

zation  provides information on the upper bound and lower 

bound of the worst-case execution time (WCET) of an appli-

cation part. The WCET values are used by the SL DSE for a 

rapid initial evaluation of the proposed application partitioning 

and by the following phases of the ASIP level DSE to infer the 

design requirements of the application sub-parts. The applica-

tion analysis also detects the type of processing (vector/scalar) 

and the hot-spots (e.g. bottlenecks or frequently executed sub-

parts) of the analyzed application part. This information can 

be used to decide the kind and amount of effort devoted to the 

optimization of the ASIP architecture for individual sub-parts 

of the application.  
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Phase2: application parallelization and mapping and top –

level ASIP architecture synthesis aims at analyzing the ap-

plication part with respect to the medium-level parallelism 

concerns (e.g. data dependencies, available loop-level and data 

parallelism, etc) and at proposing optimized parallel software 

structures and corresponding coarse hardware architectures for 

the ASIP processing issue slots, internal memories and com-

munication. For instance, an application transformation such 

as loop fusion, which reduces the loop control overhead and 

the application run-time, corresponds to the instantiation in 

hardware of several parallel issue slots with their own associ-

ated register files storing locally accessed data. Several other 

data-oriented application transformations, mainly loop trans-

formations as tiling, vectorization, unrolling etc., are explored 

in this phase. In correspondence to them, the parallelism and 

data related hardware design decisions are taken, in relation to 

the number, kind (vector/scalar) and size of ASIP issue slots, 

the number, kind and size of internal memories and register 

files, the mapping of processing to issue slots and of data to 

memories, as well as, the ASIP local communication structure. 

This is usually the most decisive step in the whole ASIP archi-

tecture design process, as the parallelism exploration, schedul-

ing and mapping decisions influence the ASIP main parame-

ters to a high degree.  The result of this phase is a one or sev-

eral promising coarse design(s) of the ASIP with a refined 

communication and storage micro-architecture and a general 

instruction set partitioned over the ASIP parallel issue slots. 

Phase 2 is further explained in [27–29]. 

 

Phase3: precise issue slot synthesis and application re-

structuring mainly involves the identification and selection of 

an application specific instruction set for each of the ASIP 

issue slots, and the related data-path and controller optimiza-

tion. The identification of instruction set candidates corre-

sponds to a partitioning of the DFG of an application basic 

block in several sub-graphs that cover the whole original DFG 

and match some instructions in an instruction library. The se-

lection of the best candidates is performed with respect to de-

sign optimization criteria such as area occupancy, execution 

time or throughput, and energy consumption.  If after the ini-

tial selection and related data path synthesis the selected in-

struction set does not meet the design requirements, an in-

struction set extension can be proposed. In the extension pro-

cess, sub-graphs corresponding to some hotspots of the origi-

nal DFG are identified, realized in hardware and included in 

the instruction library, before performing a new phase of the 

instruction set identification and selection using the extended 

instruction library.  

 

After finishing the synthesis of a single ASIP based sub-

system, the generation of the TIM and/or HDL code describ-

ing the ASIP and of the associated optimized C-code for the 

embedded software is performed.  

C. Global memory and communication DSE 

The main aim of this step is the exploration and optimization 

of the global interconnection and memory structures for a mul-

ti-ASIP system. This is performed through an iterative con-

struction and refinement of the interconnect and memory 

structures driven by the constraints and objectives decided by 

the macro-architectural level. In particular, the mapping of the 

application tasks at macro-architecture level is used to produce 

a communication graph. Using this graph as input, the micro-

architectural memory and communication optimization itera-

tively proposes and evaluates candidate interconnect and 

memory architectural configurations, characterizes them using 

simulation-based methods and, when needed, accesses the 

lower-level prototyping infrastructure to endorse the simula-

tion-based characterization. This way, a Pareto front of con-

figurations is selected and serves as a feedback to the upper 

level, as depicted in Figure 5. The selected design points are 

characterized in terms of timing, area and energy consump-

tion, when exploiting the support for technology awareness 

described in Section D. In this way, the macro-architectural 

layer gets information for a multi-objective architectural opti-

mization.  

GM&C configurations are compositions of different function-

al blocks, such as: 

• FIFO-based point-to-point connections 

• Single-layer shared bus 

• Multi-layer bus subsystems 

• NoC modules 

• Shared Parallel memory modules 

In this way architectural configurations compliant with a wide 

variety of system-level designs (number of processors, com-

munication graphs, number and size of global memories) can 

be composed. 

D. Rapid prototyping platform 

The main role of the prototyping infrastructure of ASAM is to 

provide an accurate executable FPGA-based model, capable of 

 
Figure 5 FPGA prototyping 
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reducing the gap between the estimation of the performances 

considered during the early steps of the design flow and those 

really measurable after the implementation. The developed 

platform is composed of several ASAM sub-tools that interact 

with each other and of several commercial tools. It takes dif-

ferent inputs being micro- and macro-architectural specifica-

tions that drive the HDL generation step. The macro-

architectural description is provided as input to describe the 

top-level view of the system, by means of a proprietary for-

mat. The micro-architectural description is related to both the 

topology of interconnect and memories, and the processor 

architectural configuration (or several configurations, in case 

of multi-core heterogeneous systems). The ASIP architecture 

is described using a proprietary language TIM. The intercon-

nect topology description is provided using an in-house devel-

oped format that can be translated by a dedicated utility in a 

completely configured HDL description. The interconnect 

topology can be instantiated as a black-box in the HSD sys-

tem-level description, so that its HDL code can be comforta-

bly linked to the system for synthesis. 

The HDL generation step envisions the code instrumentation 

for performances evaluation. The industrial tool-chain for 

ASIP design has been customized, in order to allow for auto-

matic instantiation of hardware counters inside the proces-

sor/system RTL code, for computing the event counts, i.e. 

counting the number of accesses to each functional block in 

the ASIP processor, memory or interconnect structure, and 

cycle counts, e.g. a number of clock cycles needed to execute 

a given application on a given architecture. Analytic models 

have been developed within the project (through performing 

training sets of experiments for a given technology) in order to 

translate the counts obtained from the FPGA prototyping 

hardware implementation into the technology development 

energy and execution time figures. Adequate custom Tcl 

scripts have been developed to enable, without further user 

intervention or adaptation, the correct hardware structures to 

be created and memory-mapped to be accessed during soft-

ware execution. 

Furthermore a retargeted compilation tool-chain with com-

plete awareness of the ASIP processors/system specifications, 

and thus able to correctly exploit the hardware resources, has 

been deployed. The RTL description of a system, optimized 

for the FPGA implementation, can be synthesized and imple-

mented on FPGA exploiting commercial tools. At this point, 

the target application is compiled by means of the ASIP soft-

ware compilation tool-chain, retargeted according to the ASIP 

processors/system specifications, and executed on the FPGA 

platform, to collect the relevant metrics at the end of the exe-

cution. For the sake of manageability and data exchange be-

tween the different phases of the flow, a co-simulation ap-

proach exploiting the SysGen toolbox by Xilinx and Matlab 

has been adopted. This cooperation allows executing the soft-

ware on the FPGA board, and then to collect the evaluation 

data from a host workstation, accessing dedicated shared-

memory structures that are instantiated in the MATLAB 

workspace. The metrics collected from the FPGA, can be 

translated into technology relevant figures, enabling a pre-

estimations of the quality-of-results achievable with a prospec-

tive ASIC implementation. In the prototyping tool-flow this 

objective is achieved with the usage of accurate area/energy 

models. The models consist in a set of analytic expressions, 

able to calculate the area occupation and the energy consump-

tion of each functional block inside a processor as a function 

of the architectural parameters and of the activity rate. The 

expressions have been defined, within the project, studying the 

dependency of area and energy on the mentioned variables, for 

every ASIP functional block. The models have to be calibrated 

for each target technology considered for implementation. The 

expressions have to be characterized over a training set of pro-

cessor configurations. The ASIPs in the training set must be 

implemented at layout-level and the area occupation and ener-

gy consumption must be analyzed to build a table of coeffi-

cients to be filled in the expressions. The coefficients typically 

represent area and energy values “normalized” to the design 

parameters and to the activity rates.  Obviously, the area mod-

el is activity-independent, while the energy dissipation de-

pends on the functional block activity, i.e. on the number cy-

cles during which the considered functional block was enabled 

or accessed (in case of memory and register files).  Once the 

models have been preliminary calibrated for a given technolo-

gy library, they can be used to back-annotate values obtained 

from the previously mentioned hardware counters, adequately 

connected to the relevant signals in the FPGA prototype. In 

this way, it is possible to perform a detailed technology-aware 

evaluation of every ASIP configuration under prototyping. 

Moreover, the prototyping tool-flow has been enriched with a 

novel support for the multi-design point characterization, to 

enable the extensive exploitation of FPGAs within the micro- 

and macro-architectural DSE. The general idea is to overcome 

the important time limitation in FPGA-based design due to the 

time-consuming synthesis phase. With this aim an over-

dimensioned architectural description is defined including a 

number of different configurations to be explored, and imple-

mented on the FPGA. Consequently, through the usage of 

custom-developed tools, the tool-flow is capable of executing 

application binaries compiled for all the candidate architectur-

al configurations on the same over-dimensioned FPGA proto-

type, leading to significant time savings in the architectural 

configurations exploration and selection. A complete and de-

tailed description of these methodologies can be found in [30]. 

VII. CONCLUSION  

In the former sections an overview has been presented of the 

research results of the European project. Due to a limited 

length of the paper, we had to focus on only the main unsolved 

problems and only the main solution concepts. Many more 

research results have been produced by the ASAM consortium 

than these once briefly discussed in this paper. They include 

results related to such important problems as energy consump-

tion management, application analysis and restructuring or 

actual automatic coherent SW and HW co-development. More 

information on the research results from ASAM can be found 

in several already published papers with links to them at the 

ASAM home-page (http://www.asam-project.org/), a few 

more specific papers in this conference [27–29], [31], [32], 

and several papers under preparation that will be published 

soon. 

 

http://www.asam-project.org/
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