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Abstract—This paper presents an overview of color and texture It must be emphasized that the main objective of this paper is
descriptors that have been approved for the Final Committee Draft  to provide an overview of the MPEG-7 descriptors. Given the
of the MPEG-7 standard. The color and texture descriptors that 544 restrictions on a transactions paper, the level of technical
are described in this paper have undergone extensive evaluation L . .
and development during the past two years. Evaluation criteria in- detail is notas thorough a§ We WOUId_ have liked to prov_lde. Fora
clude effectiveness of the descriptors in similarity retrieval, as well complete technical description, the interested reader is referred

as extraction, storage, and representation complexities. The color to [1], [2].
descriptors in the standard include a histogram descriptor that is
coded using the Haar transform, a color structure histogram, a II. MPEG-7 COLOR/TEXTURE CORE EXPERIMENT
dominant color descriptor, and a color layout descriptor. The three

texture descriptors include one that characterizes homogeneous PROCEDURES

texture regions and another that represents the local edge distri-  Core experiments are usually conducted during the MPEG

bution. A compact descriptor that facilitates texture browsing is o . .
also defined. Each of the descriptors is explained in detail by their standardization process to compare different competing

semantics, extraction and usage. Effectiveness is documented byféchnologies as well as to establish the merits of a proposed
experimental results. technology. Technologies in the video group under previous

MPEG standards primarily dealt with efficient compression, and
|. INTRODUCTION the signal-to-noise ratio (SNR) constituted an effective yardstick
) for comparison. Comparing and evaluating technologies for
C OLOR and texture are among the more expressive of (iseG.7 visual descriptors presented a different set of chal-
\ visual features. Considerable work has been done in dgnges; as there existed no common ground rules for evaluating
signing efficient descriptors for these features for applicatioR$arent methods. For visual descriptors, the retrieval appli-
such as similarity retrieval. For example, a color histogram i$ion was found to be the best model. A good retrieval result
one of the most frequently used color descriptors that charg¢-response to a visual-feature based query would be a good
terizes the color distribution in an image. This paper providgsyicator for the expressiveness of the descriptor. In the Color
the reader with an overview of the technologies that are beiggy Texture Core Experiments, the so-catieery by example
considereq by the MPEG-7 group for descr.ibing visual Qonteﬂéradigm has been employed as the primary method for eval-
based on its color and texture. More detailed information rgaigns. 1n query-by-example, the respective descriptor values
garding the color and texture descriptors in MPEG-7 may Beq exracted from the query image, and then matched to the
found in the references and other related MPEG documents..,yesnonding descriptors of images contained in a database. In
The color and texture descriptors that are described in tjgjer to be objective in the comparisons, a quantitative measure
paper have undergone rigorous testing and development duipas heeded. This requires specification of the datasets, the query

the past two years, and thus represent some of the more maliifie,n the corresponding ground-truth data. The ground-truth
technologies for content representation. These tests and deygl; is a set of visually similar images for a given query image.

opment were conducted under the various Core Experiments defy, the Color and Texture Core Experiments, the number of
fined by the MPEG Video group and it&l-HocGroup on Color ¢ eries was about 1% of the number of images in the data-

and Texture Core Experiments. base. For example, in the color experiments, a common color
Section Il describes the MPEG-7 Color and Texture Core Exz (- <ot (CCD) consisting of around 5000 images, and a set of

periments, including a brief discussion on the color and teXtué®) ~ormmon color queries (CCQ), each with specified ground
datasets used in these experiments. This is followed by a gz, images, have been defined.

scription of color descriptors in Section Ill. Texture descriptors The various sub-committees arat-hoc groups within

are discussed in Sectior_1 IV. We concl_ude with a brief_ note MpEG-7 worked in compiling this set of data over a period of
some of the unresolved issues at the time of writing this Papgjyer six months. For the Color and Texture Core Experiments,

the dataset consists of a variety of still images, images from
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was adopted [10]. All the color core experiments used th&om (3), we get the average rank (AVR) for query
same datasets in computing the performance even though each

. . . NG(q)
descriptor addresses a different aspect of the visual content. 1 .
After databases and queries with ground truth have been de- AVR(q) = NG(q) kZ_l Rank” (). )

fined, it is necessary to weigh the query results based on some
numeric measure. A very popular measure is the retrieval r&tewever, with ground truth sets of different size (actually, NG
(RR) varies between 3 and 32 in the CCQ), the AVR counted from
ground truth sets with small and largéG(q) values would

- M (1) differ significantly. To minimize the influence of variations in

q NG(q), amodified retrieval ranKMRR) is defined as follows:

where
NG(q) size of the ground truth set for a query
NF(«a, g) number of ground truth images found within theNote thatMRR(g) is 0 in the case of a perfect retrieval (ground
first o - NG(g) retrievals; truth items found at firsNG(q) positions). However, the upper
RR(q) takes values between 0 and 1, where 0 stands feund is still dependent on NG. A final normalization with re-

“no image found,” and 1 for “all images found.” spect taNG(q) leads to thenormalized modified retrieval rank
The factora should be>1, where a larget is more tolerant. If (NMRR)

(1) is performed over the whole set of NQ queries, the average

MRR(q) = AVR(g) — 0.5 - [1 + NG(q)]. )

. L MRR(q)
retrieval rate (ARR) is given by NMRR/(q) — 6
(9 = 135K —05-[1 + NG(q)]. ©
NQ
ARR = 1 ZRR(Q)' (2) NMRR(g) can take on values between 0 (indicating whole
NQ = ground truth found) and 1 (indicating nothing found) only,

_ . irrespective olNG(g). From (6), it is straightforward to define

sues remain. For an unconstrained dataset—typical of the img@ggng just one number indicating the retrieval quality over all
datasets used in retrieval experiments—itis not possible to h@jferies. The ANMRR is defined as

a fixed number of ground truth items for all the queries. Letting

NG(q) vary with ¢ introduces a bias for certain queries, partic- NQ

ularly if there is a large variation in this number. ANMRR = NG > NMRR(g). (7
Further, RR as defined in (1) is a hard-limiting measure. a=1

Hence, settingr = 1 may not be appropriate as retrieving\NMRR is the evaluation criterion used in all of the MPEG-7
an image from the ground truth with ramkG + 1 would  cojor core experiments. Evidence was shown that the ANMRR
exclude it from contributing to (1), while in terms of subjectiveneasure approximately coincides linearly with the results of
retrieval accuracy, this might not be too severe. On the othgfpjective evaluation about retrieval accuracy of search engines
hand, selecting larger values would be less discriminative[12] Of course, evaluation of visual descriptors cannot be based
between very good retrieval results and the not so good onggjy on retrieval accuracy. Further criteria are compactness,
For example, withx = 2, RR would be equal for the casesomplexity of feature extraction and matching, scalability.
where all images are found at ranks.. NG, or where all |nterestingly enough, it was found in the core experiments that
images are found at rankéG + 1...2 - NG, the latter one there js a strong interrelationship between the compactness
clearly being a worse result. of a descriptor (as counted in numbers of bits needed for
To address these problems, normalized measures that @€ representation), and the retrieval accuracy. This allows
into account different sizes of ground truth sets and the actygg setup of “rate-accuracy curves” (similar to SNR-based
ranks obtained from the retrieval were defined. Retrievals thake-distortion curves widely used in image and video coding).
miss items are assigned a penalty. Consider a guekgsume To make evaluation of the descriptors mostly independent
that as a result of the retrieval, tth¢h ground truth image for fom the design of the matching procedure, common matching
this queryg is found at a specifiRank(k). Further, a number methods have been used within core experiments wherever
K > NG is defined which specifies the “relevant ranks,” i.e.possible. Most experiments relied on the L1 norm, while some

evaluation of retrieval. For relatively large NG (20-25 items}istance measures.

subjects would judge the retrieval results as still useful if items

are found with ranks arourzlx NG, while for smaller ground . COLOR

truth sets, even more tolerance would be allowed. The penalty ] ] ]

assigned should be K, but it was argued that a penalty just Color is perhaps th_e most expressive pf all the V|§ual features
equallingK” would put retrievals with too many misses into ag@nd has been extensively studied in the image retrieval research

vantage. A good compromise is to defin®ank* (k) as during the last decade. A schematic of the color descriptors
in the current version of the MPEG-7 Final Committee Draft

Rank(k), if Rank(k) < K(q) (FCD) [1] is shown in Fig. 1. The color descriptors consist of a

Rank® (k) = { 125K, if Rank(k) > K(g) ° 3) number of histogram descriptors, a dominant color descriptor,
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Fig. 1. MPEG-7 color descriptors.

and a color layout descriptor (CLD). Definition of this set of depose is to provide an effective, compact, and intuitive represen-
scriptors was done to serve different application domains whitgtion of colors present in a region of interest.

keeping the number of possible variants to a minimum, to guar-The CLD captures the spatial layout of the dominant colors

antee interoperability between differently generated MPEGen a grid superimposed on the region of interest. This is a very
color descriptions (see below). It is beyond the scope of thiempact descriptor that is very effective in fast browsing and

paper to summarize the whole selection process that occurgearch applications. It can be applied to still images, as well as
in the core experiments process; in general, descriptors weretacvideo segments.

cepted and defined based on detailed studies of their efficiencyThe following sections provide more technical details on each

(in terms of descriptor size and retrieval accuracy), complexityf these color descriptors beginning with a brief description of

as well as other criteria like applicability to a broad range of aghe color spaces used in MPEG-7.

plications.

Color descriptors originating from histogram analysis .hav'g_ Color Space
played a central role in the development of visual descriptors
in MPEG-7. First, a generic color histogram descriptor was The different color spaces used in MPEG-7 include the fa-
defined that would be able to capture the color distributiomiliar monochrome, RGB, HSV, YCrCb, and the new HMMD.
with reasonable accuracy for image search and retrieval apglike monochrome (intensity only) space is also supported. This
cations. However, there are too many independent dimensig@esresponds to th& component in the YCrCb space. It is pos-
in a generic color histogram. These include choice of colsible to define RGB with reference chromaticity primaries, if
space, choice of quantization in color space, and quantizati@vailable from the capture process. The conversion from nor-
of the histogram values. It was soon realized (after extensiv@lized RGB (where the values of each of the spectral compo-
experiments) that leaving this choice to the user would defa¥nts range from 0 to 1) to the other color spaces are shown in
the very purpose of the standard, i.e., the interoperabiliyg. 2.
between descriptors generated by different MPEG-7 systemsThe HSV color space is a popular choice for manipulating
There was a clear need to limit the set of histogram derivedlor. The HSV color space is developed to provide an intuitive
descriptors. Thacalable color descripto(SCD) is defined in representation of color and to approximate the way in which hu-
the hue-saturation-value (HSV) color space with fixed colenans perceive and manipulate color. RGB to HSV is a nonlinear,
space guantization, and uses a novel Haar transform encoding.reversible, transformation. The hue (H) represents the dom-
The Haar transform based encoding facilitates a scalable repr@nt spectral component—color in its pure form, as in green,
sentation of the description, as well as complexity scalabilitgd, or yellow. Adding white to the pure color changes the color:
for feature extraction and matching procedures. This descriptbe less white, the more saturated the color is. This corresponds
can be extended to a collection of pictures or a group of framiesthe saturation (S). The value (V) corresponds to the brightness
from a video, and thgroup of frames/group of pictur€§oP) of color. The coordinate system is cylindrical, and is often rep-
descriptor specifies different ways of constructing such resented by a subspace defined by a six-sided inverted pyramid.
histogram. Thecolor structure histogramaims at identifying The top of the pyramid correspondsW#o= 1, with the “white”
localized color distributions using a small structuring windowvat the center. The hue is measured by the angle around the ver-
To ensure interoperability, the color structure histogram fical axis, with red corresponding t6 OThe saturatiot$ ranges
constructed in thehue-min-max-differenc HMMD) color from O at the center to 1 on the surface of the pyramid. An in-
space. A description of the HMMD color space is given inerted cone is also used to denote the subspace instead of the
Section IlI-A. pyramid.

The dominant colordescriptor gives the distribution of the A new color space, the HMMD color space, is also supported
salient colors in the image. Unlike the bin quantization in thea MPEG-7. The hue has the same meaning as in the HSV space,
histograms, the specification of colors in a dominant color dand max and min are the maximum and minimum among the
scriptor is limited only by the color space quantization. Its put, G, andB values, respectively. The diff component is defined
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Y = 0.299*R + 0.587*G + 0.114*B
Cb -0.169*R - 0.331*G + 0.500*B
Cr 0.500*R - 0.419*G - 0.081*B

@

Max = max(R, G, B); Min = min( R, G, B);
Value = max(R, G, B);

if( Max == 0 ) then
Saturation = 0; else
Saturation = (Max-Min)/Max;
if( Max == Min ) Hue is undefined (achromatic color);
otherwise:
if{ Max == R & G > B ) Hue = 60*(G-B)/(Max-Min)
else if( Max == R && G < B ) Hue = 360 + 60*(G-B)/(Max-Min)
else if( G == Max ) Hue = 60*(2.0 + (B-R)/ (Max-Min))
else Hue = 60*(4.0 + (R-G)/ (Max-Min))

(b)

Diff=Max-Min
Sum=(max+min)/2
Hue as defined for the HSV.

()
Fig. 2. Color spaces used in MPEG-7. (a) RGB to YCbCr color space. (b) RGB to HSV color space. (c) RGB to HMMD color space.

as the difference between max and min. Only three of the four White .
components are sufficient to describe the HMMD space. This Tniensity(susm)
color space can be depicted using the double cone structure as
shown in Fig. 3. In the MPEG-7 core experiments for image re- Whiteness(nin)
trieval, it was observed that the HMMD color space is very ef- \
fective and compared favorably with the HSV color space. Note /
that the HMMD color space is a slight twist on the HSI color A / i Pure
space [6], where thdiff component is scaled by the intensity color
value. The HMMD color space is used in the color structure de-
scriptor (CSD).

To ensure inter-operability, the color spaces allowed for the , /
various color descriptors are constrained by the standard. The Blackness(ma)
dominant color descriptor allows color specification in any of
the color spaces supported by MPEG-7. The RGB space is not Black
very efficient for search and retrieval tasks and is not explici
used in any color descriptor. The SCD uses the HSV space
the color structure histogram uses the HMMD space. The C . . o .
is defined for the YCrCb space. These color space descripb;ﬁ.év’ with a uniform quantization of the HSV space to 256 bins.

: . . e bin values are nonuniformly quantized to a 11-bit value.
are also used outside of the visual descriptors, for example, InThis method achieves full interoperability between different
specifying “media properties” in suitable description schemes, P y

résolutions of the color representation, ranging from 16 bits/his-
togram at the low end to approximately 1000 bits/histogram at
B. SCD the high end. Of course, the accuracy of the feature description is
The generic Color Histogram Descriptor defined in earlighly dependent on the number of bits used. However, core ex-
MPEG-7 experiments is a compound descriptor consisting périments have shown that good retrieval results are still achiev-
color space, color quantization and histogram descriptors. Thisle using only 64 bits, while excellent results can be obtained
would allow specification of color histograms with varyingusing medium or full resolution of the descriptor.
numbers of bins and nonuniform quantization of different color The HSV space is uniformly quantized into a total of 256
spaces. However, it was not desirable to provide too much flebins. This includes 16 levels in H, four levels in S, and four
ibility in such a specification, as it would limit interoperabilitylevels in V. The histogram values are truncated into a 11-bit
between different descriptions based on MPEG-7. The SGmeger representation. To achieve a more efficient encoding, the
addresses the interoperability issue by fixing the color spaceltb-bit integer values are first mapped into a “nonlinear” 4-bit

tl
g% 3. HMMD color space.
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Lowpass coefficient
Bin value 1 > —> (sum)
a) Highpass coefficient
Binvalue2 =~/ S ,;_> (difference)

Coefficients

—[RR[R 8 Ia
= —3 #|F
2 — o>
3 5 - | 4
> = (]
E o]
b & g g
8 ] =
K7 s =
I £ N —>
8 g g' s Scaling
N —— Z —>
— ——>
Fig. 4. (a) Basic unit of Haar transform. (b) A schematic diagram of SCD generation.
representation, giving higher significance to the small values TABLE |

. : T EQUIVALENT PARTITIONING OF THE HSV COLOR SPACE
with hlgher prObab"Ity' FOR DIFFERENT CONFIGURATIONS OF THESCD

This 4-bit representation of the 256-bin HSV histogram

would require 1024 bits/histogram, which is too large a number 16 4 2 2
in the context of many MPEG-7 applications. To lower this 32 8 2 2
number and make the application scalable, the histograms are _64 8 2 4
encoded using a Haar transform. 128 8 4 4

The basic unit of the Haar transform consists of a sum oper- 256 16 4 4

ation and a difference operation [see Fig. 4(a)], which relate to
primitive low- and high-pass filters. Summing pairs of adjacei always retained whereas the magnitude part can be scaled
histogram lines is equivalent to the calculation of a histograhy skipping the least significant bits. Using the sign-bit only (1
with half number of bins. If this process is performed iterativelyit/coefficient) leads to an extremely compact representation,
usage of subsets of the coefficients in the Haar representatiowfsle good retrieval efficiency is retrained. At the highest
equivalent to histograms of 128, 64,.32bins, which are all accuracy level, 1-8 bits are defined for integer representations
calculated from the source histogram. of the magnitude part, depending on the relevance of the
The high-pass (difference) coefficients of the Haar transforraspective coefficients. In between these extremes, it is possible
express the information contained in finer-resolution levets scale to different resolution levels. For example, consider a
(with higher number of bins) of the histogram. Natural imagset of five coefficients whose magnitudes are encoded using 8,
signals usually exhibit high redundancy between adjaceht7, 3, and 7 bits, respectively. If the lowest 3 bits are discarded
histogram lines. This can be explained by the “impurityin the scalable bit representation, only 5, 1, 4, 0, and 4 bits
(slight variation) of colors caused by variable illumination ancemain to encode the absolute value.
shadowing effects. Hence, it can be expected that the high-pask similarity matching of histograms, the L1 norm (sum of
coefficients expressing differences between adjacent histograbsolute differences) usually results in good retrieval accuracy.
bins usually have only small values. Exploiting this property,1-norm-based matching can likewise be applied in the Haar
it is possible to truncate the high-pass coefficients to integeansform domain; however, results are not identical (except for
representation with only a low number of bits. the case where the “high-pass” coefficients have identical signs
Fig. 4(b) shows the block diagram of the complete systenm. the two descriptions compared), as matching directly in the
The output representation is scalable in terms of numbersto$togram domain. In the case where only the sign bit is used
bins, by varying the number of coefficients used. Interopeall bit planes representing the absolute value discarded), the L1
ability between different resolution levels is retained due to thrm degenerates to a Hamming distance, allowing even less
scaling property of the Haar transform. Thus, matching basedmplexity in the search.
on the information from subsets of coefficients guarantees anFor computing the retrieval accuracy of the SCD, the
approximation. Table | shows the relationship between numb&BIMRR measure as described in Section Il is used. The
of Haar coefficients as specified in the SCD and partitions mumber of Haar coefficients used for matching was between
the components of a corresponding HSV histogram that coul@ and 256 (see Table 1), by which bin-number scalability is
be reconstructed from the coefficients. achieved. For bit plane scalability, a 1 bit (sign only) represen-
A different type of scalability is achieved by scaling thdation to a full range representation was explored. The results
quantized (integer) representation of the coefficients to differesate shown in Fig. 5. In addition, the ANMRR was calculated
numbers of bits. The “difference” coefficients in the Haar transa the histogram domain after performing an inverse Haar
form can take either positive or negative values. The sign p&ansform. This is given by the plot labeled H-Rec in Fig. 5.
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05 T ‘ HMMD COLOR SPACE QUANTIZATION FOR CSD
’ * 16 — :
0.4 T ‘ Number of quantisation levels for different numbers of
A 4 1 ] N s 32 Component | Subspace histogram bins
N 0.3 64 184 120 64 32
Mo \k 128 0 1 1 1 1
R 2 ® : ) 8 4 4 4
R 02 1w = —- 256 Hue 2 12 12 3 3
o - H-Fac 3 12
Sk
0,1 [ 7 34 12 4 2
0 : 0 8 8 8 8
T i ' 1 4 4 4 2
0 256 512 768 1024 Sum 2 4 4 4 4
Number of bits 2 ; 4 4 2

Fig.5. Results with different numbers of Haar coefficients (16—256) quantized
at different numbers of bits. H-Rec signifies retrieval results after reconstruction ) ] ) o
of histogram from Haar coefficients at full bit resolution. The CSD is defined using four color space quantization oper-

ating points: 184, 120, 64, and 32 bins. To construct a 184-level

Matching in the histogram domain appears to provide the bégtantized color, HMMD color space is quantized nonuniformly
overall performance, as shown by the H-Rec curve. The resuissfollows. The whole HMMD color space is divided into five
show that a reasonable performance can be achieved evefu&spaces. This sub-space division is performed on the diff pa-
16 and 32 bits/histogram representations and the performaf@@eter (see Section Ill-A). For the respective subspaces, uni-
appears to saturate at around 128 and 256 bits/histogram. form color quantization on the Hue and Sum values results in a

Matching coefficients directly in the Haar space is equal ik84-level color quantization. The number of quantization levels
complexity compared to matching in the histogram space, 4er each subspace for different number of histogram bins is
suming the number of coefficients equal the number of higiven in Table II.
togram bins and the distance measures are the same in boti order to compute the CSD, anx 8-structuring element
cases. The complexity of generating the Haar coefficientsigsused. Even though the total number of samples is kept fixed
marginal compared to generating the histograms, and as satip4, the spatial extent of the structuring element scales with
does not add to the feature extraction complexity. the image size. The following simple rule determines the spatial

Comparison of different-size representations in the SCD éxtent of the structuring element (equivalently, the sub sampling
quite simple. In SCD, it is straightforward to perform matchinéactor) given the image size:
on subsets of Haar coefficients, which correspond to a coarser
approximation of the source histogram. This also allows appli- p = max{0,round(0.5log, WH — 8)}
cation of coarse-to-fine matching. For a given query, a coarse K=2 FE=8K (8)
version of SCD is matched first to select a subset of image can-
didates in a database, and a refined matching based on morgggere
efficients is performed only for this subset. Such a procedurey, H image width and height, respectively;
can achieve significant speed up in similarity search in large g x E spatial extent of the structuring element;
databases. K  sub-sampling factor.

The GoP extends the SCD application to a collection of infor images smaller tha2s6 x 256 pixels, an8 x 8 element
ages, video segments, or moving regions. In the GoP descripigith no sub-sampling is used. As another example, if the image
three different ways of computing the joint color histograngize is640 x 480, thenp = 1, K = 2, andE = 16. So,
Va|ueS fOI‘ the WhOle SerieS Using the indiVidUal hiStOgramS fro&ery a|ternate Samp'e a|ong the rows and Columnsm a
items within the collection are identified: averaging, mediaf_structuring element is then used to compute the histogram.
filtering, and histogram intersection. This joint color histogram Fig. 6 (only a part of the image is shown) shows the struc-
is then processed as in the SCD using the Haar transform gfiing element in the initial location at the upper left corner of

encoded. the image. The structuring element slides over the image and
is shifted by one pixel in Fig. 6(a) and by two pixels in case
C.CsD Fig. 6(b). Case (b) corresponds to sub-sampling of the image

This descriptor expresses local color structure in an imagg two in both directions and subsequently applying the same
using an8 x 8-structuring element. It counts the number o8 x 8-structuring element. Each bin of the C&Dn) represents
times a particular color is contained within the structurinthe number of locations of the structuring element at which a
element as the structuring element scans the image. Sppcel with color¢,, falls inside the element. The origin of the
pose cg,c1,¢o,--.,cp—1 denote theM quantized colors. structure element is defined by its top-left sample. The locations
A color structure histogram can then be denotedilfy:), of the structure element over which the descriptor is accumu-
m = 0,1,...,M — 1, where the value in each bin representted are defined by the grid of pixels of the possibly sub-sam-
the number of structuring elements in the image containing opked input image.
or more pixels with color,,,. The HMMD color space is used The bin valuesh(m) of the CSD are normalized by the
in this descriptor. number of locations of the structuring element and lie in the
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XREIRHEXKRXX  RIXEXEXERXEXEXEXRXX X i i i
RNNRRRRERY XK AR XX from all of the query co_Iors are then combined to obtz_iln the final
MXHRMRRKXY  RXRXEXRXEXRXRXEXK X retrievals. An efficient indexing scheme for the dominant color
§§§§§§§§§ DOXXIXHKIHKXKKXHKHKAXIXX X descriptor is presented in [4].
NXNNMRRRIRXX §§§§§§§§§§§§§§§§§§ The difference between the dominant color descriptor and the
§§§§§§§§ RIX XX EIX R XEXRXEX XX color histogram descriptor is that the representative colors are
SRR AXAIHX KK éié§§§é§é§é§é§é§§§ computed from each image instead of being fixed in the color
D00 000 OO 0 O G e O %4 % %% % Y% Y Y % e % %Y space, thus allowing the feature representation to be accurate as
a. BX KX BX KX B X KX BIX R XXX well as compact.
é§é§§§§é§é§§§é§§§ In order to compute this descriptor, the colors present in a
PO OO0 000 9.0.9.9.0.0,0.90.9 givenimage or region are first clustered (see [4] and [7] for more
§§§§§§§§§§§§§§§§§§ details). This results in a small number of colors and the percent-
XK XK KXX KKK XXX ages of these colors are calculated. As an option, the variances of
) 0.9.0.9,0.9.9.0.9.0.9.9.0.9.0,.9. 0.4

the colors assigned to a given dominant color are also computed.

b. The percentages of the colors present in the region should add
up to 1. A spatial coherency value is also computed that differ-
entiates between large color blobs versus colors that are spread
all over the image. The descriptor is thus defined by

Fig. 6. Structuring elements for images with different resolutions3£a) x
240 and (b)640 x 480.

TABLE I
ANMRR RESULTS FOR THECSD USING THE HMMD COLOR SPACE F={e,pi,v}t,s}, (i=1,2...,N) 9)
# bins 8 bits 6 bits 4 bits 2bits  here
120 bins 0.049 0.051 0.067 0.230 Pi its percentage value:
64 bins 0.068 0.073 0.087 0.273 v; its color variance.
32 bins 0.105 0.107 0.130 0342 The color variance is an optional field. The spatial cohererisy

a single number that represents the overall spatial homogeneity

range[0.0, 1.0]. The bin values are then nonlinearly quantize@f the dominant colors in the image. The number of dominant
to 8 bits/bin. colorsN can vary from image to image and a maximum of eight
CSDs containing 120, 64, or 32 bins are computed bas@g@minant colors can be used to represent the region. The per-
on approximations computed using the 184-bin descriptor. TR@Ntage valueg; are quantized to 5 bits each. The color quanti-
mapping of the 184-bin descriptor to a descriptor with a lowé&ation depends on the color space specifications defined for the
number of bins is defined by re-quantizing the color represent@ﬂtire database and need not be specified with each descriptor.
by each bin of the 184-bin descriptor into the more coarserThe method described in [1] for dominant color extraction is
quantized color space as specified in Table II. based on using the generalized Lloyd algorithm for color clus-
Similar to the other histogram descriptors, an L distance md&!ing. This problem is formulated as one of minimizing the dis-
sure is used to compute the dissimilarity between two cSp8rtion D; in each clustef
Table 11l shows the performance of this descriptor for varying )
number of bins and bit quantization. The common color dataset Di = Z v()lfe(n) —cll® x(n) € C; (10)
was slightly modified by the addition of few more query im- ™
ages so as to illustrate the qualitative difference in the retrieyghere
performance between the color structure and scalable color hisg,
tograms.

centroid of cluster’;;
x(n) color vector at pixel;
v(n) perceptual weight for pixet.

The perceptual weights are calculated from the local pixel sta-
A set of dominant colors in a region of interest or in an imagstics to account for the fact that human vision perception is
provide a compact description that is easy to index. The targeore sensitive to changes in smooth regions than in textured re-
application is similarity retrieval in large image databases usiigipns. These perceptual weights are given in [1]. The variance

color. Colors in a given region are clustered into a small numbefthe colors associated with a clustér, (and hence the domi-

of representative colors. The feature descriptor consists of thent colore;) is then computed and quantized to 3 bits per color
representative colors, their percentages in the region, spatial eariance.

herency of the dominant colors, and color variances for eachThe normalized average number of connecting pixels of the
dominant color. A similarity measure similar to the quadraticorresponding dominant color usingdax 3 masking window
color histogram distance measure is defined for this descriptoreasures the spatial coherence of a given dominant color. The
The representative colors can be indexed in the 3-D color spaserall spatial variance is then a linear combination of the in-
thus avoiding the high-dimensional indexing problems assodividual spatial variances with the corresponding percentages
ated with the traditional color histogram. For similarity retrievaly; being the weights. The spatial variance is quantized to 5 bits,
each representative color in the query image or region is usedwiere 31 means highest confidence and 1 means no confidence.
dependently to find regions containing that color. The match@ss used for cases where it is not computed.

D. Dominant Color
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TABLE IV
ANMRR RESULTS FOR THEDOMINANT CLD
Color #dominant DC DC+Variance
Space colors Size(bits) ARR ANMRR Size (bits) ARR ANMRR
(average)
RGB 3 69 0.6368 0.3897 78 0.7163 0.3222
6 130 0.7114 0.3214 148 0.7933 0.2295
CIE-LAB 3 67 0.7568 0.2784 76 0.8160 0.2350
5 112 0.8083 0.2312 127 0.8951 0.1563
TABLE V

ANMRR RESULTS FOR THEDOMINANT COLOR WITH SPATIAL COHERENCE

for the spatial coherence Spatial coherence field with Spatial coherence for each
dominant colors dominant color

5 0.221

4 0.227

3 0.246

2 0.250 0.197

1 0.252 0.202

0 e

An average of 5.3 colors per image are used for the MPEG-7 common color dataset. Increasing the number of bits
beyond 5 did not give significant improvements. While assigning the bits to individual dominant colors gave better per-
formance, the increased complexity of the descriptor was the main factor in choosing a single spatial coherence value.

Each object or region in the database is represented using between 1.0-1.5. The above dissimilarity measure can be
the dominant color descriptor as defined in (9). Typically, 3—-ghown to be equivalent to the quadratic distance measure that is
colors provide a good characterization of the region colorsommonly used in comparing two color histogram descriptors.
Given a query image, similarity retrieval involves searching thehis distance can be modified to take into account the optional
database for similar color distributions as the input query. Singariance [2]. One can then take a linear combination of the spa-
the number of representative colors is small, one can first seatigh coherency and the above distance to give a combined dis-
the database for each of the representative colors separatalyce as suggested in [2].
and then combine the results. Searching for individual colorsThe binary semantics of the dominant color descriptor spec-
can be done very efficiently in a 3-D color space. ifies 3 bits to represent the number of dominant colors and 5

Consider two dominant color descriptorsk = bits for each of the percentage values (uniform quantization of
Hespriyvits1), (6 = 1,2,...,N;) and F» = [0,1]). The color space quantization is not part of the descriptor.
{{e2i,p2i,v2i}, 82}, (¢ = 1,2,...,Nz2). Ignoring the The optional color variances are encoded at 3 bits per color with
optional variance parameter and the spatial coherence, ttmmuniform quantization. This is equivalent to 1 bit per compo-
dissimilarity D(F7, F>) between the two descriptors can ba&ent space in the 3-D color spaces. The ANMRR results on the
computed as CLD are given in Table IV. Here, the respective color spaces
are uniformly quantized to 6 bits per color value. The results

]\rl ]\TZ ]\rl ]\r2
hown for different number of average number of domi-
DXF, ) =S pi+ > pi — 2a1;0;p1ip2; O C S _ ; . :
(F1. 1) ;p“ ;pQJ ;; 14,2/P1iP2] nant colors used. Table V gives results using the spatial vari-

ance parameter and comparing with the dc descriptor (without
variance). These results differ somewhat from those in Table IV
where the subscripts 1 and 2 in all variables stand for descrifise to the different color spaces and quantization used in the ex-
tions I, andF;, respectively, andy, ; is the similarity coefficient periments. It should be noted that one of the main objectives of
between two colors;, and¢; the dominant color descriptor is to provide a compact and intu-
itive representation of salient colors in a given region of interest.
g = { 1= dii/dmax, drg <Ta The datasets and evaluation does not truly reflect this objective,
7 0, i > Ty and the results provided are to be interpreted accordingly. On
the other hand, they did serve the useful purpose of identifying
= ||ex — e1| Euclidean distance between two colegs  different extensions and as a baseline for comparisons among
andc;; competing dominant color descriptors.
T, maximum distance for two colors to be considered sim-
ilar: E. CLD
dmax = oTy. The CLD is designed to capture the spatial distribution of
In particular, this means that any two dominant colors from om®lor in an image or an arbitrary-shaped region. The spatial dis-
single description are at ledkt distance apart. A normal valuetribution of color constitutes an effective descriptor for sketch-
for T, is between 10-20 in the CIE-LUV color space and fdnased image retrieval, content filtering using image indexing,

(11)

(12)

where
di

2
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0.4 ¢

and visualization. The functionality of this descriptor can als«
be achieved using a combination of grid structure descriptorar %3
grid-wise dominant colors. However, such a combination woul .3
require a relatively large number of bits, and matching will be.. o.25 {
more complex and expensive. For several applications, a COIS o2 |
pact yet effective descriptor is needed, and the CLD satisfie< 5 |
these needs.

The CLD is a compact descriptor that uses representati
colors on ar8 x & grid followed by a DCT and encoding of the .
resulting coefficients. The feature extraction process consists 0 20 40 6 80 100
two parts; grid based representative color selection and DC deseriptor bit-length
transform with quantization. An input picture is divided into 64
(8 x 8) blocks and their average colors are derived. Note thafig- 7. Experimental results for the CLD.
is implicitly recommended that the average color be used as the
representative color for each block. This partitioning processtexture. The last one, the “local edge histogram descriptor,
important to guarantee the resolution or scale invariance. Tiseuseful when the underlying region is not homogeneous in
derived average colors are transformed into a series of coeféixture properties.
cients by performin@ x 8 DCT. A few low-frequency coeffi-
cients are selected using zigzag scanning and quantized to fékmTexture Browsing Descriptor

0.1

”

a CLD. The color space adopted for CLD is YCrCb. This is a compact descriptor that requires only 12 bits (max-
For matching two CLDs{DY, DCr, DCb} and{DY’, DC’,  imum) to characterize a texture’s regularity (2 bits), direction-
DCb'}, the following distance measure is used: ality (3 bitsx 2), and coarsene$8 bitsx 2). A texture may have
more than one dominant direction and associated scale. For this
D= \/Z wyi (DY; — DY})? reason, the specification allows a maximum of two different di-
: rections and coarseness values.

The regularity of a texture is graded on a scale of 0 to 3, with O
+ Z wy;(DCh; — DCD)2 indicating an irregular or random texture. A value of 3 indicates
i a periodic pattern with well-defined directionality and coarse-

o ness values. There is some flexibility (or implied ambiguity) in
+ \/Z w,;(DCr; — DCr;)?. (13)  the two values in between. Having a well-defined directionality

g even in the absence of a perceivable micro-pattern is considered
Here, (DY, DCr;, DCb;) represent théth DCT coefficients more rggular than a patter.n t.h".it Iacks_dlrectlonahty and period-
. . . ICIE}/ [Fig. 8(b)], even if the individual micro-patterns are clearly
of the respective color components. The distances are We'ghltc?entified as in Fig. 8(c)
appropriately, with larger weights given to the lower frequency The directionality of a texture is quantized to six values,

components. . . o2
Fig. 7 shows the performance of this descriptor on trgngmgfrom@tp 150 in steps of 39. fl'he.textu_r(-a inFig. 8(a)

. o ..nas strong vertical and horizontal directionalities. Up to two

common color dataset and illustrates the bit-size scalabllla/i.

The default recommended number of bits is 63. This includ% rections can be specified. Three bits are used to represent the

six Y coefficients, and three each of Cr and Cb coeﬁicienta.ﬁferemdlrecnons' The value “0” is used to signal textures that

The dc values are quantized to 6 bits and the remaining 0 not have any dominant directionality, and the remaining di-

0., . X
: . rections are represented by values from 1 to 6. Associated with
5 bits each. These results demonstrate that the CLD is qw?e : presented by
A : ach dominant direction is a coarseness component. Coarseness
effective in image retrieval. The results also compare favorab . : . .

) X i . - 18 related to image scale or resolution. It is quantized to four
with a grid based dominant color approach wherein the image X LI ) : ot e
| = . " els, with 0 indicating a fine grain texture and a “3” indicating
is partitioned and dominant colors for these partitions are use

: . oarse texture. These values are also related to the frequency
to represent the layout. This descriptor can also be used for fas L . . i
: . . Space partitioning (see Fig. 9) used in computing the HTD.
video browsing and retrieval.

The computation of the browsing descriptor is described in
detail in [11]. The image is filtered using a bank of scale and
orientation selective band-pass filters and the filtered outputs

Texture, like color, is a powerful low-level descriptor forare then used to compute the texture browsing descriptor com-
image search and retrieval applications. MPEG-7 is consideripgnents. The image filtering part is similar to the one for the
three texture descriptors at this time. The first one is referrediI D (see below) and as such both these descriptors can be effi-
as the “texture browsing descriptor” and characterizes percegently computed. Since the descriptor semantics can be related
tual attributes such as directionality, regularity, and coarsenésdhiuman perception of the texture, manual specification of the
of a texture. The second one, the “homogeneous textutescriptor is also possible.
descriptor ” (HTD) provides a quantitative characterization This descriptor is useful for browsing applications, and in
of homogeneous texture regions for similarity retrieval. It isonjunction with the HTD can help in fast and accurate image
based on computing the local spatial-frequency statistics of tiedrieval. In browsing, any combination of the three main

IV. TEXTURE
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Fig. 8. Examples of regularity component.

Channel (C;)

channel
number (i)

Fig. 9. Frequency layout for texture feature extraction.

components—regularity, directionality, and coarseness—car {0, 1,2, 3,4, 5}. In the radial direction, the center frequen-
be used to browse the database. For example, one can lookcfes of the neighboring feature channels are spaced one octave
textures that are very regular and oriented &t 30 similarity apartsuchthat; = wo-27°, s € {0,1,2, 3,4} wheres is radial
retrieval, the texture browsing descriptor can be used to findralex andW, = 3/4 is the highest center frequency. The var-
set of candidates with similar perceptual properties and thiemus channels are numbered as shown in Fig. 9 and the channel
use the HTD to get a precise similarity match list among thedex: can be expressed as= 6 x s +r + 1.

candidate images. The individual feature channels are modeled using 2-D
Gabor functions. Gabor functions are modulated Gaussians.
B. HTD The Fourier transform of a 2-D Gabor function in the polar

The HTD provides a quantitative characterization of textugoordinates can be written as
for similarity-based image-to-image matching. This descriptor , ,
is computed by first filtering the image with a bank of orien,, . —(W-W,)? | —-(q—-gq,) 14
tation and scale sensitive filters, and computing the mean an(ﬁj”( Q) =exp 2S? P 2 (14)
standard deviation of the filtered outputs in the frequency do- ’

main. Previous extensive work on this feature descriptor hggr the bank of filters used, the filter parameters are selected
shown that this descriptor is robust, effective, and easy to coBirch that the half-maximum contours of the 2-D Gaussians of
pute [1], [5], [8], [10], [17]. During the MPEG-7 Core Experi-adjacent filters in the radial and angular directions touch each
ments, it was realized that the computational complexity of thigher. In the angular directior§,. has a constant value of

descriptor can be reduced significantly by computing the valugse /./2Tn 2. In the radial directionS,., depends on the octave
in the frequency domain rather than in the spatial domain, aggdndwidth and is written as

an efficientimplementation using Radon transform is described
in [18]. s - B, (15)

The computation of this descriptor is as follows. The fre- T 9y/2In2’
guency space is partitioned into 30 channels with equal divisions
in the angular direction (at 30ntervals) and octave division in The image texture energy in each of the filtered channels is then
the radial direction (five octaves), as shown in Fig. 9. In a nocomputed. Note that this is equivalent to weighting the Fourier
malized frequency spade < W < 1, the center frequenciestransform coefficients of the image with a Gaussian centered
of the feature channels are spaced equally ihiB@&ngular di- at the frequency channels as defined above. The deviation of
rection such that,, = 30° x r, wherer is angular index with the energy is also computed. Both the energy and the energy

qr
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dEfAO;eZth;m: g:elg Each image block is then partitioned into
number of blocks. 2x2 block of pixels. The edge detector
operators are then applied to these 2x2
blocks, treating each block as a pixel and
original image the average intensity as the
dividedinto 16 corresponding block intensity value.

subdimages.

Fig. 10. Computing the edge histogram descriptor.

deviation are then logarithmically scaled to obtain two numberS, Edge Histogram Descriptor

e; andd;, for theith feature channel. The HTD is then given by The edge histogram descriptor captures the spatial distribu-

TD = [fpc, fsp, €1, €2, ...,e30,d1,da, ..., dso]. (16) tion of edges, somewhat in the same spirit as the CLD. The dis-

) tribution of edges is a good texture signature that is useful for

The first two components of the feature vector are the mean jfrage to image matching even when the underlying texture is
tensity and the standard deviation of the image texture, respggt homogeneous. The computation of this descriptor is fairly
tively. The details of nonlinear scaling and quantization of thesgraightforward (see Fig. 10) . A given image is first sub-di-

mittee draft [1]. _ _ of these sub-images is computed . Edges are broadly grouped
Similarity Matching: The distance between two HTDs isinto five categories: vertical, horizontal, 48iagonal, 135 di-
computed as follows: agonal, and isotropic (nonorientation specific). Thus, each local

histogram has five bins corresponding to the above five cate-

dTD uervTD atabase . . e . . .
(TDauery Database) gories. The image partitioned into 16 sub-images results in 80

= distanc€IDguery; TDpatabase) bins. These bins are nonuniformly quantized using 3 bits/bin,
-y TDquery (k) = TDpatabase(k) | (17) resulting in a descriptor of size 240 bits [1].
= a(k) To compute the edge histograms, each of the 16 sub-images

— . is further subdivided into image blocks. The size of these image
T_he_ recommended normahzaﬂpn valu@) is the standard de- blocks scale with the image size and is assumed to be a power of
viation OfTDDat,a",ase(k) for a given database. 2. The number of image blocks per sub-image is kept constant,
NOt? that shl_ftmg the feature. vectqr components gorrﬁidependent of the original image dimensions, by scaling their
sponding to_a given .scale valug is equivalent to a rotation o appropriately. A simple edge detector is then applied to each
spgqe.Rotatlon invariant matching16] can be ac_h|eved bY of the macro-block, treating the macro-block a8 a 2 pixel
shifting the query vector components appropriately befofg,, s The pixel intensities for thex 2 partitions of the image
matchmg W'th the datab_ase items. In patching tW_o patteand block are computed by averaging the intensity values of the cor-
J, the m|n|mum of the distances petween the sh|ited)att_ern responding pixels. The edge-detector operators include four di-
vector and thejth featurg VeCF‘” IS then used_as the d'St""mfgctional selective detectors and one isotropic operator (Fig. 11).
between the two patterrsand;. This can be written as Those image blocks whose edge strengths exceed a certain min-
d(i, j, mf) = distancéTID; | ¢ TD;) imum thresholq are used in computing the hi;togram.
Thus, for animage block, we can compute five edge strengths,
wheref = 30°. Then, for rotation invariant matching, distancene for each of the five filters from Fig. 11. If the maximum of
is calculated as these edge strengths exceed a certain preset threshold, then the
corresponding image block is considered to be an edge block.
An edge block contributes to the edge histogram bins. The edge
The performance of this texture descriptor is evaluated oncamputation method is quite simple and can be applied directly
large texture image dataset consisting of images from the Bto-MPEG-2 compressed bit streams.
datz album [1], aerial images [9], and stock photo images andEach of the image blocks labeled as edge blocks contribute to
textures from Corel. For rotation and scale invariant matchinie appropriate bin of the histogram descriptor. These values are
additional images are created by digitally scaling and rotatim@rmalized td0, 1]. A nonlinear quantization of the bin values
the texture images from the above datasets. The total numberasiults in a 3 bits/bin representation.
images used in the Core Experiments exceeds 10 000. On th8imilarity Matching: Note that there are a total of 80 bins, 3
Brodatz data set, with experimental conditions as describedhits/bin, in the edge histogram. One can use the 3-bit number as
[10], the retrieval accuracy is about 77%. an integer value directly and compute the L1 distance between

d(i, 7) = minimum of{d(z, j, mf) |m = 0to 5}.
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Fig. 11. Filters for edge detection.
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CLD. The histogram descriptors capture the global distribution

of color where as the dominant color descriptor represents
the dominant colors present. The CLD captures the spatial
distribution or layout of the colors in a compact representation.

While MPEG-7 standards accommodate different color spaces,
most of the color descriptors are constrained to one or a limited
number of color spaces for ensuring inter-operability.

The texture descriptors include a HTD and an edge histogram
texture descriptor. Both these descriptors support search and re-
trieval based on content descriptions. In addition, a compact tex-
ture based browsing descriptor is also supported.

All these descriptors have been rigorously tested and eval-
uated following the MPEG-7 Core Experiment procedures to
ensure their effectiveness and efficiency in a wide variety of
. : . ._applications based on multimedia content description. While
two edge histograms. A slightly better performance is obtain EG-7 standardizes only the representation of these descrip-
if the 3-bit values are decoded using look-up tables. tors, a detailed description of the recommended methods for ex-

An interesting variation is to compute an extended histogram (ing and matching the descriptors are presented in the cur-
from these 80_b|ns [15]. The extended histogram is ob'Famed Réﬁt visual XM document [2] that is intended to become a non-
grouping the image blocks (and the corresponding bins). Thgrmative part of the MPEG-7 standard as a Technical Report.
extended bins are referred to as the global and semi-global hisThe MPEG-7 Final Committee Draft was just released at the
tograms. The global histogram is obtained by combining all thgne of writing this paper [1]. While most of the technical work
16 image blocks. The semi-global histograms are computed &y color and texture descriptors have been completed, there are
pooling the image blocks/bins by rows (four rows), columng few interesting technologies which are still in various stages
(four columns) and in groups @fx 2 (five groups). This results of evaluations. Notably, the color descriptors discussed in this
in five bins for the global histogram ank8 x 5 for the semi- article are mainly suited for natural images and video and will
global histograms from the 80 local histogram bins. The totabver the needs of the bulk of applications based on content de-
number of bins is thus 150. A weighted L1 measure, with theriptions. However, for synthetic images or for very specialized
distances corresponding to the global bins given more weigildmains such as bio-medical imagery, refinements of existing
than the others, is used to compute the distance between t¥escriptors and/or additional descriptors may be needed.
edge histograms. In the evaluation, a set of about 11 000 im-
ages from the MPEG-7 collection is used. On this data set, the ACKNOWLEDGMENT
ANMRR is about 0.34 using the 80-bin edge histograms and S
improved to about 0.30 when the extended histograms are use _h'e author§ ackpowledge t_he help of t'he foIIowmg.lndn{ld—'
In both cases, the bins are represented at 3 bits/bin. uals in preparing this manuscript. Dr. L. Cieplensky, Mitsubishi

The edge histogram descriptor is found to be quite effective ,rEIectric; .S' Jeannin, Philips Research I__abs; Dr. H. J. Kim, .LG
) . ) . - .gectronlcs; S.-J. Park, ETRI; Dr. Y. Choi, Samsung Electronics;
representing natural images with the primary application bei

. . . Blof. Y. M. Ro, Information Communications University; Dr. P.
image-to-image matching. The performance can be further

; . . . . ) . ner §&n Beek, Sharp Labs of America, Prof. C. S. Won, Dongguk
hanced by using this descriptor in conjunction with other image . : P 99
- . . niversity.
features, such as color [13]. Similar to color, this descriptor can
be used in scene change detection and key frame clustering in
video. One observed limitation of this descriptor, unlike the
i i i i i [1] Text of ISO/IEC 15938-3 Multimedia Content Description Inter-
HTD, is that it cannot be used for object based image retrieval. face—Part 3: Vicual Final Commitiee DraftSOIEC/ TGL/EC29/
WG11, Doc. N4062, Mar. 2001.
V. CONCLUSION [2] MPEG-7 Visual Experimentation Model (XM), Version 10.0
) ) ) ISO/IEC/JTC1/SC29/WG11, Doc. N4063, Mar. 2001.
In this paper, we have presented the technical details of colof3] P. Brodatz, Textures: A Photographic Album for Artists and De-
and texture descriptors currently in the MPEG-7 standard. The _ Signers New York: Dover, 1966.

| d int include t hist b d d it [4] Y. Deng, B. S. Manjunath, C. Kenney, M. S. Moore, and H. Shin, “An
color aescriptors Include two histogram-based JesCriplors, ~ eficient color representation for image retrievdEEE Trans. Image

the SCD and the CSD, the dominant color descriptor, and the  Processingvol. 10, pp. 140-147, Jan. 2001.

Fig. 12. ANMRR results for the edge histogram descriptor.
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