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Pricing in Matching Markets

1 Introductionin

Prices. Consider three people and the prices that clear their markets:

• Alice works in a daily spot market for casual, unskilled labor. A
prototypical job pays her a fixed sum to drive a truck to pick up
materials. This market is characterized by a single price, governing
the transactions in each buyer/seller pair.

• Carol is a senior executive with an Ivy League degree. She receives job
offers at quite different wages from various firms, each of which has
made offers to others at wages different than those offered Carol. Her
alma mater gave her a half-tuition scholarship while rejecting other
students who would have paid full tuition.

• Bob works as a tax preparer, bolstered by a degree from his local junior
college. He quotes the same hourly price to all of his clients, though
some other tax preparers and accountants charge different prices, just
as different junior college and technical schools charge different prices
but accept all applicants at those prices.

We refer to the prices faced by Alice as universal prices. These are
the prices that typically show up in supply-and-demand diagrams in in-
troductory texts. Carol faces personalized prices that depend on both her
characteristics and those of her trading partner. Bob faces uniform prices
that depend on the characteristics of the agent posting the price but not
those of the agent on the other side of the transaction.

Why do we see universal prices in some markets, uniform prices in oth-
ers, and personalized prices in yet others? What implications does the type
of pricing have for market outcomes? How are these prices linked to mar-
ket characteristics? This paper addresses these questions, concentrating on
uniform and personalized prices.

Premuneration values. An interaction between a buyer and seller en-
tails a cost or benefit to each side, generating a surplus if the sum of the
costs and benefits is positive. The surplus can be reallocated via a trans-
fer from one side to the other. The premuneration values (from the Latin
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munerare, to give or to pay) are the values to the parties prior to any trans-
fer. Understanding the nature of the surplus and the premuneration values
is the key to understanding differences in pricing across markets.

The surplus in Alice’s market is reasonably modeled as the sum of two
terms, a negative premuneration value for Alice, reflecting her value of fore-
gone leisure, and a premuneration value for her employer reflecting the ben-
efits of getting the materials delivered. This separability ensures that there
is no issue of efficient matching in these markets. It matters that the right
(i.e., high-valuation) people trade, but matters not with whom they trade.
It is then no surprise that a universal price clears the market.

The surpluses in Carol’s markets depend in a complementary fashion
upon the agents on both sides of the market. Talented executives are likely
to be more productive when paired with productive firms than with mediocre
firms, and vice versa. Similarly, a good student fares especially well when
paired with a good school while the latter is especially effective when working
with good students. Clearing such markets requires not only getting the
right people to trade, but also being sure that they trade with the right
partners. We might then expect to need the precision of personalized prices.

Bob’s markets also exhibit complementarity. Even below the Fortune
500 and the Ivy League, there are gains from matching skilled professionals
with the right firms and good students with good schools. Then why do we
see uniform prices in Bob’s markets and personalized prices in Carol’s?

The prices required to achieve a market-clearing allocation depend upon
the point of departure provided by the premuneration values. Both Carol
and her alma mater own some of the surplus created in the match that
gave Carol her education. Carol owns her enhanced earning power, but the
university owns the increment to its ranking based on her superb SAT score,
the increment to its prestige should she become a Supreme Court Justice,
and the increment to its endowment should she become a wealthy donor.
In her employment match, Carol’s employer owns the revenue her services
will generate, but she owns the value of the contacts that she makes before
starting her own company. In contrast, Bob’s junior college anticipates no
benefit from Bob beyond his tuition, while Bob is indifferent over whose
taxes he prepares, so long as the client pays.

Our characterization of pricing builds on this distinction. We develop
a model in which buyers and sellers invest in attributes in order to enter
a market in which they are matched to trade. The surplus created by a
match depends supermodularly on the attributes chosen by both agents.
Prices transform the premuneration values comprising this surplus into a
final allocation.
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When prices can be personalized, there exists an equilibrium in which
the resulting allocation is efficient, both in the matching and the ex ante
investments. When prices are restricted to being uniform, efficient equilibria
exist if and only if the premuneration values on the side of the market setting
prices are independent of the attributes of the agents on the other side of
the market (as is the case in Bob’s but not Carol’s markets). Equivalently, if
(and only if) this constant premuneration value condition fails, price-setting
agents strictly prefer to personalize their prices.

Our result is not simply that uniform prices suffice when the surplus
exhibits no complementarities (and hence the efficient allocation exhibits no
matching problem). Instead, it is that an efficient allocation, including both
investments and matching, can be supported by uniform prices even when
the surplus depends supermodularly on attribute choices and matching is
an issue, as long as the price-setter’s premuneration value does not depend
on the price-setter’s match.1

Why are prices important? In a world devoid of frictions, personalized
prices would be the norm and there would accordingly be little reason to
be concerned with how premuneration values are defined.2 But the world
is not frictionless. A seller posting personalized prices must ascertain po-
tential buyers’ attributes, a process that can be quite costly. For example,
estimates from 11 highly selective liberal arts colleges indicate that they
spend about $3, 000 on admissions per matriculating student in 2004.3 The
going price for identifying whether a high school diploma comes from a le-

1The nature of a market’s premuneration values and prices will depend upon how
broadly we define the market. One could render the questions in this paper moot by
defining every market so narrowly that it has only one buyer and seller attribute choice in
it, so that universal, uniform and personalized prices necessarily coincide. The appropriate
definition of a market depends on the context, being typically broad enough that the
distinction between uniform and personalized prices is meaningful.

2Our emphasis on premuneration values thus reflects no disagreement with
Coase60
Coase

(1960)’s observation that property rights would be irrelevant in a world without transac-
tions costs.

3Expenditures for the 11 colleges, all but one of which continually appear in the U. S.
News and World Report top 25 liberal arts colleges, were $370 per applicant for the 1995-
1996 admissions season. Publicly available data on subsequent expenditure growth rates
projects an expenditure of $625 per applicant in the 2004-2005 academic year. The 2002
admission rate for these schools was 34%. Coupling this with an estimated enrollment
rate of 60% yields a cost of $3000 per matriculating student. (Memorandum, Office of
Institutional Research and Analysis, University of Pennsylvania, July 1004. We thank
Barnie Lentz for his help with these data.)

3



gitimate high school is $100.4 There may thus be substantial savings from
posting uniform prices and letting buyers sort themselves (as Bob’s clients
do), if the premuneration values are so defined that uniform prices can do
this sorting. Alternatively, if the premuneration values are such that uniform
prices cannot duplicate the allocation of personalized prices, and if transac-
tions costs or institutional considerations preclude personalized prices, then
market outcomes will be inefficient.5

Designing markets. The premuneration values in a market can be de-
signed as part of the institutional and legal environment of the market. For
example, the match of researchers and universities generates a surplus that
includes the value of marketable patents from faculty research. Historically,
universities have owned these patents, but we could imagine institutional
arrangements that granted them to the faculty. Indeed, the feasibility of
such ownership is reflected in the decisions of many universities to unilater-
ally grant professors shares in the revenues from patents stemming from their
research. In a similar vein, one could arrange the premuneration values in a
university/student interaction so that the university owns all of the surplus.
This would require a somewhat unconventional arrangement in which the
university owns the future income of students to whom it gives degrees, but
income-contingent loans in a number of countries (including Australia, Swe-
den and New Zealand) that effectively give the lender a share of students’
future income (

Johnstone01
?) attest to the possibility of such an arrangement.6

4“Vetting Those Foreign College Applications,” New York Times, September 29, 2004,
page A21.

5For example, Bulow and Levin
BandL03
Bulow and Levin (2004) note that the National Res-

idency Matching Program matching medical residents and hospitals constrains hospitals
to make the same offers to all residents. They argue that the primary effect is not ineffi-
cient matching but a transfer of surplus to the hospitals. However, Nicholson

Nicholson03
Nicholson

(2003) argues that the result is an inefficient allocation of residents to specialties. Medical
students who do their residency acquire training that dramatically increases their future
earnings. This part of the surplus from the match that is owned by the student is so large
in some specialties such as dermatology, general surgery, orthopedic surgery and radiology
that if personalized prices were employed, Nicholson argues that medical students would
pay hospitals handsomely for the opportunity to do their residency in these specialities
(as compared to the $34,000 stipend they currently receive).

6Basketball star Yao Ming (Houston Rockets) has a contract with the China Basket-
ball Association calling for 30% of his NBA earnings to be paid to the Chinese Basket-
ball Association (in which he played prior to joining the Rockets), while another 20%
will go to the Chinese government. Similar arrangements hold for Wang Zhizhi (Dallas
Mavericks) and Menk Bateer (Denver Nuggets). (See the Detroit News, April 26, 2002,
http://www.detnews.com/2002/pistons/0204/27/sports-475199.htm/.) We can view the
initial match between Yao Ming and his Chinese team as producing a surplus that includes
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Our results suggest that appropriately designed premuneration values
can be valuable, allowing efficient equilibria to be supported by uniform
prices and hence avoiding the costs of personalized pricing or the costs of
inefficient uniform pricing. Unfortunately, there are often constraints on the
design of premuneration values. If universities owned students’ enhanced
future income streams, why would the students exert the effort required to
realized this future income? How are we to measure and collect the incre-
ment to income attributable to the university education?7 Such an arrange-
ment might also require changes in labor laws that preclude involuntary
servitude. More generally, laws concerning workplace safety, the (in)ability
to surrender legal rights, the division of marital assets and the custody and
sale of children may constrain the allocation of premuneration values. Our
analysis points to the cost of such constraints or institutional arrangements,
in the form of personalization costs or inefficient uniform pricing.

2 The Matching Market

Our model is adapted from
CMP01
Cole, Mailath, and Postlewaite (2001). There

is a unit measure of buyers whose types are indexed by β and distributed
uniformly on [0, 1], and a unit measure of sellers whose types are indexed
by σ and distributed uniformly on [0, 1]. For ease of reference, the typical
buyer is female and typical seller male.

Buyers and sellers have an outside option with payoff zero that precludes
participation in the matching process. If they do not take this option, they
make choices in two stages. First, buyers and sellers simultaneously choose
attributes. We denote the cost of attribute b ∈ R+ to buyer β by cB(b, β),
and the cost of attribute s ∈ R+ to seller σ by cS(s, σ).

Buyers and sellers match in the second stage. A match between a buyer
and seller with attribute choices (b, s) produces a total surplus v(b, s). This
surplus is the sum of a buyer premuneration value hB(b, s) and seller pre-
muneration value hS(b, s).

the enhanced value of his earnings as a result of developing his basketball skills. These
contracts suggest that the premuneration values could be designed to assign some future
earnings to the team.

7Measurement and collection both pose difficulties. The University of New Mexico
sued a former researcher for rights to patents that he applied for four years after he had
left the university, arguing that the patents stemmed from research that he had done
before leaving. (“Universities Try to Keep Inventions From Going ‘Out the Back Door”’
”, Chronicle of Higher Education, May 17, 2002.) In principle, one who owns the rights
to a song is entitled to a payment each time the song is played on the radio in a bar or
health club, but collection is impractical.
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Matching and the resulting division of the surplus is mediated through
prices. We assume that sellers set prices, which may be either positive or
negative. For example, the illustrations in Section

in
1 include cases in which

prices were posted by those relinquishing a good (educational services) as
well as by those receiving a good (labor services), each of whom would
be designated the seller in our model. We are interested in two types of
pricing, reflecting differing amounts of information available to sellers. If
sellers cannot observe buyers’ attribute choices, then the price a seller posts
is necessarily independent of these attribute choices. We say that prices
are uniform in this case. If a seller can observe buyers’ attributed choices,
then he can post personalized prices, that is prices that depend on a buyer’s
attribute choice. Intuitively, once prices are posted, each buyer selects a
seller, with equilibrium requiring that each seller is matched with at most
one buyer.

The first step in making this intuition precise is the assumption:

horse Assumption 1

1. The surplus function v : R+ ×R+ → R+ is C2, increasing in b and s,
and strictly supermodular:

d2v(b, s)
dbds

> 0.

2. The cost function cB : R+ × [0, 1] → R+ is C2, strictly increasing and
convex in b, with cB(0, β) = 0 = dcB(0, β)/db and

d2cB(b, β)
dbdβ

< 0.

The cost function cS satisfies analogous conditions.

3. There exists b̄ such that for all b > b̄, s ∈ R+, β ∈ [0, 1] and σ ∈ [0, 1],

v(b, s)− cB(b, β)− cS(s, σ) < 0.

A similar statement applies to sellers, with an analogous s̄.

4. For every β = σ ≡ φ ∈ (0, 1], there exists (b, s) ∈ [0, b̄] × [0, s̄] with
v(b, s)− cB(b, φ)− cS(s, φ) > 0.
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5. The premuneration values hB : R+ ×R+ → R and hS : R+ ×R+ → R
are C2, increasing, and

dh2
B(b, s)
dbds

> 0 and
dh2

S(b, s)
dbds

≥ 0.

The buyer premuneration value hB(b, s) is Lipschitz continuous in s
on [0, b̄]× [0, s̄].

Assumption
horse
1.1 restricts attention to supermodular surplus functions,

ensuring that matching is important and focussing our attention on uniform
and personalized (rather than universal) prices. Assumption

horse
1.2 gives mean-

ing to agents’ types by imposing a single-crossing condition on the cost func-
tion, so that higher-indexed types have a comparative advantage in choosing
large attributes. Assumption

horse
1.3 ensures that the problem is bounded, in

the sense that attributes outside the intervals b ∈ [0, b̄] and s ∈ [0, s̄] will
never be chosen. Assumption

horse
1.4 ensures that the efficient outcome calls for

(almost) all agents to make positive attribute choices. The final assumption
imposes a single-crossing condition on the premuneration values. Given the
supermodularity of the surplus function, these restrictions on premunera-
tion values are satisfied, for example, if hB = θv and hS = (1− θ)v for any
constant θ ∈ (0, 1]. The imposition of strict single crossing for the buyer
only and the Lipschitz requirement only on the buyer’s premuneration value
reflects asymmetries that arise when sellers post uniform prices.

There is always an equilibrium in which every agent chooses the outside
option—it does not pay to be the only one in market. We are interested in
equilibria in which some agents enter the market, and simplify the analysis
by considering only equilibria where everyone enters the market. We here-
after typically omit the possibility of the outside option from our notation,
while incorporating its presence in the optimality conditions for equilibrium.

We let b : [0, 1] → [0, b̄] and s : [0, 1] → [0, s̄] be Lebesgue-measurable
functions denoting the attributes chosen by buyers and sellers. We assume
the matching between buyer and seller attribute choices depends only on
the distribution of such choices in the market (and not, for example, on the
specification of which types make which attribute choices). It is then an
immediate implication of the single-crossing Assumption

horse
1.2 on costs that

b and s are weakly increasing. The may not be strictly increasing. For
example, it may be an equilibrium for every agent to enter them market but
choose attribute zero. We say that b (with s treated similarly) is strictly
increasing when positive if b(β) > 0 and β′ > β imply b(β′) > b(β). We
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avoid a collection of technical considerations by focussing on equilibria in
which b and s are strictly increasing when positive.

We denote by B and S the closures of the sets of attributes chosen by
buyers and sellers respectively,

B = cl(b([0, 1]))
S = cl(s([0, 1])).

Let λB and λS be the measures induced on B and S by the agents’ attribute
choices. Hence, for Borel sets B′ ⊂ B and S ′ ⊂ S,

λB(B′) = λ{β ∈ [0, 1] | b(β) ∈ B′}
λS(S ′) = λ{σ ∈ [0, 1] | s(σ) ∈ S ′},

where λ is Lebesgue measure. We define:

defn-matching Definition 1 Suppose b and s are strictly increasing when positive. Then
a feasible matching is a bijection b̃ : S → B that is measure preserving, i.e.,
λB(b̃(S ′)) = λS(S ′) for all Borel S ′ ⊂ S.

The measure-preserving requirement on b̃ ensures that the measure of
any set of sellers is equal to the measure of the set of buyers with whom they
are matched. Given a feasible matching b̃, b̃(s) specifies the buyer attribute
choice matched to a seller with attribute choice s. We let s̃ denote the
inverse of b̃.

Note that B and S are defined as the closures of the sets of attribute
choices. This allows us to accommodate the technical complications raised
when matching continua of agents characterized by arbitrary attribute choice
functions. As a result, however, it is possible that seller σ (with attribute
choice s(σ)) is matched with a buyer attribute choice b which is chosen by no
buyer. We interpret such a seller as matching with a buyer whose attribute
choice is arbitrarily close to b, while saying that s(σ) matches with b.

Remark 1 The surplus generated by a match in our model depends only
on the attendant attribute choices. Problems in which the attribute chosen
is a particular skill, such as the case of the NBA star Yao Ming, fall into this
category. In other cases, the surplus might depend on the agents’ types as
well as attribute choices. Harvard may care not only about an applicant’s
accomplishments (attribute choice), but also about the applicant’s “cost of
acquiring” such accomplishments (type). If attribute choices and types can
both be observed, then we need only adopt a new definition of “attribute
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choice” that includes both (the previous notion of) an agent’s attribute
choice and his type, at which point our analysis applies. If neither attribute
choices nor types can be observed, then such a reformulation of “attribute
choice” ensures that our model of uniform pricing applies. If sellers can
observe attribute choices but not types, but care about both (or only about
types), then attribute choices take on a dual role, directly enhancing the
value of a match while also providing signals of types.

Hopkins05
Hopkins (2005) and

HMS05
? examine such models.

3 Equilibrium

3.1 Personalized Pricingsect-personalized

In this section, we assume sellers observe buyers’ attribute choices and post
personalized prices. The (possibly negative) price that seller of attribute
choice s ∈ S receives when selling to a buyer with attribute choice b ∈ B is
given by pP (b, s).

A feasible outcome is a pair of attribute choice functions b : [0, 1] → [0, b̄]
and s : [0, 1] → [0, s̄] that are strictly increasing when positive, and a feasible
matching b̃. A personalized price function is a function pP : B × S →
R. Intuitively, a personalized-price equilibrium is a feasible outcome and a
personalized price function such that no agent has an incentive to deviate
from the behavior specified by the feasible outcome.

Given a feasible outcome (b, s, b̃) and a personalized price pP the payoffs
to a buyer β who chooses b ∈ B and a seller σ who chooses s ∈ S are
respectively

ΠB(b, β) ≡ hB(b, s̃(b))− pP (b, s̃(b))− cB(b, β)
and ΠS(s, σ) ≡ hS(b̃(s), s) + pP (b̃(s), s)− cS(s, σ).

defn informed seller dev copy(1) Definition 2 Given (b, s, b̃, pP ), seller σ has a profitable deviation if either
ΠS(s(σ), σ) < 0 or there exists a seller attribute choice s ∈ [0, s̄], a buyer
attribute choice b ∈ B, and a price p ∈ R such that

hB(b, s̃(b))− pP (b, s̃(b)) < hB(b, s)− p (1) costa

ΠS(s(σ), σ) < hS(b, s) + p− cS(s, σ). (2) rica

If ΠS(s(σ), σ) < 0, the outside option is better for the seller. Otherwise, a
seller has a profitable deviation if he is able to attract a buyer (condition (

costa
1))

9



while obtaining a higher payoff than had he followed the behavior prescribed
by the given outcome (condition (

rica
2)).

Of particular interest are deviations in which seller σ chooses a seller
attribute s ∈ S, s 6= s(σ), that is, an attribute that exists in the market.
Such an attribute is matched with a buyer attribute b̃(s) at price pP (b̃(s), s).
If matching with that buyer attribute at the market price yields a higher
net payoff to seller σ, then the seller has a profitable deviation:

Lemma 1 If there exists σ ∈ [0, 1] and s ∈ S such that ΠS(s(σ), σ) <
hS(b̃(s), s) + pP (b̃(s))− cS(s, σ), then seller σ has a profitable deviation.

The proof is immediate. Since attribute choice s and buyer b̃(s) at price
pP (b̃(s), s) make seller σ strictly better off, so will the same attribute choice
and buyer at price pP (b̃(s), s)− ε. The latter also makes the buyer strictly
better off, yielding a profitable deviation. Hence, the absence of profitable
deviations ensures that no seller can envy the trade of any other seller. The
definition of profitable deviation goes beyond that, ensuring the sellers also
do not desire transactions that would be attractive to a buyer but are not
currently offered in the proposed outcome.

We can define an analogous notion for buyers.

Definition 3 Given (b, s, b̃, pP ), buyer β has a profitable deviation if either
ΠB(b(β), β) < 0 or there exists an attribute choice b, a price p ∈ R, and
s ∈ S with

ΠB(b(β), β) < hB(b, s)− p− cB(b, β)

and
hS(b̃(s), s)− pP (b̃(s), s) < hS(b, s) + p.

In other words, there is a buyer attribute, a transfer, and a target seller
such that in the resulting transaction, both the buyer and the seller would
be better off than had they followed the behavior prescribed by the proposed
equilibrium.

Analogous to the case with sellers, no buyer can envy the transaction
proposed for any other buyer: a buyer who strictly prefers the transaction
available to another buyer can acquire that buyer’s attribute and agree to
pay a slightly higher price to the given seller, making both better off than
at their proposed transactions. Also as in the seller case, if there is a buyer
attribute that has not been chosen by any other buyer that would be at-
tractive to a seller at some price and yields the buyer a higher payoff, the
buyer has a profitable deviation.

We then have:
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Definition 4 A personalized price equilibrium is a feasible outcome (b, s, b̃)
and a personalized price function pP such that no seller or buyer has a
profitable deviation.

3.2 Uniform Pricingsect-uniform

We now consider the case in which sellers do not have the information nec-
essary to set personalized prices. In the absence of this information, a seller
can post a price that depends on his own attribute choice, but not on the
buyer’s attribute choice, so that the price function is uniform-price function
pU : S → R.

Given a feasible outcome (b, s, b̃) and a uniform price pU the payoffs to
a buyer β who chooses b ∈ B and a seller σ who chooses s ∈ S are as before:

ΠB(b, β) ≡ hB(b, s̃(b))− pU (b, s̃(b))− cB(b, β)
and ΠS(s, σ) ≡ hS(b̃(s), s) + pU (b̃(s), s)− cS(s, σ).

As in the case of personalized prices, we want to capture the idea that
buyers and sellers cannot profitably deviate. Because sellers cannot observe
buyers’ attributes, however, a seller cannot choose an attribute s and a price
p targeted at a particular buyer attribute b. Instead, the attribute s and
price p may attract a range of buyer attributes. The following definition
embodies this constraint.

Definition 5 Given (b, s, b̃, pU ), an uninformed seller σ has a profitable
deviation if either ΠS(s(σ), σ) < 0 or there exists s′ and a price p ∈ R such
that there exists b′ ∈ B with

hB(b′, s̃(b′))− pU (s̃(b′)) < hB(b′, s′)− p,

and for all b′′ ∈ B,

hB(b′′, s̃(b′′))−pU (s̃(b′′)) < hB(b′′, s′)−p ⇒ ΠS(s(σ), σ) < hS(b′′, s′)+p−cS(s′, σ).

Here, we require at least one buyer to be willing to purchase the seller’s
chosen attribute-price pair (s, p), and that the seller’s net payoff should be
higher than had he followed the prescribed behavior, for all buyers who
would be attracted to the transaction (s, p)(cf. Remark

color
2 below).

As in the case of personalized prices, if there are no profitable deviations,
then no seller can envy the transaction proposed for any other seller. How-
ever, the argument is somewhat more complicated in the case of uniform
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pricing. With personalized pricing, any seller who envied another seller’s
transaction could simply offer a slightly lower price to the target buyer,
making both the given seller and the target buyer better off, with the abil-
ity to personalize prices ensuring that the seller need not be concerned with
other buyers. An uninformed seller cannot target a given buyer in this way.
A seller who mimicked the attribute selection of another seller while under-
cutting his price would typically attract not only the buyer matched with
the target seller but also buyers with lower attributes, potentially making
the seller worse off. Nonetheless, it can be shown that if a seller envies the
transaction of any other seller, there will be some profitable deviation for
the former. Section

pend0
A.1 proves:

wabash Lemma 2 Consider a feasible outcome (b, s, b̃) and uniform price pU . If
there is a seller σ and s′ ∈ S with ΠS(s(σ), σ) < ΠS(s′, σ), then seller σ has
a profitable deviation.

The definition of profitable deviations for buyers is as before:

Definition 6 Given (b, s, b̃, pP ), buyer β has a profitable deviation if either
ΠB(b(β), β) < 0 or there exists an attribute choice b, a price p ∈ R, and
s ∈ S with

ΠB(b(β), β) < hB(b, s)− p− cB(b, β)

and
hS(b̃(s), s)− pP (b̃(s, s) < hS(b, s) + p.

Definition 7 A uniform-price equilibrium is a feasible outcome (b, s, b̃) and
a uniform price function pU such that no seller or buyer has a profitable
deviation.

color Remark 2 A seller is defined to have a profitable deviation under uniform
pricing only if he is better off when matched with any buyer who is attracted
to the deviation. Why make sellers so pessimistic? One could alternatively
think of requiring only that the seller be better off given a random draw
from the set of attracted buyers, or given the seller’s most-preferred buyer
from this set. Allowing the seller to select his most preferred buyer essen-
tially restores the ability to personalize prices (Lemma

ration
5 below makes this

connection precise), so that some pessimism is essential to uniform pricing.
A more pessimistic formulation makes seller deviations less attractive and
hence expands the set of uniform-price equilibria. Our key results (Propo-
sitions

feaster
1 and

refeaster
2) establish conditions under which personalized-price and
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uniform-price equilibria coincide, and hence are rendered more powerful by
such a permissive definition of the latter.

4 Examples
fortran

4.1 The Market
risk

Let the surplus and cost functions be:

v(b, s) = bs, cB(b, β) =
b3

3β
, cS(s, σ) =

s3

3σ
.

The premuneration values assign a fixed share of the surplus, θ ∈ [0, 1], to
the buyer:

hB(b, s) = θbs and hS(b, s) = (1− θ)bs.

4.2 Efficiency

Efficiency requires that for each matched pair β and σ, attribute choices b
and s solve:

max
b,s

bs− b3

3β
− s3

3σ
,

giving first-order conditions

s− b2

β
= 0

b− s2

σ
= 0.

Setting σ = β and hence s = b, we have the solution

b(β) = β, s(σ) = σ.

4.3 Personalized Pricing
emu

We next show that

pP (b, s) =
s2

2
− (1− θ)bs (3) ostrich

is a personalized price function associated with an efficient equilibrium out-
come for our example. Note that for any seller attribute s, the price that a
seller would receive in a match with a buyer with attribute b is decreasing in
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b. It is not surprising that this might occur since the seller is getting (1− θ)
of the surplus and the surplus is increasing in the buyer’s attribute choice.

Given the price function (
ostrich
3), buyer β solves

max
b,s

θbs− s2

2
+ (1− θ)bs− b3

3β
= max

b,s
bs− s2

2
− b3

3β
⇒ b(β) = β.

Hence, b̃(s) = s. Seller σ then chooses attribute s to solve

max
s

(1− θ)b̃(s)s + pP (b̃(s), s)− cS(s, σ) =
s2

2
− s3

3σ
⇒ s(σ) = σ.

Equilibrium payoffs to the seller and buyer are

(s(σ))2

2
− (s(σ))3

3σ
=

σ2

2
− σ3

3σ
=

1
6
σ2

(b(β))2

2
− (b(β))3

3β
=

β2

2
− β3

3β
=

1
6
β2.

Note that the agents’ attribute choices are independent of the buyer’s
premuneration value, determined by θ. The agents’ equilibrium utilities
are also independent of the premuneration values. It does not matter who
“owns” the technology that combines buyer and seller attribute choices to
create the surplus when there is a competitive market with personalized
prices for the attributes.

4.4 Uniform Pricing May Duplicate Personalized Pricing

Let θ = 1, and hence hS(b, s) = 0. Consider a uniform price function pU (s)
that attaches to each seller attribute choice s the equilibrium price the seller
receives in the personalized price equilibrium we have just constructed, or

pU (s) = pP (b̃(s), s) =
s2

2
− (1− θ)b̃(s)s =

s2

2
.

Section
screech
4.5 shows that this pricing function is part of a uniform-pricing

equilibrium that duplicates the efficient outcome of the personalized-pricing
equilibrium, and indeed that would exhibit no profitable deviations even if
prices could be personalized. In this case, the ability to personalize prices
is irrelevant. Proposition

feaster
1 below shows that this coincidence is a general

implication of the property dhS(b, s)/db = 0.

14



4.5 Uniform Pricing Need Not Match Personalized Pricing
screech

We calculate a uniform-price equilibrium for our example. The buyer’s prob-
lem is now

max
b,s

θbs− pU (s)− b3

3β
,

for first-order conditions

θs− b2

β
= 0,

θb− p′U (s) = 0.

The seller’s objective is

max
s

(1− θ)b̃(s)s + pU (s)− s3

3σ
,

for a first-order condition

(1− θ)[b̃′(s)s + b̃(s)] + p′U (s)− s2

σ
= 0.

We now conjecture that the equilibrium attribute choice functions are given
by

b(β) = Aβ (4) bfirst

s(σ) = Bσ. (5) sfirst

If so, and assuming that, in equilibrium, a buyer of type β matches with
seller of type σ = β, we have, for any matched pair of b and s values,
bB = sA. Using this, we can rewrite the second buyer first-order condition
as θ A

B s− p′(s) = 0 and solve for the price function

pU (s) =
θ

2
A

B
s2.

Similarly, we can rewrite the first buyer first-order condition as θB
A b− b2

β = 0
and solve for

b = θ
B

A
β. (6) bsecond

Turning to the seller, we can write the first-order condition as 2(1− θ)A
B s +

θ A
B s− s2

σ = 0 and solve for

s = (2− θ)
A

B
σ. (7) ssecond
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Combining (
bfirst
4) with (

bsecond
6) and (

sfirst
5) with (

ssecond
7), we can solve for A = θ

2
3 (2 − θ)

1
3

and B = θ
1
3 (2− θ)

2
3 , and hence

b(β) = θ
2
3 (2− θ)

1
3 β

s(σ) = θ
1
3 (2− θ)

2
3 σ

pU (s) =
θ

2

(
θ

2− θ

)1/3

s2

b̃(s) =
(

θ

2− θ

)1/3

s.

When θ = 1, we have the efficient solution, with buyers and sellers
behaving symmetrically. When θ < 1, so that the seller’s premuneration
value is positive, we have A/B = ((θ/(2 − θ))1/3 < 1. This implies that
buyers now choose smaller attributes than do sellers, with buyers of attribute
choice level b matching with values of s > b. Differentiating B = θ

1
3 (2−θ)

2
3 ,

as θ falls below one, seller attribute choices initially increase, and ultimately
decrease to zero as θ goes to 0. Differentiating A = θ

2
3 (2− θ)

1
3 , we see that

as θ falls below one, so do buyers’ attribute choices, again falling to zero as
θ goes to zero.

We can confirm that for θ < 1, this uniform-price equilibrium is not a
personalized-price equilibrium. To do this, it suffices to fix an attribute x,
and consider a buyer who makes attribute choice b = x and a seller who
makes attribute choice s = x (and hence is not matched with the buyer in
question), and then to show that their payoffs sum to less than x2 (ensuring
that the buyer and seller could do better matching with each other). This
ensures that choosing attribute x and setting a (personalized) price that
will attract the buyer constitutes a profitable deviation for the seller. This
condition is:

(1− θ)b̃(x)x + pU (x) + θs̃(x)x− pU (s̃(x))

= (1− θ)
(

θ

1− θ

) 1
3

x2 +
θ

2

(
θ

1− θ

) 1
3

x2 + θ

(
2− θ

θ

)
x2 − θ

2

(
θ

2− θ

) 1
3
(

2− θ

θ

) 2
3

x2

=
1
2

[
(2− θ)

2
3 θ

1
3 + (2− θ)

1
3 θ

2
3

]
x2

< x2.
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The equilibrium payoffs for the seller in the uniform-price equilibrium
are given by

(1− θ)b̃(s(σ))s(σ) + pU (s(σ))− (s(σ))3

3σ

= (1− θ)
(

θ

2− θ

) 1
3 [

θ
1
3 (2− θ)

2
3 σ

]2
+

θ

2

(
θ

2− θ

) 1
3 [

θ
1
3 (2− θ)

2
3 σ

]2
−

(
θ

1
3 (2− θ)

2
3 σ

)3

3σ

=
1
6
θ(2− θ)2σ2.

When θ = 1, this duplicates the payoff from the personalized price equilib-
rium. For values of θ not too much smaller than 1, the seller earns a higher
payoff under the uniform price equilibrium.

Similarly, the buyer’s payoff is

θs̃(b(β))− pU (s̃(b(β)))− (b(β))3

3β

= θ

(
2− θ

θ

) 1
3 [

θ
2
3 (2− θ)

1
3 β

]2
− θ

2

(
θ

2− θ

) 1
3
(

2− θ

θ

) 2
3 [

θ
2
3 (2− θ)

1
3 β

]2
−

(
θ

2
3 (2− θ)

1
3 β

)3

3β

=
1
6
θ2(2− θ)β2.

This payoff is always smaller under the uniform than personalized price
equilibrium.

favor Remark 3 When θ = 0, so the seller owns all of the surplus, the equilib-
rium collapses into the trivial equilibrium in which no trade occurs. In this
case, a buyer’s payoff is solely the price pU , which will have to be nega-
tive in order to bring buyers into the market, and buyers will choose the
seller posting the smallest (“largest negative”) price. Because sellers cannot
condition prices on buyer attribute choice, every buyer will choose b = 0
in equilibrium. Similarly, when θ is positive but small, the equilibrium is
markedly inefficient, featuring tiny attribute choices. This is an indication
that the wrong side of the market is setting prices—sellers are appropriate
price-setters for large θ , but buyers would be a more efficient choice to post
prices when θ is small.
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5 Allocating Buyers and Sellers

How do personalized and uniform prices allocate buyers and sellers? Let
(b, s,b̃) be a feasible outcome. Define B̃ : [0, 1] → [0, 1] be letting B̃(β) =
s−1(s̃(b(β)). Thus, B̃ maps each buyer type into the seller type with whom
that buyer matches.

5.1 Assortative Matching

Our first result, proven in Section
pend1
A.2, is that equilibrium requires assorta-

tive matching.

hand Lemma 3
hand
3.1 Let (b, s, b̃, pP ) be a personalized-price equilibrium. Then b̃ is strictly

increasing and B̃ can be taken to be the identity.
hand
3.2 Let (b, s, b̃, pU ) be a uniform-price equilibrium. Then b̃ is strictly

increasing and B̃ can be taken to be the identity.

5.2 Premuneration Values

Since personalized prices allow the market to compensate for any particu-
larities of premuneration values, premuneration values play no role in the
characterization of a personalized price equilibrium or in its existence. The
following is a straightforward calculation:

Lemma 4 Let (b, s, b̃, pP ) be a personalized-price equilibrium, with premu-
neration values hB(b, s) and hS(b, s). Then (b, s, b̃, p′P ) is a personalized-
price equilibrium, with premuneration values h′B(b, s) and h′S(b, s), where

p′P (b, s) = pP (b, s) + h′B(b, s)− hB(b, s) = [P (b, s) + hS(b, s)− h′S(b, s).

Prices can thus be adjusted to “undo” any changes in premuneration
values. Premuneration values would be irrelevant if we cared only about
personalized price equilibria. Section

screech
4.5 makes it clear that the same is

not the case for uniform pricing equilibrium. In particular, setting θ = 1 in
the specification of premuneration values for the example gives an efficient
equilibrium outcome that cannot be achieved for any value θ < 1.

5.3 Rationing

Personalized prices allow a seller to accept some buyers while excluding
others who would be willing to pay the same price. The buyers excluded by
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the seller have lower attribute choices than the seller’s equilibrium match.
In particular, we say that a personalized price specification (b, s, pP , b̃) can
be supported by a uniform rationing price if

pP (b, s) = pP (b̃(s), s) ∀b ≥ b̃(s),

and we call a personalized price equilibrium outcome that can be supported
by a uniform rationing price a uniform rationing equilibrium outcome. In
this case, we can think of seller whose attribute choice is s as setting a
uniform price p(s) = p(b̃(s), s), but then excluding any buyers b < b̃(s).

ration Lemma 5 Any personalized-price equilibrium outcome is a uniform rationing
equilibrium outcome.

Proof. Let (b, s, b̃) be a personalized price equilibrium outcome and con-
sider its associated uniform rationing price. The conditions for the latter
to be a personalized price equilibrium are implied by the former, with the
exception that there may now be profitable deviations by a seller β with
attribute choice b(β) to match with a seller with s < s̃(b(β)) (and hence
b̃(s) < b(β)). But since hS(b, s) is increasing in b, the seller in question
would welcome such a match. Hence, if this match is a profitable deviation
in the uniform rationing equilibrium, it is a profitable deviation in the per-
sonalized price equilibrium, a contradiction.

In contrast, if a uniform-price equilibrium outcome is not also a personalized-
price equilibrium outcome, then it must be that some seller would like to
lower his price in order to attract better buyers, but is deterred from doing
so by the specter of less desirable buyers:

Lemma 6 Suppose (b, s, b̃) is a uniform-price equilibrium outcome and there
is no pP for which (b, s, b̃; pP ) is a personalized-price equilibrium. Then there
must exist a seller s and buyers

¯
b and b̄ and a price p < pU (s) such that

hS(b̄, s) + p > hS(b̃(s), s) + pU (s)
hB(b̄, s)− p > hS(b̄, s̃(b̄)) + pU (s̃(b̄))

hS(
¯
b, s) + p < hS(b̃(s), s) + pU (s)

hB(b̄, s)− p > hS(
¯
b, s̃(

¯
b)) + pU (s̃(

¯
b)).
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Hence, the seller could profitably lower his price enough to attract buyer b̄,
but unfortunately instead attracts the unprofitable buyer

¯
b.

Finally, Section
fortran
4 provided an example in which personalized-price equi-

librium outcomes and uniform-price equilibrium outcomes coincide. In this
case, the personalized-price power to exclude buyers is unnecessary—buyers
sort themselves among sellers just as sellers would have them do.

6 Efficiency

Since we can take the equilibrium type matching B̃ in either a uniform-price
or personalized-price equilibrium to be the identity, we define the ex ante
surplus for buyer and seller types β = σ = φ ∈ [0, 1] as

W (b, s, φ) = v(b, s)− cB(b, φ)− cS(s, φ).

An efficient choice of attributes maximizes W (b, s, φ) for (almost) all φ.
Personalized-price equilibrium outcomes are constrained efficient in the

sense that no matched or unmatched pair of agents can increase its net
surplus without both agents deviating to attribute choices outside the sets B
and S. Section

pend2
A.3 proves the following by showing that if these constrained

efficiency conditions fail, then the attribute choices involved in the failure
can be exploited to construct a profitable deviation.

prop-constrained eff Lemma 7 Suppose (b, s, b̃, pP ) is a personalized price equilibrium. Then,
for all φ ∈ [0, 1], b ∈ B, s ∈ S and all b′ ∈ [

0, b̄
]
, s′ ∈ [0, s̄],

W (b, s′, φ) ≤ W (b(φ), s(φ), φ)
and W (b′, s, φ) ≤ W (b(φ), s(φ), φ).

Section
screech
4.5 makes it clear that the same is typically not true of uniform-price

equilibria.
This result does not ensure that a personalized-price equilibrium out-

come is efficient. The possibility remains that W (b, s, φ) may be maximized
by values b 6∈ B and s 6∈ S. In this sense, the inefficiency is the result of a co-
ordination failure. For example, consider the surplus function v(b, s) = bs.
Here, it is an equilibrium that all agents choose attribute 0. In contrast,
uniform-price equilibria in general do not satisfy even constrained efficiency.

We view the possible inefficiency of a personalized pricing equilibrium as
reflecting incomplete markets. If there are “enough” prices, a personalized
pricing equilibrium is be efficient:
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slushpump Definition 8 The feasible outcome (b, s, b̃) and personalized-price pP is a
complete personalized-price equilibrium if there is an extension of pP to
[0, b̄]× [0, s̄] (also denoted pP ) such that for all β and all σ,

hB(b, s̃(b))− pP (b, s̃(b))− cB(b, β) ≥ sup
(b,s)∈[0,b̄]×[0,s̄]

hB(b, s)− pP (b, s)− cB(b, β) ≥ 0

hS(b̃(s), s) + pP (b̃(s), s)− cS(s, σ) ≥ sup
(b,s)∈[0,b̄]×[0,s̄]

hS(b, s) + pP (b, s)− cS(s, σ) ≥ 0.

As the names suggest, every complete personalized-price equilibrium out-
come is indeed a personalized-price equilibrium outcome. Section

spread
A.4 proves:

tulip Lemma 8
(
tulip
8.1) Every complete personalized-price equilibrium outcome is a personalized-

price equilibrium outcome.
(
tulip
8.2) A complete personalized-price equilibrium outcome is efficient.

prairie Remark 4 We could similarly define a complete uniform-price equilibrium
by requiring a price for all seller attributes in [0, s̄], while expanding to
[0, s̄] the set of seller attribute choices over which the buyer optimizes. It is
immediate from the definition that a complete uniform-price equilibrium is
a uniform-price equilibrium, and apparent from Section

screech
4.5 that a complete

uniform-price equilibrium need not be efficient.

7 When is Personalization Redundant?

When can a personalized-price equilibrium outcome be supported by uni-
form prices? Or, alternatively, when can matching when sellers are unin-
formed achieve outcomes attainable as equilibrium outcomes when they are
informed?

We begin with some intuition, appropriate when equilibrium is charac-
terized by first-order conditions. Fix a uniform-price equilibrium, including
the uniform-price function pU . The first order conditions implied for the
buyer’s choice of attribute b and matching attribute choice s in a uniform-
price equilibrium are

0 =
dhB(b, s)

db
− dcB(b, β)

db
(8) buddy

0 =
dhB(b, s)

ds
− dpU (s)

ds
, (9) water
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while the seller’s first-order condition for choosing s is

0 =
dhS(b̃(s), s)

db

db̃(s)
ds

+
dhS(b̃(s), s)

ds
+

dpU (s)
ds

− dcS(s, σ)
ds

. (10) boy

Using (
water
9) to eliminate dpU (s)/ds in (

boy
10) and then using the identity v(b, s) =

hB(b, s) + hS(b, s) in (
buddy
8) and (

boy
10), these three first-order conditions can be

reduced to

0 =
dv(b, s)

db
− dhS(b, s)

db
− dcB(b, β)

db

0 =
dhS(b, s)

db

db̃U (s)
ds

+
dv(b, s)

ds
− dcS(s, σ)

ds
.

From Lemma
prop-constrained eff
7, establishing the constrained efficiency of a personalized-

price equilibrium outcomes, we know that a personalized-price equilibrium
must be characterized by the first-order conditions:

0 =
dv(b, s)

db
− dcB(b, β)

db
(11) holly

0 =
dv(b, s)

ds
− dcS(s, σ)

ds
.

Comparing these, it is immediate that the solution to the first order con-
ditions for the personalized price equilibrium will be a solution for the first
order conditions for the uniform price equilibrium if dhS(b,s)

db = 0, that is, if
each seller’s premuneration value is independent of the attribute choice of
the buyer with whom the seller is matched. This argument is summarized
in the following proposition.

feaster Proposition 1 A personalized-price equilibrium outcome can be achieved
in a uniform-price equilibrium if the sellers’ premuneration values do not
depend on the buyer’s attribute.

Proof. Let (b, s, b̃, pP ) be a personalized price equilibrium. Then (b, s, b̃, p̂P )
is also a personalized-price equilibrium, where p̂P (b̃(s), s) = pP (b̃(s), s) for
all s ∈ S and

p̂P (b, s) = pP (b̃(s), s) + hS(b̃(s), s)− hS(b, s)

for all (b, s) ∈ B × S satisfying b 6= b̃(s). Intuitively, p̂P (b, s) is the reserva-
tion price for a seller with attribute choice s to match with buyer attribute
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b 6= b̃(s).8 In particular, the construction of p̂P (b, s) as the reservation price
of seller attribute choice s for buyer attribute b ensures that sellers have no
profitable deviations under price p̂P . If, under p̂P , a buyer with attribute b
now strictly prefers to buy seller attribute choice s′ 6= s̃(b), then for suffi-
ciently small ε > 0 the price p̂P (b, s′) + ε allows us to construct a profitable
deviation in (b, s, b̃, pP ), a contradiction.

The argument is now completed by noting that if hS(b, s) does not
depend on b, then neither does p̂P , ensuring that (b, s, b̂, pU ) for pU (s) =
p̂P (·, s) is a uniform-price equilibrium.

The constancy of hS(b, s) in b is also essentially necessary for personalized
price equilibria to be achieved via uniform pricing. The “essentially” here
is that this constancy need not hold for pairs (b, s) that are not matched in
equilibrium.9

refeaster Proposition 2 Let (b, s, b̃, pP ) be a personalized price equilibrium and that
the outcome (b, s, b̃) can be supported as a uniform price equilibrium outcome
with price pU (s) = pP (b̃(s), s). Then for all s ∈ S,

dhS(b̃(s), s)
db

= 0.

Proof. It follows from (
buddy
8)–(

holly
11) (without any differentiability assumptions

beyond those placed on the primitives of the model in Assumption
horse
1), that

if (b, s, b̃, pP ) is a personalized price equilibrium that can be supported by
uniform prices, then

dhB(b̃(s), s)
db

=
dv(b̃(s), s)

db
,

implying dhS(b̃(s),s)
db = 0.

8For example, the pricing function (
ostrich
3) constructed in Section

emu
4.3 attaches to each pair

(b, s) the seller’s reservation value for the buyer, since

pP (b, s)− pP (b′, s) = (1− θ)(b′ − b)s = hS(b′, s)− hS(b, s).

9Analogously, the single-crossing condition is essentially necessary for a separating
equilibrium in a signaling model.
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8 Existence of Equilibrium

8.1 Uniform Price Equilibria

For any β = σ, let b̂(β) and ŝ(σ) be efficient, i.e.,

(b̂(β), ŝ(σ)) ∈ arg max
[0,b̄]×[0,s̄]

hB(b, s) + hS(b, s)− cB(b, β)− cS(s, σ).

A fixed-point argument (in Section
pend4
A.5) allows us to establish:

prop-uniform exist Proposition 3
(
prop-uniform exist
3.1) Let there exist (b, s) ∈ [0, b̄]×[0, s̄] with hB(b, s)+hS(b, s)−cB(b, 1)−

cS(s, 1) > 0. Then there exists a uniform-price equilibrium in which some
buyers and some sellers make strictly positive attribute choices.

(
prop-uniform exist
3.2) Suppose that for all φ ∈ (0, 1], hB(b̂(φ), ŝ(φ)) + hS(0, ŝ(φ)) −

cB(b̂(φ), φ) − cS (̂s(φ), φ) > 0. Then there exists a uniform-price equilib-
rium with s(σ),b(β) > 0 for σ, β ∈ (0, 1].

The condition that hB(b̂(φ), ŝ(φ))+hS(0, ŝ(φ))−cB(b̂(φ), φ)−cS (̂s(φ), φ) >
0 is satisfied if hS(b, s) is independent of b (in which case personalized and
uniform pricing correspond). It can fail if dhS(b, s)/ds is large (e.g., when θ
is small in Section

screech
4.5). In such cases, buyers are the appropriate side of the

market to be setting prices (cf. Remark
favor
3). Uniform-pricing equilibria are

inefficient when hS(b, s) depends on b. If this dependence is too pronounced,
they may be so inefficient as to preclude trade.

8.2 Personalized-Price Equilibrium

One route to existence is to note that a personalized price equilibrium is
equivalent to

CMP01
Cole, Mailath, and Postlewaite (2001)’s ex post contracting

equilibrium, and then to note that
CMP01
Cole, Mailath, and Postlewaite (2001)

establish conditions for the existence of an ex post contracting equilibria.
We take an alternative route here, building on the relationship between
personalized-price and uniform-price equilibria.

prop-personalized exist Proposition 4 There exists an efficient personalized-price equilibrium.

Proof. Suppose first that hS(b, s) = 0 and hence hB(b, s) = v(b, s) for
all pairs (b, s). Proposition

prop-uniform exist
3 ensures that there exists a complete uniform-

price equilibrium (cf. Remark
prairie
4). Proposition

feaster
1 ensures that there is a
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corresponding complete personalized price equilibrium (b, s, b̃, pP ), which
Lemma

tulip
8 ensures is efficient. Then setting

p′P (b, s) = pP (b, s)− hS(b, s) = pP (b, s) + hB(b, s)− v(b, s)

gives a complete (and hence efficient) personalized price equilibrium for the
market in question.

9 Optimal Uniform Pricingsect-general pricing

Given that personalized prices allow sellers to do everything they can do with
uniform prices and more, we would expect personalized prices everywhere
if they were not costly. Section

in
1 explains why we think personalization is

costly, prompting sellers to use uniform prices wherever personalization is
prohibitively costly or unnecessary (cf. Proposition

feaster
1). In general, we would

expect sellers to be able to decide whether to personalize, balancing the costs
and benefits of doing so. This section briefly explores this trade-off.

9.1 The Information Decision

We assume that, simultaneously with their attribute choices, sellers also de-
cide whether to become informed, in which case they can set personalized
prices, or uninformed, in which case they must set uniform prices. If this
decision is to be meaningful, it must be costly to become informed. This cost
could take many forms. We consider a particularly simple case, in which
K(σ) is a fixed cost that seller type σ must pay to become informed. This
is applicable, for example, if the primary cost of screening buyers is the
fixed cost of establishing an admissions or personnel department. We allow
the possibility that K(σ) is constant, as well as more general formulations.
For example, the same characteristics that make attributes less costly for
larger values of σ may also make informativeness less costly. We can readily
imagine (but do not consider) cases in which seller σ’s cost of becoming
informed may depend upon such considerations as how many buyers would
like to purchase at the observed price p(b̃(s), s), but are excluded. In gen-
eral, the cost of being informed may thus depend upon details of the entire
equilibrium allocation.

We confine ourselves in this section to some nearly obvious statements
concerning conditions under which firms will find it optimal to remain un-
informed, and hence to set uniform prices. Equilibrium characteristics can
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depend sensitively on the specification of the cost K (as Section
splinter
9.3 shows),

so that existence arguments and characterizations will be tied to the form of
K. We believe that this cost should in turn be grounded in a more specific
model of how the matching and rationing of buyers and sellers takes place,
an exercise that is best deferred to another paper.

We denote the set of informed sellers by I and the closure of the set of at-
tributes chosen by informed sellers by S(I). Similarly, the set of uninformed
sellers is U and the closure of the set of attributes chosen by uninformed
sellers is S(U). It is possible that S(I)∩ S(U) 6= ∅ since we have taken the
closure of the set of chosen attributes. We present a formulation of feasible
matchings, and hence equilibrium, only for the case in which the set of in-
formed sellers is such that λ(S(I) ∩ S(U)) = 0 (we return to this below).
The resulting notions are well defined, as no unilateral deviation can disrupt
such a condition.

In describing the matching, we must distinguish between attributes cho-
sen by informed and uninformed sellers. The function b̃i : S(I) → B is a
one-to-one measure-preserving function describing the match of an informed
seller with attribute choice s ∈ S(I). The function b̃u : S(U) → B is a one-
to-one measure-preserving function describing the match of an uninformed
seller with attribute choice s ∈ S(U). The pair (b̃i, b̃u) is a feasible match-
ing if, in addition, b̃i(S(I)) ∪ b̃u(S(U)) = B. Since only sellers who become
informed can condition their price on buyers’ investments, there will be two
price functions: pP : B × S(I) → R and pU : S(U) → R. The first function
is the price an informed seller with attribute choice s charges for buyer of
attribute choice b, and the latter the price set by an uninformed seller of
attribute choice s for any buyer.

An equilibrium with endogenous pricing is a feasible outcome {b, s, I, b̃u, b̃i}
and prices pP and pU with the properties that sellers choose optimally
whether to become informed and, conditional on these decisions, there are no
profitable deviations. The ideas are familiar from the definitions of person-
alized and uniform prices but the details requires some care. The formalities
are presented in Section

pend5
A.6.

9.2 Uniform Prices

Combining this structure with our previous results, it is clear that the equi-
librium of the endogenous model will exhibit uniform pricing if the gains
from personalization are small and the cost large:

tumor Proposition 5
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tumor
5.1 Let hS(b, s) be independent of b. Then it is an equilibrium of the

endogenous model for each seller to choose not to obtain the monitoring
technology, coupled with a uniform price equilibrium.

tumor
5.2 Fix the functions v, cB and cS, and let {hn

B, hn
S}∞n=1 be default-share

functions converging uniformly to a limit in which hS is constant in b. Then
for every K̃ > 0, there is an N such that if the monitoring-cost is bounded
below by K̃, then there exists an equilibrium of the general model in which
no seller buys the monitoring technology, for all n > N .

The first statement reiterates our basic conclusion, that markets can be (ef-
ficiently) cleared by uniform prices when premuneration values are appro-
priately defined. The next statement notes that this is not a “razor-edge”
result. The benefit to a seller to obtain the monitoring technology is to
be able to discriminate among the potential buyers with whom he might
transact. But if the differences in the size of hS(b, s) across potential buyers
is sufficiently small, the benefits from acquiring the technology will be less
than paying the cost to obtain the technology, and consequently it will be
an equilibrium in the endogenous model for no seller to purchase and to set
a uniform price.

Remark 5 Turning this around, if the monitoring cost K is sufficiently
small and hS(b, s) is not independent of b, then we will not have completely
uniform pricing. In particular, suppose the outcome of a uniform price
equilibrium (b, s,b̃, pU (s)) cannot be supported in a personalized-price equi-
librium. Then there must exist a seller who can use personalized prices to
construct a profitable deviation, i.e., a seller σ, attribute choice s and price
pU < pU (s) and buyer β with attribute choice b such that

hS(b, s) + pU − cS(s, σ) > hS(b̃(σ), s(σ)) + pU (s(σ))− cS(s(σ), σ)

and

hB(b, s)− pU (s)− cB(b, β) ≥ hB(b(β), s̃(b))− pU (s̃(b))− cB(b(β), β).

Hence, if seller s had the ability to do so, he would post a price that would
accept attribute choice b at price pU , but exclude some buyers. It is the
inability to exclude such buyers that deters the seller from posting price pU

in the uniform price equilibrium.

Remark 6 One might conjecture that if hS(b, s) is not independent of b,
then we will have a personalized price equilibrium if K is sufficiently small,
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without further assumptions on how it is small. However, this is not the
case. Let K(σ) = K > 0. Then the endogenous model does not have
an equilibrium in which all sellers acquire the monitoring technology. The
lowest type of seller attribute choice necessarily matches with the lowest
buyer investment, and hence has no buyers to exclude. It then cannot be
in this seller’s best interests to pay to acquire the monitoring technology.
For values K > 0, this applies to an interval of lowest-type sellers, which
precludes the existence of a personalized price equilibrium.

9.3 An Example
splinter

We expand the example of Section
fortran
4 to illustrate an equilibrium with a

mixture of uniform and personalized prices. We assume that K is decreasing
in σ, with K(1) = 0, and consider the class of cost functions αK for α > 0.

Let the sum of the payoffs to a buyer and seller of types β = σ = φ in
the personalized and uniform price equilibria be denoted by vP (φ, φ) and
vU (φ, φ). Then in our example,

vP (φ, φ) =
1
3
φ2

vU (φ, φ) =
1
6
[θ(2− θ)2 + θ2(2− θ)]φ2

=
1
3
θ(2− θ)φ2.

Let ψ satisfy
vP (ψ, ψ)− vU (ψ, ψ) = K(ψ).

A match between two agents of type ψ is then the switch-point at which
the efficiency of the personalized-pricing equilibrium just suffices to warrant
paying the cost κ of the technology. Agents with types below ψ will not
purchase the monitoring technology and will play as in the uniform-pricing
equilibrium. Agents above ψ will purchase the monitoring technology, and
will play as in the personalized-pricing equilibrium, with the exception that
the price will now be given by

pP (b, s) =
s2

2
− (1− θ)bs + ∆.

The constant ∆ affects none of the incentives in the personalized-pricing
equilibrium. It is chosen to equalize the payoffs of the marginal seller σ = ψ
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in the two equilibria. This is the required condition for this seller to be
indifferent between buying and not buying the monitoring technology. We
have

∆ =
1
3
ψ2 − 1

3
θ(2− θ)ψ2

=
1
3
(1− θ)2ψ2

> 0.

Hence, the division of the surplus is pushed in the seller’s favor, compared
to the personalized-pricing equilibrium, in response to seller σ = ψ’s out-
side option of saving the cost of the monitoring technology by entering the
uniform-pricing segment of the market.

The seller’s attribute choice drops as σ crosses ψ while the buyer’s jumps
up. The price jumps down:

pP (b(ψ, s(ψ)) = (θ − 1
2
)ψ2 + ∆

<
θ

2

(
θ

2− θ

) 1
3

θ
2
3 (2− θ)

4
3 ψ2

= pU (b(ψ), s(ψ)).

The inequality is equivalent to

(θ − 1
2
) +

1
3
(1− θ)2 <

θ

2

(
θ

2− θ

) 1
3

θ
2
3 (2− θ)

4
3

which is readily verified numerically. At the switch point ψ, the marginal
buyer thus trades off a high-attribute choice seller and a high price (just
below ψ) against a relatively low-attribute choice low-price seller (above ψ).
As the seller moves across ψ, the seller is able to pay less for higher-attribute
choice buyers, at the cost of buying the transfer-setting technology. Notice
that some buyers below ψ would like to buy sellers above ψ, at the observed
transfers, without increasing their investments, but the personalized prices
of the latter preclude the buyers doing so.

The only optimality condition that is not obvious in this formulation con-
cerns the information-acquisition behavior of sellers near the critical type ψ.
Seller ψ is indifferent between acquiring and not acquiring the monitoring
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technology, which may initially appear to suffice for optimality. However,
we have noted that the seller attribute choice falls at type ψ. If K is inde-
pendent of σ, then sellers’ types enter their payoffs only through the cost
function cS . Given the single-crossing property satisfied by cS , we could
then conclude that the equilibrium seller attribute choice must be increas-
ing in type, ensuring that the proposed strategies are not an equilibrium.
Seller ψ can be indifferent between a large attribute choice coupled with
uniform pricing and a small attribute choice coupled personalized pricing,
without seller ψ − ε for small ε strictly preferring the latter (disrupting the
equilibrium) only if seller ψ has a cost advantage in purchasing the moni-
toring technology, i.e., only if K(σ) declines sufficiently rapidly in σ, i.e., if
dK(ψ)/dσ is sufficiently negative. This will be the case, and we will have
an equilibrium, for all α sufficiently large.10

Remark 7 If K is constant, no strategies of the form given here can con-
stitute an equilibrium.

10 Discussion
out

Moral Hazard. Our main result is that a necessary and sufficient con-
dition to either avoid the costs of personalization or the inefficiencies of
uniform pricing is that sellers’ premuneration values should be independent
of the buyer to whom they are matched. Why aren’t our markets and insti-
tutions arranged so that premuneration values have this property?

Moral hazard is a key obstacle to such an arrangement. In Section
in
1,

we touched on the moral hazard problems associated with assigning all of
the surplus, including the student’s future earnings, to a university. For
another illustration, consider a collection of heterogeneous and risk averse
agents who are to be matched with risk neutral principals. One could ensure
that the principal’s remuneration values are independent of agent charac-
teristics by assigning ownership of the technology to the agents. Uniform
pricing per se would then impose no costs, but the agents would inefficiently
bear all of the risk associated with the match, leading to inefficient actions
and less valuable matches. We could instead let the principal own some or

10Let c = limσ↑ψ cS(s(σ), σ) and c = limσ↓ψ cS(s(σ), σ). Then we need

d(c− c)

dσ
>

dK(ψ)

dσ
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all of the technology, but now the principal’s premuneration value will no
longer be independent of the characteristics of the agent with whom he is
matched. An inefficiency then arises out of either uniform pricing or the
costs of personalization.

We thus regard moral hazard as imposing fundamental constraints on the
design of premuneration values. This in turn can make new monitoring and
contracting technologies valuable, not only because they can create better
incentives within a match, but also because they can create more leeway for
designing premuneration values and hence better matching.

Who pays to reveal attributes? Firms resort to uniform pricing equi-
libria when they do not have the information necessary for personalized
pricing. Generating this information is not intrinsically costly—buyers are
assumed to know their attributes in our model—but can be costly for sellers
to collect this information, since buyers have an incentive to distort firms’
estimates of their attributes. There are alternatives to firms acquiring a
monitoring technology to assess buyers’ attributes. Universities typically
require students to take SAT exams that at least partially reveal the at-
tribute of interest. Even if universities did not require such exams, it is
likely that students of high ability would find it in their interest to them
in an attempt to certify their attribute. Thus a more general model would
include a richer set of technologies by which either buyers or sellers could
make attributes known to all participants.

Who benefits if attributes are observable? The previous paragraph
suggests that if the cost to buyers of certifying their attribute is not too
high, the uncertainty might “unravel”: high attribute buyers would reveal
themselves, making it optimal for the highest attribute buyers in the re-
maining pool to reveal themselves, and so on until all buyers’ attributes are
known.11 One’s intuition is that this cascading information revelation makes
at least lower-ranked buyers worse off, if not all buyers. Indeed, to avoid
such unraveling, Harvard Business School students have successfully lobbied
for policies that prohibit students’ divulging their grades to potential em-
ployers, while the Wharton student government adopted a policy banning
the release of grades.12 In contrast, in the example of Section

fortran
4, all buyers

are worse off when information about their attributes is suppressed than
11See

Grossman81
?,

Milgrom81
Milgrom (1981) or

OkunoPostlewaiteSuzumura
?, e,g., for analyses of this.

12
OstrovskySchwarz05
? investigate the optimal amount of information to disclose from the students’ per-

spective.
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when it is known. This result holds no matter what (nonzero) share the
buyers own of the surplus, and holds not for all buyers. It is the distorted
incentives to invest that ensure even the lowest attribute buyers would be
made worse off if buyer attribute information were suppressed.

Do actual markets use personalized prices?
YoungBurke01
? document that of

nearly a thousand Illinois sharecropping contracts, over 80% split the crop
equally between tenant and landlord, independently of the quality of the
soil, the crop being raised, or the characteristics of tenant.13 Looking at
the sharecropping problem through the lens of our model, we would think
of the landlord as the seller and the tenant as the buyer. The seller in-
vests in attributes that affect the yield of the land, including access roads,
drainage, soil treatment, fences, and buildings. Tenants invest in skills and
farm equipment, which they typically own. The share of the crop offered by
landlord to tenants is the counterpart of the price in our model. Since this is
a share rather than an absolute transfer, pricing is not purely uniform–more
capable tenants receive higher payments from a given landlord. However,
given that both the attributes of the tenants and the landlords can vary sub-
stantially, it seems unlikely that unconstrained personalized pricing would
so uniformly yield the prices we observe.14 If the prices do reflect constraints
on personalization, then there must be inefficient investments. These could
take the form of excess investment on one side in order to match with a
more desirable partner (for example, tenants overinvesting in equipment or
landlords making excessive land improvements), or too little investment if
partners are not particularly desirable at the given price.

Real estate markets have a similar regularity: brokers typically charge
6%, independently of the characteristics of the house to be sold or market
conditions. Here, one would think of the sellers as being real estate brokers
whose attributes include the ability to bring potential buyers to a house,
and buyers as homeowners who invest in the value of the house the would
like to sell. As with sharecropping contracts, it is quite unlikely that the
equilibrium personalized price to exhibit such regular prices across markets
and market conditions. Again, if the observed transaction prices diverge
from the equilibrium personalized price, there will be inefficient investments.

These are but two of a number of instances (e.g., lawyers who charge
standard personal-injury contingent fees ranging from 33 1/3% to 50%, de-

13Of the remaining contracts, virtually all specify shares of 2/3-1/3 or 3/5-2/5.
Bardhan76
?,

Bardhan80
?,

Bardhan81
?,Bardhan84

?and
Bardhan86
?, document similar patterns for village economies in India and Africa.

14Young and Burke explain the price regularities in terms of a dynamic model that gives
rise to the norm-based shares.
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pending on the jurisdiction) in which we suspect equilibrium prices exhibit
regularities that are improbable if markets were governed by personalized
pricing. If such improbable regularities coincide with nontrivial investments
by one side or another, inefficient investments are likely.

A Appendix
pend

A.1 Proof of Lemma
wabash
2

pend0

Suppose there exists a seller σ and attribute choice s′ such that hS(b̃(s′), s′)+
pU (s′)− cS(s′, σ) > hS(b̃(s), s) + pU (s)− cS(s, σ). We consider two cases.

Case I: supb<b(β) hB(b, s) < hB(b(s′), s). Suppose now that seller σ
chooses an attribute s′′ > s′ and chooses a price p′′ > pU (s′), with the
changes such that hB(b̃(s′), s′) − pU (s′) = hB(b̃(s′), s′′) − p′′. That is, the
increase in the premuneration value to the buyer b̃(s′) from choosing s′

rather than s′ is exactly offset by the increase in price from pU (s′) to p′′. If
s′′ − s′ > 0 and p′′ − pU (s′) are sufficiently small, then

hS(b̃(s′), s′′) + p′′ − cS(s′′, σ) > hS(b̃(s), s) + pU (s)− cS(s, σ).

Hence, seller σ is better off choosing attribute s′′ and price p′′ than by
playing the putative equilibrium if he could still be assured matching with
buyer b̃(s′). But since supb<β hS(b, s′′) < hS(b̃(s′), s′′) and since the change
in seller’s attribute and price left buyer b̃(s′) indifferent, all buyers with
lower attributes are strictly worse off choosing seller attribute s′′ at price p′′

than at the putative equilibrium. Thus, they will still be strictly worse off
even if seller σ chooses attribute s′′ and a price p′′ − ε for sufficiently small
ε. Thus, seller σ choosing attribute s′′and price p′′ − ε will attract buyer
b̃(s′), will attract no buyers with lower attributes, and may attract some
buyers with higher attributes than b̃(s′). The seller is thus strictly better
off for all buyers who are attracted to attribute s′′ and price p′′− ε, yielding
a profitable deviation.

Case II: supb<b(β) hB(b, s) = hB(b(s′), s). As in case I, suppose the
seller chooses attribute s′′ > s′ and price p′′ > pU (s′) so as to leave buyer β
indifferent, that is, hB(b̃(s′), s′)− pU (s′) = hB(b̃(s′), s′′)− p′′. Since hB(·, s′)
is a continuous and strictly increasing function, for any ε there exists b′ and
δ > 0 such that b̃(s′)− b′ < ε and hB(b̃(s′), s′)− hB(b, s′) > δ for all b < b′.
Thus if seller σ lowers the price from p′′ to p′′− δ

2 , buyer attribute b̃(s′) will
be strictly attracted, no buyer with attribute less than b′ will be attracted,
while some buyers with attributes above b̃(s′) will be attracted. Since the
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seller is strictly better off attracting buyer b̃(s′) at price pU (s′), he will be
strictly better off choosing s′′ and p′′ − δ

2 for s′′ sufficiently close to s′ and δ
sufficiently small. This gives the seller a profitable deviation.

A.2 Proof of Lemma
hand
3

pend1

Suppose b̃ is not weakly increasing, so that there exists s1 < s2 with b1 =
b̃(s2) < b̃(s1) ≡ b2. Adding conditions (

costa
1) and (

rica
2), if the seller choosing s2 is

to not have a profitable deviation that maintains attribute s2 but matches
with buyer attribute b2 instead of b1, then

hB(b2, s1)− pP (b2, s1) + hS(b1, s2) + pP (b1, s2) ≥ hB(b2, s2) + hS(b2, s2).

Similarly, if the seller choosing s1 is to not have a profitable deviation main-
taining s1 but matching with b1, we must have

hB(b1, s2)− pP (b1, s2) + hS(b2, s1) + pP (b2, s1) ≥ hB(b1, s1) + hS(b1, s1).

Adding these two inequalities, we get a contradiction to the supermodularity
of the surplus function v. The function b̃ is thus increasing.

It follows immediately from the single-crossing Assumption
horse
1.5 that the

matching function b̃ corresponding to a uniform-pricing equilibrium must be
increasing.

In each case, the requirement that b̃ be measure preserving, coupled with
the facts that b and s are strictly increasing when positive, ensures that b̃
is also strictly increasing.

Finally, we note that since b, s and b̃ are strictly increasing when positive,
the measure-preserving requirement on b̃ ensures that B̃ can be taken to be
the identity.

A.3 Proof of Lemma
prop-constrained eff
7

pend2

Suppose there exists φ, b ∈ B and s′ ∈ [0, s̄] such that W (b, s′, φ) >
W (b(φ), s(φ), φ). We argue this implies that the seller has a profitable de-
viation, and hence, that (b, s, pP , b̃) is not a personalized-price equilibrium.

Let ε = [W (b, s′, φ) − W (b(φ), s(φ), φ)]/3 > 0 and set p = hB(b, s′) −
hB(b, s̃(b)) + pP (b, s̃(b)) − ε. Note that the seller of type σ = φ can induce
a buyer with attribute choice b to buy from him by choosing s′ and offering
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a price p. Since W (b, s′, φ) > W (b(φ), s(φ), φ) + 2ε,

v(b, s′)− hB(b,s̃(b)) + pP (b, s̃(b))− cS(s′, σ)
> ΠS(s(φ), φ) + hB(b(φ), s(φ))

− pP (b(φ), s(φ))− cB(b(φ), φ)
− [hB(b, s̃(b))− pP (b, s̃(b))− cB(b, φ)] + 2ε

≥ ΠS(s(φ), φ) + 2ε, (12) giants

where the last inequality follows from the optimality of the buyer’s equilib-
rium behavior. Now, the payoff to the seller from this deviation is then

hS(b, s′) + p− cS(s′, φ) = hS(b, s′) + hB(b, s′)− hB(b, s̃(b))
+ pP (b, s̃(b))− ε− cS(s′, φ)

= v(b, s′)− hB(b, s̃(b)) + pP (b, s̃(b))− cS(s′, φ)− ε

> ΠS(s(φ), φ) + ε,

where the inequality follows from (
giants
12). Hence, the deviation is profitable.

The alternative possibility, s ∈ S and b′ ∈ R+\B satisfying W (b′, s, β) >
W (b(φ), s(φ), φ), implies a profitable deviation for the buyer by an identical
argument.

A.4 Proof of Lemma
tulip
8

spread

Fix a complete personalized price equilibrium (b, s, b̃, pP ). We need only
verify that there are no profitable deviations involving attribute choices ’

¯
6∈ B

or s′ 6∈ S from the specification (b, s, b̃, p′P ), where p′P is restricted to B×S.
Suppose the buyer has a profitable deviation, so there exists a type β and
an attribute choice b′ /∈ B, a price p ∈ R, and s′ ∈ S with

ΠB(b(β), s̃(b(β)), β) < hB(b′, s′)− p− cB(b′, β)

and
hS(b̃(s′), s′)− pP (b̃(s′), s′) < hS(b′, s′) + p.

Since s′ ∈ S, there is σ ∈ [0, 1] for which we can subtract cS(s, σ) from each
side of the second expression to get

ΠB(b(β), s̃(b(β)), β) < hB(b′, s′)− p− cB(b′, β)
ΠS(s(σ), σ) < hS(b′, s′) + p− cS(s′, σ).

But then there is no pP (b′, s′) for which the equalities in Definition
slushpump
8 can be

satisfied. Deviations on the part of the seller are analogous.
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Suppose (b, s, pP , b̃) is a complete personalized price equilibrium that is
not efficient. The inefficiency implies that there exist buyer and seller types
β = σ = φ and attribute choices b and s for which

v(b, s)−cB(b, φ)−cS(s, φ) > v(b(φ), s(φ))−cB(b(φ), φ)−cS(s(φ), φ). (13) sofa

Because (b, s, pP , b̃) is a complete personalized price equilibrium, we have

hB(b(φ), s(φ))− pP (b(φ), s(φ))− cB(b(φ), φ)
≥ hB(b, s)− pP (b, s)− cB(b, φ)

and

hS(b(φ), s(φ)) + pP (b(φ), s(φ))− cS(s(φ), φ)
≥ hS(b, s) + pP (b, s)− cS(s, φ).

Adding these two contradicts (
sofa
13).

A.5 Proof of Proposition
prop-uniform exist
3.

pend4
The existence proof is involved and indirect. We would like to construct
a game Γ whose equilibria induce uniform price equilibria. However, the
obvious such game Γ is itself difficult to handle, so we work with an ap-
proximating double sequence of games Γn,k. We verify that each Γn,k has
an equilibrium, and then take limits, first n to ∞, and then k to ∞, and
show that the limiting strategy profile induces a uniform price equilibrium.
Loosely, the n index allows us to accommodate (in the limit) the possibility
of jumps in the attribute choice functions (precluded in game Γn,k), while
the k index (in the limit) ensures that unpriced deviations are unprofitable.

A.5.1 Preliminaries

Let P = max{hB(b̄, s̄), hS(b̄, s̄)}. Then P is sufficiently large that no buyer
would be willing to purchase any seller attribute choice s ∈ [0, s̄] at a price
exceeding P , nor would any seller be willing to sell to a buyer b ∈ [0, b̄] at
price less than −P . We can thus limit prices to the interval [−P, P ].

Let ∆ be the Lipschitz constant from Assumption
horse
1.5, so that for all

ε > 0, s ∈ [0, s̄ − ε], and b ∈ [0, b̄], we have hB(b, s + ε) − hB(b, s) < ∆ε.
As a result, given a choice between seller s and seller s + ε at a price higher
by ∆ε, buyers would always choose the former. Equilibrium prices will thus
never need to increase at a rate faster than ∆.
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A.5.2 The game Γn,k

Each game Γn,k has three players, consisting of a buyer, a seller, and a
price-setter.

Strategy spaces. We begin by defining the strategy spaces for Γn,k. The
strategy spaces are only a function of n, with k only affecting the seller’s
payoffs.

The buyer chooses a pair of functions, (b, s̃), where b : [0, 1] → [0, b̄]
specifies a buyer attribute choice and s̃ : [0, 1] → [0, s̄] a seller attribute with
which to match, each as a function of the buyer’s type, with the restrictions
that

(β′ − β)/n ≤ b(β′)− b(β) ≤ n(β′ − β) (14) I

and
(β′ − β)/n ≤ s̃(β′)− s̃(β) ≤ n(β′ − β) (15) II

for any β < β′ ∈ [0, 1]. We denote the set of pairs of functions (b, s̃) satis-
fying (

I
14) and (

II
15) normed by the sum of the L1 norms on the component

functions by Υn
B, and the “limit” set where (

I
14) and (

II
15) need not hold for

any n by Υ∞
B . As usual, we do not distinguish between functions that agree

almost everywhere (this is only relevant in Υ∞
B ).

The seller chooses an increasing function s, where s : [0, 1] → [0, s̄]
specifies a seller attribute choice as a function of seller’s type, satisfying

(σ′ − σ)/n ≤ s(σ′)− s(σ) ≤ n(σ′ − σ) (16) III

for any σ < σ′ ∈ [0, 1].
We denote the set of functions s satisfying (

III
16) with the L1 norm by Υn

S ,
and the “limit” set where (

III
16) need not hold for any n by Υ∞

S .
The price setter chooses an increasing function pU : [0, s̄] → [−P, P ]

satisfying
pU (s′)− pU (s) < 2∆(s′ − s) (17) IV

for all s < s′ ∈ [0, s̄]. Denote the set of increasing functions pU satisfying
(
IV
17), again endowed with the L1 norm, by ΥP (note that ΥP is not indexed

by n). Every function in ΥP is continuous; indeed the collection ΥP is
equicontinuous.

The sets Υn ≡ Υn
B ×Υn

S ×ΥP and Υ∞ ≡ Υ∞
B ×Υ∞

S ×ΥP , when normed
by the sum of the three constituent norms, are compact metric spaces.15

15It suffices for this conclusion to show that Υ is sequentially compact, since sequential
compactness is equivalent to compactness for metric spaces

DandS88
Dunford and Schwartz (1988,
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Payoffs. The buyer’s payoff from (b, s̃) ∈ Υn
B, when the price-setter has

chosen pU ∈ ΥP is
∫

(hB(b(β), s̃(β))− pU (s̃(β))− cB(b(β), β)) dβ. (18) boccanegra

Note that the buyer’s payoff is independent of seller behavior.
The price-setter’s payoff from pU ∈ ΥP , when the buyer and seller have

chosen (b, s̃, s) ∈ Υn
B ×Υn

S is
∫ s̄

0

(
ϕ+(pU (s))[FB(s)− FS(s)]+ + ϕ−(pU (s))[FB(s)− FS(s)]−

)
ds, (19) simon2

where [x]+ = max{x, 0}, [x]− = min{x, 0}, ϕ+ is an increasing strictly
concave function from [−P, P ] into R with slope bounded away from zero
and infinity, ϕ− an increasing strictly convex function from [−P, P ] into R
with slope bounded away from zero and infinity, and

FB(s) ≡ λ{β | s̃(β) ≤ s}
FS(s) ≡ λ{σ | s(σ) ≤ s}.

Hence, the price-setter has an incentive to raise the price of seller attribute
choices in excess demand and lower the price of seller attribute choices in
excess supply.

The specification of the seller’s payoff is complicated by the need to
incorporate incentives arising from the possibility of unpriced deviations.
Given an attribute choice s, price p, and price function pU , set

B(s, p, pU ) ≡
{

b ∈ [0, b̄]
∣∣∣∣hB(b, s)− p ≥ max

s′∈[0,s̄]
{hB(b, s′)− pU (s′)}

}
.

Hence, B(s, p, pU ) is the set of buyer attribute choices that find attribute
choice s at price p (weakly) more attractive than any attribute s′ ∈ [0, s̄]
at price pU (s′). Note that for all s and pU ∈ ΥP , since there is no a
priori restriction on p, B(s, p, pU ) is nonempty for sufficiently low p (possibly
requiring p < −P , e.g., if pU ≡ −P ), and it is empty if p > pU (s).

p. 20). An argument analogous to that of Helly’s theorem (
Billingsley1986
Billingsley (1986, P. 345))

shows Υ is sequentially compact. In particular, given a sequence {(bm, s̃m, sm, pm
U )}, we

can choose a subsequence along which each function converges at every rational value
in its domain to a limit {(b∞, s̃∞, s∞, p∞U )}. Because each function in the sequence
{(bm, s̃m, sm, pm

U )} is increasing, so must be each limiting function {(b∞, s̃∞, s∞, p∞U )}.
This ensures convergence at every continuity point of the limit functions, and hence almost
everywhere, sufficing (for bounded functions) for L1 convergence.
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mahler Claim 1

(
mahler
1.1) If B(s, p, pU ) 6= ∅, then B(s, p, pU ) = [b1, b2] with b1 ≤ b2.

(
mahler
1.2) For fixed s and pU , let p̄(s, pU ) ≡ max{p | B(s, p, pU ) 6= ∅} and

write [b1(p), b2(p)] for B(s, p, pU ) when p ≤ p̄(s, pU ). Denote the set
of discontinuity points in the domain of bj(p) by Dj(s, pU ). The set
{s | Dj(s, pU ) 6= ∅} has zero Lebesgue measure.

(
mahler
1.3) Suppose {(s`, p`, p`

U )}` is a sequence converging to (s, p, pU ) with ∅ 6=
B(s`, p`, p`

U ) ≡ [b`
1, b

`
2]. Then B(s, p, pU ) 6= ∅, and so B(s, p, pU ) =

[b1, b2], where

b1 ≤ lim inf` b`
1 ≤ lim sup` b`

2 ≤ b2.

(
mahler
1.4) Moreover,if p 6∈ Dj(s, pU ) ∪ {p̄(s, pU )}, then bj = lim` b`

j.

Proof.

1.

(
mahler
1.1) Suppose b1, b2 ∈ B(s, p, pU ) with b1 < b2, and b̂ 6∈ B(s, p, pU ) for some

b̂ ∈ (b1, b2). Then there exists ŝ ∈ [0, s̄] such that

hB(b̂, s)− p < hB(b̂, ŝ)− pU (ŝ).

If ŝ > s, then assumption
horse
1.4 implies

hB(b2, ŝ)− hB(b2, s) ≥ hB(b̂, ŝ)− hB(b̂, s)
> pU (ŝ)− p,

contradicting b2 ∈ B(s, p, pU ). Similarly, ŝ < s contradicts b1 ∈
B(s, p, pU ), and so ŝ = s. But b2 ∈ B(s, p, pU ) then implies pU (ŝ) ≥ p
while b̂ 6∈ B(s, p, pU ) implies pU (ŝ) < p, the final contradiction, and so
b̂ ∈ B(s, p, pU ). It is immediate that B(s, p, pU ) is closed.

(
mahler
1.2) Since B(s, p′, pU ) ⊃ B(s, p, pU ) for p′ < p, b1(p) and b2(p) are monotonic

functions of p, and so are continuous except at a countable number of
points.

Suppose p ∈ D1(s, pU ), and let b+
1 = limp′↘p b1(p′). Since b1 is left-

continuous, b1(p) < b+
1 . Then for all b ∈ [b1(p), b+

1 ],

hB(b, s)− p = max
s′∈[0,s̄]

hB(b, s′)− pU (s′). (20) dvorak string qtt

39



From the envelope theorem
MilgromSegal02
(Milgrom and Segal, 2002, theorem 2), this

implies for all b ∈ (b1(p), b+
1 ),

∂hB(b, s)
∂b

=
∂hB(b, s′(b))

∂b
,

where s′(b) ∈ arg maxs′∈[0,s̄] hB(b, s′) − pU (s′). Assumption
horse
1.5 then

implies s = s′(b) for all b ∈ (b1(p), b+
1 ), and so p = pU (s).

Moreover, for all s′′ > s,

hB(b+
1 , s′′)− hB(b+

1 , s) ≤ pU (s′′)− pU (s)

so that
∂hB(b+

1 , s)
∂s

≤ lim inf
s′′>s

pU (s′′)− pU (s)
s′′ − s

,

while for all s′ < s,

pU (s)− pU (s′) ≤ hB(b1, s)− hB(b1, s
′),

so that

lim sup
s′<s

pU (s)− pU (s′)
s− s′

≤ ∂hB(b1, s)
∂s

,

Consequently, since

∂hB(b1, s)
∂s

<
∂hB(b+

1 , s)
∂s

the price function pU cannot be differentiable at s. Finally, since p̂U is
a monotonic function, it is differentiable almost everywhere

Royden88
(Royden,

1988, theorem 5.3), and hence {s | D1(s, pU ) 6= ∅} has zero Lebesgue
measure. A similar argument shows that {s | D2(s, pU ) 6= ∅} has zero
Lebesgue measure.

(
mahler
1.3) Suppose {(s`, p`, p`

U )}` is a sequence converging to (s, p, pU ), and let
{b`} be a sequence of attributes with b` ∈ B(s`, p`, p`

U ) for all `. With-
out loss of generality, we assume {b`} is a convergent sequence with
limit b. Since

hB(b`, s`)− p` ≥ max
s′∈[0,s̄]

{hB(b`, s′)− p`
U (s′)}, ∀`,

taking limits gives

hB(b, s)− p ≥ max
s′∈[0,s̄]

{hB(b, s′)− pU (s′)},

and so b ∈ B(s, p, pU ).
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(
mahler
1.4) Consider b2 and suppose p 6∈ D2(s, pU )∪{p̄(s, pU )}. Hence, b2 = b+

2 =
limp′↘p b2(p′). Consider b ∈ (b+

1 , b2). For p′ > p sufficiently close to p,
we have b ∈ B(s, p′, pU ), and so

hB(b, s)− p > max
s′∈[0,s̄]

{hB(b, s′)− pU (s′)}.

Consequently, for ` sufficiently large,

hB(b, s`)− p` > max
s′∈[0,s̄]

{hB(b, s′)− pU (s′)},

i.e., b ∈ B(s`, p`, p`
U ). This implies that b`

2(p
`) > b, and hence lim inf b`

2 ≥
b. Since this holds for all b ∈ (b+

1 , b2) and the claim
mahler
1.3 has established

lim sup` b`
2 ≤ b2, we have lim` b`

2 = b2. The argument for b1 is an
obvious modification of this argument.

Our specification of seller payoffs captures in a smooth way the idea that
he attracts buyer attributes in B(s, p, pU ). Fix (s, p, pU ) and suppose λ({β |
b(β) ∈ B(s, p, pU )}) > 0. Since b is strictly increasing and continuous,
it then follows from claim

mahler
1 that b([0, 1]) ∩ B(s, p, pU ) = [b′1, b

′
2] for some

0 ≤ b′1 < b′2 ≤ b̄. We next define a measure on [0, b̄] to reflect the idea that
in the limit (as k gets large), the seller attracts the worst buyers in [b′1, b

′
2].

Set

fk(b) =
ke−k(b−b′1)

1− e−k(b′2−b′1)
.

The two critical properties of this function are that
∫ b′2
b′1

fk(b)db = 1 for all
k, and

lim
k→∞

∫ b′2

b′1
g(b)fk(b)db = g(b′1) (21) Symph 2

for all continuous g. Define the measure ψk on [0, b̄] by

ψk(A) =
∫

b(β)∈A∩[b′1,b′2]
fk(b(β)) dβ for all measurable A

and the associated expected payoff to the seller from (s, p,b, pU ) by

Hk(s, p,b, pU ) ≡
∫

hS(b, s) ψk(db) + p. (22) cello
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This function depends upon pU and b through ψk’s dependence on B(s, p, pU )
and b. Moreover, ψk inherits any decorations or superscripts from pU and
b. For later reference, note that for fixed s, b, and pU , the function
Hk(s, p,b, pU ) is continuous from the left in p (since b satisfies (

I
14) and

both b1(p) and b2(p), defined just before claim
mahler
1, are left-continuous).

We set P̃ (s,b, pU ) ≡ {p | λ({β | b(β) ∈ B(s, p, pU )}) > 0}, and noting
that this set is nonempty, define

H̄k(s,b, pU ) ≡ max
{

supp∈P̃ (s,b,pU )H
k(s, p,b, pU ), hS(0, s) + pU (s)

}
. (23) mice1

Taking the maximum over supp∈P̃ (s,b,pU )H
k(s, p,b, pU ) and hS(0, s)+pU (s)

effectively assumes that the seller can always sell attribute choice s at the
posted price pU (s), though perhaps only attracting buyer attribute choice
0. This ensures that the price setter indeed acts like a price setter, allowing
buyers to purchase any s at pU (s) and sellers to sell at that price. Notice
that if P̃ (s,b, pU ) contains pU (s)− ε for all ε > 0, then the first term in (

mice1
23)

will be the maximum.
The seller’s payoff from s ∈ Υn

S when the buyer and price-setter have
chosen (b, s̃, pU ) ∈ Υn

B ×ΥP is then
∫ (

H̄k(s(σ),b, pU )− cS(s(σ), σ)
)

dσ. (24) mice

A.5.3 Equilibrium in game Γn,k

Our next task is to show that each game Γn,k has a Nash equilibrium, and
that the price-setter plays a pure strategy in any such equilibrium. To do
this, we first note that the price-setter’s payoff is strictly concave in pU ,
though we have not shown that the buyer’s and sellers’s payoffs are even
quasiconcave. If the payoffs functions in game Γn,k are continuous, then
Glicksberg’s fixed point theorem, applied to the game where we allow the
buyer and seller to randomize, yields a Nash equilibrium in which the buyer
and seller may randomize, but the price-setter does not.

It thus remains to show:

Claim 2 The buyer, price-setter and seller payoff functions given by (
boccanegra
18),(

simon2
19)

and (
mice
24), are continuous functions of (b, s, s̃, pU ) on Υn.

Proof. We first note that for increasing, bounded functions on a compact
set, L1 convergence implies convergence almost everywhere.16

16Suppose fn converges in L1 norm to an increasing function f without converging
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Consider first the buyer. The functions b, s̃, and pU are bounded func-
tions on compact sets, and hence the absolute value of each of these functions
is dominated by an integrable function (e.g., the constant function equal to
the relevant upper bound). The continuity of the buyer’s payoff then fol-
lows immediately from Lebesgue’s dominated convergence theorem, if we can
show that the convergence of b, pU , and s̃ in the L1 norm (and hence almost
everywhere) implies the convergence almost everywhere of hB(b(β), s̃(β)),
pU (s̃(β)) and cB(b(β), β) (note that we are talking about sequences of func-
tions within a given game Γn,k). The first and the third of these follows from
the continuity of hB and cB (from Assumption

horse
1), while for the remaining

case it suffices to note that the collection ΥP is equicontinuous.
Consider now the price-setter. Suppose s` converges in L1, and so almost

everywhere, to s. Then F `
S converges weakly to FS (and so a.e.).17 Similarly,

if s̃` converges in L1 to s̃, then F `
B converges a.e. to FB. Continuity for the

price-setter’s payoff then follows from arguments arguments analogous to
those applied to the buyer, since we have convergence almost everywhere of
pU (s)[FB(s)− FS(s)].

Finally, we turn to the seller, where the proof of continuity is more
involved. It suffices to argue that H̄k(s,b, pU ) is continuous in (s,b, pU ) for
almost all s (since s̃ is irrelevant in the determination of the seller’s payoff
and the continuity with respect to s is then obvious, at which point again
appeal to Lebesgue’s dominated convergence theorem).

Fix a point (ŝ, b̂, p̂U ) and a sequence (s`,b`, p`
U ) converging to it. Since

we need continuity for almost all s ∈ [0, s̄], we can assume D1(ŝ, p̂U ) ∪
D2(ŝ, p̂U ) = ∅ (or equivalently that p̂U is differentiable at ŝ (cf. the proof
of claim

mahler
1.2)).

We show lim`→∞ H̄k(s`,b`, p`
U ) = H̄k(ŝ, b̂, p̂U ). Notice that H̄k(s,b, pU )

almost everywhere. Then since f is discontinuous on a set of measure zero, there exists
(for example) a continuity point x of f with g(x) ≡ lim fn(x) > f(x) (with the case
lim fn(x) < f(x) analogous). The continuity of f then ensures that for some point y > x,
some ε > 0, all z ∈ [x, y] and for and for all sufficiently large n, we have fn(z) ≥
f(y) + ε ≥ f(z) + ε. This in turn ensures that

R |fn(z) − f(z)|dz > (y − x)ε, precluding
the L1 convergence of {fn}∞n=1 to f .

17Fix ε > 0. By Egoroff’s theorem
Royden88
(Royden, 1988, p.73), s` converges uniformly to s

on a set E of measure at least 1 − ε. Suppose s is a continuity point of FS . There then
exists δ > 0 such that |FS(s) − FS(s′)| < ε for all |s − s′| ≤ δ. There exists `′ such that,
for all σ ∈ E, for all ` > `′, |s`(σ)− s(σ)| < δ. Consequently, F `

S(s) ≤ FS(s + δ) + ε and
FS(s− δ)− ε ≤ F `

S(s), and so |F `
S(s)− FS(s)| < 2ε. Hence, F `

S converges weakly to FS .
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is the maximum of two terms. It suffices to show that

lim
`→∞

supp∈P̃ (s`,b`,p`
U )H

k(s`, p,b`, p`
U ) = sup

p∈P̃ (ŝ,b̂,p̂U )

Hk(ŝ, p, b̂, p̂U )

lim
`→∞

hS(0, s`) + p`
U (s`) = hS(0, ŝ) + p̂U (ŝ).

The second is immediate from the continuity of hS and the differentiability
of p̂U at ŝ. We accordingly turn to the first. To conserve on notation, let
supp∈P̃ (s`,b`,p`

U )H
k(s`, p,b`, p`

U ) ≡ ¯̄Hk(s`,b`, p`
U ).

We now first show that

lim inf
`→∞

¯̄Hk(s`,b`, p`
U ) ≥ ¯̄Hk(ŝ, b̂, p̂U ). (25) tristan

For all ε > 0 there exists p̂ ∈ P̃ (ŝ, b̂, p̂U ) such that

Hk(ŝ, p̂, b̂, p̂U ) + ε/2 ≥ ¯̄Hk(ŝ, b̂, p̂U ).

Since Hk(ŝ, p, b̂, p̂U ) is continuous from the left in p, there exists p̂′ <
p̄(ŝ, p̂U ) with p̂′ ≤ p̂ satisfying

|Hk(ŝ, p̂, b̂, p̂U )−Hk(ŝ, p̂′, b̂, p̂U )| < ε/2,

and so
Hk(ŝ, p̂′, b̂, p̂U ) + ε ≥ ¯̄Hk(ŝ, b̂, p̂U ).

Since p̂′ 6∈ D1(ŝ, p̂U ) ∪ D2(ŝ, p̂U ) ∪ {p̄(ŝ, p̂U )} and b̂ satisfies (
I
14), for suffi-

ciently large `, p̂′ ∈ P̃ (s`,b`, p̂`
U ), and so (applying claim

mahler
1.3)

lim
`→∞

Hk(s`, p̂′,b`, p`
U ) = Hk(ŝ, p̂′, b̂, p̂U ).

Hence,
lim inf
`→∞

¯̄Hk(s`,b`, p`
U ) + ε ≥ ¯̄Hk(ŝ, b̂, p̂U ), ∀ε > 0,

yielding (
tristan
25).

We now argue that

¯̄Hk(ŝ, b̂, p̂U ) ≥ lim sup
`→∞

¯̄Hk(s`,b`, p`
U ), (26) isolde

which with (
tristan
25) gives continuity.

Fix ε > 0. For each `, there exists p` ∈ P̃ (s`,b`, p`
U ) such that

Hk(s`, p`,b`, p`
U ) + ε ≥ ¯̄Hk(s`,b`, p`

U ).
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Without loss of generality, we can assume {p`}` is a convergent sequence,
with limit p̂. Suppose first that p̂ ∈ P̃ (ŝ, b̂, p̂U ). If p̂ 6= {p̄(ŝ, p̂U )}, it is
immediate that

Hk(ŝ, p̂, b̂, p̂U ) + ε ≥ lim sup
`→∞

¯̄Hk(s`,b`, p`
U ), (27) prager

which (since it holds for all ε) implies (
isolde
26).

Suppose now that p̂ 6∈ P̃ (ŝ, b̂, p̂U ) or p = p̄(ŝ, p̂U ). Since p̂U is differ-
entiable at ŝ, there cannot be a nondegenerate interval of buyer attributes
indifferent between (ŝ, p̂) and the unconstrained optimal seller attribute un-
der p̂U . This implies b̂([0, 1]) ∩B(ŝ, p̂, p̂U ) = {b̂} for some b̂, and so

¯̄Hk(ŝ, b̂, p̂U ) ≥ hS(b̂, ŝ) + p̂.

From claim
mahler
1.3,

lim
`→∞

Hk(s`, p`,b`, p`
U ) + ε = hS(b̂, ŝ) + p̂ + ε,

and so
¯̄Hk(ŝ, b̂, p̂U ) + ε ≥ lim sup

`→∞
¯̄Hk(s`,B`, p`

U ),

which (since it holds for all ε > 0) implies (
isolde
26).

A.5.4 The limit n →∞
We continue to fix k and now examine the limit as n → ∞. In particular,
let {(ξn,k

B , ξn,k
S , pn,k

U )}n ⊂ ∆(Υ∞
B ) × ∆(Υ∞

S ) × ΥP be a sequence of Nash
equilibria of the games Γn,k. Without loss of generality (since the relevant
spaces are sequentially compact), we may assume that both the sequence of
equilibria converges to some limit (ξk

B, ξk
S , pk

U ), and that each players’ payoffs
also converge.

We now examine the limit (ξk
B, ξk

S , pk
U ). Intuitively, we would like to think

of this profile as the equilibrium of a “limit game.” However, the definition
of this limit game is not straightforward. When defining the payoffs in game
Γn,k, especially the sellers’ payoffs, we have relied heavily on the strategies
b, s s̃ have properties (such as being strictly increasing and continuous) that
need not carry over to their limits. In establishing properties of (ξk

B, ξk
S , pk

U ),
we will accordingly typically begin our argument in the limit, and then pass
back to the approximating equilibrium profile (ξn,k

B , ξn,k
S , pn,k

U ) to obtain a
contradiction. The latter step of the argument is notationally cumbersome,
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and we do not always make the approximation explicit. It is accordingly
helpful to keep in mind what it means for (ξn,k

B , ξn,k
S , pn,k

U ) to converge to the
pure profile (bk, s̃k, sk, pk

U ): For all k and for all ε > 0 there exists n′ such
that for all n ≥ n′,

ξn,k
B

({
(b, s̃) ∈ Υn

B | ∫ |b(β)− bk(β)|dβ < ε,
∫ |s̃(β)− s̃k(β)|dβ < ε

})

≥ 1− ε,

ξn,k
S

({
s ∈ Υn

S |
∫ |s(σ)− sk(σ)|dσ < ε

}) ≥ 1− ε,

and ∫ |pn,k
U (s)− pk

U (s)|ds < ε.

Note that while the seller is best responding to ξn,k
B in choosing s, the choice

of p implicit in (
mice1
23) is made after (b, s̃) is realized.

Claim 3 The limit profile (ξk
B, ξk

S , pk
U ) is pure, which we denote (bk, s̃k, sk, pk

U ).

Proof. Consider the buyer (the case of the seller is analogous). Let ξk
B,b

and ξk
B,s denote the marginal measures induced on choices b and s̃.

Suppose the buyer’s strategy is not pure. Then define a pair of increasing
functions b′ : [0, 1] → {−1} ∪ [0, b̄] and s̃′ : [0, 1] → {−1} ∪ [0, s̄] by

b′(β) = inf{b | ξk
B,b(b) ≥ β}

and s̃′(β) = inf{s̃ | ξk
B,b(s̃) ≥ β}.

These functions give the same distribution of b and s̃ in the market, but fea-
ture positive assortivity between the buyer’s types and attribute choice, and
between the buyer’s attribute choice the seller attribute with which the buyer
matches, both of which increase the buyer’s payoff. Hence, this pure strat-
egy strictly increases the buyer’s payoff. It then follows from straightforward
continuity arguments that for sufficiently large n, i.e., for a game in which
the slope requirements on the buyer’s strategy are sufficiently weak and the
equilibrium profile (ξn,k

B , ξn,k
S , pn,k

U ) is sufficiently close to (ξk
B, ξk

S , pk
U ), there

is a pure strategy sufficiently close to b′ and s̃′ as to give the buyer a payoff
higher than his supposed equilibrium payoff in Γn,k, a contradiction. Hence,
the buyer cannot mix.

simon Claim 4 The profile (bk, s̃k, sk, pk
U ) balances the market, i.e., F k

B(s) = F k
S (s)

for all s.
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Proof. Since F k
B and F k

S are continuous from the right, it suffices to show
that they agree almost everywhere. We first argue that F k

B(s)− F k
S (s) ≤ 0

almost everywhere. Suppose this is not the case, so there exists s < s̄ with
F k

B(s) − F k
S (s) = ε > 0 and with s a continuity point of F k

B − F k
S . Then

there exists s1 and s2 with s ∈ [s1, s2), and F k
B(s)− F k

S (s) ≥ ε/2 on [s1, s2]
and either s1 = 0 or, for every η > 0, there is a value sη ∈ [s1 − η, s1) with
F k

B(sη) − F k
S (sη) < ε/2 (note that F k

B(sη) − F k
S (sη) may be negative, and

so is bounded below by −1). We consider the case in which s1 > 0 and
pk

U (s1) < pk
U (s2), with the remaining cases a straightforward simplification.

Since F k
B(s)−F k

S (s) > 0 on [s1, s2] , for fixed pk
U (s1) and pk

U (s2), the price
setter must be setting prices as large as possible on this interval. If not, there
is a price function p̂U ∈ ΥP with p̂U (s) ≥ pk

U (s) for all s and p̂U (s) > pk
U (s)

for some s yielding strictly higher payoffs to the price-setter than pk
U in Γn,k

for sufficiently large n, when the buyer and seller choose (ξn,k
B , ξn,k

S ). But
this contradicts the equilibrium property of (ξn,k

B , ξn,k
S , pn,k

U ).
Hence, there exists s′ ∈ [s1, s2] such that dpU (s)/ds = 2∆ on (s1, s

′) and
pk

U (s) = pU (s2) for s ∈ [s′, s2]. That is, prices increase at the maximum
rate possible until hitting pk

U (s2) (with s′ = s2 possible, but since pk
U (s1) <

pk
U (s2), we have s1 < s′). Consequently, s̃([0, 1]) ∪ [s1, s2] ⊂ {s1, s2}, i.e.,

buyers demand only seller attribute choices s1 and s2 from this interval.
[Since all seller attribute choices in [s′, s2] command the same price, buyers
demand only attribute choice s2 from this set, while the price of a seller
attribute choice increases sufficiently quickly on [s1, s

′] that from this set
buyers demand only s1.]

Since for every η > 0, there exists sη ∈ [s1−η, s1) with F k
B(s1)−F k

B(sη) <
ε/2, the buyer must choose s1 for some buyer types. But if the buyer is to
choose s1, there is a range of seller attributes just below s1 with prices that
are not too low, that is, there exists η′ > 0 such that

pk
U (s) > pk

U (s1)−∆(s1 − s)

for all s ∈ [s1 − η′, s1). Consider now the price function p̂η
U ∈ ΥP given by

p̂η
U (s) =





pk
U (s), if s ≥ s′,

min{pk
U (s1 − η) + 2∆(s− s1 + η), pk

U (s′)}, if s ∈ (s1 − η, s′),
pk

U (s), if s ≤ s1 − η,

and note that p0
U = pk

U . The price-setter’s payoff from choosing pη
U ∈ ΥP
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(less the payoff from pk
U ) is bounded below by

∫ s′

s1

(
ϕ+(pη

U (s))− ϕ+(pk
U (s))

)
[ε/2]+ ds

+
∫ s1

s1−η

(
ϕ−(pη

U (s))− ϕ−(pk
U (s))

)
[−1]− ds.

For η close to 0, pη
U (s) < pk

U (s′) for all s ∈ (s1, s1 + (s′ − s1)/2), and so for
small η, the above expression is no smaller than

∫ s1+(s′−s1)/2

s1

{
ϕ+(pk

U (s1) + ∆η + 2∆(s− s1))

−ϕ+(pk
U (s1) + 2∆(s− s1))

}
[ε/2]+ ds

+
∫ s1

s1−η

(
ϕ−(pk

U (s1 − η) + 2∆η)− ϕ−(pk
U (s1 − η))

)
[−1]− ds.

Since the first integral is of the same order of magnitude as η, while the
second is lower order, for sufficiently small η, the lower bound is strictly
positive, implying the price-setter has a profitable deviation (in Γn,k for
large n), a contradiction.

We conclude that F k
B(s) − F k

S (s) ≤ 0 for almost all s. It remains to
argue that it is not negative on a set of positive measure. Suppose it is.
Then there must exist a seller characteristic ŝ > 0 such that pU (s) = −P
for s < ŝ, F k

B(s) − F k
S (s) < 0 for a positive-measure subset of [0, ŝ], and

F k
B(s) − F k

S (S) = 0 for almost all s > ŝ. But then no seller would choose
attributes in [0, ŝ), a contradiction.

A.5.5 The limit k →∞
Without loss of generality (since the relevant spaces are sequentially com-
pact), we may assume that both the sequence {(bk, s̃k, sk, pk

U )}k ⊂ Υ∞
B ×

Υ∞
S ×ΥP converges to some limit (b∗, s̃∗, s∗, p∗U ), and that each players’ pay-

offs also converge. Since we have not proved uniform convergence in k as n →
∞, we cannot assert the existence of a subsequence of {(ξn,k

B , ξn,k
S , pn,k

U )}n,k

converging to (b∗, s̃∗, s∗, p∗U ). However, it suffices for us that for all ε > 0
there exists K such that for all k ≥ K, there exists nk, such that for all
n ≥ nk, the profile (ξn,k

B , ξn,k
S , pn,k

U ) is within ε of (b∗, s̃∗, s∗, p∗U ), with a
similar claim holding for the associated payoffs.
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We now seek a characterization of the seller’s payoffs. We know that b∗

and s̃∗ are increasing, and the market-clearing result of Claim
simon
4 carries over

to the limit (b∗, s̃∗, s∗, p∗U ). Intuitively, we would like to use these facts to
conclude that there is positive assortative matching, and indeed that a seller
of type σ matches with a buyer of type β = σ. However, these properties may
not hold if b and s̃ are not strictly increasing (properties we need to establish
in any case for the existence of a uniform price equilibrium). Moreover, even
if we had such matching, the specification of the seller’s payoffs given by
(
mice
24) leaves open the possibility that the (gross) payoff to a seller of type σ

choosing attribute s may not be given by hS(b(σ), s) + pU (s). Hence, the
buyers that sellers are implicitly choosing in their payoff calculations may
not duplicate those whose seller choices balance the market.

Our first step in addressing these issues is to show that the buyer’s
limiting attribute choice function is indeed strictly increasing:

rhyme Claim 5 The function b∗ is strictly increasing when nonzero.

Proof. By construction, b∗ is weakly increasing. We show that β′′ > β′

and b∗(β′) > 0 imply b∗(β′′) > b∗(β′). Suppose to the contrary that b =
b∗(β) > 0 for two distinct values of β.

Define β1 ≡ inf{β | b∗(β) = b}, β2 ≡ sup{β | b∗(β) = b}, and β̄ =
(β1 + β2)/2. We assume 0 < β1 and β2 < 1 (if equality holds in either case,
then the argument is modified in the obvious manner). We now define a
new attribute choice function (as a function of a parameter η > 0) that is
strictly increasing on a neighborhood of [β1, β2] and agrees with b∗ outside
that neighborhood. First, define

βη
1 = inf{β ≤ β1 | b∗(β) ≥ b + η(β − β̄)}

and βη
2 =sup{β ≥ β2 | b∗(β) ≤ b + η(β − β̄)}.

Note that as η → 0, βη
j → βj for j = 1, 2. Finally, define

bη(β) =





b∗(β), if β > βη
2,

b + η(β − β̄), if β ∈ [βη
1, β

η
2],

b∗(β), if β < βη
1.

The payoffs to the buyer under bη less that under b∗ is
∫ βη

2

βη
1

hB(bη(β), s̃(β))− hB(b∗(β), s̃(β))− [cB(bη(β), β)− cB(b∗(β), β)] dβ.

(28) rachmaninov
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Now,
∫ β2

β1

[cB(bη(β),β)− cB(b∗(β), β)] dβ

=
∫ β2

β1

[
∂cB(b, β)

∂b
η(β − β̄) + o(η)

]
dβ

=η

∫ (β2−β1)/2

0

[
∂cB(b, β̄ + x)

∂b
− ∂cB(b, β̄ − x)

∂b

]
x dx + o(η).

From assumption
horse
1.2, the integrand is strictly negative, and so the integral

is strictly negative and independent of η. Since s̃ is increasing, a similar
argument applied to the difference in the premuneration values shows that

∫ β2

β1

hB(bη(β), s̃(β))− hB(b∗(β), s̃(β))− [cB(bη(β), β)− cB(b∗(β), β)] dβ

≥ η

∫ (β2−β1)/2

0

[
∂cB(b, β̄ − x)

∂b
− ∂cB(b, β̄ + x)

∂b

]
x dβ + o(η).

It remains to argue that the contribution to (
rachmaninov
28) from the intervals [βη

1, β1)
and (β2, β

η
2] is of order o(η). But this is immediate, since |bη(β)−b∗(β)| ≤ η

and βη
j → βj as η → 0 (for j = 1, 2). Hence, for η > 0 sufficiently small,

bη gives the buyer a strictly higher payoff under (
boccanegra
18) than b∗. But, then

by a now familiar argument, the buyer has a profitable deviation in Γn,k for
sufficiently large k, and then n, a contradiction. So b∗ is strictly increasing
when nonzero.

Given an attribute choice s, let [β1(s), β2(s)] be the closure of the set of
buyers for whom s̃∗(β) = s. Because s̃ is increasing, this set is an interval
(though possibly degenerate) if it is nonempty. Let b1(s) = limβ↓β1(s)b(s)
and b2(s) = limβ↑β2(s)b(s).

Symph 3.5 Claim 6

lim
k

lim
n

∫ ∫
H̄k(sn,k(σ),bn,k, pn,k

U )− cS(sn,k(σ), σ)dσdξn,k

≤
∫

hS(b1(s∗(σ)), s∗(σ)) + p∗U (s∗(σ))− cS(s∗(σ), σ)dσ.

Proof. Fix s = s∗(σ) for some seller type σ. For fixed k and n, any
p > pn,k

U (s) gives an empty B(s, p, pn,k
U ), and so a payoff hS(0, s) + pU (s) −
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cS(s, σ) ≤ hS(b1(s∗(σ)), s∗(σ)) + p∗U (s∗(σ)) − cS(s∗(σ), σ). For p < pn,k
U (s),

for large n, there is a positive measure of buyers who find s attractive (since
s̃k(σ) is optimal for buyer σ under pk

U ). As k becomes arbitrarily large, the
average value of the attracted attributes under ψk converges to the value
of the worst type (see (

Symph 2
21)), which is at best b1(s), and so in the limit the

payoff cannot exceed hS(b1(s), s(σ)) + p∗U (s(σ))− cS(s(σ), σ).

We now argue that s̃ and s are strictly increasing. From claim
simon
4, s̃(x) =

s(x) for almost all x ∈ [0, 1], and so s̃∗ is strictly increasing if s is. We
examine the latter.

Claim 7 The function s is strictly increasing when nonzero.

Proof. Suppose to the contrary there is a strictly positive constant ŝ and a
nondegenerate interval (σ1, σ2) with s((σ1, σ2)) = ŝ. Then because the mar-
ket balances (Claim

simon
4 which carries over to the limit (b∗, s̃∗, s∗, p∗U )) and the

buyer attribute-choice function is strictly increasing (Claim
rhyme
5), the attribute

choice ŝ must be “matched” with buyer attributes from a set [b1, b2], i.e.,
b1(ŝ) = limβ↓β1(ŝ)b(ŝ) < b2(ŝ) = limβ↑β2(ŝ)b(ŝ). Then from Claim

Symph 3.5
6, we

have:

lim
k

lim
n

∫ ∫ σ2

σ1

H̄k(sn,k(σ),bn,k, pn,k
U )− cS(sn,k(σ), σ)dσdξn,k

≤
∫ σ2

σ1

hS(b1, ŝ) + p∗U (ŝ)− cS(ŝ, σ)dσ.

Now let σ(η) = inf{σ : s(σ) ≥ ŝ + η}. Notice that limη→0 σ(η) = σ2. Now
let the seller set attribute choice function

s′(s) =
{

s(σ) if σ 6∈ (σ1, σ(η))
ŝ + η if σ ∈ (σ1, σ(η)).

Notice that s′ is weakly increasing. A seller choosing attribute ŝ + η sets
price p̂ > pU (ŝ) satisfying

p̂ = sup{p : B(s∗, p, p∗U ) 6= ∅}.

The price p̂ is at least as high as that the value p′ satisfying hB(b2, ŝ) −
pU (ŝ) = hB(b2, ŝη) − p′, where p′ is calculated so that buyer b2 will prefer
attribute choice ŝ + η at price p̂ to the buyer’s current choice of ŝ at price
p∗U (ŝ). By setting the price p̂ for attribute choice ŝ + η, the seller then
ensures that attribute choice ŝ+η is chosen by a buyer at least as high as b2
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(the single-crossing condition on buyer premuneration values ensures that
no smaller buyers will choose ŝ + η). In addition, any buyer who currently
chooses a seller s > ŝ + η will continue to prefer that seller. As a result, the
switch to attribute choice function s′ increases the seller’s payoff by at least

∫ σ2

σ1

(hS(b2, ŝ + η) + p̂) dσ −
∫ σ2

σ1

(hS(b1, ŝ) + p∗U (ŝ)) dσ −
∫ σ(η)

σ1

(cs(ŝ + η, σ)− cS(s∗(σ), σ)dσ

> (σ2 − σ1)[hS(b2, ŝ + η)− hS(b1, ŝ]− (σ(η)− σ1)[cS(ŝ + η, σ1)− cS(ŝ, σ1)].

The first term in the second line is bounded away from zero as η approaches
zero, while the second approaches zero as does η, ensuring that there is some
η > 0 for which the payoff differences is positive. Intuitively, each seller in
the interval (σ1, σ2) experiences a discontinuous increase in expected buyer
(at a higher price) when increasing her attribute choice, while sellers in the
interval σ12, σ(η) experience a continuous increase in cost. The attribute
choice function s′ increases the seller’s payoff for sufficiently small η, yielding
the result.

With the various functions strictly increasing, it is now straightforward
to show:

Symph 4 Claim 8

lim
k

lim
n

∫ ∫
H̄k(s(σ),b, pn,k

U )− cS(s(σ), σ)dσdξn,k

=
∫

hS(b∗(σ), s∗(σ)) + p∗U (s∗(σ))− cS(s∗(σ), σ)dσ

=
∫

max
s

hS(b∗(σ), s) + p∗U (s)− cS(s, σ)dσ.

A.5.6 Uniform Price Equilibria

We finally argue that he profile (b∗, s̃∗, s∗, p∗U ) induces a uniform price equi-
librium of the matching market with identical attribute choices (but perhaps
a shift in the price function). First, we note that the equilibrium functions
b∗, s̃∗, and s∗ are increasing. We can then take them to be continuous
from the right, since doing so requires adjusting at most a countable set
of values, which leaves expected payoffs unaffected. This in turn ensures
that if almost all buyers and sellers have no profitable deviation, then (via
a continuity argument) none do.
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The first task is to show that equilibrium payoffs are nonnegative, so that
agents would not prefer to be out of the market. Suppose {ξn,k

B , ξn,k
S , pn,k

U }n,k

is the double sequence that converges to (b∗, s̃∗, s∗, p∗U ). We have

hB(0, 0)− p∗U (0) = hB(0, 0)− p∗U (0)− cB(0, β) ≤ hB(b(β), s̃(β))− p∗U (s̃(β))− cB(b(β), β)(29) corn

hS(0, 0) + p∗U (0) = hS(0, 0) + p∗U (0)− cS(0, σ) ≤ hS(b̃(s(σ)), s(σ)) + p∗U (s(σ))− cS(s(σ), σ).(30) bread

Let
P = hB(0, 0)− p∗U (0) ≥ −hS(0, 0)− p∗U (0)

and replace the price function p∗ with p∗+P . Both ξn,k
B and ξn,k

S remain best
responses given price p∗ + P and markets still clear in the limit of n →∞.
Moreover, replacing p∗ with p∗ + P in (

corn
29)–(

bread
30) gives

0 ≤ hB(b(β), s̃(β))− p∗U (s̃(β))− cB(b(β), β)
0 ≤ hS(b̃(s(σ)), s(σ)) + p∗U (s(σ))− cS(s(σ), σ)

and hence nonnegative payoffs.
It is immediate from the formulation of the buyer’s payoffs in the game

and from
Symph 4
8 that neither buyer nor seller has a profitable priced deviation for

a positive measure set of types.
For unpriced deviations, consider first deviations to values of s′ that are

chosen by some other sellers. We first note that such a deviation can never
entail a lower price than that which would make the deviation priced. The
lower price will always suffice to attract the current match of seller s′, which
combines with the pessimism built into the seller’s evaluation of unpriced
deviations to ensure that they are not optimal. For higher prices, we need
only note that since s′ is available at the going price, the deviating seller in
question will attract no buyers.

Now consider deviations to values s that are chosen by no sellers. Then
s is contained in an interval of unchosen attribute choices; let the closure of
the largest such interval be denoted by [s′, s′′]. Assume that attribute choices
s′ and s′′ are purchased by buyers b′ and b′′ respectively. (The argument
is easily modified to cover the case in which one of these buyers does not
exist, i.e., in which s is either larger or smaller than every chose attribute.)
If there is a profitable unpriced seller deviation to s, it must involve a lower
price than pU (s) and attract buyer b′′. (It is clear that higher prices will
attract no buyers. The price schedule pU already offers the seller the chance
to sell s at price pU (s) to a buyer at least as good as b′, so there is no hope
in offering a lower price to attract b′.) Suppose there exists p such that

hB(b′′, s)− p ≥ hB(b′′, s′′)− pU (s′′)
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and a seller who strictly prefers choosing s and p to the sellers’ equilibrium
outcome. Then there must exist a price p′′ such that the seller strictly prefers
s and p′′, and such that

hB(b′′, s)− p′′ > hB(b′′, s′′)− pU (s′′).

But then for sufficiently large k and then large n, the set B(s, p′′, pn,k
U ) must

include a positive measure of buyers with types above b′′, and an arbitrarily
small measure of smaller buyers. The seller must then evaluate this payoff
as if it could attract buyer b′′, which is a contradiction.

A.5.7 Nontriviality

We now show that under the conditions of the proposition, the profile
(b∗, s̃∗, s∗, p∗U ) is nontrivial. First, suppose there exists (b, s) ∈ [0, b̄]× [0, s̄]
with

hB(b, s) + hS(0, s)− cB(b, 1)− cS(s, 1) > 0. (31) dugout

We suppose further that the equilibrium is trivial, so that b∗ and s∗ are
identically zero, and derive a contradiction. Then there is no agent for
whom it is profitable to trade at price pU , so that for all (b, s) ∈ [0, b̄]× [0, s̄],

hS(0, s) + pU (s)− cS(s, 1) ≤ 0
hB(b, s)− pU (s)− cB(b, 1) ≤ 0,

where we focus on agents β = 1 = σ since they are the most likely to want
to trade. Notice that we are using here the maximum that appears in the
building block (

mice1
23) for the specification of the seller’s payoff, and which

effectively allows the seller to sell any attribute choice s ∈ [0, s̄] at price
pU (s), assuming in the process that he can attract at least a zero-attribute
buyer. For these two inequalities to hold, it must be that

hB(b, s) + hS(0, s) ≤ cB(b, 1) + cS(s, 1),

contradicting (
dugout
31).

Suppose that for all φ ∈ (0, 1], there exist attribute choices b(φ) and s(φ)
such that

hB(b(φ), s(φ)) + hS(0, s(φ))− cB(b(φ), φ)− cS(s(φ), φ) > 0. (32) pancake

Suppose that not all agents participate in the market. Because equilibrium
attribute choice functions are increasing when nonzero, and because the
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market for attributes clears in equilibrium, there must be intervals of types
[0, β′] and [0, σ′] with β′ = σ′ who do not participate.18 Choose β ∈ [0, β′)
and σ = β ≡ (φ). If neither agent is to participate, it must be that

hS(0, s(φ)) + pU (s(φ))− cS(s(φ), φ) ≤ 0
hB(b(φ), s(φ))− pU (s(φ))− cB(b(φ), φ) ≤ 0.

For these two inequalities to hold, it must be that

hS(0, s∗(σ)) + hB(b∗(β), s∗(σ)) ≤ cB(b∗(β), β) + cS(s∗(σ), σ),

contradicting (
pancake
32).

A.6 Equilibrium with Endogenous Monitoring
pend5

Given a set of informed sellers, I, and a pair of price functions (pP , pU ), a
buyer β who makes attribute choice b ∈ B and a seller attribute choice s ∈ S
has payoff (where we distinguish between informed and uninformed sellers)

ΠB(b, s, β) ≡





hB(b, s)− pP (b, s)− cB(b, β), if s ∈ S(I) and
the seller is informed,

hB(b, s)− pU (s)− cB(b, β), if s ∈ S(U) and
the seller is uninformed.

The first condition is that there be no profitable priced buyer deviations,
i.e., ∀β ∈ [0, 1], if b(β) ∈ b̃i(S(I)), then

ΠB(b(β), s̃i(b(β)), β) = sup
(b,s)∈B×S

ΠB(b, s, β) (33) buyer IC gen 1

and if b(β) ∈ b̃u(S(U)), then

ΠB(b(β), s̃u(b(β)), β) = sup
(b,s)∈B×S

ΠB(b, s, β). (34) buyer IC gen 2

Note that if b(β) ∈ b̃i(S(I)) ∩ b̃u(S(U)), buyer β is indifferent between
the informed seller of attribute choice s̃i(b(β)) and the uninformed seller of
attribute choice s̃u(b(β)).

18This observation is important to the proof, as it allows us to conclude not just that
some sellers and some buyers do not participate, but that there is a buyer/seller pair who
do not participate and who can produce a positive surplus when matched.
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We turn now to the priced deviations by the seller. In keeping with our
discussion above on the matching, a choice of s ∈ S(I) is then the joint
decision to become an informed seller and a choice of s, while a choice of
s ∈ S(U) is the joint decision not to become an informed seller and a choice
of s. Given a matching b̃ and a pair of price functions (pP , pU ), a seller who
chooses an attribute choice s ∈ S receives a payoff of

ΠS(s, σ) ≡





hS(b̃i(s), s) + pP (b̃i(s), s)− cS(s, σ)−K(σ,A), if s ∈ S(I) and
σ is informed,

hB(b̃u(s), s)− pU (s)− cB(b, β), if s ∈ S(U) and
σ is uninformed.

The condition that there be no profitable priced seller deviations has two
parts,

ΠS(s(σ), σ) = sup
s∈S

ΠS(s, σ), ∀σ ∈ [0, 1], (35) seller IC gen 1

and
σ ∈ I ⇐⇒ s(σ) ∈ S(I). (36) seller IC gen 2

Since now sellers choose whether to become informed, a profitable un-
priced deviation for a seller can take two forms, one in which he chooses to
become informed and the other in which he chooses to remain uninformed.
This leads us to the following definition, which should be compared with
Definitions

defn informed seller dev
?? and

defn uninformed seller dev
??:

Definition 9 A seller σ has a profitable unpriced deviation as an informed
seller if there exists an attribute choice s′, an available buyer attribute choice
b ∈ B and a price p ∈ R, with either s′ /∈ S(I) or p 6= pP (b, s′), such that

ΠB(b(β), s̃i(b(β)), β) < hB(b, s′)− p− cB(b, β)

and
ΠS(s(σ), σ) < hS(b′, s′) + p− cS(s′, σ)−K(σ,A).

A seller σ has a profitable unpriced deviation as an uninformed seller if
there exists s′ and a price p ∈ R, with either s′ /∈ S(U) or p 6= pU (s′), such
that there exists b(β) with

ΠB(b(β), s̃i(b(β)), β) < hB(b(β), s′)− p− cB(b(β), β)

and for all β′,

if ΠB′(b(β′), s̃i(b(β′)), β′) < hB(b(β′), s′)− p− cB(b(β′), β′),
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then ΠS(s(σ), σ) < hS(b(β′), s′) + p− cS(s′, σ).

A seller σ has a profitable unpriced deviation if he has a profitable devi-
ation as either an informed or as an uninformed seller.

The first part of the definition corresponds to the case in which the seller
chooses an attribute and incurs the cost of becoming informed, K, and hence
can target the buyer with whom he transacts. The second part corresponds
to the seller choosing not to become informed, and only considers a deviation
profitable when, as in the definition of uniform price equilibria, he benefits
from transacting with all buyers who would be attracted to this investment-
transfer proposal.

The only potential profitable deviations for buyers are deviations with
an informed seller as in personalized price equilibrium:

Definition 10 Buyer β has a profitable unpriced deviation (with an in-
formed seller) if there exists an attribute choice b′ /∈ B, a price p ∈ R, and
s′ ∈ S(I) with

ΠB(b(β), s̃i(b(β)), β) < hB(b′, s′)− p− cB(b′, β)

and
hS(b̃i(s′), s′)− pP (b̃i(s′), s′) < hS(b′, s′) + p.

We now define an endogenous price equilibrium.

Definition 11 An endogenous-price equilibrium is a specification satisfying
(
buyer IC gen 1
33), (

buyer IC gen 2
34), (

seller IC gen 1
35), and (

seller IC gen 2
36), and such that no seller or buyer has a profitable

unpriced deviation.
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