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Provenance refers to the past processes that brought about a given (version of an) object, item or
entity. By knowing the provenance of data, users can often better understand, trust, reproduce,
and validate it. A provenance-aware application has the functionality to answer questions regard-
ing the provenance of the data it produces, by using documentation of past processes. PrIMe is a
software engineering technique for adapting application designs to enable them to interact with a
provenance middleware layer, thereby making them provenance-aware. In this article, we specify
the steps involved in applying PrIMe, analyse its effectiveness, and illustrate its use with two case
studies, in bioinformatics and medicine.

Categories and Subject Descriptors: D2.10 [Software Engineering]: Design; D2.2 [Software Engineering]:
Tools and Techniques; H1 [Information Systems]: Models and Principles

General Terms: Design

Additional Key Words and Phrases: Provenance, Methodology

1. INTRODUCTION

Often, the claims made about a given entity can be verified by simple observation, or mea-
surement. However, claims may also refer to the history (or pedigree or lineage) of such
entities. Verifying such history-dependent claims involves understanding the provenance
of the entity, where this is understood as the documented record of past events, actions
or processes as they refer to and affect the entity in question. Given such a documented
history, claims about the entity can be verified or corroborated by asking questions about
the objects’s provenance — referred to in this document as provenance questions. Entities
that do not have a trusted, proven history, i.e. a record of their provenance, may be treated
with some scepticism by those who study and view them. This same concept of prove-
nance, although usually referred to in the context of physical objects, such as works of art
or manufacturing [Kloss and Schreiber 2006], may also be applied to data and informa-
tion generated within computer applications. Knowing the provenance of data enables its
consumers to be more confident of its validity and fitness-for-purpose, and provides under-
standing of how the data came to be as it is, thus creating confidence that the application
containing and using the data is performing as expected.

In general, understanding the provenance of data involves documenting the processes
that led to that data [Groth et al. 2006]. Provenance-aware applications produce such doc-
umentation about their processes as they execute, which later allows users to ask prove-
nance questions to obtain all or part of the data’s provenance. Some examples of gen-
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eralised, non application-specific provenance questions are: “what was the process that
produced a given piece of data?”, “Two processes, thought to be performing the same
steps on the same inputs, have been run and produced different data. Was this difference
caused by a change in the inputs, the steps making up the process or the configuration of
the process?”, “Did the process that produced this data use the correct types of information
at each stage?” or “Did the process that produced this data follow the original plan?”

Answering these queries involves analysing the provenance of the data item(s) of con-
cern by examining documentation on the processes that produced it. Such documentation
is called process documentation and is comprised of a set of assertions about processes.
One difficulty that remains is to ensure that the right kind of process documentation is
captured so provenance questions can be answered.

This article presents PrIMe, a software engineering technique for making applications
provenance-aware, i.e. for identifying what documentation is needed to answer provenance
questions, analysing application designs to determine at what points process documenta-
tion will be recorded, and adapting application designs to produce process documentation.
It requires the developers to consult the users of the application in order to understand what
kind of provenance is required, and at what level, and provides a general approach not tied
to any particular application domain or technology and can be used to adapt already exist-
ing applications or used during the development of new applications.

In the remainder of this document, PrIMe and how it can be applied to computational
systems is described in detail. The following structure is followed. In the next section,
we describe the motivations behind our development of a specific technique for adapting
applications to be provenance-aware and, in Section 3, PrIMe is introduced and we outline
the assumptions adopted by PrIMe as well as its overall structure. In Section 4, an example
application from bioinformatics is introduced in order to ground the subsequent discussion
and explanation. The data model in which process documentation is stored is specified
in Section 5. In Section 6, the process for identifying provenance questions is described.
Section 7 then describes how to decompose applications and how to map out the flow of
information within them. Section 8 goes on to describe different kinds of adaptations that
can be made to applications in order to facilitate the recording of process documentation. In
order to assess the benefit of our new approach, we perform a comparison with an existing,
aspect-oriented approach in Section 9, and a more general assessment of PrIMe is given in
Section 10. Section 11 discusses some related work and, finally, Section 12 offers some
concluding remarks and discusses future work.

The work described in this article was undertaken in the context of a major research
investigation on provenance, which resulted in a novel approach to provenance that it is
not constrained to a single technology or application domain: instead, this provenance
vision and its software realisation are independent of execution environments, and thus
allows the provenance of electronic data to be found even though it may be produced by
multiple, distributed programs implemented using different technologies [Moreau et al.
2008]. This technology-independent design and its implementation was rolled-out to mul-
tiple applications bringing very different requirements: bioinformatics [Groth et al. 2005;
Wong et al. 2005], aerospace engineering, medical domains such as Organ Transplant Man-
agement [Moreau et al. 2008] and functional magnetic resonance imaging [Moreau et al.
2007]. These wide-ranging applications have led an extensive requirement capture [Miles
et al. 2007], comprising well over 30 different use cases related to Provenance, followed
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by a provenance model [Groth et al. 2008], a provenance recording protocol [Groth and
Moreau 2008], a provenance architecture that met applications’ needs [Groth et al. 2006],
and an open specification, based on Web services technology [Miles et al. 2006].

This article extends and gives a more detailed analysis of a preliminary discussion of
PrIMe presented at the Sixth International Software Engineering and Middleware Work-
shop 2006 [Munroe et al. 2006]. Specifically, in this paper, we expand upon the key steps
of the methodological approach, we discuss their novelty in the context of alternative ap-
proaches, we apply them to two applications, which allows us to develop an analysis of the
effectiveness of PrIMe.

2. MOTIVATION

We undertook a study of provenance-related requirements in a range of science-based ap-
plications [Miles et al. 2007], and it is helpful to draw examples from these to understand
the motivation for specialised techniques for engineering provenance-awareness. First, we
can note that provenance questions, by their nature, concern processes potentially a long
time after they have occurred. For instance, a team of biologists performing experiments to
identify proteins in samples presented the following case. When conducting a new experi-
ment, they wished to re-use machine settings (voltage etc.) for successful past experiments
of a similar kind. Given that the success or otherwise of identifying a protein was based
on several experiments, the connection between the final result and the initial settings used
in experiments is not straightforward to capture and, without having considered the issue
in advance, the biologists were not capturing these connections at the time of running the
experiment. A long enough period, in which machine settings would be changed multiple
times, would elapse between experiments so the biologists could not fulfil the use case.

One reason that ensuring provenance-awareness is non-trivial is that past processes may
be remote and independent from the user asking the provenance question. For example,
the Atlas experiment at CERN will produce (and has been simulating the production of)
vast amounts of data from high-energy particle collisions. Scientists around the world
use this data but, due to the size and breadth of the data, it must be filtered, annotated
and otherwise pre-processed centrally before it can be used for analyses. The provenance
of the particle collision data is important for the physicists to understand how the data
they receive has been pre-processed. In particular, a physicist may not wish to rely on
data processed using a given library that they believe to have bugs [Branco and Moreau
2006]. In this distributed application, the provenance questions concern (at least in part)
remote, independent processes which must have been adequately documented centrally for
the remote scientist to receive an answer.

Issues of trust and reliability can add to the difficulties in obtaining suitable answers to
provenance questions. For example, we discussed, with bioinformaticians, a case in which
a biologist attempts to patent a new drug. As part of the check on this application, reviewers
ensure that the experiments determining the drug’s potential function was not discovered
using any databases that are free only for non-commercial use. Where the documentation
about the experiment process exists but can be modified by the scientist, its reliability may
be called into question. Ideally, the reviewers would wish to see the accounts of both
scientist and databases regarding the experiment process. To connect the records in such
a way that the relevant provenance questions can be answered is, again, non-trivial, and
guidance in the form of an engineering technique can be usefully applied.
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Finally, we have to consider what is recorded about a process. There are a potentially
large number of factors that can influence some processes, even in a purely software-based
process (concurrently running processes, faults that have occurred, the full contents of a
database etc.) Any of this data could be the subject of a provenance question but not all
of it can be recorded. We need a principled way of setting out what should be captured
and what should not. The results of this analysis will necessarily be highly dependent on
the application, and on the users influencing the design process, but it is still valuable to
provide generic guidance for how to relate provenance-related requirements to the data
about a process included or excluded for capture.

In summary, from our analysis of provenance-related requirements in a wide range of
applications, there is a clear need for guiding techniques to know what to record about a
process, and how to adapt the application to do so, in order to answer future provenance
questions. Futher, the major issues that such techniques must address go beyond those of
generic methodologies, i.e. in considering access to attributes of long-past, independently-
controlled processes with non-trivial connections to the data available to those users trying
to obtain access.

3. OVERVIEW OF PRIME

PrIMe is a guided approach for making applications provenance-aware. This is achieved
by exposing application information that is then documented through a series of analysis
steps and well-specified adaptations, which are application modifications (supported in
implementation by elements of a provenance architecture [Groth et al. 2006]) to record
documentation of processes as they execute.

As with software engineering techniques in general, in developing PrIMe, we aimed
for criteria such as effectiveness, that PrIMe should enable the recording of useful pro-
cess documentation, usability, that PrIMe should be easy to apply, traceability, that all
design decisions made using PrIMe should be traceable back to one or more use case re-
quirements, and applicability, that it should be possible to successfully apply PrIMe to a
wide range of applications. Considering these criteria, we assess the value of PrIMe in
Section 10.

3.1 Overview of the Provenance Architecture

The provenance architecture [Groth et al. 2006] is a technology-neutral data model for
provenance and specifications of a provenance store. A provenance store is a (database-
backed) component providing functionality for recording and storing process documenta-
tion, and for performing queries over this documentation in order to obtain the provenance
of data items. The architecture more generally addresses concerns such as scalability and
security. It adopts the following definition of provenance:

DEFINITION 1 PROVENANCE OF A PIECE OF DATA. The provenance of a data item is
the process that led to that data item.

Here, we take ‘process’ to mean ‘a succession of actions’ as defined in the Oxford En-
glish Dictionary. Note that, while the provenance of a piece of data is itself conceptual, the
methodology is concerned with the recording and extracting of documentation representing
that provenance.

The architecture has been strongly influenced by the service-oriented architectural style [Booth
et al. 2004; MacKenzie et al. 2006], according to which services, also referred to as actors,
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interact with each other by exchanging messages. We have examined a range of appli-
cations, including those discussed in the preceding section, with very different structures
and implementations, and found each to be mappable to a service-oriented style. This is
because, as the service-oriented approach argues, all processing of data can be described
as the processing of inputs to produce outputs at an abstract level, i.e. the level of a service
description, and that further detail about such processing can be expressed by decompos-
ing the abstract description into a set of other input/output processing, i.e. one service’s
operation can be described as the interaction of multiple other services. This description
can be applied to workflows (where data flows in and out of workflow steps), databases
(where queries and updates apply to the database or a relation or a value, depending on
the level of description), distributed system communication (where each node in a network
acts as a service taking input and producing output) etc.

The provenance store supports two operations: recording and querying process docu-
mentation. Querying the provenance of a given data item involves identification of the data
item at a specific point during execution (e.g. when it was created, stored or presented to
the user), and scoping of the query to specify what aspect of that item’s history is relevant
for the querier (there may be a vast amount of documentation somewhat connected to the
item’s production). The output of a query is a subset of process documentation represent-
ing a portion of the data flow graph, denoting the processes leading up to the specified
point in execution, i.e. the data item’s provenance.

Process documentation is structured as a set of assertions about processes at particu-
lar instants, which we call p-assertions. P-assertions are asserted by, i.e. recorded into a
provenance store by, the actors involved in the process about which assertions are being
made, during (or shortly after) execution. Briefly, three types of p-assertions are defined as
follows. (i) Interaction p-assertions record the messages sent between application compo-
nents, and so provides a model of information flow between components. (ii) Relationship
p-assertions record the relationships between a component’s incoming and outgoing mes-
sages, and so provide an abstracted model of information flow within a component. (iii)
Actor state p-assertions record the state of actors as the time at which a message is sent
or received, and so provide additional data on the components involved in a process. We
note that the combination of interaction and relationship p-assertions provide an integrated
account of an application’s data flow. Technical details and examples of the data model are
described in Section 5.

Recording copies of application data in p-assertions, means that data which exists tran-
siently is now not only stored, but is stored in a way which places it in the context of
application processes. Together this enables us to perform queries of a particular kind,
provenance queries, and so answer questions about the history of data produced in those
processes. Note that the data which is recorded in p-assertions does not have to be tran-
sient: for a permanently kept file, for example, the data in a p-assertion will be a snapshot
of that file at a given instant, i.e. a version of that file.

3.2 The Effects of Applying PriMe

In order for an application to use implementations of the provenance architecture, devel-
opers apply PrIMe to the application’s design and, by doing so, enable the integration of
their application with the provenance architecture.

Applying PrIMe to an application produces two distinct views of the application as we
shall now discuss. Recall that the provenance architecture assumes that an application can
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be seen as being composed of actors that interact with one another through the exchange of
messages. If the application is not designed from this viewpoint or with this terminology,
the process of applying PrIMe essentially re-conceptualises it in these terms. Therefore,
the first effect of applying PrIMe is to produce an actor-based view of the application (see
Section 7). The key aspects of this actor-based view are described below.

—All changes in an application state are produced by the actions of application actors.

—All actions by an application actor are triggered by the receipt of new information/data
by that actor.

—All information received by an application actor is sent by one or more other application
actors.

—All process documentation is created by application actors that have direct access to the
information being asserted, i.e.
(1) If an actor receives or sends data, it can assert and record that data.
(2) At the time of receiving/sending, an actor has a given state and so can assert and
record details about that state.
(3) An actor can know, and so assert and record, how the information in two messages
it has sent/received are related, e.g. one is in response to another.

For example, a data compression service (an actor) is sent uncompressed data (an in-
teraction) by a client (another actor), compresses it (relationship between compressed and
uncompressed data), and returns the compressed data (another interaction). At the time of
returning the data, the compression service is using a particular compression algorithm and
has a particular time on its local clock (both examples of actor state).

The second view of the application that results from applying PrIMe is generated once
all of PrIMe has been applied and the application has been made provenance-aware. Here,
once the provenance-aware application has finished execution, descriptions of its execution
will have been recorded into a provenance store, which effectively represents an abstract
description of the execution of the application, and thus provides another view of the ap-
plication. Applying PrIMe to an application produces an actor-based view, or model of
the application which, in turn, leads to a process documentation model of the application
being stored in a provenance store.

3.3 The Structure of PriMe

The overall structure of PrIMe is shown in Figure 1. Each oval in the diagram corresponds
to a distinct step within the methodology and the lines between each step indicate how
they are related. The dashed ovals delimit three different phases of the methodology, com-
prising, from top to bottom: Phase 1, the identification of use cases termed provenance
questions, which should specify the data items for which provenance is sought as well as
the form, or kind, of provenance sought (termed the scope of the question); Phase 2, the
decomposition of the application into a set of actors and their interactions (this phase is
iterative for reasons described in Section 7.5) and; Phase 3, applying a set of principled
adaptations to the application to expose the information necessary to obtain answers to
provenance questions.

Traversing this process, PrIMe starts from the application design itself, and it is assumed
that the structure and purpose of the application is known beforehand. This does not mean
that the application design must already exist completely, but that the overall functionality
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Fig. 1. Overall structure of PriMe

has been identified and the general structure has been determined. Given this assumption,
a designer applying PrIMe performs the following steps (which we expand on later in the
paper).

First, an analysis is performed to identify the set of provenance questions that are to be
answered by the provenance architecture (Step 1.1), then the data items (pieces of informa-
tion) for which provenance is sought are identified as well as a scope for the answer (Step
1.2). The application structure is then examined to identify the application actors (Step
2.1), and from here the inferactions between application actors are mapped out and the re-
lationships between interactions are detailed, thus revealing the information flow through
the application (Step 2.2). Once this is done, it is then possible to determine which appli-
cation actors are potentially implicated in the provenance of a given data item: these actors
are called knowledgeable actors (Step 2.3). At this point, it may become clear that the
decomposition of the application into actors has not been at the right level of granularity;
this is apparent when it is found that it is not possible to locate either the data item for
which provenance is sought and/or part or all of its provenance within the current model.
In this case, the process of identifying actors and interactions is repeated until either the
data item in question and/or part, or all, of the provenance can be located within the inter-
actions of identified actors and the relationships between those interactions (in Section 10,
we describe an procedure for this iterative process that guarantees that such data items and
provenance will be discovered in the application if they exist). Once the correct level of

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.



granularity necessary to answer provenance questions has been discovered, it is important
to consider which actors cannot be adapted to record documentation (Step 2.4). Finally,
adaptations are introduced into the application in order to expose information necessary to
obtain the provenance (Step 3.1), and to add recording functionality to the identified actors
(Step 3.2). This last step involves giving actors the capability to record process documen-
tation so that it can be produced and stored in provenance stores to allow actors to perform
queries on the documentation in order to answer provenance questions.

PrIMe explicitly only addresses one factor of an application’s design, provenance, al-
lowing it to build in assumptions which aid the designer in satisfying use cases related
to this factor. This means that every other factor of an application must be addressed by
other techniques. As we cannot predict by what methods a designer will address these
other factors, or whether provenance-related requirements will be addressed at the same
time or later than others, we have endeavoured to ensure PrIMe is as independent of other
techniques as possible. What this means in practice is that, in analysis, applying PrIMe
involves building models of the application and performing analysis on the models partic-
ular to PrIMe, rather than relying on the prior existence of an appropriate design. Clearly,
where there are existing design models which closely match those used in PrIMe (partic-
ularly a service-oriented view of the application), they can be re-used to the designer’s
benefit. In later phases, PrIMe causes the adaptation of the application design to address
the provenance use cases, but again we try to ensure that the effect on the prior design is
minimal by relying on wrappers around existing components.

This section has provided a brief overview of PrIMe. In Sections 6 to 8, we provide
the steps by which PrIMe can be applied in detail. In particular, we describe how PriMe
is used to identify what kinds of information within an application should be the focus of
such p-assertions, and how they can be captured. However, first we introduce an example
application that we will use later to ground the discussion.

4. THE AMINO ACID COMPRESSIBILITY EXPERIMENT (ACE)

We applied PrIMe to an existing bioinformatics application [Groth et al. 2005] for which
the primary user wished to be able to ask a number of provenance questions regarding their
data. The experiment is outlined below, then used as a running example to illustrate PriMe
in the following sections.

4.1 The Biology

Proteins are the essential functional components of all known forms of life; they are lin-
ear chains of typically a few hundred building blocks taken from the same set of about
20 different amino acids. Protein sequences are assembled following a code sequence
represented by a polymer (mature messenger RNA). During and following the assembly,
the protein will curl up under the electrostatic interaction of its thousands of atoms into a
defined but exible shape of typically 58 nm size. The resulting 3D-shape of the protein de-
termines its function. Amino acids can be grouped together by their chemical or physical
properties. Those in the same group can often be substituted for one another in a protein
sequence and the sequence will, in many cases, fold in the same manner. The ability to
substitute amino acids is useful when trying to change or modify protein function. The aim
of the Amino acid Compressibility Experiment (ACE) is to find other possible groups of
amino acids that can be substituted for one another.
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4.2 Experiment Description

In this experiment, it is assumed that protein sequences that occur in nature are efficient,
i.e. they use the least number of amino acids possible to represent their function. Based on
this assumption, a group is tested for interest by substituting the amino acids specified by
the group with a symbol representing the group and then measuring the efficiency of the
recoded sequence. The efficiency of a protein sequence can be quantified in a computa-
tional setting through compression. If a sequence compresses well then it is not efficient,
whereas if the compression causes little reduction then the sequence is efficient. The ACE,
therefore, uses compression to attempt to find possible groups of interest. The workow
for the experiment is shown in Figure 2. It starts with the creation of a sample, which
is composed from individual sequences obtained from sequence databases made available
on the Web (see www.ebi.uniprot.org). This collation provides enough data for the sta-
tistical methods employed by the compression algorithms. The experiment requires that
the samples be composed from dissimilar sequences. This dissimilarity is determined by
using a culling service such as PISCES [Wang and R. L. Dunbrack 2003]. Once a sam-
ple is created (Collate Sample), the information efficiency of the sample can be calculated
(Calculate Efficiency).

The efficiency calculation can be broken down into a smaller workflow shown in Figure
2(b). First, the symbols in the sample are substituted with those of a given group (Encode).
This recoded sample is then compressed with compression algorithms, e.g., gzip, bzip2 or
ppmz, to obtain the length of the compressed sample sequence (Compress). The Shannon
entropy is then computed on the recoded sample to provide a standard for comparison
(Compute Entropy). This standard removes the inuence of two factors from the calculation
of compressibility: the particular data encoding used to represent the groups, and the non-
uniform frequency of groups. From the results, an information efficiency value is computed
for the sample that is relative to both the compression method and group coding employed
and takes into account the size of the sample (Information Efficiency Calculator).

After the information efficiency values for different groups have been produced by the
workflow, they can then be plotted to find those that are largest and thus are good candidates
for further investigation.

4.3 Experiment Enactment

The experiment is run as a workflow script, calling each of the services in Figure 2, passing
outputs from one service onto the next as depicted by the arrows in the diagrams. The
first act of the workflow is to send a request for sequences to the Sequence Database,
which triggers the rest of the experiment enactment. The user provides the Group argument
for encoding sequences, and the final result, Information Efficiency, is returned to the
user on completion. The inputs to the Calculate Efficiency sub-workflow (Sample, Group)
are provided by the Calculate Efficiency service, which invokes each service in the sub-
workflow in turn, and receives the Information Efficiency value in response.

5. A DATA MODEL FOR PROVENANCE

Earlier, we introduced the notion of documenting a system’s execution and defined three
kinds of assertion, which comprise process documentation. Specifically, documentation
about the interaction between actors (interaction p-assertions), documentation about the
internal processing of actors (relationship p-assertions), and documentation of the state
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)
)
)
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Fig. 3. The top level of the p-structure.

of an actor (actor state p-assertions). To ensure that documentation can be cohesively
organized when provided by a multitude of different actors, we introduce the p-structure,
a data model for such documentation and the schema for every provenance store. The
data model itself has been described elsewhere along with the design decisions involved
[Groth et al. 2008]. Here, we provide an overview of the data model with examples from
the documentation that ACE records. The examples are provided as XML. We use the
following notation within the XML.

—A ‘+’ before an element means that it contains additional content.
—Elements preceded by ps: are those defined by the p-structure schema.
—Elements preceded by nsl: are defined by some other external schema.
—FElements preceded by ace: are those defined by the ACE’s own schema.

The p-structure consists of a set of interaction records as shown in Figure 3. Each
interaction record groups together p-assertions related to the communication of a single
message from one actor to another.

The structure of an interaction record is shown in Figure 4. Each interaction record is
identified by an interaction key, which consists of an identity for the actor that sends the
message (i.e. sender), the identity of the actor that receives the message (receiver), and
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(ps:interactionRecord)
+(ps:interactionKey) (/ps:interactionKey)
+(ps:sender) (/ps:sender)
+(ps:receiver) ( /ps:receiver)
(/ps:interactionRecord)

Fig. 4. The structure of an interaction record.

(ps:interactionKey)
(ps:messageSource)
(ns1:EndpointReference)
(ns1:Address)
http://pasoa-vmware 1.ecs.soton.ac.uk/experiments/ace/CollateSample
(/nsl:Address)
(/ns1:EndpointReference)
(/ps:messageSource)
(ps:messageSink)
(ns1:EndpointReference)
(ns1:Address)
http://pasoa-vmwarel.ecs.soton.ac.uk/experiments/ace/CalculateEfficiency
(/nsl:Address)
(/ns1:EndpointReference)
(/ps:messageSink)
(ps:interactionId)
e7lacbee-6e05-46d0-b2ab-a65¢1d1d453d2
(/ps:interactionld)
(/ps:interactionKey)

Fig. 5. An example interaction key

a field that distinguishes this interaction (ps:interactionld) from all other interactions be-
tween the same two actors. Figure 5, presents an example of interaction key that identifies
the sending of a message from the Collate Sample actor to the CalculateEfficiency actor.
Each actor is identified by an end point reference.

Actors may describe a particular interaction at varying levels of detail, to capture any
such differences in documentation that the sender and receiver create for a particular inter-
action. Each interaction record contains two views grouping p-assertions from the sender
and receiver, labeled a Sender View and Receiver View. Each p-assertion within a view is
given a local p-assertion id that distinguishes it from other p-assertions in the same view.
Figure 6 shows an example interaction p-assertion. Along with the local p-assertion id, it
contains a documentation style that tells queriers how to interpret the p-assertion’s content
as well the content itself. In this case, the content is a path to a file, which contains the
sample produced by Collate Sample.

Actor state p-assertions are often used to represent data that provides context to a given
interaction. For example, in Figure 6, the actor state p-assertion documents the group
provided by the user to the Calculate Efficiency actor.

Figure 8 shows an example relationship p-assertion, which consists of an effect, possi-
bly several causes and a relation between those causes and the effect. The relation name
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(ps:interactionPAssertion )
(ps:localPAssertionId) 1(/ps:localPAssertionld)
(ps:documentationStyle)
http://www.pasoa.org/docstyle/AceVerbatim
(/ps:documentationStyle)
(ps:content)
(ace:filePath)
/Users/ace/collatedseqs/sample 1
(/ace:filePath)
(/ps:content)
(/ps:interactionPAssertion)

Fig. 6. An example interaction p-assertion.

(ps:actorStatePAssertion)
(ps:localPAssertionld)3(/ps:localPAssertionId)
(ps:content)
(ace:group)
b:A,c:R,d:N,e:D.,f:C,2:Q,h:E,i:G,j:H k:L1:L,m:K,n:M,0:Ep:PT,q:SV,r:W,s:Y

(/ace:group)
(/ps:content)
(/ps:actorStatePAssertion)

Fig. 7. An example actor state p-assertion.

(ps:relationshipPAssertion)
(ps:localPAssertionId)2(/ps:localPAssertionId)
+(ps:effect) (/ps:effect)
(ps:relation)
http://www.pasoa.org/schemas/ace/relationships/isCollatedFrom
(/ps:relation)
+(ps:cause) ( /ps:cause)
(/ps:relationshipPAssertion)

Fig. 8. An example relationship p-assertion.

provides an abstraction of the internal process the actor performed to generate one data
item from others. In this case, “isCollatedFrom” described the process of the Collate Sam-
ple actor. In practice, these relation names are URIs, which point to descriptions of the
algorithms used by the actor.

To identify both causes and effects in a relationship p-assertion, the hierarchical nature
of the p-structure is used. Figure 9 shows how the cause is identified by specifying the
interaction key, the view (as denoted by a view kind), and the local p-assertion id of the
p-assertion in question. Note that the effect is identified similarly, however, it is assumed
that the effect is in the same view as the relationship p-assertion; thus, the interaction key
and view kind can be omitted as shown in Figure 10.

In addition to identifying the p-assertion in question, each cause and effect has a ps:parameterName
field, which labels the role that the data documented by the p-assertion played with respect
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(ps:cause)
+(ps:interactionKey) (/ps:interactionKey)
(ps:viewKind xsi:type="“pasoa:SenderViewKind")
(ps:description)isSender(/ps:description)
(/ps:viewKind)
(ps:localPAssertionId)2(/ps:localPAssertionld)
(ps:parameterName)sequences(/ps:parameterName)
(/ps:cause)

Fig. 9. An example cause.

(ps:effect)
(ps:localPAssertionId)2(/ps:localPAssertionld)
(ps:parameterName)sample (/ps:parameterName)

(/ps:effect)

Fig. 10. The representation of an effect in a relationship p-assertion.

to the relation identified in the relationship p-assertion. Thus, taken together Figures 8, 9,
and 10 document that a sample was collated from a set of sequences.

The p-structure enables each actor involved in an interaction to create documentation
for their portion of an application and have that documentation be assembled together in a
fashion that allows for easy reference and query. Examples of queries will be presented in
the following section.

6. PRIME PHASE 1: PROVENANCE QUESTION CAPTURE AND ANALYSIS

In the following three sections (including this one), we specify the actions involved in
applying PrIMe. The ACE bioinformatics case study is used as a running illustration in
these sections, but we also provide a second case study concerning a medical scenario
(referred to as the organ transplant application) in Appendix A.

Aim: The aim of the first phase is to identify questions related to the provenance of data
in the application, and express them in a consistent specification structure. These will then
act as use cases in subsequent analysis and adaptation of the application design.

6.1 Description

As would be expected of a methodology, the results of applying PrIMe ultimately depend
on the particular uses to which the system will be put, i.e. the use cases. By the term ‘use
case’, we refer to the same form as found in UML, i.e. descriptions of scenarios in which
users interact with an application defining the system functionality [Harman and Watson
1998]. However, PrIMe is dedicated to adapting designs for a very particular kind of use
case, in which the system answers a question regarding the provenance of data which it
itself produced. This means that the use cases all take a particular simple form because
each provenance question is always a user query with a system response, and the only
applicable scenarios are success or failure on the system’s part. Given that each of these
use cases is equivalent to a question about the provenance of application data, we will refer
to PrIMe use cases as provenance questions.
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A provenance question informs the results of applying the methodology in two ways.
First, there is the straightforward influence of the system being adapted to be able to answer
the question when asked by a user. Primarily, this means determining for which data
exchanged within the system we can and need to keep a copy of, stored with the context
of the process in which it was produced. Second, provenance questions are used to inform
‘future-proofing’ of the application, i.e. not just answering provenance questions known at
the time of applying PrIMe, but also questions that users may want to ask in the future.
This is an issue of particular importance for provenance because in order to answer a
provenance question, the historical data answering that question must have already been
recorded: when a user considers asking about the provenance of a data item for the first
time, we cannot go back in time and record the data which would answer that question.
The way that PrIMe is designed to handle future proofing is discussed in Section 10.4.

The first phase of PrIMe concerns specifying provenance questions in a form which
can be used for further analysis in the following phases, and also to generate queries to
a provenance store with the data schema described in the previous section. The phase is
delimited into two steps:

(1) Elicit provenance questions from users.

(2) Translate provenance questions into a structured form suitable for analysis and for
generating provenance queries.

6.2 Concept Definitions

The following concepts will be used, and illustrated with the case study, in the steps de-
scribed below.

DEFINITION 2 DATA ITEM. A piece of data produced in the running application.

DEFINITION 3 PROVENANCE QUESTION. A question which can only be answered from
the provenance of an application data item.

DEFINITION 4 PROVENANCE QUERY. A formulation of a provenance question sent to
a provenance store to retrieve the answer to the question.

DEFINITION 5 START ITEM. A data item that is the subject of a provenance ques-
tion/query.

DEFINITION 6 SCOPE. A specification of what is relevant to retrieve from a prove-
nance store by a provenance query for a given question.

6.3 Step 1.1: Provenance Questions

Aim: The aim of this step is to elicit provenance questions from users.

Actions:

(1) Provide an explanation and definition of provenance in computational systems.

(2) Give examples of generalised provenance questions that can be answered by a provenance-
aware application.

(3) Explain how to express provenance questions.
Documentation Produced:
—A list of textual provenance questions.
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6.3.1 Description. The starting point for making an application provenance aware is
for the designer to identify the set of provenance questions that are to be answered. Note
that the reason for including this requirements capture stage is not to suggest it is novel,
but to provide a complete cycle for the methodology and make explicit the approach that
has worked in our experience.

As in most applications, it is not always obvious to users what provenance questions they
could expect the provenance architecture to support. To overcome this, PrIMe advocates a
simple requirements elicitation process, similar to many software engineering approaches
(e.g. [Harman and Watson 1998]) to help designers collect the known provenance ques-
tions. This process aims to inspire users to identify provenance questions that they may
wish to ask in the course of using the application.

The elicitation process comprises three simple steps. First, we provide an explanation
and definition of provenance in computational systems. In order to provide examples of
the kinds of provenance questions a provenance-aware application can support, several
generalised, non-application specific questions can be supplied. These questions attempt
to expose information relating to processes within an application, and try to identify vari-
ous aspects of process such as the data used within a process and the adherence of a process
to regulatory rules or plans, as well as questions relating to data, its use and transforma-
tion. Here is a small sample taken from a larger list collated from discussions with users
published elsewhere [Miles et al. 2007].

(1) What was the process that produced a given piece of data?

(2) Two processes, thought to be performing the same steps on the same inputs, have been
run and produced different data. Was this because of a change in the inputs, the steps
making up the process or the configuration of the process?

(3) Did the process that produced this data use the correct types of information at each
stage?

The first question above is a purely a request for the provenance of a data item, answered
by querying a provenance store with an appropriate query. The subsequent questions re-
quire not only querying a provenance store, to retrieve data on the provenance of a data
item, but also processing the results of that query.

6.3.2 Case Study. In ACE, we elicited a set of provenance questions including the
following, which we will refer to in the rest of the methodology description.

(1) What were the sequences used in the production of a particular information efficiency
value?

(2) From what sequences was this recoded sample derived?

(3) How long does it take to produce an information efficiency value from a particular
collated sample?

The application of this step to the organ transplant management application is described
in Section A.1.1.
6.4 Step 1.2: Analysing Provenance Questions

Aim: The aim of this step is to translate provenance questions into a structured form
suitable for analysis and for generating queries to a provenance store, called provenance
queries.
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Actions: For each provenance question, the following actions are performed.

(1) Identify the start item of the provenance query, i.e. the data item of which the prove-
nance will be sought.

(2) Identify the scope of the provenance query, i.e. the relevant part(s) of the application
process which led to the start item.

(3) Identify the additional processing steps, if any, required to extract or determine the
question’s answer from provenance query results.

Documentation Produced:

—For each question, a tabular form containing the details of the provenance query as
identified in the steps above.

6.4.1 Description. In order to determine the provenance of a data item, a query is sent
to a provenance store. A provenance store contains data of the form shown in Section 5,
and so the queries sent to the store reflect this form. For each provenance question, we need
to identify the start item of the query, the scope of the query and any additional processing
which must be performed on the query results to answer the provenance question. The start
item is the data item we are asking for the provenance of, while the scope is a specification
of what in that item’s history is relevant to the provenance question. This information is
documented in a tabulated form for use in later stages of PrIMe.

We will not give a comprehensive definition of how to identify start items or encode
scopes here, as it would have to be extensive to be complete and is adequately documented
in existing documents [Groth et al. 2006; Miles 2006]. However, we will briefly examine
the key points below.

6.4.1.1 Identifying the start item. In order to query a provenance store for the prove-
nance of a data item, that item must be identified. In some cases, the data item will be
uniquely identified as part of the application, e.g. it may have a filename with a version
number, URL, database table key etc. Where a data item is not given a unique identifier in
the original (unadapted) application, data items must be defined intensionally in the prove-
nance query. For example, a start item may be identified as “the sequence downloaded at
time 13:51” or “the version of the file named A at time of having data X appended to it”.
Such intensional definitions also apply to data items which do have a unique identifier, e.g.
“the file named A-version23”.

These definitions can be converted into queries over the provenance store data structure,
to find records of a data item which match those criteria. As we have used an XML data
structure in our implementation, as discussed above, we use XPath to define the provenance
queries. For example, an XPath identifying instances of a file with a particular path being
exchanged in a message between actors, can be encoded as follows.

//ps:interactionPAssertion/ps:content
[ace:filePath=’/Users/ace/collatedseqgs/samplel’ ]

6.4.1.2 Specifying the scope. Depending on how an application is adapted, the prove-
nance of a data item may include a vast amount of information. For example, the efficiency
value output by our case study workflow was derived from, amongst other data, the bio-
logical sequences downloaded from a public database; but those sequences were uploaded,
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potentially with multiple versions to correct errors, following lab-based experiments, and
so the efficiency value also derives from the inputs to those experiments; the sequence data
was identified and checked using information on comparable sequences provided by oth-
ers from prior experiments, possibly also stored in public databases, and so the efficiency
value also derives from those comparable sequences; and so on.

Any piece of this information may be relevant to answering some provenance question,
e.g. if you doubt the integrity controls of the database, you may want to know which
sequences influenced your efficiency value. However, it would be, from the perspective
of giving a coherent answer to a provenance question in a timely manner, impractical to
return all this data in answer to every provenance store query. Therefore, the scope of
the query is provided along with start item identification, to ensure the query results are
bounded to that relevant for the question being asked. For example, if the question can be
answered using information about the provenance of an efficiency value from the collation
of sequences into a single sample, then the scope will exclude all occurrences prior to
collation occurring. In our current provenance store implementation, the scope is also
specified as an XPath, so the above example would take the following form (where we are
saying that the query results should not include data prior to the point where sequences
were collated into a sample, denoted by a particular relationship type).

/ps:relationshipTargetFilter
[not (ps:relation="http://www.pasoa.org/schemas/ace/
relationships/isCollatedFrom’) ]

We will not discuss the meaning of the scope terms or the expressivity of the scoping
mechanism here, as it goes beyond the scope of this paper, but refer readers elsewhere
[Groth et al. 2006; Miles 2006].

6.4.2 Case Study. We now work through each of the provenance questions identified
in step 1.1 for the ACE example. For each we determine the start item, scope and any
processing which must be done on the provenance store query results to obtain the answer
to the question.

For the question “What were the sequences used in the production of a particular in-
formation efficiency value?”, the data item for which we need to find the provenance is
a recoded sample, and the only documentation of relevance to the question is the input
sequences and their connection to the recoded sequence, so the scope of the provenance
query is limited to that which occurred from download of sequences onwards. After the
provenance has been found, we need to extract the sequences from the query results. The
query is summarised in Table L.

Table I.  Provenance question 1
What were the sequences used in the production of a particular infor-
mation efficiency value?

Provenance question

Start item The information efficiency value
Scope From input of sequences onwards
Processing step Extract sequences from provenance

The question “From what sequences was this recoded sample derived?” is of a similar
form to the above, but now the question concerns a recoded sample rather than an efficiency
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value. Therefore, there is a change of start item, as shown in the summary in Table II.

Table II.  Provenance question 2

Provenance question From what sequences was this recoded sample derived?
Start item The recoded sample

Scope From input of sequences onwards

Processing step Extract sequences from provenance

The final question, “How long does it take to produce an information efficiency value
from a particular collated sample?” illustrates that some questions require more post-
processing to answer than others. In this case, the information efficiency value is the start
item, and we only need to know the provenance back to where the sequences were collated
to a sample. However, the processing of the query results is a little more involved (and
application-specific): we need to extract time-stamps from the p-assertions documenting
the collated sample being passed between actors (the start time) and the information effi-
ciency value being output (the end time). The query is summarised in Table III.

Table III.  Provenance question 2

How long does it take to produce an information efficiency
value from a particular collated sequence?

Start item The information efficiency value

Scope From the collated sequence being produced

Calculate difference in time-stamps between production
of collated sequence and efficiency value

Provenance question

Processing step

The application of this step to the organ transplant management application is described
in Section A.1.2.

7. PRIME PHASE 2: ACTOR BASED DECOMPOSITION

Aim: The aim of this phase is to map the application design into a form composed of actors
and interactions, within which we can identify the data items necessary for answering
provenance questions.

7.1 Description

The purpose of this phase of PrIMe is to map the application to a model of acfors and
interactions from which we can start to define adaptations which will allow provenance
questions to be answered. It is important to recognise that the resulting model of the
application may or may not coincide with the primary componentisation of the original ap-
plication. Actors identified using PrIMe may cut across the functional specification of the
application, at times mirroring its underlying structure, while at other times bringing to-
gether disparate levels of functionality for the purposes of answering provenance questions.
Components may be grouped together into one actor or a component may be sub-divided
into a set of smaller actors.

In essence, the particular actor-based model that is superimposed on the original appli-
cation design is a function of the provenance questions that are to be answered. In order
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to identify the correct level of granularity, PrIMe takes an iterative approach, in which the
following steps are carried out until the correct level of decomposition has been achieved.

(1) Identify an initial set of high-level actors that correspond to the major functional sub-
divisions of the application (Step 2.1).
(2) Map out the interactions between these actors (Step 2.2).

(3) Identify the causal relationships between actors, so that the process by which data
items are produced is made explicit (Step 2.3).

(4) Identify the start items (and data items referred to in query scopes) within the interac-
tions, or else begin another iteration of decomposition into finer-grained actors (Step
2.4).

This process stops when all of the data items salient to answering the provenance questions
have been identified.

7.2 Concept Definitions

The following concepts will be used, and illustrated with the case study, in the steps de-
scribed below.

DEFINITION 7 ACTOR. An actor is a component within an application that performs
actions and which interacts with other actors.

DEFINITION 8 INTERACTION. An interaction is the sending and receiving of one mes-
sage between actors.

DEFINITION 9 MESSAGE. A message is a delimited block of data which is sent be-
tween actors in an interaction.

DEFINITION 10 CAUSAL RELATIONSHIP. A causal relationship between data items
means that one data item (the effect) would not have been as it is if the other data items
(the causes) had not been as they were, i.e. the effect is derived from the causes.'

DEFINITION 11 PROCESS. A process is a succession of actions, here taken as the ac-
tions of sending and receiving data.

DEFINITION 12 KNOWLEDGEABLE ACTOR. For a given data item, a knowledgeable
actor is an actor which has access to that data item (so may be able to record a copy of it
in a provenance store or pass it to another actor in a message).

DEFINITION 13 INACCESSIBLE DATA ITEM. An inaccesible data item in a model of
the application, is a data item which is neither passed within a message in that model (and
so will not be recorded to a provenance store) nor derivable from other data items.

7.3 Step 2.1: Identifying Actors

Aim: Identify the actors that comprise the application at a high level of granularity.
Actions:

L Unambiguously defining causality is an unresolved philosophical issue, so this identifying causation is partly
subjective for the designer, but we derive our definition from the commonly used counter-factual definition pro-
posed and discussed by Lewis [1973] and formalized by Pearl [2000].
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(1) Identify components that are the receivers of data.

(2) Identify components that are the senders of data.

Documentation Produced:

—A list of actors (those modelled at a given granularity).

7.3.1 Description. An actor is simply a component within an application that per-
forms actions, such as a Web Service, a class, a machine, a person and so on, and which
interacts with other such actors. We use the term ‘actor’ to refer to instances of users or
system components. This contrasts with some other technologies, such as UML [Harman
and Watson 1998], where it is used to refer to fypes of user or system component. We
would expect designs referring to types of actor to map directly to the same structures and
processes as used in a given instance of those types. PrIMe applies to instances rather
than types because it is the particular processes which provenance questions concern and
it is the particular instances of actors which are adapted to record documentation of the
processes they are involved in.

Often, the application being considered will be structured into major functional compo-
nents that can be readily viewed as actors in a first instance. However, in order to aid the
identification of actors within applications in which this is not the case, PrIMe provides
simple heuristics to identify them.

(1) Identify the components that receive data. These could, for example, be a compo-
nent/service in a workflow, a script command, the GUI/desktop application into which
a user enters information. Each of these components is an actor in the application.

(2) Identify the components that send data. These could be, for example, a workflow
engine, a script executor, a user or a sensor (such as a blood pressure monitor for
example). Each of these entities is also an application actor.

While the above rules clearly identify the actors in an application, simply applying them
wholesale can lead to a more detailed decomposition of the application than is required to
answer the provenance questions. At this point in the methodology, the designer should
merely identify a coherent set of coarse-grained actors which they can iteratively refine in
later steps.

7.3.2  Case Study. In applying PrIMe to ACE, we first identify the actors in the main
workflow, i.e. those shown receiving or sending data in Figure 2 (a): Sequence Database,
Collate Sample, and Calculate Efficiency. Note that we could also include actors such as
the workflow enactor and the user, but we keep the illustration brief here.

The list resulting from this step is as follows:

—Sequence Database
—Collate Sample
—Calculate Efficiency

The application of this step to the organ transplant management application is described
in Section A.2.1.
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7.4 Step 2.2: Actor Interactions

Aim: Identify the interactions between actors that comprise the application at a high level
of granularity.

Actions:

(1) For each actor, identify to where it passes data, and from where it receives data.
(2) For each interaction, model the message type in terms of the kinds of its contents.

(3) For each data item (effect) sent by an actor, identify those other data items (causes)
received by or part of the state of the actor, for which the effect data item would be
changed if the cause data items were changed or did not exist.

(4) For each cause-effect relationship, identify the type of that relationship
Documentation Produced:

—An interaction graph, depicting the messages sent between actors and the causal rela-
tionships between data items in those messages.

7.4.1 Description. The provenance architecture is based around the notion of inter-
action, and all documentation about process occurs in the context of interactions. While
other software methodologies, for example the Gaia methodology used in agent oriented
design [Wooldridge et al. 2000], also involve the concept of interaction, they focus on
identifying interactions for the purpose of outlining and specifying system functionality.
In PrIMe, however, identifying interactions enables data flow to be documented. As such,
PrIMe requires a representation of such interactions in the form of message passing to be
stated explicitly along with identification of the content of such messages (i.e. data). This
then provides a model of how data is being passed around between actors, and allows the
provenance architecture to be used to collect information about the application’s processes.

To document this, PrIMe uses a graph notation to represent the messages being passed
between the identified actors. In Figure 11, one of these graphs (termed an interac-
tion graph) is shown. The nodes represent individual actors and the arcs (shown as uni-
directional arrows) represent messages being passed from one actor to another. Annota-
tions over the arrows show identifiers ascribed to message types and the data items carried
in messages of these types in brackets. The message identifiers are just for convenience
of reference, and should merely be unique within the interaction graph. Interaction graphs
make explicit the data required to answer provenance questions, and which actors have
access to the data (see Section 7.5).

Although the above interaction graph clearly shows the data flow between application
actors, it does not provide enough information to understand how interactions are causally
related. Consider that in Figure 11, for example, it is not possible to see how message M1
is related to messages M2 and M3, and so it is not possible to see the direction of data flow.
To understand this, we must also show the data flow within actors, i.e. we must show how
the sending of messages is causally related to the receiving of messages. However, since
an actor may subsume the functionality of several application components (for example,
an actor in the main workflow of ACE comprises a sub-workflow), the relation between
the data in an incoming message and the data contained in a consequent outgoing message
may be complex, involving many transformations of the original data and/or the retrieval
of other data.
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Y = Message

= Actor

Fig. 11. An interaction graph

Fortunately, the actor-based view allows us to abstract away this detailed functionality
and replace it with a simple relationship, which Figure 12 depicts. The data in the incoming
message is transformed by applying to it the function F' to produce the data that is sent
in the outgoing message. For example, in ACE, the sample (output from actor Collate
Sample) is collated from a set of sequences (input to actor Collate Sample). Actors may
provide more than one service (for example, a database provides both query and update
functionality).

Actor

Incoming message ™ Outgoing message
containing d1 containing d2
— @ @

Transformational
relationship

Fig. 12. The process structure assumed in PrIMe, where each actor receives inputs and transforms them into sent
outputs, but is otherwise a black box.

7.4.2 Case Study. Taking the actors listed in the previous step, we depict an interaction
graph making explicit the messages sent, data items exchanged, and causal relationships
bewteen items, shown in Figure 13. As described in Section 4, the sequence database is
queried to retrieve a set of sequences, so the sequences being returned are caused by the
database query; then the sequences are collated into a sample, so the sample is caused by
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the sequences; and the information efficiency is calculated over that collated sample, so
the information efficiency is caused by the sample. Therefore, as long as all these causal
connections are documented, we can trace back from the information efficiency value to
the input sequences: the latter is part of the provenance of the former.

— Mi(rs) —>{* ) M2(seqs) <
SeqDB
SeqDB = Sequence Database M3(sam)
ColSam = Collate Sample ¢
CE = Calculate Efficiency
"™ =Message
. — M4(g) >

">\ =Relationship

Q = Actor M5(iev)

v
. = Actor State

Fig. 13. An interaction graph depicting the interactions and relationships in enactment of the ACE workflow

The application of this step to the organ transplant management application is described
in Section A.2.2.

7.5 Step 2.3: Decomposition to Knowledgeable Actors

Aim: For each data item required to answer a provenance question, identify how to expose
it in the interaction model, so that it can be captured.

Actions:

(1) For each data item, determine whether it is communicated in one of the messages
sent/received in the current interaction model.
(2) For each data item not exposed in the manner above:
(a) Determine whether it is created and destroyed within the process of an actor in
the current interaction model.
(b) If so, apply this whole phase again to a decomposition of the actor in question.
(3) For each data item not exposed in either manner above:
(a) Determine whether it could be computed from other data items which may be
easier to capture.
(b) Apply this step to those data items.
(4) For each data item not exposed in any manner above, document that it is not currently
accessible within the system.

Documentation Produced:

—A new interaction model, in which all data items apart from those deemed inaccessible,
are contained in messages between actors or derivable from data items in those mes-
sages.
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—A set of derivation functions, each specifying how one data item is derived from others.

—A list of currently inaccessible data items.

7.5.1 Description. In this section we examine what can be done when it is discovered
that the current level of decomposition of an application does not allow a provenance ques-
tion to be answered. This involves the search for knowledgeable actors, where a knowl-
edgeable actor for a data item is an actor that can be identified as the creator or a recipient
of the data item during an application process.

Answering a provenance question requires discovering particular data within an item’s
provenance, e.g. the sequences used to generate an information efficiency result in the ACE
case study. Such a past data item may not be present in the interaction model produced
in the previous step either because (i) it is created, used and discarded solely within the
processing of one actor treated as one black box in the interaction model or (ii) it is never
present explicitly in the application at all but may be derivable from data which is present.

In the former case, the granularity of the interaction model is inadequate and this must be
corrected by decomposing the actor manipulating the data item. This means re-performing
step 2.1 and 2.2 to expose the processes (interactions and relationships) within the actor
and include its components in the list of actors modelled 2.

In the latter case, the data item is obtained by a derivation function performed over the
results of provenance store queries, and the function must be made explicit.

Even if a data item is present in the interaction model, copies of it may not be recorded
into provenance stores due to the nature of the actors creating/receiving it, e.g. some legacy
components may be difficult to adapt to record such copies. In such a case, we say the
data item is inaccessible. Adaptations to the application to try to record the data item are
considered in the next phase, Section 8.

7.5.2 Case Study. Consider the provenance questions examined in Section 6.4.2 and
the interaction graph produced in the previous step, Figure 13. The first question (“What
were the sequences used in the production of a particular information efficiency value?”)
refers to two data items: the information efficiency value and the sequences from which it
is derived. Both of these data items are explicit in the interaction graph (denoted ‘iev’ and
‘seqs’ respectively), and have at least one knowledgeable actor: Calculate Efficiency for
the efficiency value, Sequence Database and Collate Sample for the sequences.

However, the second question, “From what sequences was this recoded sample de-
rived?” refers to another data item, the recoded sample, which is not present in the in-
teraction graph. This is because the sample is created and used solely to calculate the
information efficency, i.e. within the Calculate Efficiency actor.

We must, therefore, apply steps 2.1 and 2.2 again, to refine the interaction graph, by
including the process inside Calculate Efficiency. The Calculate Efficiency service is a
sub-workflow (a program), calling other services and using their outputs. Its operation is
shown in Figure 2: the collated sample is input into an Encode service which also takes
as input (through its configuration), the group encoding. The output of this service, the

2The approach of gradual decomposition of a system, expressing each level using the same abstraction, is directly
comparable to holonic approaches [Marik et al. 2005]. A holon is an autonomous and cooperative building block,
consisting of an information processing part and, often, a physical processing part [Giret et al. 2005]. Importantly,
a holon can be part of another holon, so a system can be described as a hierarchy of holons gradually decomposed
to reveal the comprising functionality.
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encoded sample, is then passed to a Compress service, to compress the encoded sample,
and a Compute Entropy service, to compute the sequence’s entropy. Using the size of the
encoded sequence when uncompressed and compressed, and adjusting for the Shannon
entropy, the information efficiency of the sample is calculated.

The revised interaction graph is depicted in Figure 14, with the added sub-process high-
lighted in grey, and now includes the information we are referring to in the provenance
question: the recoded sample. There is an indirect connection from the recoded sample
and the input sequences, so the latter are part of the former’s provenance.

group

shannon
entropy

compressed
length

ColSam = Collate Sample
CE = Calculate Efiiciency
Ent = Eniropy

Cp = Compress

information
efficiency

7\ =Message
.~""> = Relationship
o

[ ] = Actor State

Fig. 14. An interaction graph depicting the interactions and relationships in enactment of the ACE workflow

As shown in Table III, the third question (“How long does it take to produce an informa-
tion efficiency value from a particular collated sample?”’) refers to a few data items. Two of
these, the information efficiency value and the collated sequence are already explicit in the
interaction graph. The final result, the time to produce the efficiency value, is not explicit
but derived from other data items: time stamps at the start and end of the process. The time
stamps themselves are not created, sent or received as part of the original application (as
they are not part of its function). That is, no matter how many actors we decompose in the
application design, we will not make explicit these data items: they are inaccessible, and
so require adaptation of the application in the next phase.

The result of applying this step is the refined interaction graph shown in Figure 143, a
derivation function (the time period in answer to question 3 is the difference between the

31f the original application design was itself service-oriented, the interaction graph can be seen as annotations to
that original design (expressing causal relationships between application data).

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.



26

time stamps), and two inaccessible data items (the time stamps at the times of a sample
being collated and of the informatation efficiency value being produced).

The application of this step to the organ transplant management application is described
in Section A.2.3.

7.6 Step 2.4: Identify Hidden Actors

Aim: Identify which actors can feasibly record the contents of their interactions.

Actions:

(1) For each actor in the interaction model, assess whether it could feasibly be adapted to
document its interactions.

(2) For each data item for which a hidden actor is the sole knowledgeable actor, mark the
data item as inaccessible.

Documentation Produced:

—A list of actors which cannot be adapted to document their interactions, called hidden
actors.

—A new list of inaccessible data items, including those only known to hidden actors.

7.6.1 Description. There are three reasons why it may not be possible to obtain the
desired provenance of a data item. As discussed earlier, a data item may not be part of
the application model to be adapted for recording (the interaction graph). In this case, as
part of the previous phase, we decompose actors to make the item explicit in the model.
Next, a part of the desired provenance may not be a part of the adaptable application. For
instance, information of importance to answering a provenance question may be held by a
person and never enter the computer system in the normal course of the application. These
data items were identified as inaccessible in Step 2.3. Finally, actors who have access to
a data item may not be able to record documentation to a provenance store, e.g. due to
the difficulty of modifying a legacy service to record the actions of one of its components.
Such actors are called hidden, because their processing is not apparent from the records in
provenance stores.

We first identify the list of hidden actors from those identified in Phase 2. If the knowl-
edgeable actors for any of the data items identified as part of the provenance queries in
Phase 1 are all hidden, then the data item is inaccessible, despite being part of the process
depicted in the interaction graph.

7.6.2 Case Study. The Sequence Database actor in the ACE experiment is a hidden
actor. This is because it is not owned by the designers of the application themselves, it is a
public database with online access provided by an external organisation. It cannot, there-
fore, be directly adapted to record documentation of the sequences which are downloaded
from it by the designers of the ACE application.

However, no new data items become inaccessible because of this. Two data items are
sent/received by the Sequence Database: the request for sequences and the sequences them-
selves. The former is not relevant to any provenance question, while the latter have another
knowledgeable actor: Collate Sample.

The application of this step to the organ transplant management application is described
in Section A.2.4.
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8. PRIME PHASE 3: ADAPTING THE APPLICATION

Aim: The aim of this phase is to adapt the application design so as to document copies of
data items and, as context, the process in which they were produced. This then allows the
queries used to answer the provenance questions to be executed on that documentation.

8.1 Description

In the third phase, adaptations to the application design are specified. These adaptations
perform two functions. First, they may cause previously inaccessible data items to be
included in the recordable processes of the application. Second, they introduce the func-
tionality to record copies of data items and their causal relationships to provenance stores
as the application processes execute. The steps in which these adaptations are applied are
specified in the subsections below.

8.2 Concept Definitions
The following concepts will be used, and illustrated with the case study, in the steps de-

scribed below.

DEFINITION 14 HIDDEN ACTOR. A hidden actor is an actor which, by its nature, can-
not be adapted to record documentation about the data it sends and receives.

DEFINITION 15 PROVENANCE WRAPPER. A provenance wrapper is a component added
to an application design which records copies of data items received and sent, and the
causal relationships between them, on behalf of an actor.

8.3 Step 3.1: Expose Inaccessible Data ltems

Aim: Identify where actors must be modified to expose inaccessible data items.

Actions:

(1) For each inaccessible data item, determine where it exists in the world.

(2) Determine which actor could receive that data item with a suitable modification to the
application.

(3) Specify the modification required to expose the data item.
Documentation Produced:

—A refinement of the interaction model, with actors receiving previously inaccessible data
items as part of the same process as the start item.

—A set of actor modifications.

8.3.1 Description. For each inaccessible data item identified in Steps 2.3 and 2.4, we
now determine how we can adapt the application design to make it accessible. Adaptations
take the form of (i) introducing actors into the design, (ii) introducing interactions between
actors, (iii) adapting interactions to carry new data items.

Not all actors which perform functions relevant to answering provenance questions may
be explicitly part of the application processes. For example, a provenance question may
ask about the owner of a resource used in the application, but the records of the owner’s
identity are not part of the application’s function.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.



28

The designer, in this step, aims to ensure that knowledgeable, non-hidden actors are part
of the model for each data item required for a provenance question. They must additionally
ensure that the data items are included in the processes modelled, so that each data item
becomes part of the provenance trace and provenance store queries can be written to obtain
the item. The latter requires that newly modelled knowledgeable actors pass the data items
to already modelled actors as part of the existing application processes, i.e. the processes
are adapted to include the inaccessible data items.

8.3.2 Case Study. In the ACE experiment, we identified two inaccessible data items:
the time stamps at the times of collating the sample and producing the information ef-
ficiency value. The actors knowledgeable about these items are the clocks local to the
Collate Sample and Calculate Efficiency actors respectively. We therefore introduce these
two actors: Collate Sample Clock and Calculate Efficiency Clock.

We then need to include the time stamps into the application process. First, two inter-
actions are introduced for each new clock, whereby the application actor sends a request
to its clock, and the clock returns a time stamp to the actor. For example, Collate Sample
sends a request to Collate Sample Clock for the time, then Collate Sample Clock sends a
time stamp in response to Collate Sample. The two interactions are causally related: the
response occurs because of the request.

To ensure they are time stamps of the correct instants, and to include these interactions
in the provenance of the start item (information efficiency value), we must insert these in-
teractions into the logic of the application process. That is, Collate Sample’s request to its
clock will be triggered by the sample having been collated, and the response (time stamp)
will trigger the collated sample being Calculate Efficiency actor. Similarly, Calculate Ef-
ficiency’s request to its clock will be triggered by the information efficiency having been
calculated, and the response (time stamp) will trigger the efficiency value being returned
to the user at the end of the process. Causal relationships are added to the model to reflect
these new sub-processes. The above new interactions and triggers form a set of adaptations
to the design of the actors in the process.

8.4 Step 3.2: Wrapping Actors

Aim: Specify which actors will be wrapped with process documentation recording func-
tionality so as to record copies of data items in the context of processes.

Actions:

(1) For each non-hidden actor in the interaction model, specify a wrapper around that
actor.

Documentation Produced:

—Changes to the original application design documentation so as to deploy and connect
wrappers for recording process documentation.

8.4.1 Description. The final step of PrIMe is to supply provenance recording function-
ality to the actors identified for the given provenance questions, enabling them to record
process documentation to a provenance store. Each actor only records p-assertions that
directly relate to its own interactions and their relationships and state, i.e. an actor cannot
make assertions about other actors’ interactions and states. For example an actor cannot
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record a p-assertion about the interactions another actor may be involved in. This rule en-
sures that actors cannot make speculative p-assertions and only record what they directly
know, which can help to ensure that recorded process documentation can be depended on
to answer provenance questions (what an agent knows here concerns the designers under-
standing of the distribution of information in the application: more formal representations
could be used to encode the distribution of knowledge, but are beyond the scope of this pa-
per). In order to provide such process documentation recording functionality, a provenance
wrapper is implemented by a provenance client side library, which provides a collection
of functions that allows designers to enable actors to interact with a provenance store.

When it is clear that an actor is involved in the process underlying a data item whose
provenance we are seeking, because it is part of the interaction graph as modelled in the
preceding methodology, functionality must be provided for the actor to record documen-
tation about its role in the process. To do this, PrIMe recommends using a provenance
wrapper. The wrapper must be given access to information relating to its role in the pro-
cess, e.g. incoming and outgoing messages, relationships between these messages and
possibly some state of the actor as it relates to the interactions, which it can then document
and send to a provenance store.

Provenance wrapper

Incoming application relationship Outgoing application
message message

Actor

T
Actor state information

T N
Process documentation
record message

Fig. 15. The provenance wrapper

Figure 15 shows a provenance wrapper diagrammatically. Incoming and outgoing mes-
sages and their relations are intercepted by the wrapper, which also has access to relevant
aspects of the actor’s state. The wrapper then documents these pieces of information and
sends a record message containing the documentation to a provenance store.

Having applied PrIMe and ensured all the correct actors have been provided with docu-
mentation functionality, the application can be run and documentation of its processes will
be recorded into a provenance store. This documentation produces another view of the
application, specifically a view of its execution. This view forms a Directed Acyclic Graph
(DAG) of the causal dependencies of the application’s data and allows tracebacks through
the execution to discover answers to provenance questions.

8.4.2 Case Study. Each of the following actors are identified in the preceding steps
as being involved in the processes relevant to the provenance questions asked: Sequence
Database, Collate Sample, Calculate Efficiency, Encode, Compress, Compute Entropy,
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Collate Sample Clock, and Calculate Efficiency Clock. As was established, Sequence
Database is hidden due to its being outside the application’s design, but each of the other
actors is wrapped, so as to record documentation of its interactions and relationships be-
tween specific data items it handles.

9. COMPARISON WITH EXISTING APPROACH

To examine and illustrate the benefit gained by applying PrIMe, we took a comparable
existing technique and applied it to the same problem: determining answers to provenance
questions in the ACE experiment. We aimed to use as appropriate a technique as possi-
ble, to have a fair comparison. Given that determining provenance is a separate use of a
system from its primary function, but that it concerns processes and data throughout the
application, an aspect-oriented approach appeared to be particularly appropriate. Further,
provenance questions are a user-level concern, and answering each kind of provenance
question can be seen as a use case, rather than a change to the design for the developers’
benefit, and so the technique chosen should similarly consider the provenance questions as
use cases.

For these reasons, we have chosen to apply a technique described by Jacobson and Ng
[2004]. The technique takes an aspect-oriented approach to the design (independently from
whether aspect-oriented programming is used in implementation, but with the assumption
that it will be). It divides the analysis and design into use case modules, so that the design
for each use case can be developed largely independently. By assuming an aspect-oriented
approach, they show how this independence is possible to maintain throughout the design.
Note that we cannot, here, document the full application of the technique without greatly
extending the length of this paper with largely unimportant detail. We concentrate on
documenting the early stages of applying the technique, by which point the differences
with PrIMe are already apparent.

9.1 Use Case Model

In the aspect-oriented methodology considered, each use case is separately identified, and
the totality of use cases forms the use case model. Each use case identifies an aspect, and
its concerns are kept as separate from other use cases as possible. We assume a single
user in this system (the scientist enacting the experiment). The three provenance questions
considered in ACE, can be re-written as use case summaries without the assumption of an
underlying provenance system:

Sequences Producing Efficiency. The user determines the sequences used in the produc-
tion of a particular information efficiency value.

Sequences Producing Recoded. The user determines from what sequences a particular
recoded sample is derived.

Experiment Duration. The user determines how long it takes to produce an information
efficiency value from a particular collated sequence.

9.1.1 Use Case Flows. In the aspect-oriented technique, each use case is first de-
scribed as a flow of actions performed by the user and the system. Each of the use cases
takes the same form, illustrated for the first use case below.

(1) The user asks the system to determine the sequences used in the production of a par-
ticular information efficiency value.
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(2) The system returns the sequences with the property requested.

Provenance questions are relatively simple use cases compared to the possibilities consid-
ered in the aspect-oriented approach, which allow for multiple use case flows describing
different possible action sequences.

9.1.2 Use Case Relationships. Another quality of provenance question use cases is
that the actions required to complete the use cases are dealt with by the system and not
the user, so one provenance question use case is not related by extension or aggregation to
other use cases.

9.1.3 Use Case Generalisation. Provenance question use cases can all be considered
instances of a generalised case: Answer Provenance Question. This is a reasonable gener-
alisation as the use case flows are directly equivalent for each question, and in each case a
query will need to be processed.

9.2 Realising the Use Cases

Keeping each use case separate, the aspect-oriented technique requires us to first identify
classes that participate in their realisation. Each use case has a handler class, to coordinate
the completion of the use case. Following the technique as described, most other classes
initially identified will be those representing data/objects referred to in the use case flows.

Sequences Producing Efficiency. The first use case uses handler class SEQUENCESPRO-
DUCINGEFFICIENCYHANDLER, and data classes SEQUENCE and INFORMATIONEFFI-
CIENCY.

Sequences Producing Recoded. The second use case uses handler class SEQUENCE-
SPRODUCINGRECODEDHANDLER, and data classes SEQUENCE and RECODEDSAMPLE.

Experiment Duration. The third use case uses handler class EXPERIMENTDURATIONHAN-
DLER, and data class SEQUENCE and INFORMATIONEFFICIENCY.

If we took the most basic approach to applying the aspect-oriented technique, each han-
dler, e.g. SEQUENCESPRODUCINGEFFICIENCYHANDLER, would ask the data class rep-
resenting the data item provided by the user, e.g. INFORMATIONEFFICIENCY, for the data
representing the answer to the provenance question, e.g. instances of SEQUENCE. How-
ever, this assumes a trivial connection between data items, e.g. that the sequences are a field
of the information efficiency value. Taking this approach to its logical conclusion, every
data class would include references to every data item in its provenance (possibly a vast
amount), and provide means to query for each. It would also mean a large overlap between
fields of different data items, e.g. the INFORMATIONEFFICIENCY and RECODEDSAMPLE
classes would both provide means to access every data item preceding encoding in the
ACE workflow (and every data item used to create the inputs to the workflow). Moreover,
this analysis does not give any useful indication of how the data, e.g. sequences, are stored
such that they can be retrieved.

9.3 Architecture

The aspect-oriented technique allows for a more structured approach than the simple anal-
ysis above, by defining an architecture for answering multiple use cases. The architec-
ture should still separate concerns between use cases and separate platform specifics from
platform-independent matters.
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The generalised use case identified earlier, Answer Provenance Question, provides an
application-generic layer in the architecture, on top of which the three specific use cases
provide application-specific packages.

We are here getting closer to the system already assumed by PrIMe, where some system
answers all provenance questions, but the same design problems apply to the application-
generic layer as applied to specific use cases: how can one data item be found given an-
other, by what means is the relationship between data items maintained such that such a
search is possible, how do we handle the quantity of questions that may be asked of each
data item. If, through standard analysis, we answer this set of questions with regards to
each data item referred to in the use cases, we will be replicating the same generic ma-
chinery assumed by PrIMe, and will need to perform the same analysis of knowledgeable
actors and granularity of recording built into PrIMe.

9.4 Comparison of Approaches

From the above example, we can see how the assumptions made by PrIMe act to ease
and improve the development process. The assumptions are possible because PrIMe is
applied to a particular kind of use case, provenance questions, and that technologies exist
to aid satisfying those use cases if the design takes a particular form. This does not reflect
negatively on the aspect-oriented technique in general.

As a developer attempts to change the design so as to allow a provenance question to
be answered, with the aspect-oriented approach above, a design question that will always
occur is: how can the data item that answers the question be found? As it is a provenance
question there will be some start item identified, so this question can be divided into two
parts. First, we need to know that the answer data item will be in the system so that it can
be found when the use case occurs, i.e. how can we ensure it is recorded. Second, we need
to know that the answer data item is connected to the start item in some way, so that the
start item can be used to determine the answer.

PrIMe makes assumptions that benefit the developer in answering both of these. For
the first question, it is simply that PrIMe provides conventional ways to adapt steps of
processes in the existing design to record data of what occurs (and then maps this to tech-
nology able to implement the adaptation).

For the second question, the benefit is even more substantial. The particularly important
assumption made by PrIMe is that steps in the application processes can be individually
adapted to connect one data item, the answer to a provenance question, to another data item
by causal relationships. Without such an assumption, the developer must determine how to
connect start and answer items each time. As can be seen above, different choices of how
to provide this connection can lead to different qualities of outcome. In particular, without
using PrIMe there is no guarantee that developers can re-use the effort put into addressing
one provenance question for answering another provenance question.

PrIMe, by first ensuring that the right granularity of process is found for adaption, then
adapting individual steps rather than directly connecting the steps containing answer and
start items, ensures that the same adaptations can be used for answering multiple prove-
nance questions. As for the first problem above, PrIMe also ensures that the adaptations to
record causal relationships have mappings to existing implementations. Although PrIMe
resembles what one might get by knowledgeable application of existing techniques, it crys-
tallizes issues that will arise in any project to build a provenance-aware system, and so
helps designers avoid unnecessary duplication of work.
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10. ASSESSING PRIME

Assessing the value of methodologies is difficult and often imprecise. Only through many
repetitions of use and subsequent user evaluation can key properties of the methodology be
tested, evaluated and comparisons made with other existing approaches. However, there
are many criteria by which we can judge PrIMe at this point. In this section, we will con-
sider evidence for the qualities of PrIMe from the perspectives of usability, applicability,
traceability, quantitative metrics regarding the designs and implementations produced, and
future proofing.

10.1 Usability and Applicability

In terms of usability, we have attempted to ensure that PrIMe follows an approach similar to
many other successful software engineering methodologies (see Section 11 for a discussion
on the similarity between PrIMe and other methodologies). This allows users of PrIMe to
readily recognise the concepts it uses such as the use case analysis and the decomposition
into actors that are similar to UML and agent based approaches respectively. This means
that PrIMe can easily be absorbed into the development process, since users should be
familiar with many of its techniques.

As evidence for the wide applicability of PrIMe, we cite the varying different application
domains to which it has successfully been applied. In this paper, we have given examples
from two case studies in bioinformatics (ACE) and medicine (OTM). In addition, we and
our collaborators have applied PrIMe to an aerospace application that allows engineers
to conduct extensive and detailed simulations on the design of new fighter aircraft [Kloss
and Schreiber 2006]. Other examples where PrIMe has been applied is in agent-based
electronic healthcare records [Kifor et al. 2006], scientific workflows [Rajbhandari et al.
2006], an ecological simulation system [Wootten et al. 2006] and a Brain Atlas Imaging
application [Moreau et al. 2007]. These widely different applications attest to the wide
applicability of PrIMe. The work referred to above used earlier (more ad-hoc) versions of
PrIMe, and experience from them evolved the technique to that presented in this paper.

10.2 Traceability

Procedure 1 represents the iterative phase of PrIMe (Phase 2) responsible for decomposing
the application to the correct level of granularity required for exposing the desired data
items. It can be seen as a summary of the steps taken within Phase 2 of PrIMe. The
decomposition part of PrIMe, in itself, will always terminate because the data referred to
in each provenance question is part of the application being decomposed, and the iteration
must therefore eventually reach a point where that data is separate from the rest of the
application processes, i.e. it is isolated and so can be independently recorded and later
retrieved by the provenance system. The procedure shows how, by following simple steps,
the decomposition is achieved. However, the procedure will not be finite if the design
processes it depends on are not themselves finite.

This procedure progressively decomposes an application into actors at finer and finer
levels of granularity until the data item currently being considered is found within the
interactions of those actors. Inputs to the procedure consist of provenance questions,
ProvQuestions, which are considered to contain data items d, and the application A4,
which is considered to be composed of actors. For each data item in a provenance ques-
tion, the procedure decomposes the application into a set of Actors. As mentioned earlier,
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Procedure 1 Decompose Application
Inputs: ProvQuestions, A
Output: result

Procedure:

1: result =)
2: for all d € ProvQuestions do

3. Actors = decompose(A)

4: T = getInteractions(Actors)

5. R = getInteractionsContaining(Z,d)
6. while R = () do
7
8
9

A’ = nonDeterministicallyChoose Relevant Actor(d, Actors)
Actors = decompose(A’)
T = getInteractions(Actors)

10: R = getInteractionsContaining(Z, d)

11:  end while

122 result = result U {R}

13: end for

14: return result

this initial decomposition will typically follow the major functional components of the ap-
plication. Next, we obtain all the interactions between this initial set of actors (where an
interaction is defined as containing two actors, the sender and receiver, and the data item
being communicated), and then all those interactions which contain the data item identified
in the provenance question. If the data item is matched to a data item found within any of
the interactions, these interactions, R, are placed in the set result. If the data item cannot
be matched to any interactions, we non deterministically choose the actor most relevant
to the data item. Having chosen the relevant actor we again decompose this into a set of
sub-actors, obtain their interactions and see if any contain the provenance question data
item.

Traceability refers to the notion that, after applying PrIMe, it should be possible to show
how any decision made can be traced back to one or more of the original use case questions
identified in Step 1.1. This primarily affects the decomposition work done in Phase 2 of
PrIMe, but also touches upon Phase 3, i.e. making adaptations to the application and pro-
viding provenance recording functionality. For example, we can show that any component
in an application that has been made provenance aware by providing it with provenance
functionality via a provenance wrapper can be traced directly back to a use case require-
ment. Thus, for example, in the ACE example, the fact that the Collate Sample actor has
been made provenance aware can be directly traced back to a need to record information
to a provenance store that will be used to answer provenance questions. From the abstract
specification of the methodology in Procedure 1 or the methodology description earlier in
this paper, we can see that all design decisions have a direct rationale that can be traced
back to user requirements as specified by the original provenance questions. Traceability
is important for accountability, in that it allows those examining a design to determine why
and how design decisions were made.
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10.3 Evaluation Metrics

Only through repeated use and evaluation in multiple applications can the value of a
methodology be determined. Here we outline a set of metrics that can aid in the evaluation
of PrIMe in the context of an application. Our aim is to enable the sort of comprehensive
evaluation where a methodology is repeatedly applied by end users as done by Jeyaraj and
Sauter [2007]. Software metrics can be determined from both implementation and design.
Metrics derived from design artifacts have been is successfully used to measure software
cohesion [Bieman and Kang 1998].

The metrics we describe are based on the following artifacts generated during the soft-
ware life-cycle:

(1) The design of the application.

(2) The design of the application after applying PriMe (PrIMe Design).
(3) The application itself.

(4) The provenance-aware version of the application.

The metrics we propose are in terms of these artifacts. Thus, an evaluator can vary the
amount of work necessary for their evaluation. For example, they may choose to apply
PrIMe but not implement the corresponding provenance-aware application. Thus, they can
use the design related metrics and not those related to implementation.

The first step in determining these metrics is the application of PrIMe to the given ap-
plication design. Once the evaluator has both the original design and provenance-aware
design the following design-based measures can be determined. When introducing a met-
ric we give an example of its use in the ACE application.

10.3.1 Design-based Metrics. Design-based metrics reflect the additional complexity
introduced in an application as a consequence of following PrIMe. In an environment
where PrIMe could be repeatably applied, one could then determine the average complexity
introduced by PrIMe across a set of application designs. The design metrics we propose
are based on the application design and PrIMe Design artifacts and are as follows:

The number of actors in the PrIMe Design versus the number of components in the orig-
inal design. This metric provides a measure of what additional coding would be required
by a PrIMe based application. With respect to ACE there were 7 components in the orig-
inal design and 9 in the PrIMe design. Two actors were introduced to enable provenance
specifically to capture time.

The number of interactions introduced in the PrIMe Design versus the total number of
interaction in the original design. This provides a measure of the modifications necessary
to the existing code base. For ACE, there are eight interactions in the original design and
15 in the PrIMe Design. The extra seven interaction comes from the necessity for PrIMe
to model the inputs and outputs of the workflow itself as well as for tracking time.

The number of data items required by PrIMe that already exist in the application versus
the total number of data items required by the PrIMe Design. This provides a measure of
how compatible PrIMe is with the original design. There are 10 data items identified in
both designs for the ACE application. Thus, the application has already exposed the most
pertinent data items.

The number of interactions modified by the PrIMe Design versus the total number of in-
teractions in the original design. This is another measure of the additional coding that may
be required. In the ACE application, of the original 8 interactions, none were modified.
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Are there any actors introduced by PrIMe Design that are essential (i.e. they affect or
are affected by all other actors). The introduction of such an actor in a design can be detri-
mental in that it can introduce a central point of failure: something that the methodology
should not lead to if possible. In ACE, there are no essential actors that are introduced by
the use of PrIMe.

10.3.2  Implementation-based Metrics. These metrics assess the impact of applying
PrIMe on application performance. While to some extent, this can be seen as measuring the
performance of the provenance middleware, it provides a reasonable proxy for the impact
of using PrIMe to introduce provenance functionality because a key underlying assump-
tion is the existence of an implementation of the provenance architecture. In a rigorous
evaluation setting, the evaluation could be conducted using different implementations, to
factor out the middleware performance. There are two key measures.

The percentage difference between provenance-aware and regular application execution
performance. The overhead of provenance-recording on ACE is 15% of application exe-
cution time [Groth et al. 2005]. Given that the particular provenance questions could not
be answered prior to the application of PrIMe, this cost seems reasonable.

The percentage gain in data storage overhead between both versions of the application.
In many cases, the provenance of a data item can require much larger data storage than the
data item itself. This provides a measure that enables evaluators to see this data storage
cost. Note, this can vary by the underlying implementation of the provenance architecture
used and how it is configured. For example, some implementations allow for the use of
references to data, which may decrease the data storage overhead. In the implementation
of ACE we measured, for the production a single information efficiency value roughly 43K
of process documentation was stored. Each information value requires roughly 1K of disk
space. Hence, there is a 4300% overhead in disk space usage. This is an artifact of the size
of the relative size of the information efficiency value, which is essentially a number and
the only data stored in the original application, compared with the process documentation
required to answer provenance questions, which contains the name of each sequence used,
the grouping used, a reference to the procedure used for compression and so on. Clearly,
intelligent compression of the documentation can lead to substantial reductions in storage
overhead, though possibly at some performance cost [Chapman et al. 2008].

In this section, we have identified clear metrics that application developers can use to
measure the impact of PrIMe on their application both in terms of design complexity and
performance impact. By applying these metrics to ACE, we provide a a guide to those
considering the application of PrIMe. Furthermore, these metrics provide a basis for con-
ducting consistent systematic evaluations of PrIMe across a range of applications.

10.4 Future Proofing

In Section 6.3, we mentioned that PrIMe altered an application design so as to answer both
currently known provenance questions, and some of those likely to be posed in the future.
It is clear from the methodology description how known use cases affect the designer, i.e.
the known use cases are used to identify which data items need to be recorded as part
of process documentation and processed, and in which interactions by which actors those
items are evident.

The influence of future provenance questions on the design process is more subtle. Fu-
ture use cases are important because provenance questions make reference to the past.
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Therefore, answering a provenance question may require data which existed transiently
before the question was thought of. On the other hand, we usually cannot record every-
thing: the amount of transient data may be vast, and events occur at every level from the
program counters in PCs on which the application is hosted, up to telephone calls relating
to the application between users in independent organisations. Given this uncertainty, the
best we can aim to do is predict what information is most likely to be required to achieve as
yet unknown provenance-related use cases, and then ensure that this information is avail-
able for provenance queries in advance.

PrIMe is constructed so as to use the known provenance use cases and available design
information as heuristics for prediction of what data may be required for future use cases.
Here, the crucial observation is that if a known provenance use case asks questions about
part of a process, described at a particular granularity of detail, then this is an indication of
the users’ interest in that process and the data exchanged within it.

When it is known that the connection between two data items in a process may be re-
quired (i.e. where one is part of the provenance of the other), instead of simply recording
those data items, PrIMe requires the designer to make explicit and to record all the in-
teractions between actors in the process. Furthermore, when it is observed that the level
of granularity in the interaction graphs is inadequate, i.e. the data of interest is part of a
process within a currently black box actor, it is the whole process within the actor which is
made explicit rather than just the data item of interest.

By these means, we aim to ensure that relevant process documentation is recorded to
answer future use cases. With no further adaptation, a provenance query can be answered
as long as it is related to the processes already documented. Of course, there will always
be questions that are not answerable without further adaptation, but, as far as we can allow
for it, future-proofing is an important part of making an application provenance-aware.

11. RELATED WORK

The issue of determining the provenance of results is important to many applications, and
so has been considered in many branches of computer science. In particular, a great deal
of effort has recently been put into determining provenance of data in scientific databases
and produced by scientific workflows [Bose and Frew 2005; Simmbhan et al. 2005]. Work
has primarily focused on technology-specific models for provenance, inference of prove-
nance from analysis of database operations, and adaptations of specific software to capture
documentation of processes. We survey this work below, and show how it relates to PriMe
and the provenance model it employs.

11.1  Theoretical Models of Provenance

Models of provenance vary across approaches, but the majority share something akin to
the causal relationship of our own approach, though variously described by terms such as
dependence, derivation, lineage and others. Tan [2007] distinguishes workflow provenance
from data provenance. Workflow provenance, intuitively the record of what procedures
have been executed in a program or workflow and what resources were used by them, is
characterised as “coarse-grained”. Data provenance, intuitively the influence of one piece
of data on the production of another, often in the context of a database system, is then
“fine-grained”. We examine related work on provenance in the context of workflows and
databases further below.

Within data provenance approaches, Tan distinguishes annotation and non-annotation
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approaches. Annotation approaches are ones in which some information about what oc-
curs during the execution of a database query or update is recorded. The recorded docu-
mentation can then be used to determine provenance. In non-annotation approaches, the
provenance of a data item is inferred from the database contents and the query/update
expression.

Our own approach can be loosely categorised as a workflow provenance approach, and
we primarily record documentation rather than infer it, though inference from existing
documentation is not excluded. Others note that provenance is used to refer to notions such
as authorship (a work would not have existed without its author) and applies to physical
objects as well as data [Ockerbloom 2007].

11.2 Provenance-Awareness and Methodologies

While provenance models and software have received wide attention, the methods by
which applications are made provenance aware is relatively under-examined. In the case
of provenance-enabled workflow systems, the assumption is that the application is speci-
fied as a workflow in the appropriate language, and so is automatically provenance-aware.
While this is adequate for a subset of applications, it is not a general solution.

A recurrent problem mentioned in the literature, is that it is hard to determine in advance
what provenance questions users may wish to ask, and this has a direct influence on how
an application is adapted. Even when, particularly in the case of database approaches
such as those discussed below, inference after the fact is applied to determine what has
occurred, obtaining the salient data is not always possible: Bose and Frew [2005] call
this the Problem of Irretrievable Lineage. In PrIMe, we tackle this as far as is reasonably
possible, by the inclusion of future use cases.

Recent work by Chapman and Jagadish [2007] has attempted to address the lack of
guidance to engineers wishing to make systems provenance-aware, by examining how ap-
plications should ideally be adapted to record documentation and, more generally, iden-
tify various desiderata that need to be considered in making an application provenance-
aware. These include recording a mixture of fine-grained (low-level data manipulation)
and coarse-grained (user-level effects) activities, keeping track of the identity of incoming
data so that it is clear where two data items are instances of the same input, planning for
adequate process documentation storage capacity, recording how data is manipulated not
just that it existed, recording the connections between processes in separate systems etc.

11.3 Commonalities with Existing Methodologies

The design of PrIMe was inspired by elements of other methodologies. The idea of using
wrappers to legacy code is not new in software engineering. For instance, Thiran et al.
[2006] use wrappers of legacy data sources to implement implicit constraints that legacy
code enforce on data models, so that new functionality can be developed while still pre-
serving data invariants. The wrapping approach we advocate here is one that preserves
the interface and behaviour of software components, but records the necessary process
documentation into a provenance store.

We share a common goal with De Lucia et al. [2007] since we are interested in making
explicit traceability links and recording them. (We refer to them as causal dependencies.)
Our respective working hypotheses differ however: we work in the context of processes
fully implemented in computer systems, whereas they consider activities (software artifact
management) involving humans. Hence, our approach is to design systems so that they
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capture causal links explicitly, whereas theirs is to use information retrieval to infer such
links a posteriori.

Similarly to Sinha and Smidts’s HOTTest technique [Sinha and Smidts 2006], our method-
ology consists of extending an existing design by adding new requirements. In our case,
the novel requirements are related to exposing the origin of data, while theirs are to make
explicit constraints that will help generate test sequences.

In the spirit of object-oriented design, PrIMe introduces provenance-specific patterns,
detailed by Groth [2007]. Such patterns are concerned with communications between
recording actors and provenance store(s). They mandate an actor sending a message to
create a unique identifier for this message, insert it into the message header, so that the
unique identifier can be extracted by the message receiver. Both sender and receiver can
then share a common identifier that they must use to document their actions with respect
to the interaction and record this documentation into the provenance store.

11.4 Software Models and Programming

Software engineering is, of course, a process itself, and the notion of traceability has close
parallels to that of provenance. Recording dependencies between stages of the engineering
process in an electronic form allows tool-supported queries to be made about the prove-
nance of parts of a design or implementation. Jahnke et al. [2002] examined this issue
with regards to changes to class models. By recording process documentation regarding
the changes in the models, a software engineer could later determine the provenance of the
design, and therefore how classes within the current design related to earlier ones. They
extended this idea to view re-design as a workflow-like process [2002], suggesting that the
approaches to workflow provenance proposed by others may also apply to the software
engineering process.

In a related context, Cheney [2007; 2007] discusses why program slicing is effectively
the inference of process documentation (in our terms) in the context of programs, before
applying this to database operations. Program slicing uses the semantics of source code
to determine where statements are related, such as by a variable being used in both, and
extract only that part of the program relevant to understanding a given issue: the value of
a variable, cause of a fault etc. The relations extracted are relevant because the issue does,
or may, depend on them.

11.5 Issues Comparable to Determining Provenance

Activities such as auditing, logging and version control, while not provenance in name, are
immediately comparable. Here, we consider examples of engineering systems for each of
these activities.

Several methodologies have been applied to handle regulatory compliance requirements
(e.g., HIPAA in the US, Data Protection Act in the UK, MIFID in Europe). There is a com-
parability with our work since several regulations require past processes to be audited and
checked to satisfy rules. Gandhi and Lee [2008] propose a methodology aimed at assessing
risk, helping identify and understand the risk, and providing a chain of evidence to produce
meaningful insights for risk assessment. Their approach is complementary to ours, since
it would help bring a risk-based approach to identify provenance use cases. Baumer et
al. [2000] discuss the implications of HIPAA on IT infrastructures, and specifically discuss
recommendations that can be regarded as provenance use cases. As an illustration, the
goal of “holding those who use individually identifiable health information accountable
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for their handling of this information” requires handling of information and individually
identifiable records to be securely logged and auditable, to enforce accountability.

Recording of information regarding a system’s history often suggests a comparability
with issues long addressed in systems development: logging and version control. While
being affected by some the same issues, we argue that there is a difference of substance and
emphasis with provenance. Logging architectures typically identify a message structure,
logging methods, filtering, storage and rendering capabilities. They are usually agnostic
about the contents of messages. Since they do not provide any means of “connecting”
messages, they do not support explicit representation of causal dependencies. They gen-
erally offer various levels of granularity distinguishing warning, debugging information or
severe errors for instance. Logging architectures are being applied to many facets of com-
puter systems, including communication networks (PIX Logging Architecture [Philipsen
2008]), programming languages (log4j [The Apache Logging Services Project 2007] for
Java), operating system (Linux logs [Walden 2003]), and Grid computing (R-GMA [By-
rom et al. 2003]). A major concern investigated in such logging architectures, which we
share and have investigated with regards to provenance [Groth et al. 2005], is the impact
of the logging activities on application performance.

The Provenance-Aware Storage System (PASS) [Muniswamy-Reddy et al. 2006] ex-
tends logging techniques to document processes and determine provenance in the context
of UNIX command execution. In PASS, the local operating environment is augmented to
log details of command executions output, and the context in which it was produced, and
records the connections made where a file is produced as both output from one command
and input to another. The result, therefore, is a causal graph of a similar form to our own
data model, albeit within a specific execution context.

Version control systems [Estublier et al. 2005] help manage the multiple revisions of the
same unit of information (e.g. source code). They may capture snapshots of states of a data
item or change sets specifying the difference from an earlier state, and so allow previous
states to be retrieved. The provenance of an artifact would typically make reference to all its
previous versions so similarly connecting versions. However, version control systems do
capture a description of the process that led to the multiple revisions (only the changes due
to those processes), while our notion of provenance does not by itself allow the differences
between versions.

11.6  Workflows

Workflows, being explicit, user-level specifications of process, are often extended to cap-
ture process documentation. This may be either by adapting the workflow script to in-
clude recording actions, or by augmenting the workflow enactment engine to transparently
record the dependencies between data items produced during execution. Taverna [Zhao
et al. 2007], for example, uses the latter model, where recording is done by the workflow
enactment engine or the operating system on behalf of the services used within the work-
flow. The provenance forms a graph, expressed in RDF. In the COMAD approach used by
the Kepler workflow engine [Bowers et al. 2006; McPhillips et al. 2006], the data manip-
ulated by a workflow is organised hierarchically and the dependencies between data items
caused by executing the workflow are, therefore, between sub-trees of this hierarchy.
Davidson et al. [2007] generalise from several particular models of workflow prove-
nance to describe a workflow as a set of modules, with data flowing between them. The
relevant occurrences to be documented are, then, the data items as input to a module, the
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execution of a module, and the data items as output from a module. Workflow prove-
nance should cover the dependencies between instances of these, in particular linking the
execution of one module to those that have control and/or data dependencies with it.

On a related topic, the provenance of workflow structures themselves, rather than their
executions, has been studied. Freire et al. [2006] has developed a system which tracks the
evolution of a workflow as it is edited by its users. Miles et al. [2008] have examined the
same problem but in the automatic manipulation of workflows by a Grid-based workflow
compiler.

11.7 Databases

The other context in which much research on provenance has taken place is databases,
applied to both tracking changes due to update operations, and determining what data
influenced the result of a database query. Cheney [2007] defines provenance as “any infor-
mation that explains how... results were obtained from the underlying database”.

In work developed by Buneman et al. [2001], through examining a database query and
the contents of the database, they determine something of the provenance of the query’s
results, i.e. a non-annotation data provenance approach in Tan’s categorisation. They
distinguish two types of provenance, effectively the result of two provenance queries with
the same start item and two different scopes in our terms. Where-provenance, “Where
in the input database did this value come from?”, regards the source relationships and
records from which the data items within the query results were extracted. On the other
hand, why-provenance, “Why was this record part of the result?”, regards the values in the
database that had an influence over those particular data items existing. Green et al. [2007]
have added to these the concept of how-provenance, “How did this record contribute to
the result”, effectively a provenance query with (in our terms) the same scope as why-
provenance but including the relationship types between occurrences in the result. All are
examples of provenance queries with some hard-coded assumptions about the structure of
the process that has occurred.

With regards to tracking database updates, Vansummeren and Cheney [2007] suggest
augmenting database operations with further actions which cause the process documen-
tation to be recorded at the same time. Buneman et al. [2008] take relational databases
described as trees of values, where the tree expresses the relations between values and
examine how any sub-tree of the database is connected to those in an updated version of
the database, or the results of querying the database. They distinguish between where
operations cause sub-trees to be wholly copied, and where there is a kind-preserving re-
lationship. In a kind-preserving relationship, parts of the sub-tree have changed but the
sub-tree itself still represents the same (kind of) data.

Chiticariu and Tan [2006], applied provenance to the changes in database schemas. The
recorded mappings between each schema and the next are used to form a route from ele-
ments of a current schema to elements of its predecessors. This allows database schemas,
when integrated into a federation, to be debugged. In our approach, we do not make any
absolute distinction between the occurrences of a data structure in given states and the
occurrence of a data value within the structure.

12. CONCLUSION

This document describes the PriMe methodology. It specifies the necessary steps to take
in making an application provenance-aware, where these steps are split into three distinct
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phases comprising:

—Identification of provenance use cases and the data necessary for them to be answered.

—Decomposition of applications into actors and the mapping of the data flow of applica-
tions into message passing between the identified actors. This phase enables those actors
that have access to the previously identified information items to be discovered.

—Adaptations to applications to enable the discovery or creation of actors that have access
to information items, and adaptations to provide the necessary provenance functionality
required to enable the recording of process documentation.

The PrIMe methodology provides a step-by-step guide to making applications provenance-
aware. Application developers and users will only consider making their applications
provenance-aware if they can see a clear and easy way to modify their applications to
provide this functionality. Any development is a trade off between the effort and resources
required to effect the development and the gains to be made by doing so. As shown in our
comparison with an aspect-oriented methodology, PrIMe crystallizes issues that will arise
in any project to build a provenance-aware system. These are manifest as assumptions built
into the methodology, allowing designers to avoid common pitfalls, such as not designing
the system to record adequate documentation to answer future provenance questions (see
Section 10.4), or requiring multiple pieces of provenance infrastructure for answering mul-
tiple provenance questions when one, using a more general model of causation, would be
adequate (see Section 9.4).

We hope to extend and improve upon PrIMe in several directions. In particular, we
noted in Section 9, the comparability of our approach with aspect-oriented ones, and so
we are intending to include features of aspect-oriented programming [Filman et al. 2004]
to address the cross-cutting concerns that are inherent to the recording of process docu-
mentation, i.e. recording process documentation cuts across the different functionality of
an application. We are also in the process of developing a number of tools for designers
that will aid in the development of provenance-aware applications. These tools will help
the designer to visualise the causal graphs derived from process documentation and will
help to detect that the view of the application produced by applying the actor-based model
accurately captures the information necessary to answer provenance questions. Ideally,
these tools will be integrated with existing development tools, so that provenance can be
addressed alongside other concerns.
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A. THE ORGAN TRANSPLANT MANAGEMENT EXAMPLE CASE STUDY

In this section, we provide examples from another case study, the the Organ Transplant
Management (OTM) application, in which organ donors and patients waiting for organs
must be matched up according to various criteria, such as blood type, immunology tests
and so on. This application is taken from work conducted in collaboration with Technical
University of Catalonia [Alvarez et al. 2006]. Part of the workflow of the OTM application
is extracted to illustrate how PrIMe was applied.

The example involves conducting blood tests on donor organs in order to screen them
for a variety of pathologies. Here, a donor’s organs undergo a series of tests to enable a
decision to be made about whether they are suitable candidates for transplantation. The
high level view of this process contains three entities: the hospital, the electronic health-
care records system (EHCRS) and the testing laboratory. The hospital is where the donor
organ is recovered from a recently deceased donor, and where the doctor who initiates the
screening process resides. The EHCRS is the place where all the records for the donor are
kept. Finally, the testing laboratory is where the organ blood tests are performed.

In terms of workflow, the hospital where the doctor resides must communicate first with
the EHCRS to obtain the donor’s records, after which the hospital can request a blood test
to the testing laboratory, passing along the necessary donor data obtained from the EHCRS.
Figure 16 shows the above workflow graphically.

Testing
Lab

A

EHCR

A

Y

Hospital Hospital > Hospital

Fig. 16. The OTM workflow

A.1  PrIMe Phase 1: Provenance Question Capture and Analysis

In the following sections, we will provide the results of applying Phase 1 and 2 of PrIMe
to the OTM case study. We exclude Phase 3 for brevity, but note here that all actors are
wrapped to record documentation as the application executes. We will not give extensive
details of the methodology itself, as these are covered in the main paper.

A.1.1 Step 1.1: Provenance Questions. Provenance questions which were posed by
OTM users include the following.

(1) What is the medical analysis tree for diagnosis X?

(2) Did any deviations take place from the standard workflow for the diagnosis decision
given for organ X? (i.e. in Figure 16, a deviation might be if the EHCRS sends a
patient’s records directly to the testing lab instead of back to the hospital, deviating
from the workflow and potentially breaking regulatory rules).

(3) Given a diagnosis decision, X, for a given organ, Z, at what time did the doctor submit
his request for test Y that was used to support X?
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A.1.2 Step 1.2: Analysing Provenance Questions. The questions were analysed to de-
termine the start items, scopes and further processing of the provenance trace. The results
of this analysis for two questions are given in Tables IV and V

Table IV. Provenance question 1

Provenance question What is the medical analysis tree for diagnosis X?
Start item Diagnosis X

Scope Medical analysis tree

Processing step None needed

Table V. Provenance question 2

Did any deviations take place from the standard workflow
for the diagnosis decision given for organ X?

Start item Diagnosis decision for organ X

Scope Workflow underpinning diagnosis decision for organ X
Compare the workflow obtained by the query with the
standard workflow and highlight differences

Provenance question

Processing step

A.2 PrIMe Phase 2: Actor Based Decomposition

A2.1 Step 2.1: Identifying Actors. The initial actors identified in OTM were those
described above: Hospital, Electronic Healthcare Records System and Testing Laboratory.

A22 Step 2.2: Actor Interactions. In this step we analyse the interactions of our
identified actors. As shown in the interaction graph in Figure 17, we see that when a donor
organ is to be screened, the hospital (H) communicates with the EHCRS to obtain the
donor ID. Then, the hospital communicates with the testing laboratory (TL) to obtain the
test results for the patient identified by the donor ID. In this simple example, there are four
messages being passed between the three actors, where each of these messages contain
the following data items: the query (ql), the donor ID (DId), the request (rql) to perform
a blood test on the organ, and the test results (r1) from the laboratory. The relationships
between pairs of messages are shown as dashed lines. Finally, the query itself is shown in
the figure as a dark circle that indicates the sending of message M 1. The arrows depicting
the relationships between messages point towards the source of causality, i.e. that the
message (M2) containing the donor id was caused by the message (M1) containing the
request for the donor id.

A2.3 Step 2.3: Decomposition to Knowledgeable Actors. The model produced in the
previous section cannot answer the question “Given a diagnosis decision, X, for a given
organ, Z, at what time did the doctor submit his request for test Y that was used to support
X7 This is because there is no information about the time at which requests are put into
the system within the interactions between any of the identified actors.

Since requests for tests are first issued at the hospital, the first task is to identify the actor
within the hospital that has access to the timing information. After examining the hospital,
it is discovered that doctors access a user interface (UI) to issue diagnosis requests, and
that this user interface first obtains a timestamp from a timing component that it associates
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Fig. 17. The interaction graph of the OTM example

with the request. Only after a timestamp has been associated does the Ul send the request
to a component in the hospital called the donor data collector (DDC). It is the DDC that
then sends the request for a patient ID to the EHCRS and then passes this on, along with
the doctor’s diagnosis request to the testing laboratory. The test results are then passed
back to the DDC which then sends it back to the UI where the doctor retrieves it, makes a
diagnosis decision, sends this to the UI which sends it to the EHCRS to update the patient’s
file.

This more detailed model of the hospital is represented in Figure 18, which illustrates the
decomposition of the hospital into four new actors (contained in the shaded, dashed circle):
the Doctor (D), User Interface (UI), Timer (T) and the Donor Data Collector (DDC).

A24 Step 2.4: Identifying Hidden Actors. There are no hidden actors in this case
study.

A.3 lllustrative Usage Scenario

In this section, we provide an illustrative scenario in which a provenance question is asked.

As a hospitalized patient’s health declines, and in anticipation of a potential organ dona-
tion, one of the attending doctors requests the full health record for the patient and sends
a blood sample for analysis. Through the user interface (UI), these requests are made by
the attending doctor and passed to the Donor Data Collector (DDC) responsible for col-
lecting all the expected results. After brain death is observed and logged into the system,
if all requested data and analysis results have been obtained, a doctor is asked to make a
decision about the donation of an organ. The decision, i.e., the outcome of the doctor’s
medical judgment based on the collected data, is explained in a report that is submitted
as the decision’s justification. Figure 18 displays the interaction graph for this scenario
(we omit relationships and actor states for clarity). The Ul sends requests (I1, 12, 13) to the
DDC service, which gets data from the patient records database (I4, I5) and analysis results
from the laboratory (16, I7), and finally requests a decision (I8, 19). Our provenance-aware
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Fig. 18. The interaction graph of the organ donation scenario

application now has the capability to produce an explicit representation of the process ac-
tually taking place. This includes p-assertions for all interactions (I1 to I9), relationship
p-assertions capturing dependencies between data, and actor state p-assertions. In Figure
19, we find the DAG that represents the provenance of a donation decision, made of re-
lationship p-assertions produced by the provenance-aware OTM application. DAG nodes
denote data items, whereas DAG edges represent relationships such as data dependencies
(is based on, is justified by) or causal relationships (in response to, is caused by). Each
data item is annotated by the interaction in which it occurs. Furthermore, the UI asserts
an actor state p-assertion, for each of its interactions, about the user who is logged into
the system. To locate the donation decision in the collection of process documentation,
the user must specify its data handle — a unique, intensional description for the data item
whose provenance is being sought (see Section 6.4 for a discussion about data handles).
Over such documentation, we can issue provenance queries that navigate the provenance
graph and prune it according to the querier’s needs [Miles et al. 2007]. For instance, from
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the graph, we can derive that users X and Y are both causing a donation decision to be
reached. Figure 19 is small, but in real life examples with vast amount of documentation,

users benefit from a powerful and accurate provenance query facility.

<
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logged -4——— Relationship
19 Interaction
13
User Xis Patient brain
logged death
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Fig. 19. A Provenance trace through the organ donation scenario
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