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Abstract

We study the employee retention and job assignment strafegypwth-orientedntrepreneurial firms

in which the employee’s capability is unknown to both the famd the employee. As the employee
performs his task, both the firm and the employee update toeimon belief about the employee’s ca-
pability based on the noisy profit stream from the employpeildormance. The firm seeks to dismiss
low-capability employees while high-capability emplogeseek to leave the firm for higher compensa-
tion. We model this situation as a real options game betwieeffitm and the employee, and we obtain
a Markov perfect equilibrium (MPE) characterized by the @ayment termination strategies of the two
players. In stark contrast to conventional real options efmda higher rate of learning cdmurt both
players when the employee’s capability is sufficiently uteda. This suggests that firms should assign

employees with highly uncertain capabilities to tasks witjh noise levels.
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1 Introduction

Employee retention is one of the biggest concerns for grasiimted entrepreneurial firms (Hendricks 2006).
Those that retain good employees can harness their valtaadild&knowledge (Tansky 2006), save significant
time and money on hiring and training (Yoo et al. 2011), andiee faster growth (Baron et al. 2001;
Baron and Hannan 2002). Despite its importance, little imakmabout the retention challenges concerning
entrepreneurial firms (Cardon and Stevens 2004). In péaticwhen the employee’s capability is uncertain,
the problem of employee retention becomes complex bechasentrepreneur has an incentive to dismiss a
low-capability employee while a high-capability employess an incentive to leave the company in search
of higher compensation. To mitigate the uncertainty, thiee@neneur can attempt to learn the employee’s
capability by assigning the employee to more informatiaksathat produce less noisy outcomes (Pastorino
2004), but it is not clear whether this is a good, let alonein@al, policy. In this paper, we examine a game
between an entrepreneurial firm and an employee when theogeg® capability is uncertain in order to
provide insights into the impact of learning on the equilibr strategies and expected payoffs. In particular,
we investigate whether the firm should strive to reduce thgenof the employee’s performance.

In a resource-constrained entrepreneurial firm undergaipbase of rapid growth, payroll is often the
largest cost. Hence, it is important for each employee tdritiute to the firm’s profit. Facing tight capital
constraints, an entrepreneurial firm must learn quicklyualtioe employee’s capability to contribute to the
firm’s profit so it can exert effort to retain high-capabiliynployees and dismiss those with low capability.
This, however, presents unique challenges due to a numisatient features of entrepreneurial firms. First,
unlike those of established firms, employees hired by ergrequrial firms come from a highly diverse pool
of workforce (Barber et al. 1999) so that a given employeajsability is highly uncertain. Moreover, the
employees of an entrepreneurial firm most often work on ntagks whose outcomes are inherently more
noisy. Hence, the firms must observe the employee’s perfuzentor a long duration to learn the employee’s
capability. Second, due to the resource constraints, ttremeneurial firm often cannot offer competitive
compensation or long-term stability to the most capableleyees. Hence, the employees who learn of their
high capability develop the incentive to quit and seek higlmenpensation in other firms or by launching their
own companies. Finally, the entrepreneurial firms lack endrdepartmentalized structure, and the employ-
ees observe the same information as the entrepreneur iregénd opportunities and challenges of the firm

(Quinn and Cameron 1983): employees directly observe tipadtof their own performance on the firm’'s



profit. Consequently, an employee and the firm learning altveuemployee’s capability is contemporaneous.
This lack of structure eliminates any organizational huffetween the firm and the employee, causing con-
stant tension between the two throughout the learning peodacorporating these three salient features, we

address the following research questions:

1. How does the employee’s threat of quitting influence thre’éidismissal strategy? Similarly, how does
the firm’s threat of dismissal impact the employee’s quittitrategy? When both firm and the employee

are free to choose their termination strategies, what @&edhilibrium strategies and profits?

2. What s the impact of the rate of learning on the equilibristrategies and profits? Given that the firm is

able to control the rate of learning through job assignn&uld the firm increase the rate of learning?

In the model that we study, an employee generates a profinstre/hich is observable to both the en-
trepreneur (firm) and the employee; in return, the firm pagsetmployee a fixed salary per unit time and a
fixed proportion of the profit he generates. We assume thartimoyee is one of two types: a high-capability
employee who contributes highly to the firm’s profit, or a loapability employee who contributes less. The
employee’s profit stream is modeled as a Brownian motion (ijtdrift that is perfectly correlated with the
employee’s capability and (ii) volatility (the noise leyelf the profit generated by the employee. The noise
level depends only on the employee’s tasks and is indepedidme employee’s capability. For example, if
the task is to generate sales in an established market, igelaeel will be low; if the task is to generate sales
through new product development, the noise level will béhig

The firm and the employee share the same prior and postetief tegarding the employee’s capability.
Due to the noise in the profit stream, both must observe thdogewgis performance over time to update
their common belief about the employee’s capability. At goint in time during the learning process, either
player can unilaterally terminate the employment relatitve firm can dismiss an employee if he is deemed
to be of low-capability, whereas an employee who learns hih capability can quit in search of higher
compensation. After termination of employment, the firmeotp a profit stream without the employee,
whereas the employee expects an outside option represkewtdte present value of the lifetime income
stream that is perfectly correlated with his capability.

Restricting our attention to Markov strategies, we firstiarathe best responses of each player. We
find that the firm’s strategy is to dismiss the employee whenpibsterior belief that the employee has high

capability falls below a lower threshold, and the employesitategy is to quit when the posterior belief
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exceeds an upper threshold. In particular, when the emg®yereat of quitting increases (when the upper
threshold decreases), the firm’s best response is to egpwitdismissal (increase the lower threshold).
Similarly, when the firm’s threat of dismissal increasesdwithe lower threshold increases), the employee’s
best response is to quit sooner (decrease the upper thitesHdlis occurs because the increased threat of
separation (due to quitting or dismissal) from the oppommtreases the value of waiting; in turn, a lower
value of waiting induces an incentive for earlier termioatof employment. We then characterize the focal
point of the player’s strategies by obtaining a unique Padetminant Markov perfect equilibrium (MPE), the
subgame perfect equilibrium in Markov strategies (Duttd Rastichini 1993; Maskin and Tirole 2001).

Next, we investigate the impact of the noise level assatiafith the employee’s task on the equilibrium
payoffs. We find that, if the belief about the employee’s tuljig is sufficiently weak (i.e. if the posterior
is sufficiently far away from the two thresholds), the eduilim payoffs to both the firm and the employee
increase in the noise level. Because the noise level issalyeproportional to the rate of learning, this result
implies that a higher rate of learning chaort both players. This occurs for the following reason: a higher
rate of learning accelerates the time evolution of the pmstéKwon and Lippman 2010) and expedites
termination of the employment relationship, and the simededuration of employment deprives both players
of the opportunity to take advantage of the option value otim@ This result is in stark contrast to the
conventional results of real options models under incotepleformation, in which the real option value
decreases in the noise (e.g. Decamps et al. 2005 and Kwonippohén 2010). Moreover, while there do
exist well-known examples of games with incomplete asgimmetrianformation in which acquisition of
additional information hurts all players (see, for exampleeps 1988, p. 41), our model presents an example
of an incomplete information game in which a similar resulids despite the information beirgymmetric
Finally, our results lead to a counterintuitive managerglication: the firm should position employees with
highly uncertain capability into tasks with high noise lisve

The paper is organized as follows. We first review relateddiiire in Section 2. In Section 3, we introduce
the model of a real options game between an entrepreneuneafid its employee, present each player’s best
responses, and characterize the MPE strategies and payaffaddress the impact of the learning rate on the

MPE payoffs and strategies in Section 4, and we concludedtid®eb. All proofs appear in the Appendix.



2 Related Literature

We first motivate our context relative to the employee rébentiterature, with particular focus upon the
economic and the organizational dimensions. We then lgightbur theoretical contributions on the novel
application of the real options game and novel insightsraigg the impact of learning.

Among the most significant hurdléisat growth-oriented entrepreneurial firfiase in retaining their em-
ployees is their less-than-competitive compensation ggek Due to their resource constraint and their
uncertain profit streams, entrepreneurial firms are résttin the salary that they can offer to their employees
in contrast to their established firm counterparts. Althotlgey can offer a larger portion of compensation
in performance-based format to attract talented emplogRakin and Gomez-Mejia 1987), such “at-risk”
payments are not sufficient for retaining employees who fieeenl greater non-risky compensation packages
by large firms (Graham 2002). Another difficulty faced by epteneurial firms is high job mobility among
inexperienced and young workers, a characteristic of thpl@mes of high-growth entrepreneurial firms.
Johnson (1978) formulates a job shopping model in which &e&rosequentially experiences jobs to kear
about his own capability. In a similar vein, Viscusi (1980)idies a model of a Bayesian worker who learns
about a job’s attributes and finds that a worker will prefdrsjavith uncertain prospects.

Employee retention and job assignment policy has been witallied in the established firm settings.
For example, empirical organizational studies find thatdiganizational climate of a firm — i.e. its degree
of trust, conflict, rewards equity — impacts employee’s badraGlick 1985), turnover (Huselid 1995), and
firm performance (Burton et al. 2004). In particular, empleyetention is also influenced by individual traits
of the employees such as their level of job satisfaction tdMill et al. 2001), relationships with co-workers
(Griffeth et al. 2000), and fit with the organization (Chatnm091). Using a theoretical model, Pastorino
(2004) studies a firm’'s experimentation with employees withertain capabilities through job assignments
with varying degrees of informativeness and finds that time $sinould assign employees to decreasing degrees
of informativeness over time. Although the model of Pasmi(2004) bears some similarity to ours, its main
focus is on established firms with long-running employmeations. Unlike these studies, we explicitly
model the organizational climate of growth-oriented gmteaeurial firms.

On the theoretical front, our paper lies in the domain of ogdilons games, where there is rich literature in
various contexts. For a comprehensive review of real optgame models, see Azevedo and Paxson (2010).

While most real options game models address competitionwdasst two or more rivalrous players to win



limited resources or limited investment opportunities; paper addresses a game between two non-rivalrous
players in an employment relation.

The Bayesian framework of our model is based on the work ofy8bav (1967) who studies the single
player decision theoretic problem of minimizing the costeofors with two hypotheses on the drift of a
one-dimensional Brownian motion. The framework has bedized by Ryan and Lippman (2003), who
consider when to stop (abandon) a project with unknown pitifity; Decamps et al. (2005), who employ
Shiryaev’s framework to study the optimal time to invest masset with an unknown underlying value;
Kwon and Lippman (2010) who study an expansion and exit aeciggarding a pilot project with unknown
profitability which can be in one of two states. Shiryaevanfiework has been also applied to dynamic game
models under incomplete information. Bolton and Harris9d)9study a free-rider problem arising from
information externality when many agents face the samertaioty and experimentation, and Bergemann
and Valiméki (2000) examine a multi-agent learning moddinaf sellers who compete with price and many
buyers who experiment with a new product with unknown gualit

Finally, in the context of real options decisions, the intpEaincertainty has been of particular interest in
the economics literature. The value function generallygaases in the uncertainty under conventional situa-
tions of real options (Dixit 1992). In a model of a firm whichshen option to enter and exit an industry, Dixit
(1989) obtains the comparative statics of the optimal estiy exit thresholds with respect to the uncertainty
(volatility) in the profit stream. Alvarez (2003) proves angeal comparative statics result for the optimal
policy and the optimal return with respect to the uncenjafot a class of optimal stopping problems which
often arise in economic decisions. Kwon (2010) shows thae¢rabedded option can result in non-trivial
comparative statics of the optimal policy with respect ® timcertainty. Kwon and Lippman (2010) examine
the impact of uncertainty on the time-to-decision. Whilesth papers address the effect of uncertainty on the
optimal policy and the optimal return in decision theoratiodels, our paper addresses the impact of the rate
of learning in a game setting. We report non-trivial resatising from thestrategic interaction between the

players

3 The Model

Consider a growth-oriented entrepreneurial firm, wheré emaployee plays a critical role in contributing to

the firm’'s profit. We assume that each employee generates imadépendently of the other employees, and



hence focus on the interaction between the entreprenenn) dind a single employee who was hired at time
t = 0. LetX denote the cumulative marginal profit contribution earngéiy employee from time 0 through

t. Thefirm’s cumulative profit is a stochastic process= {X; : t > 0} given by a Brownian motion:

X = pt+ 0B,

wherepis the drift (the expected profit per unit time earned by th@legee),o is the constant volatility, and
B= {B;:t > 0} is a Wiener process. For the duration of employmentfithepays the employee a fixed and
unalterable wags per unit time and a proportioh of the profit he generates. Moreover, we assume that the
firm and the employees are risk-neutral with a common discot&tira: O.

The magnitude of the drift represents the capability of the employee. The valygisunknown to both
the firm and the employee, but it is commonly known to be eithir a high-capability employee drfor a
low-capability employee; of coursi,> ¢. The constant volatilityo, on the other hand, represents the noise
level of the profit stream related to the nature of the job sk & hand: it is independent of the employee’s
capability. For example, if the employee’s job is to makejfrent sales to a known market, his capability to
make sales will be known after a short time, in which case #ieevofo is low. On the other hand, if the
job is to work on an R&D project or to create a new profit streaomfa novel product or service, the profit
stream is inherently more noisy and will mask the capabditthe employee, resulting in a high In fact,
the ratio(h—¢)/o has the meaning of thsignal-to-noise ratio (SNR)fahe observed performance of the
employee (Bolton and Harris 1999, Bergemann and ValimaRD20and we interpret it as tHearning rate
regarding the employee’s capability, with low (highorresponding to faster (slower) learning rate.

Let (Q,g,P) be the probability space on whichy, p, andB; are measurable. We lgt = {7 :t > 0}
denote the filtration generated by the observable cumaelatigfit procesX = {X; : t > 0}. The two players
have a common priopy = P({i = h}|#0), the initial probability that the employee is of high-capityp
Moreover, both players observé and update the common posterior probability denoted?by P({p =
h}|#:). From Bayes rule (Peskir and Shiryaev 2006, pp. 288-289%amalerive the following expression of

P, in terms of the observable process

B 1— po h—/¢ h+¢ -1
"= (“ o exp{‘?[“?‘m | M)




Note The time-evolution (stochastic differential equatiofPpis given by

h— ~
dR="_"R(1-R)dé.

where 8= (%~ ['Elsids) = Zix— [ (P (1- RS,

is a Wiener process constructed purely from the observableepsX (Liptser and Shiryayev, 1977). Note
that the speed of Bayesian updating is proportiondl(o- ¢)/c]R(1— R). For the sake of convenience,
we call the factorth — ¢) /o therate of learningalthough the actual speed of learning involves both factors

(h—¢)/oandR(1-R).

3.1 Real Options Game

Both the firm and the employee simultaneously observe andtapteir belief?, about the employee’s ca-
pability, and either player can unilateraligrminate the employment relati@ any point in time to seek an
outside option. If the firm believes that= ¢, it will dismiss the employee to avoid loss in profit and toabt
its outside optioru, which is the present value of the absence of the employee. olitside optioru can
include the expected net present value of hiring anotherd@me from the general pool of workers. The
employee can voluntarily quit to search for an outside aoptidiose compensation is higher theand the
proportionA € [0,1) of the profit that he generates. The employee’s outside mfgigiven by a random vari-
ableW, which represents the present value of the employee’snigeincome stream. The random variable

W is perfectly correlated with the employee’s capability:

wyh if p=h
w, if p=/2¢

with wy, > wy. This assumption is reasonable because a worker capaldatobeiting highly to a given firm’s
profit is likely to do the same for another firm’s profit in thersaindustry (e.g. Freeman 1977, Johnson 1978,
and Gonzalez and Shi 2010).

Each player’sstrategy is represented by a stopping tiatevhich the employment ierminated Let T;
denote the stopping time for playee {f,e} wherei = f for the firm andi = e for the employee. Given

the strategy profilS= (11,T1e) determined byt; andte, the stopping time of termination of employment is



Ts= Tt ATe. LetEP[:] = E[:|Py = p] denote the expected value conditional on the initial bé¥ef p. Then,

the expected payoff to the firm is

T T
Vi(pS) = Ep[/oS((l—A)u—S)e““dH/oScre—“tdBt+ue‘“TS],

L o (1 py] — S+ Ve g (P @

where gf(p)=U—1%A[ph+(l—p)€]+§ : (3)

and the firm’s objective is to find; that maximizes Eq. (2) given the employee’s strategySimilarly, the

payoff to the employee is

V(i = EP[[ (g i We e = >+ 2ph+ (1 p)] + EVle iR, (4

where ge(p) = <wh— %) +(1-p) <Wg — M) _3 , (5)

a a

and the employee’s objective is to fingthat maximizes Eq. (4) given the firm’s strategy

Defininga’ =a/(1—A), s =5/(1—A), w, = wy, — Ah/a, andw, = w; — A¢/a, and re-expressings (-)
andge(-) in terms of the primed parameters, one can remove the exgdéipendence afs(-) andge(-) onA.
Because the maximization problem depends only on the fomeg; (-) andge(-), we can take\ = 0 for the
remainder of the paper without loss of generality. Furth@amas we are interested in the regime of model
parameters in which the firm wants to dismiss the low-cajigldimployee and to retain the one who is of
high-capability, we assum@é —s)/a > u > (¢ —s)/a. Similarly, as the employee wants to quit only if he is

of high-capability, we assuma, > s/a > w;.

3.2 Best Responses

Because the posterior procelsis a Markov process ands(-) andge(-) do not depend on the calendar
time, it suffices to restrict our attention to stationary ktar strategies (Oksendal 2003, p.220). A stationary
policy can be represented by the thresholds with respe@t tBor example, the firm may have a stationary
policy of dismissing the employee whénfalls below a threshol@;. In other words, the firm terminates the

employment at the first exit time & from the set(6¢,1]. In general, the stopping timesfor i € { f,e} for



stationary policies can be expressedias inf{t > 0: R ¢ Ci} (the first exit time ofR from C;) for some
open set€; C [0,1]. Then the player’s objective is to find the open s€f that maximized/ (p;Cs,Ce) given
the opponent’s{i’'s) strategyC_;. As we will show below, this is equivalent to finding the opéinthresholds
with respect td?.
In order to obtairthe best response to the opponent’s strategyneed to utilize optimal stopping theory.

The most direct way to find the optimal solution is to congtaucandidate value functioh(p;Cs,Ce) which

is a return function to a candidate poli€y, and to verify that it satisfies a number of sufficient cormuait
as laid out by Theorem 10.4.1 of Oksendal (2003). One of timelitons stipulates that Vi (p;Cs,Ce) = 0

where is the characteristic differential operator fgr(Peskir and Shiryaev 2006) given by
_ 1/h=0\?, 242
:—G—FE (T) p (1— p) ap.

Here the term—a replaces the termd; from the time-dependent characteristic operator (Okder2@®3)
because the payoff from Markov strategies is time-invarexcept for the discount facter . The positive

fundamental solutions to the equatiarf (p) = 0 are given by

op) = pV(L-p)EtY,

W(p) = pY(L-ptY,

8aa?
(h—2)2"

where Y=4/1+ (6)

Note thate(-) is convex decreasing whil@(-) is convex increasing. Then the value functMip;Cs,Ce) is
given by a linear combination afi(-) andy(-). The following lemma provides the necessary conditions for

the best response.

Lemma 1l Suppose that there exists a best responséoG given strategy £ Then G = (65, 1] for some
8¢ which depends onL Similarly, suppose that there exists a best resporise® @ given strategy € Then

C: =[0,6¢) for someb which depends onC

Lemma 1 is intuitive and straightforward. The firm does nohtita dismiss a high-capability employee,
so it waits until the posterioR, is sufficiently low before dismissing him. Similarly, the ployee wants

to quit the job only if he is sufficiently optimistic about hispability, so he waits until the posteriBy is
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sufficiently high. The lemma enables us to characterize thgpgg timest; for i € {r,e} in terms of a pair

of threshold€; and6, as follows:

T = inf{t>0:R <6},

Te = inf{t>0:R >0¢}.

Thus, ifBe > B¢, then the interva(B,6e) is the region of continued employment. A higlarcorresponds

to earlier dismissal by the entrepreneur, and a lodyezorresponds to earlier quitting by the employee. For
simplicity of notation, from here on we let the strategy deo8be represented by a pair of thresho{@s, 6;)
instead of a pair of open sef€¢,Cc). The next two propositions establish one player’s bestoresp and

expected payoff given the other player’s strategy.

Proposition 1 Suppose the firm’s strategy is giventy

(1) If ge(B) < O, then the employee has a unique best resp@asehich satisfies botB; < 6. and the

equation
a1@(61) +aP(61) = ge(B1), @)
wnere 2 = Y00 (- 2) Y (w2 @
_0(Be) s\ y+1 - syy-1
&= [(W“_E>1—ee+(wk_a> ee}' ®)

The employee’s expected payoff is given by

s f 0.0,
Va(p;61.80) = o Ta@(p) +aw(p) for pe (6f,0) ' (10)

2 1+ 0e(p) otherwise

(i) If ge(Bf) > 0, then the best response of the employee is to quitimmegd{@tet 6¢), and \&(p; O¢,0e) =
s/a+ge(p) for all p € [0,1].

Proposition 2 Suppose the employee’s strategy is givefdy

11



(i) If g£(Be) < O, then the firm’s unique best resporyesatisfies botl®; < 8 and the equation

b1@(Be) +- b2 (6e) = 95 (Be), (11)
where h — LU(Z?/f) [<u+ S%h> 1V__E;Lf + <u+ %) %fl] ,

C.Ch s—h\ y+1 s—/\y-1
b, = 2y |:<U+T> 1—ef+<u+T>e—f:|

The firm’s expected payoff is given by

[ph+ (1 p)¢ — s+ bi1@(p) +bd(p) for p € (B¢,6e)
[ph+ (1—p)¢ —s|+9¢(p) otherwise

Vi (p;B+,6e) = (12)

Ql— Q-

(i) If g £ (Be) > 0, then the best response of the firm is to dismiss the employeediately §; > 6¢), and

Vi (p;05,0e) = 2 [ph+ (1— p)¢ — 9 +g¢(p) for all p € [0,1].

If the employee’s strategy is to never qU = 1), the model reduces to a decision-theoretic one where
only the firm has the option to dismiss the employee. From Exjtlie firm’s problem is to find the optimal
to maximizeEP[e"“Tg; (P;)]. The best response of the fifa is consistent with the optimal policy proposed
by Ryan and Lippman (2003). Similarly, & = 0, then only the employee has the option to quit, and the
employee’s problem is to findto maximizeEP[e~“"ge(P;)]. The best response of the employedsagain
consistent with the optimal policy that can be derived frogaiRand Lippman (2003). Hence, the solutions
to the decision-theoretic models are special cases of gi@pdons game model.

Next, we investigate the sensitivity of the best respdde the opponent’s stratedy ;.

Proposition 3 (i) The employee’s best resporfkgs non-increasing ;.

(ii) The firm’s best respongg is non-increasing irBe.

The proposition can be understood as follows.0{fis increased, then the dismissal of the employee
happens earlier. Because there is always a non-zero pliop#imt an employee is of low-capability, earlier
dismissal decreases the overall expected payoff to theogesl A decrease in the payoff induces the em-

ployee to quit and seek his outside option earlier. Thusnparease i decrease8e. Similarly, suppose that
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B¢ is increased. Then the employee quits earlier, which deescthe firm’s overall expected payoff because
there is always a non-zero probability that the employeélisgh-capability. A decrease in the payoff induces
the firm to dismiss the current employee earlier and seekitsde option earlier. Therefore, a decreas@gin
increases iM;.

In the game-theoretic model, the thresholds can be intexghras the level of threat of termination of
employment. A higher thresholg implies a higher likelihood of the employee’s dismissal.neke, we say
that the firm’s threat of dismissal is higher whénis higher. Likewise, a lower thresho@} implies a higher
likelihood of the employee’s quitting, and hence we say thatemployee’s threat of quitting is higher when

B¢ is lower. Thus, by Proposition 3, a player’s threat incredasehe opponent’s threat.

3.3 Markov Perfect Equilibrium of the Real Options Game

We now obtain the MPE strategies and profits for the real aptggame model. We limit ourselves to MPEs
because we want to focus on strategies that depend only acuthent value of the posterior and that are
subgame perfect. The necessary condition for an MPE is lleagquilibrium strategie8s and6, are best
responses to each other. According to the strategy profilBsopositions 1-2, there can be multiple MPEs.
In particular, the strategy profil®¢, 6e) with 8¢ = 1 andBe = 0 is always an MPE, and it leads to immediate
termination of employment. We call an equilibrium stratgugfile (63,0¢) degeneratef 87 > 65. Here we
are interested in delineating the conditions under whiehnglexists an MPE that i®on-degeneratd.e. one

that satisfie®; > 67.

Proposition 4 (i) Suppose the inequality

(s—wm) (h—s—ua) o1 (13)
Wha — S ua +s—/¢

holds. Then, there exists an MPE with a strategy prafifg ;) that satisfie®} < ;5. Moreover, a unique

Pareto-dominant MPE exists, and it is characterized by tighdst ratio8; /67 of the two thresholds among

all MPEs.

(i) If (w) (h=s-W) js sufficiently small, an MPE strategy profile;, 6;) satisfyingd; < 6; does not

Wha—S uo+s—/

exist.

13



The inequality (13) can be intuitively understood. The ntater of the ratio(s— w,a)/(wha — S) cor-
responds to the employee’s loss from quitting when he is adapability employee while the denomina-
tor corresponds to his gain from quitting when he is a highabélity employee. Hence, a larger value of
(s—wpa)/(wha — s) signifies greater loss than gain from quitting, which indutiee employee to quit later,
i.e. the threshold. is higher. Similarly, the numerator of the ratib — s— ua)/(ua +s— ¢) corresponds
to the firm’s loss when dismissing a high-capability emptoyéile the denominator corresponds to its gain
when dismissing a low-capability employee. Hence if theorét— s— ua)/(ua +s— /) is larger, the firm
has the incentive to dismiss the employee later, i.e. thestiwidd; is lower.

While non-uniqueness of equilibria in economic games isroomplace, we conjecture, based upon ex-
tensive numerical study, that the non-degenerate MPE gueni the inequality (13) is satisfied. (See the
comment in the proof of Proposition 4 in Appendix.) Even ifraque non-degenerate MPE does not exist,
the inequality (13) also guarantees a unique Pareto-dainMRE that is non-degenerate. In contrast, if the
left-hand-side of the inequality (13) is sufficiently smdfien the only MPE is the degenerate MPE in which

both players terminate the employment (dismiss or quit) édiately.

4 The Impact of Noise Level

In this section, restricting our attention to the uniqueeRadominant MPE, we investigate the impact of the
rate of learning on the MPE strategies and payoffs. In paeticletting03, 6, V¢, andVy denote the MPE
thresholds of the firm and the employee and the MPE payoffsaditm and the employee respectively, we
examine the comparative statics @&f, 65, Vi andVy" with respect too, and we compare and contrast the
results with those of conventional real options problem$enmcomplete information.

As a benchmark, we consider the decision-theoretic modried in the comments that follow Propo-
sition 2. The decision-theoretic model exhibits the follogvthree characteristics regarding the noise level
(1) the payoff functiorV (p) decreases io, (2) 6 decreases i while 8; increases i, and (3) in the limit
of small values ofy, 6, approaches 1 whil&; approaches 0. These characteristics are typical of re@mlrgpt
problems under incomplete information (see Bolton and isld999, Bergemann and Valimaki 2000, Ryan
and Lippman 2003 and Kwon and Lippman 2010). The three ctaistics can be explained as follows.
First, as shown by Bolton and Harris (1999) and BergemanrVaitichaki (2000),(h— ¢) /o has the meaning

of the signal-to-noise ratio (SNR)fdhe observed performance of the employee, and it is intéggras the
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rate of learning about the employee’s capability. Thudjeffirm is able to discern the employee’s capability
quicker (which happens with low), then its payoff is higher. Moreover, if the payoff is highien the value
of waiting is also higher, resulting in the expansion of toatinued employment regiorHence, the upper
thresholdde decreases i while the lower threshol@; increases iw. Finally, in the limit of small values of
0, because the learning rate is extremely high, the firm canaqickly learn about the employee’s capability.
Hence, it makes sense for both players to impose a very strirggiterion for an action, i.e., to wait uni}
reaches a value very close to 1 or O.

For the remainder of this section, we examine the limits cdlsand large values of the noise lexebnd

derive analytical results and insights on the MPE strategie profits.

4.1 Small Noise Levels

The noise leveb is small when the outcomes of employee’s tasks are relgtimeddictable (e.g. sales in
known markets). In the following Proposition, we establisé uniqueness of a non-degenerate MPE wdhen

is sufficiently small and characterize the smalbehaviors of the thresholds.

Proposition 5 Suppose the inequality (13) holds. Then, in the smdifit, there exists a unique non-

degenerate MPE with a strategy profilé;,6;) which satisfie®; 1 69 < 1 and®; | 69 > 0aso — 0.

The proposition states that, in the smallimit, 6; decreases iw while 8} increases iro. In contrast
to the characteristics of the decision-theoretic modedsudised in the beginning of this section, we obtain
0; — 60 # 1 and®; — 69 £ 0 aso — 0. This is due to the strategic interaction between the firchtae
employee. For instance, 8 were set to strictly 0, the6; would converge to 1 in the limir — O; similarly,
if B were set to strictly 1, theB; would converge to 0 in the limi — 0. In light of Proposition 3, due to
the presence of mutual threat of employment terminatioth ptayers’ expected payoffs (values of waiting
before termination) are diminished, and both are induceddrtainate earlier. Hence, the MPE thresholds do
not converge to extreme values (0 or 1) evewwas O.

Next, we inspect the comparative statics of the MPE payffp) = Ve(p; 07, 05) andV (p) = Vi (p; 6% ,05)

with respect ta.

Proposition 6 For all p € (69,69), the MPE payoffs ¥(p) and V' (p) increase ina for sufficiently small

values ofo.
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Proposition 6 is in stark contrast to conventional resultsnf decision-theoretic real options models under
incomplete information. Intuitively, one would expect thiae noiseo is always detrimental to the expected
payoff. The counterintuitive result of Proposition 6 is egaconsequence of the strategic interaction between
the firm and the employee. When the employee’s capabilitpégdain, the noise in the performance delays
both the firm and the employees’ termination decision. Sjgadly, an increase i will delay the firm’s
decision to dismiss the employee due to its slow learnirgaatl hence the payoff to the employee increases;
see the discussions on time-to-decision in Kwon and Lipp(28t0). Likewise, an increase mwill delay

the employee’s quitting decision due to his slow learnirig eamd hence the payoff to the firm also increases. In
other words, having more performance noise prolongs théoyment relationship which could be potentially
favorable. Of course, the players do not know which one #gtbanefits from the prolonged employment
when the employee’s capability is highly uncertain. Ndveldss, the expected returns to both players increase
when the employment is prolonged because they can avoidotaside risk by terminating the relation at

their choice.

4.2 Large Noise Levels

The noise leveb is large when the outcomes of employee’s tasks are rehativgbredictable (e.g. R&D
or new product development). In the next proposition, werattarize the large- behaviors of the MPE

strategies.

Proposition 7 In the largeeo limit, 85 | 67 and 67 1 67 aso — o, whereBg = (s/a —w;)/(wh — W) and

T =(ua+s—1)/(h—2).

Note that both players continue the employment relatidh & (87,6 ) even in the limito — c. If 0 is very
large, then the rate of learning is extremely slow, and thevemence of; to either threshold would take a
very long time. Hence, the decisions of both players are raadiethe belief will never be updated. It follows
that the players will either almost immediately termindite €mployment or wait for a very long time before
taking an action. For example, i € (67,6g ), thenge(R) < 0 andgs (R) < 0, and therefore neither player
has an incentive to terminate the employment relationshipediately.

Next, we investigate the comparative statics of the MPE fiayath respect ta.
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Proposition 8 Suppose [ (67,65 ) and let

/6267

/0567 +\J1-0g)(1-67)

p

In the limito — oo,
(i) Ve (p) ts/afor p< pand\¢(p) | s/afor p> p;
(i) V¢ (p) T [ph+(1—p)f —¢|/afor p> pand \f(p) | [ph+ (1 — p)¢ —s|/a for p < p.

The limiting values of the payoff functiong (p) andV; (p) can be explained as follows. Supp®%és within
the interval(67,6g ). Then the procesg will take a very long time to exit the regiai®;, 67) in the limito —
oo (Kwon and Lippman, 2010). Hence, due to discountWigy,p) — s/a andV;(p) — [ph+ (1— p)¢—9g/a.

We also note that the direction of convergence of the payoittions depends on the value pf If
p e (p.6y), thenVy (p) decreases iw becauses slows down the desired confirmation that he is of high-
capability. Ifp € (67, p], then an increase ia is good for the employee because it delays the firm'’s decision
to dismiss him, sd/(p) increases iro. Similarly, if p € [p,6g), thenV{(p) increases iro because an
increase iro delays the employee’s decision taig If p € (67, ), then an increase ia delays the desired

confirmation that the employee is of low-capability,\§q p) decreases ig.

4.3 Summary and Discussion

In subsections 4.1 and 4.2, we find that, for certain valugs, @h increase it increases the payoffs. We
also find that both payoff functions decreasaifor sufficiently small values op and for sufficiently large
values ofp. For a numerical illustration of the-dependence of the payoff functions, see Figures 1 and 2.
The figures illustrate that the payoffs increasasimhen p is far from both thresholds (as explained at
the end of Sec. 4.1) and decreaseiwhenp is close to either threshold. Tleedependence df; (p) and
V{(p) for p close toB; and 6} has the following explanation. In decision-theoretic repfions problems
under incomplete information, an increaseislows down the learning rate and decreases the value fanctio
The same intuition applies ¥ (p) whenp is close to9; so thatv; (p) decreases io whenp is close tod;.
It follows that8; decreases io. A decrease i®; adversely affects the payoff to the firmpfis close toB;,
soV{(p) also decreases mfor p close toB;. A similar argument explains why;' (p) andV{ (p) decrease in

o whenpis close to;.
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In summary, the comparative statics of the payoffs deperubtimthe magnitude a¥ and the value op.

From Propositions 5, 6, 7, and 8, we obtain the following ltesu

Theorem 1 (i) If p € (89,67] U [62,69), then the MPE payoffs increase infor sufficiently smallo and
decrease iro for sufficiently largeo.

(i) Suppose p= (67, p), wherep is given by Proposition 8. Then the MPE payoffs increase for
sufficiently smalb. In the largee limit, Vg (p) increases iro while V{' (p) decreases iw.

(iii) Suppose p= (p,6g) . Then the MPE payoffs increase anfor sufficiently smalb. In the largee

limit, V' (p) decreases iw while Vf (p) increases iro.

The non-trivial comparative statics of the payoffs reflatts convex-concave-convex property of the
payoff functionsVg (p) andV{ (p). Alvarez (2003) proves that the value function of a real apsiproblem
monotonically increases in the volatility of the undertyiasset if the value function is convex. Because
the payoff function of our model is not purely convex or corgdts comparative statics has non-monotone

dependence oa.

5 Conclusions

In this paper, we examine a game between an entrepreneunibifid its employee, who simultaneously
learn about the employee’s capability. The firm observegthployee’s performance to identify and dismiss
a low-capability employee while a high-capability empleyseeks to leave the firm in search of higher com-
pensation. Our goal is to shed light on the firm’s job assigmnpelicy when an employee’s capability is
highly uncertain.

We find that the firm’s optimal policy is to dismiss the empleyehen the belief that the employee is of
high-capability falls below a lower threshold while the dayge’s optimal policy is to quit when that belief
exceeds an upper threshold. The mutual threat of termmatie@mployment tends to induce each player
to terminate the employment relation earlier. We obtainuhigue Pareto-dominant MPE and investigate
the impact of the learning rate on the equilibrium strategiad profits. We find that, in stark contrast to
the conventional real options models under incompleterinédion, the payoffs to both the firm and the
employee can decrease in the learning rate. This is becawse learning rate helps to prolong the duration
of an employment relation, and consequently it increaseghince for the both players to take advantage of

the opponent while retaining the option to unilaterallyrerate the employment at any point in time.
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Our main result (Theorem 1) provides practical and yet amtuitive managerial insights for en-
trepreneurial firms in their high growth phase: firms shoudat@ employees with highly uncertain capabilities
in tasks with noisy outcomes (high) to reduce the mutual learning rate.

While our model is motivated by the strategic interactiamside entrepreneurial firms, our findings can
be extended to other situations in which the following keynponents exists: (i) partnership (employment)
can be beneficial, (ii) mutual learning about the contrinutiand (iii) conflicting incentives to terminate the

agreement.
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Appendix

Proof of Lemma 1. We first consider the firm’s best response. We note that

a9¢(p) = —ags(p) -

Becauseg;(-) is a decreasing function and because of the inequaliliess)/a > u > (¢ —s)/a, there is

y € (0,1) such thatags (p) > O for p>yandags(p) < 0 for p<y. By the argument of Oksendal (2003), p.
215, the best response of the firm must contgi] and cannot have a component disconnected frpij.
Thus, the best response (B, 1] for someBs < y which depends of.. Using an analogous argument, we
can show that the employee’s best respon$@, 8 ) for somef, which depends of;. |
Proof of Proposition 1. To prove this Proposition, we solve the optimal stoppingetiproblem of the
employee to obtain sngp[e*O‘Terge(PTem)]. Let's assume thdds < 8. Under the firm’s strateg¥s,
the domain of the employee’s value function is restrictedd{ol]. To prove the existence of the best re-
sponse, we only need to firii and the solutionf () to 4 f(p) = 0 for p € (8,6¢) which is continuous in
[6¢,1] and which satisfies the smooth-pasting conditfé{®e) = g,(8e). The solutionf(-) also has to sat-
isfy f(p) > ge(p) for all p € [B¢,1], f(61) = ge(Bf), anda f(p) < O for all p € (B¢, 1]. In the end,f(p) is
identified as sup EP[e """ ge(Pr 11, )] (See Oksendal 2003, Theorem 10.4.1.).

Froma f(p) = 0 for p € (B+,6) and the continuityf (-) must have the following form:

a1 @(p) +aY(p) for pe [Bf,6
Ge(P) for pe {6} U[6e,1]

f(p) =

for some coefficientsy anday. The coefficientsy anday, are determined by the conditiori$Be) = ge(6e)
and f'(8e) = g.(6e), and they are given by Eqgs. (8) and (9). Equation (7) is ddrivem the condition
f(81) = ge(61).

We first establish that a unique soluti@a to Eq. (7) exists ifge(65) < 0. Definefs = 6¢/(1—65),
Be=6e/(1—6¢), andn = Be/Bs. Note thatBs (Be) is strictly increasing i (6¢) and that) > 1 if 67 < ..

From Eqg. (7) we obtain the following equation fipr

s/a—w, _j(n.y)
(Wh—s/a)Bs  j(n~Ly)

(14)
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where  j(n,y) =nYY2(y—1) 4+ n- D2y 1) 2y (15)

It is straightforward to prove thg{n,y) takes a minimum value of O gt= 1 and is strictly positive fon # 1.

Since we are interested in> 1, j(n,y) and j(n~1,y) are strictly positive. Let

m(n,y) = j gr(]n,&)‘ (16)

After some algebra, we obtain

onm(n,y) = [ -1 (Y2 = V22 —n V2 _ynY2—n-1/2).

[in"LyPn
It is straightforward to prove thay¥/? —n—Y/2 —y(nY/?2 —n~%2) > 0 for all n > 1 andy > 1 because its
derivative with respect tq is strictly positive forn > 1. It follows thato,m(n,y) > 0 for alln > 1 and
y> 1. We also note thaj(n,y)/j(n"%,y) — 1 in the limitn | 1 andj(n,y)/j(n"t,y) — o in the limit
n — o. Hence,j(n,y)/j(n~t,y) monotonically increases in if n > 1, and it can take any value {1, ).
We conclude that there is a unique valuenof (1,) which satisfies Eq. (14) giver, w,, wy, ands/a as
long as(wfﬂ_% > 1, which is equivalent to the conditiar(6¢) < 0.

We observe thdd; < B can be satisfied only de(6) < 0. If ge(85) > 0, then there is no solution > 1
that satisfies Eq. (14). Thus, the employee’s best respsrisgjuit immediately. This proves statement (ii).

Next, we provef(p) > ge(p). We first inspect the sign af; anda,. Suppose that botl; anda, have
the same sign, either positive or negative. Sipce andy(-) are both convexf (p) = a1 @(p) + axP(p) is
either strictly convex or strictly concave, and it canndéeisect with a linear functioge(p) twice (atBe and
B¢) if /(Be) = gi(Be) is satisfied. Hences; anda, must have opposite signs.df > 0 anda, < 0, thenf (+)
is monotonically decreasing, which contradicts the coowlif (81) = ge(6¢) < ge(Be) = f(Be). Thus,a; <0
anday > 0.

Sincef(-) cannot be strictly convex or concave in the interf@gl, 6], f(-) must be concave-convex from
the functional form ofp(-) andy(-), i.e., f(p) must be concave fop < p; and convex forp > p; for some
inflection pointp, € (8¢,06¢). It follows that f (p) — ge(p) is concave-convex which vanishespat {6+, 0¢}
with a vanishing first derivative gb = 8. The only way this is possible is if'(p) — g.(p) is positive at

B¢, turns negative once somewhere in the intef@al 6c), and approaches zero as— 6e. It follows that

f(p) = ge(p) for all p € [65,1].
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Now we confirm the inequalityz f (p) < 0 for p € (8¢, 1]. Becausez f(p) = 0 for p € (8, 6¢), we only
need to check the intervae, 1]. Fromaf(p) =0 andd%f(p) > 0 for p 1 Be, we find thatf(6e) > 0 or
0e(Be) > 0. That implies thatzge(p) = —age(p) < O for p > B¢ sincege(+) is increasing. This proves that
the solutionBe to Eq. (7) is the best response threshold. |
Proof of Proposition 2. Proof is analogous to Proof of Propositibn |
Proof of Proposition 3. Suppose that the given thresh@gdof the firm increases. This implies that the firm
will dismiss the employee earlier even if the employee wdiklel to stay. Letd; > 8; andts =inf{t > 0:

R <6¢}, T =inf{t >0:R < 6;}. Becausat > 1}, the employee’s optimal expected gain from stopping

satisfies the following:

SUPEP[e " ge(Prar, )] = sup EP[e 'ge(Pr)] > sup EP[e %ge(Py)] :supEp[e’“W/fge(Pw/f)].

>0 0<t<t¢ 0<t<t} >0
Hence, the payoff to the employee decrease;inlf the payoff f(p) to the employee decreases, then the
best response upper thresh@lddecreases becauf@y,6,) is identified as{p: f(p) > ge(p)}. This proves
thatB, decreases ifi;. We can use a similar argument to prove thatlso decreases . [ |
Proof of Proposition 4.
(i) Suppose9e and6¢ are best responses to each other. Then they must satisfyl&q.Similarly, from Eq.

(11) which is the condition thdi; is the best response @, the following condition has to be satisfied:

h—s—ua), _ iy
(erest) o= Ty 0

wherej(n,y) is given by Eq. (15).

The threshold$e and6; are completely determined if and onlyif = 6./(1— 6¢) andPs = 07 /(1—6¢)
are determined. Hence, it suffices to determine the valuBgiefandn = Be/B+. From the ratio of Egs. (14)
to (17), the value oBcB+ is given by

(s—wm) (ua+s—€> — BeBr. (18)

WhO — S h—s—ua

There is a value o8¢+ € (0,) which satisfies this equation because the left-hand-sidessive. Next, by
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multiplying Egs. (14) and (17), we obtain

S—w,a h—s—ua)
(whcx—s> (ua+s—€> =k, (19)
where the right-hand-side
(0 v)zé{ i(n.y) r (20)
on LiinThy)

takes the value of 1 in the limif | 1 and in the limitn — c. Hence, there exists at least one valug of 1
which satisfies this equation as long as the left-hand-sidterger than 1.

[Note: Equation (13) is actually a necessary and sufficiemdition for an MPE withB¢ < 6 if the
functionk(n,y) is strictly larger than 1 for allj > 1 andy > 1. Our numerical study indicates thdi,y) is
larger than 1 for all values of € (1,100) andy € (1,100), so we speculate that Eq. (13) is a necessary and
sufficient condition for an MPE witl®; < 8.. Moreover, the same numerical study shows #{aty) is a
strictly increasing function ofi. From the apparent monotonicity kf-,y), we further speculate that there is
a unique value of that satisfies Eq. (19) and that the MPE is unique.]

Next, note that there are a finite number of valueg afhich satisfy Eq. (19) because the functidm,y)
is continuously differentiable ark{n,y) — o in the limitn — c. Thus, there are a finite number of MPEs.
Let n be the total number of MPEs, and &t= (6,;,6¢i) denote théth MPE strategy profile with the firm’s
thresholdd;; and the employee’s thresholi;. In particular, we index§ in such a way tha6e; > 6g; if
i < J. ThenB;1 < 6;2 must be true because the firm’'s best respdhismust decrease in the strate@y of
the employee by Propositions 1 and 2. Her}g,< 6,2 < 8e2 < B¢1 must be satisfied. From the proof of
Proposition 1, we note that(p; 6r2,0e2) < Ve(p; 6 1,6¢2) becausd, , > 6; 1. By the property of MPEs, we

have

Ve(P;S2) = Ve(P;6r,2,0e2) < Ve(P;6r1,6e2) <Ve(P;6r1,6e1) = Ve(p;S1) -

Similarly, we can show thats (p;S) < Vi (p;S1). We can repeat the same argument foii &kétween 2 and
n and conclude tha¥e(p;S1) > Ve(p;S) andVi(p;S1) > Vi(p;S). Thus, S, which has the highest ratio
Bei/6r,, is the Pareto-dominant MPE.

(i) From Eq. (19) and the fact thg(n,y) is strictly positive forn > 1, we know thak(n,y) is strictly
positive. Also, because lignk(n,y) = 1 and limy_.. k(n,y) = o, there exists inf.1k(n,y) = c € (0,1].
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Hence, if(32%) (55 < c, then Eq. (13) cannot be satisfied by any valug of 1. |
Proof of Proposition 5. Sincey | 1 aso — 0, it suffices to study the limits of small values®f& y— 1. We
note that

i(n,148) = (x—1—Inx)6+%(|nx)(x—1+%Inx)62+0(63)

in the limit ® — 0. Hence, Eqg. (19) reduces to

(s—wm> (h—s—ua>: (n—1-1Inn)? +0(3).

Who —s/ \ ua+s—/¢ nn~1—1+Inn)2

Let
(n—1—1Inn)?
k = .
") nin-t—1+Inn)2

We note that lim—1k(n) = 1 and limy_.. k(n) = . Hence, if(\j,;(‘;"ﬁ";)(ﬂgi‘sﬂj) > 1, there exists a finite value

of n € (1,) which satisfies Eq. (19) in the limit — 0. It means tha®; 4 1 and6; /4 0 in the limito — 0.

Now we prove that there is a uniqgue MPE in the snaalimit by showing thatk(n) is strictly increasing

for n > 1. We note that

dkin) = (n—1-1Inn)
dn ~ @-ninhnpet

wherek;(n) = n(Inn)2+(n? - 1)Inn — 3n2+6n — 3. We note thak; (1) = 0 and that its first and second
derivatives vanishes &@t= 1, and its third derivative is zero gt= 1 but strictly positive fom > 1. Conse-
quently,d®k; /dn?, dk; /dn, andky (n) are all strictly positive and increasing fgr> 1. It follows thatk(n) is
strictly increasing for alh > 1.

Next, we prove tha6; decreases io while 87 increases iro by showing than* decreases iw in the

small-o limit. To do so, we simply need to show ljm;+ dym(n*,y) > 0 and use the expression

dn* <2m(n*,v)> oym(n*,y)
= , 21
dy n* ank(n*,y) )
which is derived by applying the implicit function theoremBq. (19), since we already know thtd(n) /dn >

0. After some algebra,
(h—1—Inn)ninn

y'LT+avm(ﬂ7V)= (I—n+ninn)? my(n),
2 1 2 2
where m(n)=-2(n-1) +§(n —1)Inn+n(Inn)“.
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We note thatm (1) = 0, and its first and second derivatives vanisheg-atl and its third derivative is strictly
positive forn > 1 from the property ofy2 — 2nInn — 1. Consequentlyd?m;/dn?, dmy /dn, andmy(n) are
all increasing and strictly positive fay > 1. It follows that lim,_,;+ 0ym(n,y) > 0 for all n > 1. Therefore,
dn*/do < 0 is true, and; decreases i while 8% increases i from Eq. (18). |
Proof of Proposition 6. Let 8% (o) and6;(o) denote the MPE thresholds when the volatilityisSimilarly,
let Vg (p;0) andV{ (p; o) denote the MPE payoffs when the volatilityds For p € (87(0),0;(0)), we study
the limiting values ling_,o Vg (p; 0) and lims_,oV{ (p; 0). From Eq. (10),

. S
Ve (Pr0) = — +219(p) +a2u(p)
wherea; anda, are given by Egs. (8) and (9). For small valuewof
S
a1¢(p) +aW(p) = P+ (1— p)w; — —+0(0%) = Ge(p) + O(c?)..

Hence, limy_,oVe (p;0) = s/ + ge(p). However,Vg (p;0) > s/a + ge(p) for o > 0 by the property of the

best response of the employee. Thus, we conclude
Ve (p;o) > lim Vi (p;0).
0—0
Using the same procedure, we can show that
Vi (p;o) > lim V{(p;0).
o0—0

These inequalities imply that (p; o) andV{ (p; o) decrease as — 0 for p € (83 (0),6¢(0)). [
Proof of Proposition 7. In the largey limit, we find that

mn,y)=n+0(y ),  kn,yy=n+0(y™.

From Egs. (17) and (18), we find thgg = 65/(1— 6;) andf; = 65 /(1— 67) are given by

« _ S—Wa 1 ., ua+s—/ 1
Be_wha—s oy ), B =t e Oy ).

So we obtairB; — By, B; — BT, 6; — 62 and6; — 67. TheO(y 1) terms can be obtained directly from
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Egs. (7) and (11):

20e(67)\/P% o\ V2
AR S (B—> +ol(B3/B7) V), 22)
v (wh —s/a), /07 (1—67) \ P
eyl 201(87),/B7 B2\ L e e 2
By = Bf(v+1)+(u+s/0(—h/0() G100 \ b7 +o((Be /BY) ). (23)
Hence 65 | (s/a—w)/(Wh — W) andB} 1 (ua +s—¢)/(h—{) asy — . [ |

Proof of Proposition 8. To prove this Proposition, we need to inspect the lardpehaviors ofa;@(p) +
axW(p) andby@(p) + bow(p) [see Propositions 1 and 2 for Egs. (10) and (12)]. We insert(£2) into Egs.

(8) and (9) to obtain the following:

oo age PR (pa-p\ " N (pa-p)
10P) = G0 [ gmimey |~ p + o ;

S PR/ B\ B )"
2Y(p) = 2 —w) <p/( )) e (p/(l—p)> '

a Bz y\p/(1-p
Note that%%p) >1 and% > 1 becaus®f < p < 0g. Botha;¢(p) andaxy(p) converge to zero as

y — o, buta;@(p) converges to zero more slowly thapy(p) if and only if p/(1—p) <, /BsBF. Hence,
a1@(p) +ax(p) 10 for p/(1—p) < ,/BsBT anday@(p) +aP(p) | O for p/(1—p) > /BB because
a10(p) < 0 < axW(p). Following an analogous procedure and using Eqg. (23), weshaw thatb; @(p) +

bay(p) 10 for p/(1—p) > /BB andbip(p) + baw(p) 4 O for p/(1—p) <, /BERT- u
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Figure 2:V{(p) for 0 =0.1, 5, 10, 30 whex =1,h=6,/=3,s=3,wy =4,w,; =1, andu = 1.
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