
Encoding Higher Level Extensions of Petri Nets
in Answer Set Programming

Saadat Anwar1, Chitta Baral1, and Katsumi Inoue2

1 SCIDSE, Arizona State University, 699 S Mill Ave, Tempe, AZ 85281, USA
2 Principles of Informatics Research Divisions, National Institute of Informatics,

Japan

Abstract. Answering realistic questions about biological systems and
pathways similar to the ones used by text books to test understanding of
students about biological systems is one of our long term research goals.
Often these questions require simulation based reasoning. To answer such
questions, we need formalisms to build pathway models, add extensions,
simulate, and reason with them. We chose Petri Nets and Answer Set
Programming (ASP) as suitable formalisms, since Petri Net models are
similar to biological pathway diagrams; and ASP provides easy extension
and strong reasoning abilities. We found that certain aspects of biological
pathways, such as locations and substance types, cannot be represented
succinctly using regular Petri Nets. As a result, we need higher level con-
structs like colored tokens. In this paper, we show how Petri Nets with
colored tokens can be encoded in ASP in an intuitive manner, how addi-
tional Petri Net extensions can be added by making small code changes,
and how this work furthers our long term research goals. Our approach
can be adapted to other domains with similar modeling needs.

1 Introduction

One of our long term research objectives is to develop a system that can answer
questions similar to the ones given in the biological texts, used to test the under-
standing of the students. In order to answer such questions, we have to model
pathways, add interventions / extensions to them based on the question, simu-
late them, and reason with the simulation results. We found Petri Nets [1] to be
a suitable formalism for modeling biological pathways, as their graphical repre-
sentation is very close to the biological pathways, and they can be extended to
add necessary assumptions and interventions relevant to the questions as shown
in our prequel to this paper [2]. Looking through the pathways, we found that
certain aspects of biological pathways, such as multiple locations and substance
types (perhaps connected to these locations) cannot be represented by regular
Petri Nets in a succinct manner.

Consider the simplified Petri Net model of the Electron Transport Chain [3]
in Figure 1. The chain removes high energy electrons (e) from NADH (nadh)
and delivers them to Oxygen (o2) by using electron carriers Coenzyme Q (q)
and Cytochrome C (cytc). During the process, H+ (h) ions are transported

ar
X

iv
:1

30
6.

35
48

v2
 [

cs
.A

I]
 2

4
Ju

n
20

13

from the Mitochondrial Matrix (mm) to the Intermembrane Space (is). The
cross-membrane H+ gradient thus produced drives ATP Synthase (not shown) to
produce ATP. The transitions t1−t4 represent multi-protein complexes that form
the chain. In order for t1 to fire, 2×NADH and 2×H+ (nadh/2, h/2) are required
at the Mitochondrial Matrix (mm). It is clear that the location information
embedded in this pathway is a vital part of its model. Regular Petri Nets that
were a focus of our previous work [2] cannot capture this location information
in a succinct way. In addition, when we use place nodes to represent locations
(as in Figure 1), regular (uncolored) tokens do not provide sufficient fidelity to
represent various token types needed as input to a transition. As a result, we have
to use Petri Nets with colored tokens [4] to model such biological pathways3. In
contrast to our previous work, the place nodes in this Petri Net model represent
locations rather than substances. Even electron-carrier (substances) q, cytc are
locations for electrons (e) to be stored and shuttled. Colored tokens also provide a
mechanism for differentiating between separate quantities of the same substance
present in multiple locations (a common occurrence in biological systems).

mm

t1
nadh/2
h/2

t3h/2 t4

h/6

is o2/1

q e/2

cytc e/2
nadp/2

h/2

e/2 h/2

e/2

h/2
h2o/1

t10

nadh/2
h/6

t12 o2/1

Fig. 1. Petri Net with tokens of colors {e, h, h2o, nadh, nadp, o2}. Circles represent
places, and rectangles represent transitions. Arc weights such as “nadh/2, h/2”,
“h/2, h2o/1” specify the number of tokens consumed and produced during the exe-
cution of their respective transitions, where “nadh/2, h/2” means 2 tokens of color
nadh and 2 tokens of h. Similar notation is used to specify marking on places, when
not present, the place is assumed to be empty of tokens.

Numerous Petri Net modeling and simulation systems exist [5,6,7,8], but we
did not find them to be suitable for our application, either due to limited adapt-
ability outside their intended application domain, limited extendibility, or ease
of extendibility. In addition, most systems did not explore all possible state evo-
lutions, allowed different firing semantics, or provided a way to guide the search
through specification of partial state as way-points. We found the features, such
as intuitive encoding, easy extendibility, and strong reasoning capability in An-
swer Set Programming (ASP), which is a declarative programming language with
numerous competitive solvers [9]. It has been effectively used in various domains,
such as spacecrafts, work flows, natural language processing, and biological sys-
tems [10]. The suitability of ASP to analyze Petri Nets is further reinforced over

3 Though a Petri Net with colored tokens can be converted into a regular Petri Net
without colored tokens, they are usually too large and cumbersome, hence inconve-
nient.

other techniques, such as process algebra, temporal logics, and mathematical
equations when one considers the restrictions on Petri Nets imposed by mathe-
matical techniques [11], the cumbersomeness of encoding in π-calculus even for
small models [12], or the lack of applicability to higher level Petri Net extensions.

Previous work on Petri Net to ASP translation has been limited to specific
classes of Petri Nets, such as regular Petri Nets [13] and Simple Logic Petri
Nets (SLPN) [14], focusing on analyzing their properties. Neither used colored
tokens. Please see our previous work [2] for more details. Though our focus
in the current work is on biological questions, our approach is equally suited
for hypothesis verification during drug design, drug interaction and biological
systems model development. It can also be applied to other domains where
Petri Nets are used for modeling and simulation, such as work flows, embedded
systems, and industrial control.

Thus, the main contributions of this paper are as follows. In Section 3 we
show how ASP allows intuitive declarative encoding of higher level Petri Net
extension of colored tokens [4]. We then show how additional extensions can be
incorporated in our encoding by making small changes. In this regard, we present
changing the firing semantics (Section 3.2), priority transitions (Section 4), and
timed transitions (Section 5). We show how Petri Nets and our encoding fit into
our ultimate research goals of answering questions about biological pathways.
We start with a brief background on ASP, multisets, and Petri Nets.

2 Fundamentals

Answer Set Programming (ASP) is a declarative logic programming lan-
guage based on the Stable Model Semantics [15]. Code presented in this paper
follows the Clingo [16] syntax. The reader is referred to [16,17] for the syntax
and semantics of Answer Set Programs.

A multiset A over a domain set D is a pair 〈D,m〉, where m : D → N

is a function giving the multiplicity of d ∈ D in A. Given two multsets A =
〈D,mA〉, B = 〈D,mB〉, A � B if ∀d ∈ D : mA(d) � mB(d), where � ∈ {<,>
,≤,≥,=}, and A 6= B if ∃d ∈ D : mA(d) 6= mB(d). Multiset sum/difference is
defined in the usual way. We use the short-hands d ∈ A to represent mA(d) > 0,
A = ∅ to represent ∀d ∈ D,m(d) = 0, A ⊗ n to represent ∀d ∈ D,m(d) ⊗ n,
where n ∈ N, ⊗ ∈ {<,>,≤,≥,=, 6=}. We use the notation d/n ∈ A to represent
that d appears n-times in A; we drop A when clear from context. The reader is
referred to [18] for details.

A basic Petri Net [1] is a bipartite graph of a finite set of place nodes
P = {p1, . . . , pn}, and transition nodes T = {t1, . . . , tm} connected through
directed arcs E = E+ ∪ E−. An arc goes from a place to a transition E− ⊆
P × T or a transition to a place E+ ⊆ T × P . The state of a Petri Net is
defined by the token allocation of all place nodes, collectively called its marking
M = (M(p1), . . . ,M(pn)),M(pi) ∈ N. Arc weights W : E → N \ {0} specify
the number of tokens consumed or produced from place nodes at the head or
tail of the arcs due to firing of a transition. Modeling capability of basic Petri

Nets is enhanced by adding reset, inhibit and read arcs. Reset arcs R : T → 2P

remove all tokens from their source places when fired. Inhibitor arcs I : T → 2P

prevent their transitions from firing until their source places are empty. Read
arcs Q ⊆ P × T prevent their transitions from firing until their source places
have at least the tokens specified by read arc weights QW : Q→ N \ {0}.

Higher level Petri Nets extend the notion of tokens to typed (or colored)
tokens. A Petri Net with Colored Tokens (with reset, inhibit and read arcs)
is a tuple PNC = (P, T,E,C,W,R, I,Q,QW), where P, T,E,R, I,Q are the
same as for basic Petri Nets, C = {c1, . . . , cl} is a finite set of colors (or types),
and arc weights W : E → 〈C,m〉, QW : Q → 〈C,m〉 are specified as multi-
sets of colored tokens over color set C. The state (or marking) of place nodes
M(pi) = 〈C,m〉, pi ∈ P is specified as a multiset of colored tokens over set C.

We will now define a number of concepts about Petri Nets used in this paper.
The initial marking is the initial token assignment of place nodes and is rep-
resented by M0. The marking at time-step k is written as Mk. The pre-set (or
input-set) of a transition t is •t = {p ∈ P |(p, t) ∈ E−}, while the post-set (or
output-set) is t• = {p ∈ P |(t, p) ∈ E+}. A transition t is enabled with respect
to marking M , enabledM (t), if each of its input places p has at least the number
of colored-tokens as the arc-weight W (p, t)4, each of its inhibiting places pi ∈ I(t)
have zero tokens and each of its read places pq : (pq, t) ∈ Q have at least the num-
ber of colored-tokens as the read-arc-weight QW (pq, t), i.e. (∀p ∈ •t,W (p, t) ≤
M(p)) ∧ (∀p ∈ I(t),M(p) = ∅) ∧ (∀(p, t) ∈ Q,M(p) ≥ QW (p, t)) for a given t.
Any number of enabled transitions may fire simultaneously as long as they don’t
conflict. The set Tk = {tk1

, . . . , tkn
} ⊆ T of such simultaneously firing transitions

is called a firing set. Execution of a firing set Tk on a marking Mk computes a
new marking Mk+1 as: ∀p ∈ P \R(Tk),Mk+1(p) = Mk(p)−

∑
t∈Tk∧p∈•tW (p, t)+∑

t∈Tk∧p∈t•W (t, p), ∀p ∈ R(Tk),Mk+1(p) =
∑

t∈Tk∧p∈t•W (t, p), where R(Tk) =⋃
t∈Tk

R(t). A set of transitions Tc ⊆ {t : enabledMk
(t)} is in conflict con-

flict in PNC with respect to Mk if firing them will consume more tokens than
are available at one of their common input places, i.e., ∃p ∈ P : Mk(p) <
(
∑

t∈Tc∧p∈•tW (p, t) +
∑

t∈Tc∧p∈R(t)Mk(p))5. An execution sequence is the
simulation of a firing sequence σ = T0, T1, . . . , Tk, where each Ti ⊆ T, 0 ≤ i ≤ k
is a firing set. It is the transitive closure of executions, where subsequent mark-
ings become the initial marking for the next transition set. Thus in the execution
sequence X = M0, T0,M1, T1, . . . , Tk,Mk+1, the firing of T0 at M0 produces M1,
which becomes initial marking for T1.

4 In the following text, for simplicity, we will use W (p, t) to mean W (〈p, t〉). We use
similar simpler notation for QW .

5 The reset arc is involved here because we use a modified execution semantics of
reset arcs compared to the standard definition [19]. Even though both capture similar
operation, our definition allows us to model elimination of all quantity of a substance
as soon as it is produced, even in a maximal firing set semantics. Our semantics
considers reset arc’s token consumption in contention with other arcs, while the
standard definition does not.

If the Figure 1 Petri Net has the marking:M0(mm) = [nadh/2, h/6],M0(q) =
[e/2], M0(cytc) = [e/2], M0(is) = [o2/1], then transitions t1, t3, t4 are enabled.
However, either {t1, t3} or {t4} can fire simultaneously in a single firing at time
0 due to limited h tokens in mm. t4 is said to be in conflict with t1, t3.

3 Translating Petri Nets with Colored Tokens to ASP

In this section we present an ASP encoding of a Petri Net with Colored Tokens
PNC , with an initial marking M0 and a simulation length k. This work extends
our encoding of regular Petri Nets in [2]. The following sections will show how
Petri Net extensions can be easily added to this initial encoding. We represent the
Petri Net PNC with initial marking M0, and simulation time with the following
facts and rules.

f1: Facts place(pi) where pi ∈ P is a place.
f2: Facts trans(tj) where tj ∈ T is a transition.
f3: Facts col(ck) where ck ∈ C is a color.
f4: Rules ptarc(pi, tj , nc, c, tsk) :- time(tsk). for each (pi, tj) ∈ E−, c ∈ C,

nc = mW (pi,tj)(c) : nc > 0.6

f5: Rules tparc(ti, pj , nc, c, tsk) :- time(tsk). for each (ti, pj) ∈ E+ , c ∈ C,
nc = mW (ti,pj)(c) : nc > 0.

f6: Rules ptarc(pi, tj , nc, c, tsk) :- holds(pi, nc, c, tsk), num(nc), nc>0, time(tsk).

for each (pi, tj) : pi ∈ R(tj), c ∈ C, nc = mMk(pi)(c).
f7: Rules iptarc(pi, tj , 1, c, tsk) :- time(tsk). for each (pi, tj) : pi ∈ I(tj), c ∈ C.
f8: Rules tptarc(pi, tj , nc, c, tsk) :- time(tsk). for each (pi, tj) ∈ Q, c ∈ C, nc =

mQW (pi,tj)(c) : nc > 0.
i1: Facts holds(pi, nc, c, 0). for each place pi ∈ P, c ∈ C, nc = mM0(pi)(c).
f9: Facts time(tsi) where 0 ≤ tsi ≤ k are the discrete simulation time steps.
f10: Facts num(n) where 0 ≤ n ≤ ntok are token quantities7

Next, we encode Petri Net’s execution behavior, which proceeds in dis-
crete time steps. For a transition ti to be enabled, it must satisfy the following
conditions: (i) @pj ∈ •ti : M(pj) < E−(pj , ti), (ii) @pj ∈ I(ti) : M(pj) > 0, and
(iii) @(pj , ti) ∈ Q : M(pj) < QW (pj , ti) . These three conditions are encoded as
e1, e2, e3, respectively and we encode the absence of any of these conditions for
a transition as e4:

e1: notenabled(T,TS) :- ptarc(P,T, N,C,TS), holds(P,Q,C,TS), place(P),

trans(T), time(TS), num(N), num(Q), col(C), Q<N.

e2: notenabled(T,TS) :- iptarc(P,T,N,C,TS), holds(P,Q,C,TS), place(P),

trans(T), time(TS), num(N), num(Q), col(C), Q>=N.

6 The time parameter tsk allows us to capture reset arcs, which consume tokens equal
to the current (time-step based) marking of their source nodes.

7 The token count predicate num’s limit can be arbitrarily selected to be higher than
the expected token count. It is there for efficient ASP grounding and not to impose
a limit on the token quantity.

e3: notenabled(T,TS) :- tptarc(P,T,N,C,TS), holds(P,Q,C,TS), place(P),

trans(T), time(TS), num(N), num(Q), col(C), Q<N.

e4: enabled(T,TS) :- trans(T), time(TS), not notenabled(T,TS).

Rule e1 captures the existence of an input place P with insufficient number of
tokens for transition T to fire. Rule e2 captures existence of a non-empty source
place P of an inhibitor arc to T preventing T from firing. Rule e3 captures
existence of a source place P with less than arc-weight tokens required by the
read arc to transition T for T to be enabled. The, holds(P,Q,C,TS) predicate
captures the marking of place P at time TS as Q tokens of color C. Rule e4
captures enabling of transition T when no reason for it to be not enabled is
determined by e1, e2, e3. In a biological context, this enabling is equivalent to a
reaction’s pre-conditions being satisfied. A reaction can proceed when its input
substances are available in the required quantities, it is not inhibited, and any
required activation quantity of activating substances is available.

Any subset of enabled transitions can fire simultaneously at a given time-step.
We select a subset of fireable transitions using a choice rule:

a1: {fires(T,TS)} :- enabled(T,TS), trans(T), time(TS).

The choice rule a1 either picks an enabled transition T for firing at time TS
or not. The combined effect over all transitions is to pick a subset of enabled
transitions to fire. Whether these transitions are in conflict are checked by later
rules a2, a3, a4. In a biological context, the multiple firing models parallel pro-
cesses occurring simultaneously. The marking is updated according to the firing
set using the following rules:

r1: add(P,Q,T,C,TS) :- fires(T,TS), tparc(T,P,Q,C,TS), time(TS).

r2: del(P,Q,T,C,TS) :- fires(T,TS), ptarc(P,T,Q,C,TS), time(TS).

r3: tot incr(P,QQ,C,TS) :- col(C), QQ = #sum[add(P,Q,T,C,TS) = Q : num(Q) :

trans(T)], time(TS), num(QQ), place(P).

r4: tot decr(P,QQ,C,TS) :- col(C), QQ = #sum[del(P,Q,T,C,TS) = Q : num(Q) :

trans(T)], time(TS), num(QQ), place(P).

r5: holds(P,Q,C,TS+1):-place(P),num(Q;Q1;Q2;Q3),time(TS),time(TS+1),col(C),

holds(P,Q1,C,TS), tot incr(P,Q2,C,TS), tot decr(P,Q3,C,TS), Q=Q1+Q2-Q3.

Rules r1 and r2 capture that Q tokens of color C will be added or removed
to/from place P due to firing of transition T at the respective time-step TS.
Rules r3 and r4 aggregate these tokens for each C for each place P (using
aggregate assignment QQ = #sum[...]) at the respective time-step TS. Rule r5
uses the aggregates to compute the next marking of P for color C at the time-
step (TS + 1) by subtracting removed tokens and adding added tokens to the
current marking. In a biological context, this captures the effect of a process /
reaction, which consumes its inputs and produces outputs for the downstream
processes. We capture token overconsumption using the following rules:

a2: consumesmore(P,TS) :- holds(P,Q,C,TS), tot decr(P,Q1,C,TS), Q1 > Q.

a3: consumesmore :- consumesmore(P,TS).

a4: :- consumesmore.

Rule a2 determines whether firing set selected by a1 will cause overconsump-
tion of tokens at P at time TS by comparing available tokens to aggregate tokens
removed as determined by r4. Rule a3 generalizes the notion of overconsump-
tion, while rule a4 eliminates answer with such overconsumption. In a biological
context, conflict (through overconsumption) models the limitation of input sub-
stances, which dictate which downstream processes can occur simultaneously.

Proposition 1. Let PNC be a Petri Net with colored tokens, reset, inhibit, and
read arcs and M0 be an initial marking and let Π3(PNC ,M0, k) be the ASP
encoding of PNC and M0 over a simulation of length k as defined in Section 3.
Then X3 = M0, T0,M1, . . . , Tk is an execution sequence of PNC (with respect
to M0) iff there is an answer-set A of Π3(PNC ,M0, k) such that: {fires(t, j) :
t ∈ Tj , 0 ≤ j ≤ k} = {fires(t, ts) : fires(t, ts) ∈ A} and {holds(p, q, c, j) : p ∈
P, c/q ∈Mj(p), 0 ≤ j ≤ k} = {holds(p, q, c, ts) : holds(p, q, c, ts) ∈ A}

3.1 Example Execution

Given the above translation rules, the following facts and rules encode the Petri
Net in Figure 1 with an initial marking of zero tokens8:

time(0..5). num(0..30). place(mm;is;q;cytc). trans(t1;t3;t4;t10;t12).

col(nadh;h;e;nadp;h2o;o2). holds(mm,0,nadh,0). holds(mm,0,h,0).

tparc(t12,is,1,o2,TS):-time(TS). tparc(t10,mm,6,h,TS):-time(TS).

tparc(t10,mm,2,nadh,TS):-time(TS). ptarc(mm,t1,2,nadh,TS):-time(TS).

We get thousands of answer-sets, for example9:

fires(t10;t12,0) holds(is,1,o2,1) holds(mm,6,h,1) holds(mm,2,nadh,1)

fires(t1;t10;t12,1) holds(is,2,h,2) holds(is,2,o2,2) holds(mm,10,h,2)

holds(mm,2,nadh,2) holds(mm,2,nadp,2) holds(q,2,e,2)

fires(t1;t3;t10;t12,2) holds(cytc,2,e,3) holds(is,6,h,3) holds(is,3,o2,3)

holds(mm,12,h,3) holds(mm,2,nadh,3) holds(mm,4,nadp,3) holds(q,2,e,3)

fires(t1;t3;t4;t10;t12,3) holds(cytc,2,e,4) holds(is,12,h,4)

holds(is,1,h2o,4) holds(is,3,o2,4) holds(mm,8,h,4) holds(mm,2,nadh,4)

holds(mm,6,nadp,4) holds(q,2,e,4)

fires(t3;t4;t10;t12,4) holds(cytc,2,e,5) holds(is,16,h,5)

holds(is,2,h2o,5) holds(is,3,o2,5) holds(mm,6,h,5) holds(mm,4,nadh,5)

holds(mm,6,nadp,5) fires(t1;t10;t12,5)

3.2 Changing Firing Semantics

The above code implements a set firing semantics, which can produce a large
number of answer-sets10. In biological domain, it is often preferable to simulate

8 We show a few of the tparc/5, ptarc/5, holds/4 to illustrate the approach, the
rest of them can be encoded in a similar fashion.

9 We are only showing colored tokens with non-zero quantity. Also, we are representing
fires(t1,ts),...,fires(tm,ts) as fires(t1;...;tm,ts) to conserve space.

10 A subset of a firing set can also be fired as a firing set by itself.

the maximum parallel activity at each time step. We accomplish this by enforcing
the maximal firing set semantics by extending its encoding for regular Petri
Nets in [2] to colored tokens as follows:

a5: could not have(T,TS):-enabled(T,TS),not fires(T,TS), ptarc(S,T,Q,C,TS),

holds(S,QQ,C,TS), tot decr(S,QQQ,C,TS), Q > QQ - QQQ.

a6: :- not could not have(T,TS), time(TS), enabled(T,TS), not fires(T,TS),

trans(T).

Rule a5 captures the fact that transition T , though enabled, could not have
fired at TS, as its firing would have caused overconsumption. Rule a6 elimi-
nates any answers where an enabled transition could have fired without causing
overconsumption but did not. This modification reduces the number of answers
produced for the Petri Net in Figure 1 to 4. We can encode other firing seman-
tics with similar ease11. We now look at how additional extensions can be easily
encoded by making small code changes.

4 Extension - Priority Transitions

Priority transitions enable ordering of Petri Net transitions, favoring high prior-
ity transitions over lower priority ones [20]. In a biological context, this is used to
model primary (or dominant) vs. secondary pathways / processes in a biological
system. This prioritization may be due to an intervention (such as prioritizing
elimination of a metabolite over recycling it).

A Priority Colored Petri Net with reset, inhibit, and read arcs is a tuple
PNpri = (P, T,E,C,W,R, I,Q,QW,Z), where: P, T,E,C,W,R, I,Q,QW are
the same as for PNC , and Z : T → N is a priority function that assigns pri-
orities to transitions. Lower number signifies higher priority. A transition ti
is enabled in PNpri if it would be enabled in PNC (with respect to M) and
there isn’t another transition tj that would be enabled in PNC (with respect to
M) s.t. Z(tj) < Z(ti). We add the following facts and rules to encode transition
priority and enabled priority transitions:

f11: Facts transpr(ti,pri) where pri is t′is priority.
a7: notprenabled(T,TS) :- enabled(T,TS), transpr(T,P), enabled(TT,TS),

transpr(TT,PP), PP < P.

a8: prenabled(T,TS) :- enabled(T,TS), not notprenabled(T,TS).

Rule a7 captures that an enabled transition T is not priority-enabled, if
there is another enabled transition with higher priority at TS. Rule a8 captures
that transition T is priority-enabled at TS since there is no enabled transition
with higher priority. We replace rules a1, a5, a6 with a9, a10, a11 respectively to
propagate priority as follows:

11 For example, if interleaved semantics is desired, rules a5, a6 can changed to capture
and eliminate answer-sets in which more than one transition fires in a firing set as:

a5’: more than one fires :- fires(T1,TS),fires(T2,TS),T1!=T2,time(TS).
a6’: :-more than one fires.

a9: {fires(T,TS)} :- prenabled(T,TS), trans(T), time(TS).

a10: could not have(T,TS) :- prenabled(TS,TS), not fires(T,TS),

ptarc(S,T,Q,C,TS), holds(S,QQ,C,TS), tot decr(S,QQQ,C,TS), Q > QQ - QQQ.

a11: :- prenabled(tr,TS), not fires(tr,TS), time(TS).

Rules a9, a10, a11 perform the same function as a1, a5, a6, except that they
consider only priority-enabled transitions as compared all enabled transitions.

Proposition 2. Let PNpri be a Petri Net with colored tokens, reset, inhibit,
read arcs and priority based transitions and M0 be an initial marking and let
Π5(PNpri,M0, k) be the ASP encoding of PNpri and M0 over a simulation of
length k as defined in Section 4. Then X5 = M0, T0,M1, . . . , Tk is an execu-
tion sequence of PNpri (with respect to M0) iff there is an answer-set A of
Π5(PNpri,M0, k) such that: {fires(t, j) : t ∈ Tj , 0 ≤ j ≤ k} = {fires(t, ts) :
fires(t, ts) ∈ A}, and {holds(p, q, c, j) : p ∈ P, c/q ∈Mj(p), 0 ≤ j ≤ k}
= {holds(p, q, c, ts) : holds(p, q, c, ts) ∈ A}

5 Extension - Timed Transitions

Biological processes vary in time required for them to complete. Timed transi-
tions [21] model this variation of duration. The timed transitions can be reentrant
or non-reentrant12. We extend our encoding to allow reentrant timed transitions.

q

[2] tq

e/2

q'

t3

e/2

e/2 cytc

[2] tcytc

e/2

cytc'

t4

e/2
e/2

mm t1nadh/2
h/2

h/2

h/6

is
o2/1

e/2nadp/2

h/2

e/2

h/2

h/2
h2o/1

t10

nadh/2
h/6

t12 o2/1

Fig. 2. An extended version of the Petri Net model from Fig. 1. The new transitions
tq, tcytc have a duration of 2 each (shown in square brackets (“[]”) next to the tran-
sition). When missing, transition duration is assumed to be 1.

12 A reentrant transition is like a vehicle assembly line, which accepts new parts
while working on multiple vehicles at various stages of completion; whereas a non-
reentrant transition only accepts new input when the current processing is finished.

A Priority Colored Petri Net with Timed Transitions, reset, in-
hibit, and query arcs is a tuple PND = (P, T,E,C,W,R, I,Q,QW,Z,D), where
P, T,E,C,W,R, I,Q,QW,Z are the same as for PNpri, and D : T → N \ {0} is
a duration function that assigns positive integer durations to transitions.

Figure 2 shows an extended version of Petri Net model of the Electron Trans-
port Chain [3] shown in Figure 1. The new transitions tq and tcytc (shown in
dotted outline) are timed transitions modeling the speed of the small carrier
molecules, Coenzyme Q (q) and Cytochrome C (cytc) as an effect of membrane
fluidity. Higher numbers for transition duration represent slower movement of
the carrier molecules due to lower fluidity. Execution in PND changes, since
the token update from Mk to Mk+1 can involve transitions that started at
some time l before time k, but finish at k + 1. Thus, the new marking is com-
puted as follows: ∀p ∈ P \ R(Tk),Mk+1(p) = Mk(p) −

∑
t∈Tk∧p∈•tW (p, t) +∑

t∈Tl∧p∈t•:l≤k,l+D(t)=k+1W (t, p), and ∀p ∈ R(Tk),

Mk+1(p) =
∑

t∈Tl∧p∈t•:l≤k,l+D(t)=k+1W (t, p), where R(Ti) = ∪t∈Ti
R(t).

A timed transition t produces its output D(t) time units after being fired.
We replace f5 with f12 adding transition duration and replace rule r1 with r6
that produces tokens at the end of transition duration 13:

f12: Rules tparc(ti, pj , nc, c, tsk, D(ti)):-time(tsk). for each (ti, pj) ∈ E+, c ∈ C,
nc = mW (ti,pj)(c) : nc > 0.

r6: add(P,Q,T,C,TSS):-fires(T,TS),time(TS;TSS), tparc(T,P,Q,C,TS,D),

TSS=TS+D-1.

Proposition 3. Let PND be a Petri Net with colored tokens, reset, inhibit,
read arcs and priority based timed transitions and M0 be an initial marking and
let Π6(PND,M0, k) be the ASP encoding of PND and M0 over a simulation
of length k as defined in Section 5. Then X6 = M0, T0,M1, . . . , Tk is an exe-
cution sequence of PND (with respect to M0) iff there is an answer-set A of
Π6(PND,M0, k) such that: {fires(t, j) : t ∈ Tj , 0 ≤ j ≤ k} = {fires(t, ts) :
fires(t, ts) ∈ A}, and {holds(p, q, c, j) : p ∈ P, c/q ∈Mj(p), 0 ≤ j ≤ k}
= {holds(p, q, c, ts) : holds(p, q, c, ts) ∈ A}

6 Example Use of Our Encoding and Reasoning Abilities

We illustrate the usefulness of our encoding by applying it to the following
simulation based reasoning question14 from [3]: “Membranes must be fluid to
function properly. How would decreased fluidity of the membrane affect the
efficiency of the electron transport chain?”

13 We can easily make these timed transitions non-reentrant by adding rule e5 that
disallows a transition from being enabled if it is already in progress:

e5: notenabled(T,TS1):-fires(T,TS0), num(N), TS1>TS0,

tparc(T,P,N,C,TS0,D), col(C), time(TS0), time(TS1), TS1<(TS0+D).

14 As it appeared in https://sites.google.com/site/2nddeepkrchallenge/

To answer this question, first we build a Petri Net model of the Electron
Transport Chain, including its interplay with the membrane. Our model is shown
in Figure 1. We base our model on [3, Figure 9.15], which shows multiple sub-
stances flowing through the protein complexes that form this chain. For example,
the first complex (t1), removes electrons from NADH (nadh) arriving at the Mi-
tochondrial Matrix (mm) and delivers them to the mobile carrier Coenzyme Q
(q), converting NADH to NAD+ (nadp). As a side effect, t1 also moves H+ (h)
ions from mm to the Intermembrane Space (is). The speed at which q (which
lives in the membrane) shuttles electrons to next complex depends upon the
membrane fluidity.

To answer the question, we need to model change in fluidity and its impact
on the mobile carriers. Background knowledge tells us that lower fluidity leads
to slower movement of mobile carriers, leading to longer transit times. We model
this using an intervention to the Petri Net model of Figure 1, extending it with
additional delay transitions in the path of q and Cytochrome C (cytc), as shown
with dotted outline in Figure 2. We encode both models in ASP using encodings
from Sections 3 and 5, respectively, and simulate them for a fixed number of
time-steps ts using the maximal firing set semantics from Section 3.2. A plot of
H+ produced over time is shown in Figure 3. We compute the efficiency of the
electron transport chain as the quantity of H+ (“h”) ions moved (from “mm”)
to “is” over the simulation duration “ts”, i.e. “ h

ts”. We found that this value
decreased from 4.5 to 3 with decrease of membrane fluidity (modeled as timed
transitions of duration 2). Thus, our results show that decreased fluidity of the
membrane results in lowering the efficiency of the electron transport chain.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

H
+

qu
an

tit
y

time step

normal fluidity
lower fluidity (dur=2); reentrant

lower fluidity (dur=2); non-reentrant

Fig. 3. H+ production in the intermembrane space over time for the normal fluidity,
lower fluidity (reentrant), and lower fluidity (non-reentrant transitions).

If we permit additional background knowledge about the mobile carriers, we
can refine our ASP encoding, modeling the mobile carriers with non-reentrant
timed transitions (Section 5 Footnote 13) 15. Repeating our simulation with non-
reentrant timed transitions results in an efficiency value of 2.5, which is a larger
reduction in the efficiency of the electron chain due to decreased fluidity.

ASP’s enumeration of the entire simulation evolution allows us to perform
additional reasoning not directly possible with Petri Nets. For example, partial
state or firing sequence can be encoded (as ASP constraints) as way-points to
guide the simulation. A simple use case is to enumerate answer-sets where a
transition t fires when one of its upstream source products S is found to be
depleted. These answer-sets are used to identify another upstream substance
responsible for t’s firing. Our encoding allows various Petri Net dynamic and
structural properties to be easily analyzed, as described in our previous work [2].

7 Related Work and Conclusion

Now we look at some of the existing Petri Net systems that support higher level
Petri Net constructs16 (focusing on the ones used for biological modeling). We
also look at some ways existing Petri Net tools are used for biological analysis
and put them in context of our research.

CPN Tools [5], Renew [8], Snoopy [6] all support Colored Petri Nets. All
but CPN Tools directly support inhibit and reset arcs. All but Snoopy are lim-
ited to one particular firing semantics, while Snoopy allows three distinct firing
semantics. Neither pursues more than one simulation and all break ties arbi-
trarily. Cell Illustrator [7] does not support colored tokens, but does provide
a rich graphical environment with pathway representation similar to standard
biological pathways. It also only supports one possible evolution.

Petri Nets have been previously used to analyze biological pathways [22,23,24],
but most of this analysis has been limited to dynamic and structural properties
of the Petri Net model. [25] took a different approach, where they surveyed the
Petri Net implementations and came up with questions answerable by each. Con-
trary to the previous work, we focus on real world biological questions as they
appear in college level biological text books; we model these questions as Petri
Net extensions; and leverage ASP as a rich reasoning environment.

Conclusion: In this paper we presented the suitability of using Petri Nets
with colored tokens for modeling biological pathways. We showed how such Petri
Nets can be intuitively encoded in ASP, simulated, and reasoned with, in order
to answer real world questions posed in the biological texts. We showed how our
initial encoding can be easily extended to include additional extensions, such
as maximal firing semantics, priority transitions, and timed transitions. Our
encoding has a low specification-implementation gap, it allows enumeration of

15 Similar modeling is also possible by using inhibitor arcs from mobile carriers to the
transitions preceding them.

16 The Petri Net Tools Database web-site summarizes a large slice of existing tools
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

all possible state evolutions, the ability to guide the search by specifying way-
points (such as partial state), and a strong reasoning ability. Our focus in this
work is more on encoding flexibility, exploring all possible state evolutions, and
reasoning capabilities; and less on performance. We showcased the usefulness of
our encoding by an example. We briefly compared our work to other Petri Net
systems and their use in biological modeling and analysis. In follow on papers,
we will extend our work to include the High-level Petri Net standard.

References

1. Petri, C.A.: Kommunikation mit Automaten. Technical report, Institut für Instru-
mentelle Mathematik, Bonn, Germany (1962)

2. Anwar, S., Baral, C., Inoue, K.: Encoding Petri nets in Answer Set Programming
for simulation based reasoning. http://arxiv.org/abs/1306.3542 (2013)

3. Reece, J., Cain, M., Urry, L., Minorsky, P., Wasserman, S.: Campbell Biology.
Pearson Benjamin Cummings (2010)

4. Peterson, J., et al.: A note on colored Petri nets. Information Processing Letters
11(1) (1980) 40–43

5. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer (STTT) 9(3) (2007) 213–254

6. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy - a unifying Petri
net tool. In: Application and Theory of Petri Nets. Volume 7347 of Lecture Notes
in Computer Science. (2012) 398–407

7. Nagasaki, M., Saito, A., Jeong, E., Li, C., Kojima, K., Ikeda, E., Miyano, S.: Cell
illustrator 4.0: A computational platform for systems biology. In Silico Biology
10(1) (2010) 5–26

8. Kummer, O., Wienberg, F., Duvigneau, M.: Renew–the reference net workshop.
Petri Net Newsletter 56 (1999) 12–16

9. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński,
M.: The first answer set programming system competition. In: Logic Programming
and Nonmonotonic Reasoning. Springer Berlin Heidelberg (2007) 3–17

10. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12) (2011) 92–103

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

12. van der Aalst, W.: Pi calculus versus Petri nets: Let us eat “humble pie” rather
than further inflate the “pi hype”. BPTrends 3(5) (2005) 1–11

13. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. In:
Logic Programming and Nonmotonic Reasoning. Springer (2001) 200–212

14. Behrens, T.M., Dix, J.: Model Checking with Logic Based Petri Nets. Technical
report ifi-07-02, Insitut für Informatik, Technische Universität Clausthal Julius-
Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany, Clausthal University of Tech-
nology, Dept of Computer Science (May 2007)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
Logic Programming: Proceedings of the Fifth International Conference and Sym-
posium (1988) 1070–1080

http://arxiv.org/abs/1306.3542

16. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. aicom 24(2) (2011)
105–124

17. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

18. Syropoulos, A.: Mathematics of multisets. Multiset Processing (2001) 347–358
19. Araki, T., Kasami, T.: Some decision problems related to the reachability problem

for Petri nets. Theoretical Computer Science 3(1) (1976) 85–104
20. Best, E., Koutny, M.: Petri net semantics of priority systems. Theoretical Com-

puter Science 96(1) (1992) 175–215
21. Ramchandani, C.: Analysis of asynchronous concurrent systems by Petri nets.

Technical report, DTIC Document (1974)
22. Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis tech-

niques to signal transduction pathways. BMC Bioinformatics 2(7) (November
2006) 482

23. Hofestädt, R., Thelen, S.: Qualitative modeling of biochemical networks. In Silico
Biology 1 (1998) 39–53

24. Li, C., Suzuki, S., Ge, Q.W., Nakata, M., Matsuno, H., Miyano, S.: Structural
modeling and analysis of signaling pathways based on Petri nets. Journal of bioin-
formatics and computational biology 4(05) (2006) 1119–1140

25. Peleg, M., Rubin, D., Altman, R.B.: Using Petri net tools to study properties
and dynamics of biological systems. Journal of the American Medical Informatics
Association 12(2) (2005) 181–199

	Encoding Higher Level Extensions of Petri Nets in Answer Set Programming

