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Abstract—Hybrid automata naturally represent systems that
exhibit a mixed discrete-continuous behaviours. The undecidabil-
ity of the reachability problem over them constrains the chances
of punctually investigating this kind of formalism. Established
that this negative result and the presence of artifacts, which
do not correspond to any observable phenomena, are mainly
due to the density of the continuous domain, a class of finite
precision semantics, named ε-semantics, has been proposed to
analyze hybrid automata. This paper presents a Python package,
pyHybridAnalysis, that both implements the ε-semantics
framework and allows to analyze hybrid automata.
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I. INTRODUCTION

A wide range a phenomena manifests behaviors that are
not completely describable neither with continuous models,
nor with discrete models. These phenomena are often abstract
in terms of hybrid systems, i.e., dynamical systems capable of
evolving both continuously and discretely. Hybrid automata
are frequently used to describe such systems. They consist
mainly of a discrete finite automaton equipped with a set of
continuous variables regulated by dynamical laws.

Hybrid automata have been used to model air traffic control
systems [1], vehicle controls [2], or biological systems [3]. It
is clear that the automatic deduction of properties for these
models is an important part in the study and verification
of hybrid systems. These concepts are strictly related to the
reachability problem where, provided an hybrid automaton and
an initial set of states, we ask whether there are evolutions of
the system that lead to some final states. Unfortunately, it has
been shown that such problem is not always decidable [4].

Numerous techniques have been proposed to address the
undecidability related to the reachability problem. Syntactical
restrictions [5], [6], approximations [7] and perturbations of
the dynamics [8], relaxed (bi-)simulations [9] and abstrac-
tions [10], are just some examples of the various stratagems
designed. Some of them have been exploited in the develop-
ment of tools for the reachability analysis of hybrid systems,
such as d/dt [11], Ariadne [12] and Hsolver [13].

In this work we present a new tool for the formal ver-
ification of hybrid systems, named pyHybridAnalysis,
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based on the manipulation of first-order logic formulæ. Start-
ing from the assumption of working with hybrid automata
whose components are describable by first-order formulæ,
our tool translates the reachability problem into a formulæ
satisfiability problem. The encoding process is enhanced by
the reinterpretation of the standard semantics of the formulæ
involved. In doing so, our framework is able of countering the
undecidability of the reachability problem and enriches the
descriptive power of hybrid automata taking into account the
actions of the external agents that often perturb the univocal
behaviors dictated by the dynamic laws. What we obtain is a
tool based on symbolic computations that finds application in
the analysis and verification of hybrid systems.

The paper is organized as follows. Section II recalls the
basic definitions concerning logics and hybrid automata. Sec-
tion III exposes the techniques of the semantics reinterpretation
focusing on the theoretical definition. Section IV points out
some relevant aspects of the implementation of our tool in
Python, such as the modules designed to represent formulæ
and hybrid automata. Finally, Section V ends the paper with
some concluding remarks and general comments.

II. HYBRID AUTOMATA AND REACHABILITY

In this work we adopt the notions and definitions of logic,
theories and hybrid automata given in [6]. Intuitively, a hybrid
automaton is a tuple H = ⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩
where, for any location v ∈ V , the formula Inv (v), called
invariant, delimits the set of continuous values in which the
variables of the automaton can evolve inside v. Such evolution
is performed accordingly to the dynamic formula Dyn(v).
The discrete evolutions between the locations are regulated
by the activation formulæ Act (e), that identify the set of
values from which the automaton can jump over an edge e,
and the resets Res(e), which consist in maps to be applied
to the continuous variables after performing a discrete jump.
If Inv (v), Dyn(v), Act (e), and Res(e) belong to the same
logic theory T , then we say that the hybrid automaton is
a T hybrid automaton. In this work, since the polynomials
allow us to capture a considerably part of the hybrid automata
aimed at the formalization of real hybrid systems, we will
focus on semi-algebraic automata, i.e., those hybrid automata
whose components are describable by formulæ definable in the
Tarski’s theory.

Since all the components of our formalism are given
in terms of first-order formulæ, it is possible to define a



formula ReachiH[X,X′] that is satisfiable if and only if in
the automaton H there exists a point X able to reach a
point X′ within i discrete transitions. Note anyway that since
the state space of a hybrid automaton is potentially infinite,
the exploration of its whole reachability set might require
an infinite number of discrete steps. This kind of evolutions
require formulæ composed of an infinite number of conjuncts,
that is, formulæ practically intractable. In general, it is well
known that the problem of determining the reachability set of
a hybrid automaton is undecidable [4].

III. CHANGING SEMANTICS

At the basis of the undecidability of the reachability
problem there are the infinity and the density of the space
provided by the continuous variables. One might suspect that
placing constraints on these two characteristics, there could be
some benefits on the reachability analysis. These constraints
would correspond to working only with bounded invariants
and finding a way to discretize the sets represented by the
formulæ. In [14] the authors noticed that such process of
discretization does not represent a loss of the descriptive
power of hybrid automata, but which indeed, especially in the
modeling of natural systems, it better reflects the real behavior
of the observed systems. We therefore define a technique which
allows the discretization of the sets represented by first-order
formulæ. Since we want to alter the standard semantics of
the considered formulæ and fix a threshold precision, we will
define our discretization process in terms of a new semantics,
called ε-semantics, where ε represents the granularity of the
formulæ. Intuitively, this new semantics does not consider the
formulæ which are “smaller” than an fixed ε. This reflects the
concept of finite precision measurement accuracy that we need.

Definition 1 (ε-semantics [14]). Let ε ∈ R>0. For each formula
ϕ ∈ Fn let {∣ϕ∣}ε ⊆ Rn, be such that:

(ε) {∣ϕ∣}ε = ∅ or exists p ∈ Rn s.t. B (p, ε) ⊆ {∣ϕ∣}ε
(∩) {∣ϕ1 ∧ ϕ2∣}ε ⊆ {∣ϕ1∣}ε ∩ {∣ϕ2∣}ε

(∪) {∣ϕ1 ∨ ϕ2∣}ε = {∣ϕ1∣}ε ∪ {∣ϕ2∣}ε

(∀) {∣∀Xϕ[X,X]∣}ε = {∣⋀r∈R ϕJr,XK∣}ε
(∃) {∣∃Xϕ[X,X]∣}ε = ⋃r∈R {∣ϕJr,XK∣}ε
(¬) {∣ϕ∣}ε ∩ {∣¬ϕ∣}ε = ∅

Any semantics {∣⋅∣}ε satisfying the above conditions is said
to be an ε-semantics.

Let us notice that the above definition implicitly depends on
the metric space in which we build the ball B (p, ε). Although
the theory allows us to work in any metric space, unless
otherwise stated, we adopt the Euclidean space.

The ε-semantics can be used within an algorithm that
computes the reachability set of hybrid automata. The basic
idea is to explore a hybrid automaton until the difference
between the sets of states reached by two consecutive discrete
transitions is smaller than an ε-sphere. When the automaton
reaches for the first time a set which is smaller than the
granularity of the ε-semantics, the algorithm halts and returns
the formula characterizing the automaton reachability set.

Algorithm 1 is a summary of the complete algorithm pre-
sented in [14]. Intuitively, at the i-th iteration of the algorithm,

Algorithm 1 Reachability(H,I[X],{∣⋅∣}ε)
1: R[X]← I[X]

2: N[X]← �

3: repeat
4: R[X]← R[X] ∨N[X]

5: N[X]← ∃X′(RJX′K ∧Reach≤1H JX′,XK)
6: until {∣N[X] ∧ ¬R[X]∣}ε ≠ ∅

7: return R[X]

the variable R[X] represents the reachability formula which
encodes i discrete steps through the automaton H . The variable
N[X] consists of the formula stored in R[X] extended by a
single discrete step. The ε-semantics find application in the
halting criterion of the algorithm (line 6), where it is verified
whether the difference between the sets represented by R[X]

and N[X] is smaller than an ε-sphere. An important aspect
of this algorithm is that, in the case of hybrid automata with
bounded invariants, its termination is guaranteed [14].

Definition 1 settles a generic framework of ε-semantics.
This means that in the Algorithm 1 we have the freedom to
instantiate any kind of semantics that respects the constraints
imposed by the definition of ε-semantics. In this regard, we
now expose an example of ε-semantics. The sphere semantics
(∣⋅∣)ε [14] is an ε-semantics which is neither an over nor an
under-approximation semantics. The set (∣ϕ∣)ε, where ε ∈ R>0,
is defined by structural induction on ϕ as follows:

● (∣t1 ○ t2∣)ε
def
= B ({∣t1 ○ t2∣}, ε), for ○ ∈ {=,<}

● (∣ϕ1 ∧ ϕ2∣)ε
def
= ⋃B(p,ε)⊆(∣ϕ1∣)ε∩(∣ϕ2∣)ε B(p, ε)

● (∣ϕ1 ∨ ϕ2∣)ε
def
= (∣ϕ1∣)ε ∪ (∣ϕ2∣)ε

● (∣∀Xϕ[X,X]∣)ε
def
= ⋃B(p,ε)⊆⋂r∈R(∣ϕJr,XK∣)ε B (p, ε)

● (∣∃Xϕ[X,X]∣)ε
def
= ⋃r∈R (∣ϕJr,XK∣)ε

● (∣¬ϕ∣)ε
def
= ⋃B(p,ε)∩(∣ϕ∣)ε=∅B (p, ε)

IV. A PYTHON PACKAGE

With the intent of using the techniques presented in Sec-
tion III and verifying properties of hybrid systems, we devel-
oped a Python package named pyHybridAnalysis. Beside
the well-known features of this language, we chose Python to
reduce the effort required to describe a hybrid automaton. As
a matter of fact, the chance of handling functions, types, and
data uniformly enables us to use a syntax almost identical to
the one introduced in Section II.

pyHybridAnalysis provides support for representing
first-order formulæ over the reals. Variables are defined as
objects of the class Variable and all the functional and
relational symbols used to define equalities and inequalities
in the Tarski’s theory extended with the exponential have been
overloaded. Because of this, equalities and inequalities can be
encoded by using the standard Python syntax. For instance,
φ
def
= X2 + 3 ∗ Y ≥ 0 and ψ def

= X + Y = 3
5

are definable as:

from p y H y b r i d A n a l y s i s import *

X= V a r i a b l e ( ”X” )
Y= V a r i a b l e ( ”Y” )



p h i =X**2+3*Y>=0
p s i =X+Y==3/5

The boolean relational symbols cannot be overloaded in
Python, hence, conjunctions, disjunctions, negations, and im-
plications are built by constructors of the classes And, Or,
Not, and Impl, respectively. The same treatment is reserved
to existential and universal quantifications whose correspond-
ing classes are Exists and Forall, respectively. In these
latter cases, the first parameter should be a list of the variables
that are meant to be quantified. A representation of the formula
η
def
= ¬∃Y phi _ psi can be easily obtained by the code:

e t a =Not ( E x i s t s ( [Y] , Impl ( phi , p s i ) ) )

All the objects obtained by representing a formula as
described above are instances of subclasses of the class
Formula. This class provides methods to visually represent
formulæ, identify formula variables, and establish free vari-
ables. We can print the existential closure of η by writing:

p r i n t E x i s t s ( e t a . f r e e v a r s ( ) , e t a )

The notion of SyntacticOperator has been in-
troduced to represent functions that operate recursively
on the syntactic tree of formulæ. They take a first-
order formula φ and recursively build a second for-
mula whose standard semantics is equivalent to the ε-
semantics of φ itself. Any ε-semantics is associated with
a very specific translation and we have implemented
the classes SphereTranslator, TildeTranslator,
EasyTranslator, and BottomTranslator to provide
translators for sphere semantics [14], tilde semantics, easy
semantics, and bottom semantics [15]. Since all the ε-semantics
are parametric on both ε and the underlying metric space, the
translator constructors should receive as parameters a value
for ε and, in case, a metric space different from the Euclidean
one. For instance, in order to evaluate the sphere semantics of
η with ε = 0.01 in the maximum metric space, we may write:

p r i n t S p h e r e T r a n s l a t o r ( 0 . 0 1 , MaxSpace ) ( e t a )

In addition to this, pyHybridAnalysis provides a easy-
to-use interface to the quantifier elimination procedures of
both Redlog and QEPCAD B. In particular, in order to use
Redlog and eliminate the quantification of η, it is sufficient
to invoke the following line:

gamma=Redlog ( ) ( e t a )

Hybrid automata are represented as objects of the class
HAutomata. This class is equipped with a single constructor
which requires four parameters: the invariants, the dynamics,
the resets, and the activations. The invariants and the dynamics
are dictionaries from the set of locations of the automaton,
while the resets and the activations are dictionaries from
the set of edges. In order to better mime the syntax used
in Section II, the values associated to these dictionaries are
Python methods. If Dyn represents the dynamics and l is a
location, Dyn[l] is a method that takes three parameters
(i.e., X, X′, and T) and returns a Python representation of the
formula Dyn(l)[X,X′, T ]. Analogously, if Inv represents the

invariant, Inv[l] takes one parameter (i.e., X) and produces
the formula Inv (l)[X]. This convention enables us to easily
compute the formula Dyn(l)J⟨2,3⟩, ⟨X,Y ⟩, T K by writing:

p r i n t Dyn [ l ] ( [ 2 , 3 ] , [ X,Y] , V a r i a b l e ( ”T” ) )

The edges are represented as objects of the class Edge and
they can be built by the constructor of Edge which mandatory
takes as parameters the source and destination locations and,
optionally, a label to distinguish two edges that share the
same sources and destinations, but have different activations
or resets. For instance, the code

e0=Edge ( 0 , 1 , ” F i r s t ” )
e1=Edge ( 0 , 1 , ” Second ” )

defines two edges from the location 0 to the location 1 which
can be distinguished exclusively by their labels. Given an
object H of the class HAutomaton, we can get the sets of its
locations and edges by using the methods H.locations()
and H.edges(), respectively, moreover, if l is a location
of H, H.edges(l) returns the set of edges leaving l. The
dynamics, invariants, activations, and resets of H are reachable
as Dyn(H), Inv(H), Act(H), and Reset(H).

We can define a hybrid reach set as an object of the class
HybridReachSet. This maps a location into the formula
representing the continuous points reached in that location. The
class EpsilonReachability implements Algorithm 1. In
order to use it, it is necessary to instantiate an object of this
class. Since the algorithm does not relay on a specific ε-
semantics, but it can be applied to all of them, the constructor
of EpsilonReachability requires as parameter an object
of class EpsilonTranslator to specify the desired ε-
semantics. A further parameter can be used to obtain a log of
the execution, since no output is produced by default. Given
an instance er of the class EpsilonReachability, the
implementation of Algorithm 1 can be invoked by writing:

e r . c o m p u t e r e a c h s e t (H, i n i t )

where H is a hybrid automaton and init is the initial hybrid
reach set.

#!/usr/bin/python

import sys
from pyHybridAnalysis import *

epsilon=0.1
metric_space=MaxSpace

a=Variable("a")
b=Variable("b")

init=And(a==0.3,b==0)

slope=[3.05/4,1]

lbound=len(slope)*[0]
ubound=len(slope)*[1]

# Invariants
def Inv_v(vars):

return in_itvl(vars,lbound,ubound)

# Dynamics
def Dyn_v(src,dst,t):



return And(dst[1]==src[1]+t*slope[1],
dst[0]==src[0]+t*slope[0])

# Activations
def Act_e0(vars):

return vars[0]==ubound[0]

def Act_e1(vars):
return vars[1]==ubound[1]

# Resets
def Reset_e0(src,dst):

return And(dst[0]==lbound[0],
dst[1]==src[1])

def Reset_e1(src,dst):
return And(dst[0]==src[0],

dst[1]==lbound[1])

Invs=dict()
Dyns=dict()
Resets=dict()
Acts=dict()

Invs[0]=Inv_v
Dyns[0]=Dyn_v

e0=Edge(0,0,"Reset a")

Resets[e0]=Reset_e0
Acts[e0]=Act_e0

e1=Edge(0,0,"Reset b")

Resets[e1]=Reset_e1
Acts[e1]=Act_e1

H=HAutomaton(Dyns,Invs,Resets,Acts)

init=HybridReachSet(H,init)

trans=EasyTranslator(epsilon,metric_space)
reval=EpsilonReachability(trans,log=sys.stderr)

print reval.compute_reachset(H,init)

V. CONCLUSION

This paper presents a Python package, named
pyHybridAnalysis, that implements the ε-semantics
framework developed in [14], [15], [3]. First of all, we recalled
the notion of hybrid automaton, we described the reachability
problem, and we cited the well-known undecidability result
for it. After that, we reviewed the theory of ε-semantics
and we showed how to reduce the evaluation of a particular
ε-semantics to the evaluation of the standard one. We exposed
many of the features of pyHybridAnalysis and we exhibit
through examples that this package is really easy to use.
The source code of the presented package has been released
under the LGPL license and it can be freely downloaded from
http://www.dmi.units.it/∼casagran/pyHybridAnalysis.

Many of the criticisms to the ε-semantic framework con-
cern the computational complexity of the quantifier elimination
procedure needed to complete the emptiness test of Algo-
rithm 1. This procedure, which is more than exponential in the
number of variables or quantifier alternations, is the bottleneck
of all the analysis. We are aware of the fact that such an instru-
ment will not be able to treat automata with a high number of
variables, nevertheless, pyHybridAnalysis proves that we

have the chance of studing properties of real hybrid automata
by adopting this technique.

In future works, we will investigate the scalability of this
tool and we plan to improve the efficiency of the emptiness
test by interfacing pyHybridAnalysis to a more recent
algorithm for the elimination of quantifiers (e.g,. see [16]).
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