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and the di�culty to use improper priors in this particular setup. (See Gelfand and Dey(1994), George and McCullogh (1994), Carlin and Chib (1995), Kass and Raftery (1995),or Raftery, Madigan and Volinsky (1996) for recent perspectives on the whole issue ofBayesian model choice.) Most of these di�erent approaches require prior speci�cationsfor each possible submodel, with at least a proper prior on each (sub)set of parametersand often a prior weight attached to each submodel. The complexity of this modeling isat odds with the initial parsimony requirement inherent to variable selection and it cre-ates di�culties and adhocqueries even in moderately informative settings, as discussed inGoutis and Robert (1997). For instance, usual prior modeling rules imply that the weightsdepend on the number of submodels which are considered, notwithstanding the prior in-formation and the tree structure of the submodels. Automated prior selection methods asin Bernardo (1979) and McCullogh and Rossi (1993) also encounter di�culties, on eitherimplementation or theoretical grounds.The alternative of model averaging advocated by Phillips and Smith (1996) and Madi-gan and Raftery (1994) encounters similar di�culties, while formally falling outside themodel choice category since this procedure does not propose a particular (sub)model asits output and, similarly, fails the parsimony requirement.The variable selection strategy we advocate in this paper and illustrate for variousqualitative models has already been defended in Goutis and Robert (1994) for testingin generalized linear models. Contrary to existing methods, it only requires a (possiblyimproper) prior distribution on the full model. The submodels under consideration areprojections of the full model, namely the closest submodels in the sense of the Kullback-Leibler distance to the full model. This de�nition thus avoids measure theoretic di�cultiesof de�ning a prior distribution on a set of prior measure zero, as in McCullogh and Rossi(1993) who consider the distribution of the projected parameters. Besides addressing vari-able selection issues, our extension of Goutis and Robert (1994) puts additional emphasison the inferential interpretation of the Kullback-Leibler distance, which allows us to solvethe scaling problem.The general principle of the method is presented in Section 2, while the derivationof the Kullback-Leibler projections is detailed in Sections 3 (in the discrete case) and 4(in the logit and polylogit cases). Section 5 examines the important issue of scaling theKullback-Leibler distance and of deriving the proper bound which determines the answerto the variable selection problem. Section 6 proposes an algorithmic implementation of themethod, including an excursion path in the submodel tree, which is illustrated in Section7 on a breast cancer dataset studied in Raftery and Richardson (1996). Although there is2



no theoretical guarantee, our tree descent method appears to give the selected submodelin a quadratic time, thus avoiding the combinatoric explosion observed in usual variableselection techniques. 2. Variable selection2.1. Distance between models.We consider p + 1 random variables y, x1; : : : ; xk; : : : ; xp, where y is a qualitativevariable which represents the phenomenon under scrutiny and the xk's are either discreteor continuous covariates. As understood in this paper, the goal of variable selection is toreduce as much as possible the dimension of the covariates vector from the original p whilepreserving enough of the explanatory power of the full model, this notion being rigorouslyde�ned below. The decision to select a particular submodel is based on n i.i.d. replicationsof the random vector (y; x), with x = (x1; : : : ; xp). The i-th random variable is denoted(yi; xi) with xi = (x1i ; : : : ; xki ; : : : ; xpi ).First, consider the case where all covariates are discrete. We denote by �j(x) theprobability P (yi = jjxi = x) (j = 1; : : : ; J). When p is small (in practice, p � 4), asin usual contingency tables or in some discriminant analyses, the suppression of a givencovariate, say x1, is generally associated with the point null hypothesisH0 : 8j = f1; : : : ; Jg; 8(u; v) 2 X 21 ; �j(u; s2; : : : ; sp) � �j(v; s2; : : : ; sp) = 0; (2:1)where (s2; : : : ; sp) represents any value of (x2; : : : ; xp). See for instance Santner and Du�y(1989).When some covariates are continuous, or when they are discrete but p is large, aparameterized covariate dependent model can be considered instead, as for instance in ageneralized linear model,P (yi = jjxi; �) = �j(xti�); j = 1; : : : ; J; i = 1; : : : ; n; � 2 IRp : (2:2)In this setup, the statistical issues related with variable selection are usually expressed interms of null hypotheses on the parameters of (2.2). For instance, null hypotheses are ofthe form H0 : �i1 = : : : = �iq = 0 (2:3)for a subset fi1; : : : ; iqg of f1; : : : ; pg. In both discrete and continuous cases, an approachto variable selection based on such null hypotheses represents a drastic simpli�cation and3



mostly a misrepresentation of the genuine purposes of the experimenter. As such, it doesinduce a substantial bias in the subsequent inference (see, e.g., Dupuis, 1997; Goutis andRobert, 1997). In particular, while the goal of the experimenter is to preserve most ofthe explanatory power of his/her model at a lower cost in terms of number of covariates,the exact nullity of the coe�cients in (2.1) or (2.3) is generally meaningless. Indeed,the discontinuities at �ij = 0 are not duplicated by the predictive performances of thecorresponding models, i.e. do not induce major changes in the explanatory power of themodel.In the remainder of the paper, we refer to the setting associated with discrete covari-ates, small values of p and the null hypothesis (2.1) as the `discrete case', and considerthe second setting, associated with model (2.2), only for the logit and polylogit models,although our developments easily extend to other qualitative generalized linear models.As mentioned in the Introduction, we consider the model selection alternative derivedfrom Goutis and Robert (1994). (See also Mengersen and Robert (1996) for a �rst use in thesetup of mixtures, and Dupuis (1994, 1997) for the use in a Bayesian test of homogeneityfor Markov chains.) The principal motivation for this approach is based on the aboveargument that only a major reduction in the explanatory power of a submodel (whencompared with the full model) must lead to the rejection for this submodel. The loss ofexplanatory power is de�ned through the evaluation of a comprehensive distance betweenthe full model and the submodel of interest.Several distances are acceptable candidates for this global perspective but the choiceusually settles on the Kullback-Leibler distance,d(f; g) = Z log�f(z)g(z)�f(z)dz or d(f; g) =Xz log�f(z)g(z)� f(z); (2:4)for information theoretic and intrinsic considerations (see Bernardo and Smith, 1994), aswell as computational reasons. Moreover, this distance enjoys appreciable properties suchas transitivity and additivity, in the settings of this paper, and it relates to the theory ofgeneralized linear models, as shown below. (See also McCullogh and Rossi, 1993, or Kassand Wasserman, 1996, for other arguments.)We want to stress at this point the fact that the choice of a functional distance betweentwo densities f and g as an expression of the di�erences between the corresponding modelsappears as a su�ciently comprehensive summarizer to encompass all possible e�ects ofa change from f to g. This representation of the explanatory power (or loss of) of amodel is robust (or generic) enough to address the di�erent uses of variable selection and4



thus to cover the possible uses of this selection by an arbitrary practitioner. The lackof symmetry of the Kullback-Leibler distance is far from being a deterrent in the modelselection framework, since the formulation of the test is actually intrinsically asymmetric(as pointed out in Dupuis, 1997): indeed, in this context, only the full model matters, thesubmodels being approximations to the full model, whether they are acceptable or not.Note that the I-divergence of Csisz�ar (1975), which is de�ned in the opposite way, namelyin terms of the projected density g, is less compelling from this point of view.2.2. Selection by projections.Given a functional distance like (2.4), we rephrase the null hypothesis that a subsetof the covariates gives an acceptable approximation of the full model (with density f), asH0 : d(f; f?) � �; (2:5)where f? denotes the projection of f onto the corresponding subspace (i.e. the closestelement of this subspace in terms of distance d) and � is the maximum acceptable distanceor, in our terminology, the maximum loss in explanatory power.The main issue in this approach is scaling, i.e. the choice of the bound �. First, it canbe determined by selecting an appropriate di�erence for simple distributions. For instance,in the case of contingency tables, an appropriate scaling distribution is the binomial B(n; p)distribution, to compare with the binomial B(n; 0:5) distribution. McCullogh and Rossi(1989) and Goutis and Robert (1994) provide some developments about the choice of � forbinomial, Poisson and normal distributions. An alternative is proposed in Dupuis (1994),by derivation of an upper bound on the maximum Kullback-Leibler distance d(f; f?), andit could apply in the present setup, as shown in Section 5, in the sense that � is a percentageof this upper bound. We actually opt for a third scaling approach which seems closer tomodeling purposes and relates to the loss in explanatory power compared with the fullmodel. This loss is derived from the distance between the full model and the covariatefree model, by choosing � as a percentage � (say, � = 5% or � = 10%) of this explanatorypower. We justify this choice by a deeper analysis in Section 5. Moreover we stress that,by virtue of an additivity property between embedded models (see Propositions 3.2 and4.1), this scaling approach is equivalent to impose that submodels have an explanatorypower which is at least (1� �) % of the explanatory power of the full model (see Section 5for details). 2.3. Conditional issues.Consider the density f(x; y) of the full model, denoted Mg, for the qualitative variabley and the covariates. Denote by � = (�; �) the parameter of the joint distribution, where �5



is the parameter associated with the density of x, f(xj�), and � is the parameter associatedwith the conditional density f(yjx; �). (Note that � has di�erent meanings in the discreteand logit settings.) For A � f1; : : : ; pg and xA the associated subset of the covariate setx, MA denotes the class of submodels such that the density of (y; x) isg(x; y) = g(yjxA; �)f(xj�):The parameter of the Kullback-Leibler projection of f(x; y) on MA, �? = (�?; �?),then satis�esd(f(x; yj�); g(x; yj�?) = d(f(xj�); f(xj�?)) + IEx[d(f(yjx; �); g(yjxA ; �?))]= IEx[d(f(yjx; �); g(yjxA ; �?))] (2:6)since �? = �. Therefore, only the second term, IEx[d(f(yjx; �); g(yjxA ; �?))], is relevantfor the variable selection procedure.Although this formulation of (2.5) involves the conditional distribution of y, it requiresevaluating IEx[d(f(yjx; �); g(yjxA ; �?))] for the joint density of (x; y). In some discretecases, the term IEx[d(f(yjx; �); g(yjxA ; �?))] can be computed (see Section 3), but, inthe continuous case, this joint distribution is most often unknown and we propose to useinstead the approximation 1n nXi=1 IEy �log� f(yjxi ; �)g(yjxA; �?)�����xi� ;which a.s. converges to IEx[d(f(yjx; �); g(yjx; �?))] as n goes to in�nity.The test is then implemented in a conditional version for continuous covariates. Forinstance, if xA denotes the complement covariates to xA, the component xA of x is thuseliminated when 1n nXi=1 d(f(yjxi ; �); g(yjxi; �?)) < � (2:7)where g(yjxi; �) is such that �j(xti�) = �j(Pv2A �vxi;v) and �? is the Kullback-Leiblerprojection of � 2 IRp in the space where �l = 0 for all l =2 B.In a Bayesian framework, condition (2.7) can be assessed by evaluating the posteriorexpectation of d(f(yjxi; �); g(yjxi; �?)) and comparing it to the upper bound �, ratherthan by computing the posterior probability of (2.5), which requires the determination ofthe acceptance probabilities, given the embedded nature of the test. Since this expectationcan rarely be computed in closed form in continuous setups, as shown in Section 4, it hasto approximated by an MCMC algorithm (see Section 6.1).6



2.4. Operational principle.If d(Mg;MA) denotes the distance between the full model Mg and its projection onthe class MA, d(Mg;MA) = IEx[d(f(yjx; �); g(yjxA ; �?))];our selection principle is therefore articulated as follows:Among all subsets A of covariates which are acceptable in the sense thatd(Mg;MA) < �is satis�ed, select the submodel with the smallest cardinal. In case of ex-�quosin terms of numbers of covariates, select the submodel which is closest to the fullmodel for the distance (2.6).This selection principle obviously follows from Occam's razor rule, since it selects themost parsimonious submodel among those which are compatible with the full complexmodel. As most variable choice techniques, this method is partially exhaustive in thesense that most cases have to be examined in descending, ascending or mixed trees, theembedded (smaller) submodels only being eliminated by the rejection of embedding (larger)submodels. Nonetheless, in Section 6, we propose an algorithmic implementation whichappears to be quadratic (rather than exponential) in the number of covariates.3. Projections in the discrete case.Starting from A � f1; : : : ; pg, we denote by �(xA) the vector of the �j(xA) = Pr(y =jjxA). For a subset B of A, the density of (x; y) in the class MB ish(x; y) = h(yjxB)f(xj�) = y(xB)f(xj�):An advantage of the discrete case, when compared with the general setup addressed inSection 4, is that the projection (�?(xB); �) of model MA on the classMB can be derivedin closed form.PROPOSITION 3.1. { The minimization programArg min(xB) IExA [d(g(yjxA); h(yjxB))]has a unique solution �?(xB) = (IE[�j(xA)jxB])j=1;:::;J :7



Proof.{ Since IEx[d(f(yjxA); g(yjxB)] =Xx f(x)Xj �j(xA) log��j(xA)j(xB)�we have to solve the following minimization program for a given xB:Arg min(xB)Xx f(x) JXj=1 �j(xA) log[1=j(xB)] (3:1)under the constraintPj j(xB) = 1.Let xB be the complement covariates to xB in xA. The solution to (3.1) is given by�?j (xB) = PxB f(xB ; xB)�j(xB ; xB)PjPxB f(xB ; xB)�j(xB ; xB) =XxB f(xBjxB)�j (xB; xB)= IExBjxB[�j(xA)] = IE[�j(xA)jxB] :The solution �?(xB) is thus the conditional expectation of �(xA) given xB. Thismeans that �?(xB) is the projection (for the L2 norm) of �(xA) on the �-algebra inducedby xB. This remark implies that the usual properties of projections (transitivity, multipleprojection theorem) apply. In addition, a remarkable additivity property on the distancesbetween the projected models can be exhibited.PROPOSITION 3.2. {Distances between embedded submodels are additive, in the sensethat, when C � B � A � f1; : : : ; pg,d(Ma;MC) = d(Ma;MB) + d(Mb;MC) ;where Ma and Mb denote the projections of Mg on MA and on MB, respectively.Proof.{ Omitting � for commodity, we denote by �?(xA), �?(xB) and �?(xC) the pa-rameters of the projection of the full model on the classesMA,MB andMC, respectively.By virtue of the transitivity property, �?(xC) is simultaneously the projection of �?(xA)onMC and the projection of �?(xB) onMC, and �?(xB) is also the projection of �?(xA)on MB. Taking into account those remarks, it is easy to show the additive property isequivalent toIExA 24Xj �?j (xA) log �?j (xB)�?j (xC)!35 = IExB 24Xj �?j (xB) log �?j (xB)�?j (xC)!35 :8



Now, by virtue of Proposition 3.1, we have, for all j,IExB "�?j (xB) log �?j (xB)�?j (xC)!# = IExB "IExBjxB [�?j (xA)] log �?j (xB)�?j (xC)!#= IExB IExBjxB "�?j (xA) log �?j (xB)�?j (xC)!#= IExA "�?j (xA) log �?j (xB)�?j (xC)!# :4. Dichotomous and polychotomous regression models4.1. Logit model.If yi 2 f0; 1g and xi 2 IRk are related by a logit modelP (yi = 1jxi; �) = 1� P (yi = 0jxi; �) = exp(�txi)1 + exp(�txi) ; (4:1)the projection �? on the subspace corresponding to the covariates zi is associated with �,solution of the minimization programmin� nXi=1 �(�txi � �tzi) exp�txi1 + exp�txi � log�1 + exp�txi1 + exp�tzi �� ;i.e. of the implicit equations (in �)nXi=1 exp �tzi1 + exp �tzi zi = nXi=1 exp�txi1 + exp�txi zi: (4:2)As already noticed in Goutis and Robert (1994), these equations are formally equivalentto the MLE equations for the logit model,nXi=1 exp �tzi1 + exp �tzi zi = nXi=1 yizi;with exp�txi=f1 + exp�txig playing the role of the yi's. This formal equivalence haspractical relevance, since it guarantees the existence of the projection �? of � as wellas the availability of standard computing softwares for the practical derivation of thisprojection (or simple Newton-Raphson procedures, see McCullagh and Nelder, 1989, orJensen et al., 1991). 9



An additional interesting feature of the logit model pertains to variable choice since,in this case too, Kullback-Leibler projections are transitive. Indeed, if !i is a subvector ofzi and if the corresponding parameter is , the projection of � is solution ofnXi=1 exp t!i1 + exp t!i!i = nXi=1 exp �tzi1 + exp �tzi!i: (4:3)Since the l.h.s. of (4.3) is a subvector of the r.h.s. of (4.2), the solution of (4.3) is alsosolution to nXi=1 exp t!i1 + exp t!i!i = nXi=1 exp�txi1 + exp�txi!i (4:4)if � is solution of (4.2). This property is su�cient to establish that our selection procedureis coherent, in both senses that the order of selection of the eliminated covariates is notrelevant and that embedded models are farther away from the full model than embeddingmodels, as shown by the additive property below.Note that the distance between the full model and a reduced model also involvesseveral constant terms, since it is equal to1nXi exp�txi1 + exp�txi (�txi � �tzi)� log�1 + exp�txi1 + exp �tzi � =Ent (�) + 1n nXi=1 log �1 + exp�tzi�� �t nXi=1 exp�txi1 + exp�txi zi;where Ent (�) denotes the entropy associated with the full model, namely1nXi � exp�txi1 + exp�txi log� exp�txi1 + exp�txi�+ 11 + exp�txi log� 11 + exp�txi�� :Therefore, the distance to a reduced model only requires the computation ofnXi=1 exp�txi1 + exp�txi log �1 + exp�tzi� :As in the discrete case, additivity holds in this setup.PROPOSITION 4.1. {Distances between embedded submodels are additive, in the sensethat, when C � B � A, d(Ma;MC) = d(Ma;MB) + d(Mb;MC) :10



Proof.{ let �?(xU ) denotes the solution of (4.2), for subset U , as in the proof of Proposition3.2. Then d(Ma;MC) is equal to=Xi exp�?(xA)txAi1 + exp�?(xA)txAi (�?(xA)txAi � �?(xC)txCi)� log�1 + exp �?(xA)txAi1 + exp�?(xC)txCi �=Xi exp�?(xA)txAi1 + exp�?(xA)txAi (�?(xA)txAi � �?(xB)txBi)� log�1 + exp�?(xA)txAi1 + exp�?(xB)txBi �+Xi exp�?(xA)txAi1 + exp�?(xA)txAi (�?(xB)txBi � �?(xC)txCi)� log�1 + exp�?(xB)txBi1 + exp�?(xC)txCi �=Xi exp�?(xA)txAi1 + exp�?(xA)txAi (�?(xA)txAi � �?(xB)txBi)� log�1 + exp�?(xA)txAi1 + exp�?(xB)txBi �+Xi exp�?(xB)txBi1 + exp�?(xB)txBi (�?(xB)txBi � �?(xC)txCi)� log�1 + exp �?(xB)txBi1 + exp�?(xC)txCi �by virtue of (4.3). 4.2. Polylogit regression.The above section only applies for dichotomous variables yi. However, the frameworkrelevant for most population studies is often multinomial. The natural extension to theprevious section is to use a polylogit modeling, namely to impose thatP (yi = k)P (yi = K) = exp(�tkxi); k 6= K:In this case, the Kullback-Leibler distance between the f(yijxi; �)'s and the g(yijxi; �)'s isgiven by1n nXi=1 (K�1Xk=1 exp(�tkxi)1 +PK�1`=1 exp(�t̀xi) (�k � �k)txi)+ log 1 +PK�1`=1 exp(� t̀xi)1 +PK�1`=1 exp(�t̀xi)! ;where � = (�1; : : : ; �K�1). If � is a subvector of �, associated with the subvector zi of xi,the projection �? is de�ned by the equations (in �) (1 � k � K � 1)nXi=1 exp(�tkxi)1 +PK�1`=1 exp(�t̀xi)zi = nXi=1 exp(�tkzi)1 +PK�1`=1 exp(� t̀zi)ziwhich are again equivalent to the polylogit MLE equations and can thus be solved usingsoftwares such as GLIM. Moreover, this property shows that the transitivity and additivityresults of the previous section extend to this case.11



5. Scaling the threshold.In this section, the p covariates are either discrete or continuous. The �rst step of theselection procedure outlined in Section 2.4 is to eliminate the subsets A such thatd(Mg;MA) > � (5:1)before selecting the subsets with smallest cardinal. This procedure thus requires a scalingof the threshold �. As in Dupuis (1994), the solution takes advantage of the fact thatd(Mg;M0) is bounded (see Proposition 5.1), where the class M0 contains the covariatefree submodels of Mg, that is those such that the density of (x; y) satis�esg(x; y) = g(yj�)f(xj�):For instance, in the setup of Section 4, M0 corresponds to the submodels with only anintercept. A selection procedure can then be based on the choice of � 2]0; 1[ and thederivation of � as � d(Mg;M0). Note that, due to the property of additivity of the distanced (see Propositions 3.2 and 4.1), we haved(Mg;MA) > �d(Mg ;M0) if and only if d(Ma;M0) < (1� �)d(Mg;M0): (5:2)where Ma is the projection of Mg on the classMA. As a consequence of (5.2), the selectionprocedure only considers submodels Ma such that their relative explanatory power,Pr(Ma) = d(Ma;M0)=d(Mg;M0);is greater than 1� �. (See Proposition 5.2 for a justi�cation of the interpretation of thosedistances as explanatory power of the corresponding models.)PROPOSITION 5.1. { The explanatory power d(Mg;M0) is bounded from above by logJ .Proof.{ The conditional entropy of y given x isH(yjx) = �Xy f(yjx; �) log f(yjx; �) � 0:Therefore, d(Mg;M0) = IEx �d(f(yjx; �); g(yj�?))�= �IEx [H(yjx)] � IEx �IEy �log g(yj�?)jx��� IEx �IEy �log 1g(yj�?) ����x�� (5:3)12



where IEy �log g(yj�?)jx� =Xy f(yjx; �) log g(yj�?):We now establish that IExIEy[log 1g(yj�?) ] is bounded by logJ .Since IE(x;y) �log g(yj�?)� = IEx 24Xj �j(x) log �?j 35 ;and Proposition 3.1 has shown that �?j = IEx[�j(x)],IEx 24Xj �j(x) log �?j 35 =Xj IEx [�j(x)] log IEx [�j(x)] :(Note that Proposition 3.1 also applies when the covariates are continuous, since M0 ismade of the covariate free submodels.) Taking into account Pj IEx[�j(x)] = 1 we have,IE(x;y) �log 1g(yj�?)� =Xj IEx[�j(x)] log(1=IEx[�j(x)]) � log J ; (5:4)since this sum over j represents the entropy of a multinomial distribution with J cells.Note that this upper bound only depends on the number of modalities of y and isindependent of the dimension of X . Moreover, it is equal to the maximum entropy of y(since y is multinomial with J cells). An analogous result has been established in Dupuis(1994) in a longitudinal setup, which shows the importance of the inherent multinomialstructure of the problem.The above result can be re�ned by a determination of the conditions under which theupper bound of d(Mg;M0) is exactly log J . Consider thus the subset of �,�� = f� 2 � : d(Mg ;M0) = logJg :PROPOSITION 5.2. { Assume that f(x) > 0. Then d(Mg;M0) = log J if and only if,for every x and j, H(yjx) = 0 and �?j = 1=J .Proof.{We have the following equivalences:� 2 �� () d(Mg;M0) = logJ() IEx [H(yjx)] = 0 and IE(x;y) �log 1g(yj�?)� = logJ (5:5)() 8x 2 X ; H(yjx) = 0 and 8 j = 1; : : : ; J �?j = 1=J : (5:6)13



Equivalence (5.5) is deduced from (5.3) and from (5.4). The �rst part of (5.6) follows fromthe assumption f(x) > 0. The second part is due to the fact that IE(x;y)[log g(yj�?)] =Pj �?j log�?j , which is the negentropy of a multinomial distribution. And, for the multino-mial case with J cells, the upper bound of the entropy, is obtained when all the probabilities(the �?j 's) are equal to 1=J .It turns out that a process (x; y) whose explanatory power d(Mg;M0) reaches theupper bound log J is such that, given x, the variable y is deterministic. In other words,the variable y is entirely explained by the covariate vector x. This result reinforces ourinterpretation of the quantity d(Mg;M0) as a measure of the explanatory power of Mg. Inaddition, this result justi�es, a posteriori, the expression loss of explanatory power we haveused to call the quantity d(Mg;MA) since, it is actually equal to a di�erence of explanatorypowers (namely d(Mg;M0) � d(Ma;M0)), by virtue of the additivity property.Note, however, that, for a given set of covariates and a given value J , �� can beempty, i.e. that the bound logJ on d(Mg;M0) may be too large. In the discrete case, wecan exhibit su�cient and necessary conditions on J , N=Qk Nk, where Nk is the numberof modalities of the covariate xk, and on the rank of the matrix A of the �j(x)'s, for thisbound to be tight.The problem is to solve (in f(x) and A) the system8 j = 1; : : : ; J; Xx2X f(x)�j (x) = 1J and 8x 2 X ; JXj=1 �j(x) log �j(x) = 0 (5:5)under the constraints8x 2 X ; JXj=1 �j(x) = 1 and Xx2X f(x) = 1:Note that the nullity of the negentropyPj �j(x) log �j(x) implies that there exists a uniquejx such that �jx(x) = 1 and �j(x) = 0 for j 6= jx. In addition, the l.h.s. of (5.5) can bewritten under the matricial representationAf = 1J 1where A is the matrix of the �j(x)'s, f is the vector of the f(x)'s and 1 = (1; : : : ; 1)t 2 IRJ .Consider the three exclusive cases: J < N , J = N and J > N . In the �rst case, thereis no solution since it leads to the contradiction 1=J = 0. When J = N , for any collectionof jx such that the matrix A is invertible (this condition is satis�ed if there is no more14



than one zero per row), the system has a same and unique solution, namely f(x) = 1=Juniformly in x. When J > N , the system has an in�nity of solutions as long as the rankof A is larger than J . Note again that a result analogous to Proposition 5.2 has beenobtained by Dupuis (1994), when dealing with a Bayesian test of homogeneity for Markovchains, since the space �� contains Markov chains whose entropy is zero.As a side remark, note that Proposition 5.2 can also be used for an absolute scalingof the explanatory power of the model by comparison with the bound log J .6. Implementation issues6.1. MCMC implementation.As mentioned in the introduction, the method is forcibly distinct from a testing ap-proach. From a Bayesian perspective, this signi�es that the focus is on estimating theposterior distance between the (embedding) full model and some submodels. In the setupof Section 4, given a sample of �'s produced from the posterior distribution for the fullmodel by an MCMC algorithm (see Albert and Chib, 1993, Gilks et al., 1996, or Robert,1996), it is then possible to compute the projected samples for the submodels through theMLE equations (4.1) and to derive the distances to the full model by averaging (4.4) overthe �'s.Instead of using the data augmentation steps of Albert and Chib (1993), we generatethe MCMC sample of the �'s via a random walk Hastings-Metropolis normal step, usingthe second order approximation of the posterior distribution, namelyL(�) = nYi=1 exp(�txi)1 + exp(�txi)in the case of a at prior on �, to construct the variance. We also introduce a scalefactor � in the normal variance in order to control the acceptance rate, following therecommendations of Gelman et al. (1996). The Hastings-Metropolis proposal for �(t+1) isthus generated as a normal N (�(t); � 2(Xtdiag(rL)X)�1).6.2. Excursions in the submodel tree.The projections of each point of the MCMC sample are derived via a standard Newton-Raphson algorithm implemented in C (programs are available from the authors upon re-quest) with a ridge type stabilizing of the second derivative. Since the procedure selectsthe smallest submodel which is at a distance less than � from the full model, it seems tocall for an complete exploration of the submodel tree and is thus almost exhaustive in the15



computation of the estimators of the parameters of the submodels. The \almost" is due tothe elimination of the farthest branches (submodels) of the tree by rejection of one of theirancestors. In order to minimize the number of submodels to be considered, we suggestbelow a particular type of excursion in the tree.The basic remark underlying this exploration path is that, since the submodel to beselected is the model with the smallest number k0 of covariates which is at an acceptabledistance from the full model, there is no reason to consider a larger number of covariatesif an upper bound on k0 can be found. The two �rst steps of the algorithm provide suchan upper bound. The �rst approach is a downward excursion which starts from the fullmodel Mg and removes the covariate which reduces the less the explanatory power in termsof distance (2.4). The resulting submodel with p � 1 covariates is Mp�1. Covariates arethen successively removed, as previously, from models Mp�j (j � 1) till the bound � isexceeded. The last accepted submodel Mk1 gives a �rst upper bound k1 on k0. The secondstep in the algorithm proceeds symmetrically, being an upward step which starts from theconstant model M0 by adding successively the most explanatory covariate till the resultingsubmodel Mk2 is accepted, thus producing a second upper bound on k0. In this upwardstep, covariates are ranked by order of (decreasing) importance through their contributionto the explanatory power of the full model.The two next steps of the algorithm determine (a) whether any submodel with lessthan min(k1; k2) covariates is acceptable and, if not, (b) whether any submodel with k0 =min(k1; k2) covariates is at a closer distance of the full model than the model obtainedin the downward and upward steps. These two last steps are more time consuming. Inparticular, the last step (b) involves at most� pmin(k1; k2)�submodels, since some of these have already been excluded through one of their ancestors.However, it appears in practice that both downward and upward steps always lead tothe same submodel which is furthermore the best submodel (for the projection criterion)obtained after the four steps above. We thus suggest to run only the downward and upwardsteps to check for coincidence when time is at stake.Note that the submodels considered in the above steps are not necessarily all thesubmodels embedded in the previous model and containing the previous model respectively,since some of these submodels may be removed in a previous step. Indeed, if one submodelis not acceptable in the downward step, all its descendents are not acceptable and shouldnot be considered in the subsequent steps. Moreover, in the upward step, submodels whose16



ancestors have been rejected in the downward step do not need to be examined.7. An illustration.The projection method developed in this paper is used to select covariates in a logisticregression model for an epidemiological study already considered by Richardson et al.(1989) from a classical point of view and by Raftery and Richardson (1996), who wereusing Bayes factors and transformed variables using the ACE (Alternating ConditionalExpectations) of Madigan and Raftery (1994).
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(10 000 iterations)Figure 7.1 { Convergence curves and histograms for the Gibbs samples of the coe�cients of thecovariates in the logit model for the breast cancer dataset from Richardson et al. (1989).The study evaluates the role of dietary factors on breast cancer and consists of 740women from Montpelier (France) (after removal of the missing values). The 13 risk factors17



registered in the study were age, menauposal age, age at menarche, parity, family history ofbreast cancer, age of �rst pregnancy, age at the end of studies, Quetelet's body mass index(weight/squared height), alcohol consumption (number of drinks per week), fat intake(total and saturated), and history of benign breast disease. (See Raftery and Richardson(1996) for more details.) Some of these factors are categorical while others are continuous,and we standardized all the factors by subtracting the means and dividing by the standarddeviation, since all submodels contain an intercept. Note also that we do not considerinteractions, following Raftery and Richardson's (1996) �ndings.The results of the selection procedure are provided in Table 7.1, which gives thesequence of submodels examined in the downward and upward steps, as well as the sequenceof the submodels with the same number of covariates which are evaluated in the last step(the other being directly eliminated by rejection of an ancestor in the model tree). The�rst noteworthy feature of this sequence of submodels is that both the downward and theupward steps provide the correct submodel. As mentioned in the previous section, thisphenomenon occurred in all cases we examined and we conjecture that it should be truein all cases except for pathological features of the covariate matrix.The second fact of interest is, of course, the resulting submodel which excludes menau-posal age, age at menarche, and both fat intakes, a result which somehow coincides withthe �ndings of Raftery and Richardson (1996), although these authors transformed thecovariates. For comparison purposes, note that the estimated distance between the fullmodel and the constant probability model is 0:042. Since Raftery and Richardson (1996)imposed that the classical risk factors (age, menauposal status, age at menarche, parity,familial background, age at the end of studies, Quetelet's index) must be part of the model,we also ran the method under this constraint. The selected variable among alcohol, totalfat and saturated fat, is again alcohol, as shown by Table 7.2. This second experimentillustrates the freedom allowed by our projection method. In models with small numbers ofcovariates, each possible submodel can be evaluated in terms of its explanatory power, andthe comparison can be led in a more qualitative way, rather than follows from the referenceto a strict level. For instance, in Table 7.1, Step 2., it may be preferable to choose themodel 100111011001 with relative explanatory power 0:88, which is only slightly smallerthan the selected 0:91, because it eliminates an additional covariate, namely age at theend of studies. 18



step subset A d(Mg ;MA) Pr(Ma)(�740)1: 101111111111 0:508 0:98101111111011 1:146 0:96100111111011 1:800 0:94100111111001 2:726 0:912: 000000010000 21:78 0:29000010010000 16:97 0:45100010010000 13:81 0:55100010011000 10:61 0:66100010011001 7:601 0:75100011011001 5:224 0:83100111011001 3:736 0:88100111111001 2:726 0:913: 111111110000 8:170 0:73111111001010 13:72 0:55111100111010 8:349 0:73110011111010 5:988 0:81001111111010 9:215 0:70111110011001 4:542 0:85111101011001 4:761 0:85111011011001 3:91 0:87110111011001 3:265 0:89101111011001 3:017 0:90011111011001 5:895 0:81100111111001 2:726 0:91100111011101 3:109 0:899100011111101 3:826 0:88111011010011 5:284 0:83110110110011 6:04 0:80101101110011 5:9 0:81101011011011 3:576 0:88100111011011 2:77 0:91101010111011 5:08 0:84011001111011 9:346 0:70100110011111 4:151 0:87100101011111 4:224 0:86100011011111 3:787 0:884: 101111011001 3:017 0:90100111111001 2:726 0:91100111011011 2:77 0:91Table 7.1 { Successive steps of the selection method for the study in Raftery and Richardson(1996). (The submodel is represented by the indicators of the covariates, see text.) The selectedsubmodel is in bold. The computations involve 5000 Gibbs iterations and the upper bound is a10% loss of the explanatory power, 0:042, or equivalently, Pr(Ma) > 0:9. For each set of covariates,we indicate the distance to the full model and the relative explanatory power.19
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