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Abstract

The Bayesian variable selection method proposed in the paper is based on the evaluation of
the Kullback-Leibler distance between the full (or encompassing) model and the submodels. The
implementation of the method does not require a separate prior modeling on the submodels since
the corresponding parameters for the submodels are defined as the Kullback-Leibler projections
of the full model parameters. The result of the selection procedure is the submodel with the
smallest number of covariates which is at an acceptable distance of the full model. We introduce
the notion of explanatory power of a model and scale the maximal acceptable distance in terms
of the explanatory power of the full model. Moreover, an additivity property between embedded
submodels shows that our selection procedure is equivalent to select the submodel with the smallest
number of covariates which has a sufficient explanatory power. We illustrate the performances
of this method on a breast cancer dataset, where they appear to be quadratic (as opposed to
exponential) in the number of covariates.
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1. Introduction

Bayesian model choice is usually based on the premise that posterior probabilities,
Bayes factors or related quantities should be compared, according to various scales. As
noted by Gelfand and Dey (1994), there is no agreement on the Bayesian course of action
in this setup as the problem can be stated in many different formats. For instance, con-
sider the ongoing debate on the alternative extensions to noninformative setups with the

solutions of Aitkin (1991), O’Hagan (1995), or Berger and Perrichi (1996), among others,
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and the difficulty to use improper priors in this particular setup. (See Gelfand and Dey
(1994), George and McCullogh (1994), Carlin and Chib (1995), Kass and Raftery (1995),
or Raftery, Madigan and Volinsky (1996) for recent perspectives on the whole issue of
Bayesian model choice.) Most of these different approaches require prior specifications
for each possible submodel, with at least a proper prior on each (sub)set of parameters
and often a prior weight attached to each submodel. The complexity of this modeling is
at odds with the initial parsimony requirement inherent to variable selection and it cre-
ates difficulties and adhocqueries even in moderately informative settings, as discussed in
Goutis and Robert (1997). For instance, usual prior modeling rules imply that the weights
depend on the number of submodels which are considered, notwithstanding the prior in-
formation and the tree structure of the submodels. Automated prior selection methods as
in Bernardo (1979) and McCullogh and Rossi (1993) also encounter difficulties, on either

implementation or theoretical grounds.

The alternative of model averaging advocated by Phillips and Smith (1996) and Madi-
gan and Raftery (1994) encounters similar difficulties, while formally falling outside the
model choice category since this procedure does not propose a particular (sub)model as

its output and, similarly, fails the parsimony requirement.

The variable selection strategy we advocate in this paper and illustrate for various
qualitative models has already been defended in Goutis and Robert (1994) for testing
in generalized linear models. Contrary to existing methods, it only requires a (possibly
improper) prior distribution on the full model. The submodels under consideration are
projections of the full model, namely the closest submodels in the sense of the Kullback-
Leibler distance to the full model. This definition thus avoids measure theoretic difficulties
of defining a prior distribution on a set of prior measure zero, as in McCullogh and Rossi
(1993) who consider the distribution of the projected parameters. Besides addressing vari-
able selection issues, our extension of Goutis and Robert (1994) puts additional emphasis
on the inferential interpretation of the Kullback-Leibler distance, which allows us to solve

the scaling problem.

The general principle of the method is presented in Section 2, while the derivation
of the Kullback-Leibler projections is detailed in Sections 3 (in the discrete case) and 4
(in the logit and polylogit cases). Section 5 examines the important issue of scaling the
Kullback-Leibler distance and of deriving the proper bound which determines the answer
to the variable selection problem. Section 6 proposes an algorithmic implementation of the
method, including an excursion path in the submodel tree, which is illustrated in Section

7 on a breast cancer dataset studied in Raftery and Richardson (1996). Although there is



no theoretical guarantee, our tree descent method appears to give the selected submodel
in a quadratic time, thus avoiding the combinatoric explosion observed in usual variable

selection techniques.

2. Variable selection

2.1. Daistance between models.

We consider p 4+ 1 random variables y, «',..., 2% ... 2P where y is a qualitative
variable which represents the phenomenon under scrutiny and the z*’s are either discrete
or continuous covariates. As understood in this paper, the goal of variable selection is to
reduce as much as possible the dimension of the covariates vector from the original p while
preserving enough of the ezplanatory power of the full model, this notion being rigorously
defined below. The decision to select a particular submodel is based on n i.i.d. replications
of the random vector (y,z), with = (2',... 2?). The i-th random variable is denoted
1 k P

)
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(yi, i) with @; = (z

First, consider the case where all covariates are discrete. We denote by «aj(z) the
probability P(y; = jle; = ) (y = 1,...,J). When p is small (in practice, p < 4), as
in usual contingency tables or in some discriminant analyses, the suppression of a given

covariate, say x!, is generally associated with the point null hypothesis
Ho: Vy={1,...,J}, V(u,v)€ X, aj(u;sa,...,s,) —aj(visz,...,s,) =0, (2.1)

where (s2,...,s,) represents any value of (2%,...,2%). See for instance Santner and Duffy

(1989).

When some covariates are continuous, or when they are discrete but p is large, a
parameterized covariate dependent model can be considered instead, as for instance in a
generalized linear model,

P(yi:j|xi,a):@j(xtoz), j=1,....J,1=1,....n, a € R”. (2.2)

7

In this setup, the statistical issues related with variable selection are usually expressed in
terms of null hypotheses on the parameters of (2.2). For instance, null hypotheses are of
the form

Ho: oy =...=0a;, =0 (2.3)

1

for a subset {iy,...,2,} of {1,...,p}. In both discrete and continuous cases, an approach

to variable selection based on such null hypotheses represents a drastic simplification and

3



mostly a misrepresentation of the genuine purposes of the experimenter. As such, it does
induce a substantial bias in the subsequent inference (see, e.g., Dupuis, 1997; Goutis and
Robert, 1997). In particular, while the goal of the experimenter is to preserve most of
the explanatory power of his/her model at a lower cost in terms of number of covariates,
the exact nullity of the coefficients in (2.1) or (2.3) is generally meaningless. Indeed,
the discontinuities at «a;; = 0 are not duplicated by the predictive performances of the
corresponding models, i.e. do not induce major changes in the explanatory power of the

model.

In the remainder of the paper, we refer to the setting associated with discrete covari-
ates, small values of p and the null hypothesis (2.1) as the ‘discrete case’, and consider
the second setting, associated with model (2.2), only for the logit and polylogit models,

although our developments easily extend to other qualitative generalized linear models.

As mentioned in the Introduction, we consider the model selection alternative derived
from Goutis and Robert (1994). (See also Mengersen and Robert (1996) for a first use in the
setup of mixtures, and Dupuis (1994, 1997) for the use in a Bayesian test of homogeneity
for Markov chains.) The principal motivation for this approach is based on the above
argument that only a major reduction in the explanatory power of a submodel (when
compared with the full model) must lead to the rejection for this submodel. The loss of
explanatory power is defined through the evaluation of a comprehensive distance between

the full model and the submodel of interest.

Several distances are acceptable candidates for this global perspective but the choice

usually settles on the Kullback-Leibler distance,

s = [ 1og(£ = )f(z)dz o d(f,g) =§Zjlog(

for information theoretic and intrinsic considerations (see Bernardo and Smith, 1994), as

(2)
P e e

well as computational reasons. Moreover, this distance enjoys appreciable properties such
as transitivity and additivity, in the settings of this paper, and it relates to the theory of
generalized linear models, as shown below. (See also McCullogh and Rossi, 1993, or Kass

and Wasserman, 1996, for other arguments.)

We want to stress at this point the fact that the choice of a functional distance between
two densities f and g as an expression of the differences between the corresponding models
appears as a sufficiently comprehensive summarizer to encompass all possible effects of
a change from f to g. This representation of the explanatory power (or loss of) of a

model is robust (or generic) enough to address the different uses of variable selection and
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thus to cover the possible uses of this selection by an arbitrary practitioner. The lack
of symmetry of the Kullback-Leibler distance is far from being a deterrent in the model
selection framework, since the formulation of the test is actually intrinsically asymmetric
(as pointed out in Dupuis, 1997): indeed, in this context, only the full model matters, the
submodels being approximations to the full model, whether they are acceptable or not.
Note that the I-divergence of Csiszar (1975), which is defined in the opposite way, namely

in terms of the projected density g, is less compelling from this point of view.
2.2. Selection by projections.

Given a functional distance like (2.4), we rephrase the null hypothesis that a subset

of the covariates gives an acceptable approximation of the full model (with density f), as
Ho : d(f. f*) <e. (2.5)

where f1 denotes the projection of f onto the corresponding subspace (i.e. the closest
element of this subspace in terms of distance d) and € is the maximum acceptable distance

or, in our terminology, the maximum loss in explanatory power.

The main issue in this approach is scaling, i.e. the choice of the bound €. First, it can
be determined by selecting an appropriate difference for simple distributions. For instance,
in the case of contingency tables, an appropriate scaling distribution is the binomial B(n, p)
distribution, to compare with the binomial B(n,0.5) distribution. McCullogh and Rossi
(1989) and Goutis and Robert (1994) provide some developments about the choice of € for
binomial, Poisson and normal distributions. An alternative is proposed in Dupuis (1994),
by derivation of an upper bound on the maximum Kullback-Leibler distance d(f, f1), and
it could apply in the present setup, as shown in Section 5, in the sense that € is a percentage
of this upper bound. We actually opt for a third scaling approach which seems closer to
modeling purposes and relates to the loss in explanatory power compared with the full
model. This loss is derived from the distance between the full model and the covariate
free model, by choosing € as a percentage p (say, p = 5% or p = 10%) of this explanatory
power. We justify this choice by a deeper analysis in Section 5. Moreover we stress that,
by virtue of an additivity property between embedded models (see Propositions 3.2 and
4.1), this scaling approach is equivalent to impose that submodels have an exzplanatory
power which is at least (1 — p) % of the ezplanatory power of the full model (see Section 5
for details).

2.8. Conditional issues.

Consider the density f(z,y) of the full model, denoted M, for the qualitative variable
y and the covariates. Denote by 6 = (o, £) the parameter of the joint distribution, where £

S



is the parameter associated with the density of x, f(x|€), and « is the parameter associated
with the conditional density f(y|x, o). (Note that « has different meanings in the discrete
and logit settings.) For A C {1,...,p} and x4 the associated subset of the covariate set
x, M4 denotes the class of submodels such that the density of (y,z) is

g(x,y) = g(ylea, ) f(x|6).

The parameter of the Kullback-Leibler projection of f(x,y) on M4, 8+ = (at,£1),

then satisfies

d(f(x.yl8), g(z.yl6") = d(f(|€), f(x]€)) + Euld(f(ylz, a), g(ylra, ab))]
= B, [d(f(ylz,a),9(ylva,ab))] (2.6)

since £+ = ¢. Therefore, only the second term, IE,[d(f(y|x,a), g(y|ra,at))], is relevant
for the variable selection procedure.

Although this formulation of (2.5) involves the conditional distribution of y, it requires
evaluating IE,[d(f(y|z, o), g(y|ra,at))] for the joint density of (z,y). In some discrete
cases, the term IE.[d(f(y|x, ), g(y|lra,at))] can be computed (see Section 3), but, in

the continuous case, this joint distribution is most often unknown and we propose to use
instead the approximation

s s () )

which a.s. converges to IE.[d(f(y|z,a), g(y|z,at))] as n goes to infinity.

The test is then implemented in a conditional version for continuous covariates. For
instance, if T4 denotes the complement covariates to x4, the component T 4 of = is thus

eliminated when

—Zd ylai, o), g(ylz;, at)) < e (2.7)

where g(y|z;, 3) is such that ®;(z{3) = ®;(>°, c 4 Bvtiv) and at is the Kullback-Leibler
projection of o € IR? in the space where oy = 0 for all [ ¢ B.

In a Bayesian framework, condition (2.7) can be assessed by evaluating the posterior
expectation of d(f(y|vi,a),g(y|r:,at)) and comparing it to the upper bound e, rather
than by computing the posterior probability of (2.5), which requires the determination of
the acceptance probabilities, given the embedded nature of the test. Since this expectation
can rarely be computed in closed form in continuous setups, as shown in Section 4, it has

to approximated by an MCMC algorithm (see Section 6.1).
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2.4. Operational principle.

If d(M,, M 4) denotes the distance between the full model My and its projection on
the class M 4,

d(Mg, Ma) = E.[d(f(ylz. ). g(ylra,a™))],

our selection principle is therefore articulated as follows:

Among all subsets A of covariates which are acceptable in the sense that
dMg, My) < e

18 satisfied, select the submodel with the smallest cardinal. In case of ex-wquos
in terms of numbers of covariates, select the submodel which 1s closest to the full

model for the distance (2.6).

This selection principle obviously follows from Occam’s razor rule, since it selects the
most parsimonious submodel among those which are compatible with the full complex
model. As most variable choice techniques, this method is partially exhaustive in the
sense that most cases have to be examined in descending, ascending or mixed trees, the
embedded (smaller) submodels only being eliminated by the rejection of embedding (larger)
submodels. Nonetheless, in Section 6, we propose an algorithmic implementation which

appears to be quadratic (rather than exponential) in the number of covariates.

3. Projections in the discrete case.

Starting from A C {1,...,p}, we denote by B(x.4) the vector of the 3;(z4) = Pr(y =
Jlxa). For a subset B of A, the density of (z,y) in the class Mp is

hz,y) = h(yles)f(x[€) = vy (ws)f(z[E).

An advantage of the discrete case, when compared with the general setup addressed in
Section 4, is that the projection (81(x5), &) of model M4 on the class Mg can be derived

in closed form.

ProprosiTioN 3.1. — The minimization program

Arg min B, , [d(g(y|za), h(y|es))]

+(zs)

has a unique solution

B (xp) = (B[Bj(v.a)|x8])j=1,....7 -
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Proof.— Since
Eldf(ylea) oles) = 3 (o Zﬁ; z.4)log (ﬁji >)>

we have to solve the following minimization program for a given zz:

Arg min Zf i(x4)log[l/v;(xB)] (3.1)

+(zs)

IIM&

under the constraint }_; v;(zp) = 1.

Let Tp be the complement covariates to x5 in x4. The solution to (3.1) is given by

>z [(28.78)8(z5,T5)
> 2w [ (@8, T8)3(28,T8) %;f Tslv)B;(vs, Ts)

= Ez, 25 [05(v4)] = B[Bj(x.4)|z5] .

B (xp) =

The solution 81(xg) is thus the conditional expectation of 3(x4) given xg. This
means that 31(xg) is the projection (for the Ly norm) of 3(x4) on the o-algebra induced
by xp. This remark implies that the usual properties of projections (transitivity, multiple
projection theorem) apply. In addition, a remarkable additivity property on the distances

between the projected models can be exhibited.

ProposiTiON 3.2. —Distances between embedded submodels are additive, in the sense
that, when C C B C ACH1,...,p},

d(Ma,Mc) = d(Ma,MB) + d(Mb,Mc) ,

where M, and My denote the projections of My on M 4 and on Mg, respectively.

Proof.— Omitting ¢ for commodity, we denote by 31(x4), 3+(zg) and B (x¢) the pa-
rameters of the projection of the full model on the classes M 4, Mpg and M, respectively.
By virtue of the transitivity property, 3+ (z¢) is simultaneously the projection of 3+(x4)
on M and the projection of 31(z5) on M, and 31(xpg) is also the projection of 3+(z4)
on Mp. Taking into account those remarks, it is easy to show the additive property is

equivalent to

ﬁj_(wl‘?) . L, 5J_( )
E,, Zﬁ log<ﬁL( )> =1, 2]:5](5) (ﬁL( )>




Now, by virtue of Proposition 3.1, we have, for all j,

E,, lﬁf(xs)log (g&iii;)] = [E,, [Efmw[ﬁf(xA)] log (g]LZi;>]
1 Bi-(xp)
= Eypy Ezy0s [ﬂ] (xa)log (ﬁj—(;pc)>]

- E,, lﬁf(m)log@ﬂzf;)] :

-
4. Dichotomous and polychotomous regression models
4.1.  Logit model.
Ify; € {0,1} and z; € IR* are related by a logit model
Plyi = 1lri0) = 1 P(y; = Ofrs,a) = —22L0 ) (1)

1 + exp(ata;)

L

the projection a=— on the subspace corresponding to the covariates z; is associated with (3,

solution of the minimization program
' expalz; 1 +expalz;
mm alr; —log | ————
Z{ =1z )1—|—expoz:1;1 g(l—l—expﬁtzi ’
i.e. of the implicit equations (in f3)
n t n t
exp 3'z; exp o' x;
— 2z, = — . 4.2
;1+expﬁt2i ! Zz_;l—l—expoﬂxi ! (42)

As already noticed in Goutis and Robert (1994), these equations are formally equivalent
to the MLE equations for the logit model,

" exp Az u

(3
£ 1‘|—6Xpﬁt2i 7 : 1yz 19
1= 1=

with exp a’z; /{1 + exp a’x;} playing the role of the y;’s. This formal equivalence has
practical relevance, since it guarantees the existence of the projection at of a as well
as the availability of standard computing softwares for the practical derivation of this
projection (or simple Newton-Raphson procedures, see McCullagh and Nelder, 1989, or
Jensen et al., 1991).



An additional interesting feature of the logit model pertains to variable choice since,
in this case too, Kullback-Leibler projections are transitive. Indeed, if w; is a subvector of

z; and if the corresponding parameter is v, the projection of 3 is solution of

n t n t
exXp Y 'w; exp 3'%;
g —w; = g — Wi (4.3)

— 1+ exp~ytw; - 1+ exp fiz;

Since the Lh.s. of (4.3) is a subvector of the r.h.s. of (4.2), the solution of (4.3) is also

solution to
n t
exp v w; expalz;
— ;= ; 4.4
;1+exp’ytw Zl—l—expoz:z;w (4.4)

if 3 is solution of (4.2). This property is sufficient to establish that our selection procedure
is coherent, in both senses that the order of selection of the eliminated covariates is not
relevant and that embedded models are farther away from the full model than embedding

models, as shown by the additive property below.

Note that the distance between the full model and a reduced model also involves

several constant terms, since it is equal to

- Z expal, (a'wi—f'2) —log (—1 TP atxi) —

1+ expaty; 1+ exp fiz;

exp a'z;

Ent (a Zlog 14 exp Blz;) — 3 Z i

1+ expaty;

where Ent () denotes the entropy associated with the full model, namely

1 expalz; exp a'z; 1 1
Ly log + og (—L—_ 1,
n < 1+ expatz; 1+ expatz; 1+ exp alx; 1+ expatz;

Therefore, the distance to a reduced model only requires the computation of

“ exp a'z; -
; T onatn. expo't) log (1 +exp 3 Zl> )

As in the discrete case, additivity holds in this setup.

ProprosITION 4.1. —Distances between embedded submodels are additive, in the sense
that, when C C B C A,

d(MavMC) = d(MavMB) + d(MvaC) :
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Proof.—let 31 (xy) denotes the solution of (4.2), for subset U, as in the proof of Proposition
3.2. Then d(M,, M¢) is equal to

B exp B (za)twai Lo Vot — B ) — Lo (1—|—6XpﬂJ-(xA)tl'Ai
_Zl+expﬁJ‘($A)t$Ai(ﬁ (za)'zai — B (wc) we;) — log )

(
_ Z exp ﬁl(:liA)t:z;Ai (ﬁL(SI?A)tSI?A‘ _ ﬁJ‘(xB)txg) ~log (1 + exp ﬁl(:z;A) T Ai
1+ exp S+ (za)twa; ' ! (z5)

eXpﬁJ_ [E_A) T A 1 t L t ].‘I_eXpﬁJ_ [EB t{EBZ
i = -1
—I_Z 1—|—exp[3J- SI?A) T A (ﬁ (1’5) B ﬁ (l’c) Le ) og

exp B (xa) e a; t . 1+ exp B4( t:z;
:Z 1+fxig&&)§m<ﬂ%m> rai — B (vp) xBi)_10g< +exp 3 ( A)

eXPﬁL (5) B 1 t n t 1—|-6XpﬁL (z8) 2B
E i i) —1
+ T+ exp 3L (r8)'0m (B~ (xp) wpi — B~ (2c) wei) — log ¢ exp 3L (ve e,

by virtue of (4.3). -
4.2. Polylogit regression.

The above section only applies for dichotomous variables y;. However, the framework
relevant for most population studies is often multinomial. The natural extension to the

previous section is to use a polylogit modeling, namely to impose that

Py, =k .
ﬁ = exp(az;), k# K.

In this case, the Kullback-Leibler distance between the f(y;|z;, a)’s and the g(y;|x;,3)’s is
given by

IS ewlobe) o L ( 14+ 3 exp(f >>
Z{Zl—l-zhﬂ p(al :L'z)( Br) }‘I' g ‘|‘EAL1€ plater) )

k=1

where a = (aq,...,ax11). If 3 is a subvector of «, associated with the subvector z; of x5,

the projection ot is defined by the equations (in 8) (1 <k < K — 1)

7

exp(oﬂ;C exp ﬁkzl)
Z KLl Z = Z KLl “i
=1 14225 explay 114300 exp(f2i)

which are again equivalent to the polylogit MLE equations and can thus be solved using
softwares such as GLIM. Moreover, this property shows that the transitivity and additivity

results of the previous section extend to this case.
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5. Scaling the threshold.

In this section, the p covariates are either discrete or continuous. The first step of the

selection procedure outlined in Section 2.4 is to eliminate the subsets A such that
dMg, M4) > € (5.1)

before selecting the subsets with smallest cardinal. This procedure thus requires a scaling
of the threshold e. As in Dupuis (1994), the solution takes advantage of the fact that
d(My, Mg) is bounded (see Proposition 5.1), where the class My contains the covariate
free submodels of M, that is those such that the density of (z,y) satisfies

g(x,y) = glyla)f(=[€).

For instance, in the setup of Section 4, My corresponds to the submodels with only an
intercept. A selection procedure can then be based on the choice of p €]0,1] and the
derivation of € as p d(My, My). Note that, due to the property of additivity of the distance
d (see Propositions 3.2 and 4.1), we have

dMy, M 4) > pd(My, Mo) if and only if d(Mg, Mo) < (1 — p)d(My, Mp). (5.2)

where M, is the projection of M, on the class M 4. As a consequence of (5.2), the selection

procedure only considers submodels M, such that their relative explanatory power,
Pr(M,y) = d(M,, Mq)/d(My, M),

is greater than 1 — p. (See Proposition 5.2 for a justification of the interpretation of those

distances as explanatory power of the corresponding models.)
ProPOSITION 5.1. — The explanatory power d(My, Mg) is bounded from above by log .J.

Proof.— The conditional entropy of y given z is
H(yle) = = 3 flyle,a)log f(yle,a) = 0.
y
Therefore,
d(M,, Mo) = B, [d(f(ylz. ). g(yla™))]
= —IE, [H(y|z)] — E, [E, [log g(yla™)|«]]

<. [, [log o] (53)

12




where

E, [logg(yla®)|z] =) f(ylr.a)log g(yla’).

We now establish that IE,IE,[log m] is bounded by log J.

Since

IE; 4 [logg(y|oz = Zoz] loga \

and Proposition 3.1 has shown that ozj‘ = E,[a;(z)],

Zoz] loga ZIE aj(z)|logIE; [aj(x)] .

(Note that Proposition 3.1 also applies when the covariates are continuous, since My is

made of the covariate free submodels.) Taking into account -, IE;[a;(2)] = 1 we have,
E(, ., [log oD ] ZIE a;j(2)]log(1/E.[a;(2)]) < logJ , (5.4)

since this sum over j represents the entropy of a multinomial distribution with J cells. mm

Note that this upper bound only depends on the number of modalities of y and is
independent of the dimension of X'. Moreover, it is equal to the maximum entropy of y
(since y is multinomial with .J cells). An analogous result has been established in Dupuis
(1994) in a longitudinal setup, which shows the importance of the inherent multinomial

structure of the problem.

The above result can be refined by a determination of the conditions under which the
upper bound of d(M,, My) is exactly log J. Consider thus the subset of O,

O*={0ec0:dM,, My =logJ}.
PROPOSITION 5.2. — Assume that f(x) > 0. Then d(M,, My) = logJ if and only i,
for every x and 5, H(ylx) =0 and ozj‘ =1/J.

Proof.— We have the following equivalences:

6 € 0 < d(M,, M) = log J

— IE, [H(y|lz)] =0 and I, [log e |1 )] log J (5.5)

—=VrekX, Hylx)=0 and Vj=1,...,J af=1/J. (5.6)

J
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Equivalence (5.5) is deduced from (5.3) and from (5.4). The first part of (5.6) follows from
the assumption f(z) > 0. The second part is due to the fact that IE(, ,)[log g(ylat)] =
E]‘ ozj‘ log ozj‘, which is the negentropy of a multinomial distribution. And, for the multino-
mial case with J cells, the upper bound of the entropy, is obtained when all the probabilities

(the ozj"s) are equal to 1/.J. mm

It turns out that a process (z,y) whose explanatory power d(M,, M) reaches the
upper bound log .J is such that, given x, the variable y is deterministic. In other words,
the variable y is entirely explained by the covariate vector x. This result reinforces our
interpretation of the quantity d(M,, Mg) as a measure of the explanatory power of M,. In
addition, this result justifies, a posteriori, the expression loss of explanatory power we have
used to call the quantity d(M,, M 4) since, it is actually equal to a difference of explanatory
powers (namely d(M,, Mg) —d(M,, My)), by virtue of the additivity property.

Note, however, that, for a given set of covariates and a given value J, ©F can be
empty, i.e. that the bound log.J on d(M,, M) may be too large. In the discrete case, we
can exhibit sufficient and necessary conditions on J, N=[], N, where N is the number
of modalities of the covariate z*, and on the rank of the matrix A of the a;(z)’s, for this
bound to be tight.

The problem is to solve (in f(x) and A) the system
1 J
Vi=1,...,J, Z f(:z;)ozj(x):j and V& e X, Zozj(x)logozj(x):() (5.5)
r€EX 7=1
under the constraints
J
Veedd, Zozj(:zj)zl and Zf(:z;)zl
j=1 r€EX

Note that the nullity of the negentropy E]‘ aj(z)log aj(x) implies that there exists a unique
Jz such that aj (z) = 1 and oj(x) = 0 for j # j,. In addition, the Lh.s. of (5.5) can be

written under the matricial representation
Af=-=1

where A is the matrix of the aj(z)’s, f is the vector of the f(z)’s and 1 = (1,...,1)" € R
Consider the three exclusive cases: J < N, J =N and J > N. In the first case, there

is no solution since it leads to the contradiction 1/J = 0. When J = N, for any collection

of j, such that the matrix A is invertible (this condition is satisfied if there is no more
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than one zero per row), the system has a same and unique solution, namely f(x) = 1/J
uniformly in . When J > N, the system has an infinity of solutions as long as the rank
of A is larger than J. Note again that a result analogous to Proposition 5.2 has been
obtained by Dupuis (1994), when dealing with a Bayesian test of homogeneity for Markov

chains, since the space ©* contains Markov chains whose entropy is zero.

As a side remark, note that Proposition 5.2 can also be used for an absolute scaling

of the explanatory power of the model by comparison with the bound log .J.

6. Implementation issues

6.1. MCMC implementation.

As mentioned in the introduction, the method is forcibly distinct from a testing ap-
proach. From a Bayesian perspective, this signifies that the focus is on estimating the
posterior distance between the (embedding) full model and some submodels. In the setup
of Section 4, given a sample of a’s produced from the posterior distribution for the full
model by an MCMC algorithm (see Albert and Chib, 1993, Gilks et al., 1996, or Robert,
1996), it is then possible to compute the projected samples for the submodels through the
MLE equations (4.1) and to derive the distances to the full model by averaging (4.4) over

the a’s.

Instead of using the data augmentation steps of Albert and Chib (1993), we generate
the MCMC sample of the o’s via a random walk Hastings-Metropolis normal step, using

the second order approximation of the posterior distribution, namely

By = ] o0t

Pl 1+ exp(ata;)

in the case of a flat prior on «, to construct the variance. We also introduce a scale
factor 7 in the normal variance in order to control the acceptance rate, following the

recommendations of Gelman et al. (1996). The Hastings-Metropolis proposal for ot g
thus generated as a normal A (a?, 72(X*diag(VL)X)+").

6.2. Excursions in the submodel tree.

The projections of each point of the MCMC sample are derived via a standard Newton-
Raphson algorithm implemented in C (programs are available from the authors upon re-
quest) with a ridge type stabilizing of the second derivative. Since the procedure selects
the smallest submodel which is at a distance less than e from the full model, it seems to

call for an complete exploration of the submodel tree and is thus almost exhaustive in the
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computation of the estimators of the parameters of the submodels. The “almost” is due to
the elimination of the farthest branches (submodels) of the tree by rejection of one of their
ancestors. In order to minimize the number of submodels to be considered, we suggest

below a particular type of excursion in the tree.

The basic remark underlying this exploration path is that, since the submodel to be
selected is the model with the smallest number kg of covariates which is at an acceptable
distance from the full model, there is no reason to consider a larger number of covariates
if an upper bound on kg can be found. The two first steps of the algorithm provide such
an upper bound. The first approach is a downward excursion which starts from the full
model M, and removes the covariate which reduces the less the explanatory power in terms
of distance (2.4). The resulting submodel with p — 1 covariates is M, (1. Covariates are
then successively removed, as previously, from models M, ; (j > 1) till the bound e is
exceeded. The last accepted submodel My, gives a first upper bound &y on kg. The second
step in the algorithm proceeds symmetrically, being an upward step which starts from the
constant model My by adding successively the most explanatory covariate till the resulting
submodel My, is accepted, thus producing a second upper bound on ky. In this upward
step, covariates are ranked by order of (decreasing) importance through their contribution

to the explanatory power of the full model.

The two next steps of the algorithm determine (a) whether any submodel with less
than min(kq, k2) covariates is acceptable and, if not, (b) whether any submodel with kg =
min(kq, k2) covariates is at a closer distance of the full model than the model obtained
in the downward and upward steps. These two last steps are more time consuming. In

particular, the last step (b) involves at most

(st )

submodels, since some of these have already been excluded through one of their ancestors.
However, it appears in practice that both downward and upward steps always lead to
the same submodel which is furthermore the best submodel (for the projection criterion)
obtained after the four steps above. We thus suggest to run only the downward and upward

steps to check for coincidence when time is at stake.

Note that the submodels considered in the above steps are not necessarily all the
submodels embedded in the previous model and containing the previous model respectively,
since some of these submodels may be removed in a previous step. Indeed, if one submodel
is not acceptable in the downward step, all its descendents are not acceptable and should

not be considered in the subsequent steps. Moreover, in the upward step, submodels whose
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ancestors have been rejected in the downward step do not need to be examined.

7. An illustration.

The projection method developed in this paper is used to select covariates in a logistic
regression model for an epidemiological study already considered by Richardson et al.
(1989) from a classical point of view and by Raftery and Richardson (1996), who were
using Bayes factors and transformed variables using the ACE (Alternating Conditional
Expectations) of Madigan and Raftery (1994).
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Figure 7.1 — Convergence curves and histograms for the Gibbs samples of the coefficients of the

covariates in the logit model for the breast cancer dataset from Richardson et al. (1989).

The study evaluates the role of dietary factors on breast cancer and consists of 740

women from Montpelier (France) (after removal of the missing values). The 13 risk factors
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registered in the study were age, menauposal age, age at menarche, parity, family history of
breast cancer, age of first pregnancy, age at the end of studies, Quetelet’s body mass index
(weight /squared height), alcohol consumption (number of drinks per week), fat intake
(total and saturated), and history of benign breast disease. (See Raftery and Richardson
(1996) for more details.) Some of these factors are categorical while others are continuous,
and we standardized all the factors by subtracting the means and dividing by the standard
deviation, since all submodels contain an intercept. Note also that we do not consider

interactions, following Raftery and Richardson’s (1996) findings.

The results of the selection procedure are provided in Table 7.1, which gives the
sequence of submodels examined in the downward and upward steps, as well as the sequence
of the submodels with the same number of covariates which are evaluated in the last step
(the other being directly eliminated by rejection of an ancestor in the model tree). The
first noteworthy feature of this sequence of submodels is that both the downward and the
upward steps provide the correct submodel. As mentioned in the previous section, this
phenomenon occurred in all cases we examined and we conjecture that it should be true

in all cases except for pathological features of the covariate matrix.

The second fact of interest is, of course, the resulting submodel which excludes menau-
posal age, age at menarche, and both fat intakes, a result which somehow coincides with
the findings of Raftery and Richardson (1996), although these authors transformed the
covariates. For comparison purposes, note that the estimated distance between the full
model and the constant probability model is 0.042. Since Raftery and Richardson (1996)
imposed that the classical risk factors (age, menauposal status, age at menarche, parity,
familial background, age at the end of studies, Quetelet’s index) must be part of the model,
we also ran the method under this constraint. The selected variable among alcohol, total
fat and saturated fat, is again alcohol, as shown by Table 7.2. This second experiment
illustrates the freedom allowed by our projection method. In models with small numbers of
covariates, each possible submodel can be evaluated in terms of its explanatory power, and
the comparison can be led in a more qualitative way, rather than follows from the reference
to a strict level. For instance, in Table 7.1, Step 2., it may be preferable to choose the
model 100111011001 with relative explanatory power 0.88, which is only slightly smaller
than the selected 0.91, because it eliminates an additional covariate, namely age at the

end of studies.
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step subset A dMg, My4) Pr(Ma)

(x740)

1. 101111111111 0.508 0.98
101111111011 1.146 0.96
100111111011 1.800 0.94

100111111001 2.726 0.91

2. 000000010000 21.78 0.29
000010010000 16.97 0.45
100010010000 13.81 0.55
100010011000 10.61 0.66
100010011001 7.601 0.75
100011011001 5.224 0.83
100111011001 3.736 0.88

100111111001 2.726 0.91

3. 111111110000 8.170 0.73
111111001010 13.72 0.55
111100111010 8.349 0.73
110011111010 5.988 0.81
001111111010 9.215 0.70
111110011001 4.542 0.85
111101011001 4.761 0.85
111011011001 3.91 0.87
110111011001 3.265 0.89
101111011001 3.017 0.90
011111011001 5.895 0.81

100111111001 2.726 0.91
100111011101 3.109 0.899
100011111101 3.826 0.88
111011010011 5.284 0.83
110110110011 6.04 0.80
101101110011 5.9 0.81
101011011011 3.576 0.88
100111011011 2.77 0.91
101010111011 5.08 0.84
011001111011 9.346 0.70
100110011111 4.151 0.87
100101011111 4.224 0.86
100011011111 3.787 0.88

4. 101111011001 3.017 0.90

100111111001 2.726 0.91
100111011011 2.77 0.91

Table 7.1 — Successive steps of the selection method for the study in Raftery and Richardson
(1996). (The submodel is represented by the indicators of the covariates, see text.) The selected
submodel is in bold. The computations involve 5000 Gibbs iterations and the upper bound is a
10% loss of the explanatory power, 0.042, or equivalently, P.(Mg) > 0.9. For each set of covariates,

we indicate the distance to the full model and the relative explanatory power.
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alcohol total fat saturated fat distance(x740)

0 0 0 5.346
1 0 0 1.334
0 1 0 2.950
0 0 1 2.745
1 0 1 0.623

Table 7.2 — Comparison of the effects of the factors alcohol, total fat and saturated fat on the
distance to the full model.
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