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Abstract—This paper presents an overview of color and texture
descriptors that have been approved for the Final Committee Draft
of the MPEG-7 standard. The color and texture descriptors that
are described in this paper have undergone extensive evaluation
and development during the past two years. Evaluation criteria in-
clude effectiveness of the descriptors in similarity retrieval, as well
as extraction, storage, and representation complexities. The color
descriptors in the standard include a histogram descriptor that is
coded using the Haar transform, a color structure histogram, a
dominant color descriptor, and a color layout descriptor. The three
texture descriptors include one that characterizes homogeneous
texture regions and another that represents the local edge distri-
bution. A compact descriptor that facilitates texture browsing is
also defined. Each of the descriptors is explained in detail by their
semantics, extraction and usage. Effectiveness is documented by
experimental results.

I. INTRODUCTION

COLOR and texture are among the more expressive of the
visual features. Considerable work has been done in de-

signing efficient descriptors for these features for applications
such as similarity retrieval. For example, a color histogram is
one of the most frequently used color descriptors that charac-
terizes the color distribution in an image. This paper provides
the reader with an overview of the technologies that are being
considered by the MPEG-7 group for describing visual content
based on its color and texture. More detailed information re-
garding the color and texture descriptors in MPEG-7 may be
found in the references and other related MPEG documents.

The color and texture descriptors that are described in this
paper have undergone rigorous testing and development during
the past two years, and thus represent some of the more mature
technologies for content representation. These tests and devel-
opment were conducted under the various Core Experiments de-
fined by the MPEG Video group and itsAd-HocGroup on Color
and Texture Core Experiments.

Section II describes the MPEG-7 Color and Texture Core Ex-
periments, including a brief discussion on the color and texture
datasets used in these experiments. This is followed by a de-
scription of color descriptors in Section III. Texture descriptors
are discussed in Section IV. We conclude with a brief note on
some of the unresolved issues at the time of writing this paper.
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It must be emphasized that the main objective of this paper is
to provide an overview of the MPEG-7 descriptors. Given the
page restrictions on a transactions paper, the level of technical
detail is not as thorough as we would have liked to provide. For a
complete technical description, the interested reader is referred
to [1], [2].

II. MPEG-7 COLOR/TEXTURE CORE EXPERIMENT

PROCEDURES

Core experiments are usually conducted during the MPEG
standardization process to compare different competing
technologies as well as to establish the merits of a proposed
technology. Technologies in the video group under previous
MPEG standards primarily dealt with efficient compression, and
the signal-to-noise ratio (SNR) constituted an effective yardstick
for comparison. Comparing and evaluating technologies for
MPEG-7 visual descriptors presented a different set of chal-
lenges, as there existed no common ground rules for evaluating
different methods. For visual descriptors, the retrieval appli-
cation was found to be the best model. A good retrieval result
in response to a visual-feature based query would be a good
indicator for the expressiveness of the descriptor. In the Color
and Texture Core Experiments, the so-calledquery by example
paradigm has been employed as the primary method for eval-
uations. In query-by-example, the respective descriptor values
are extracted from the query image, and then matched to the
corresponding descriptors of images contained in a database. In
order to be objective in the comparisons, a quantitative measure
was needed. This requires specification of the datasets, the query
set and the corresponding ground-truth data. The ground-truth
data is a set of visually similar images for a given query image.

In the Color and Texture Core Experiments, the number of
queries was about 1% of the number of images in the data-
base. For example, in the color experiments, a common color
dataset (CCD) consisting of around 5000 images, and a set of
50 common color queries (CCQ), each with specified ground
truth images, have been defined.

The various sub-committees andad-hoc groups within
MPEG-7 worked in compiling this set of data over a period of
over six months. For the Color and Texture Core Experiments,
the dataset consists of a variety of still images, images from
stock photo galleries, screen shots of television programs, and
animations. The query and corresponding ground truth images
were manually established through a process of visual inspec-
tion and cross verification by different groups of participants
in MPEG. In the case of some descriptors, targeting stationary
image features (such as the homogenous texture) a more
objective strategy based on tiling a large image (e.g., image
from the Brodatz album of textures) into smaller sub-images
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was adopted [10]. All the color core experiments used the
same datasets in computing the performance even though each
descriptor addresses a different aspect of the visual content.

After databases and queries with ground truth have been de-
fined, it is necessary to weigh the query results based on some
numeric measure. A very popular measure is the retrieval rate
(RR)

(1)

where
size of the ground truth set for a query;
number of ground truth images found within the
first retrievals;
takes values between 0 and 1, where 0 stands for
“no image found,” and 1 for “all images found.”

The factor should be , where a larger is more tolerant. If
(1) is performed over the whole set of NQ queries, the average
retrieval rate (ARR) is given by

(2)

While the RR and ARR are straightforward to compute, some is-
sues remain. For an unconstrained dataset—typical of the image
datasets used in retrieval experiments—it is not possible to have
a fixed number of ground truth items for all the queries. Letting

vary with introduces a bias for certain queries, partic-
ularly if there is a large variation in this number.

Further, RR as defined in (1) is a hard-limiting measure.
Hence, setting may not be appropriate as retrieving
an image from the ground truth with rank would
exclude it from contributing to (1), while in terms of subjective
retrieval accuracy, this might not be too severe. On the other
hand, selecting larger values would be less discriminative
between very good retrieval results and the not so good ones.
For example, with , RR would be equal for the cases
where all images are found at ranks , or where all
images are found at ranks , the latter one
clearly being a worse result.

To address these problems, normalized measures that take
into account different sizes of ground truth sets and the actual
ranks obtained from the retrieval were defined. Retrievals that
miss items are assigned a penalty. Consider a query. Assume
that as a result of the retrieval, theth ground truth image for
this query is found at a specific . Further, a number

is defined which specifies the “relevant ranks,” i.e.,
the ranks that would still count as feasible in terms of subjective
evaluation of retrieval. For relatively large NG (20–25 items),
subjects would judge the retrieval results as still useful if items
are found with ranks around , while for smaller ground
truth sets, even more tolerance would be allowed. The penalty
assigned should be , but it was argued that a penalty just
equalling would put retrievals with too many misses into ad-
vantage. A good compromise is to define a as

if
if

(3)

From (3), we get the average rank (AVR) for query

(4)

However, with ground truth sets of different size (actually, NG
varies between 3 and 32 in the CCQ), the AVR counted from
ground truth sets with small and large values would
differ significantly. To minimize the influence of variations in

, amodified retrieval rank(MRR) is defined as follows:

(5)

Note that is 0 in the case of a perfect retrieval (ground
truth items found at first positions). However, the upper
bound is still dependent on NG. A final normalization with re-
spect to leads to thenormalized modified retrieval rank
(NMRR)

(6)

can take on values between 0 (indicating whole
ground truth found) and 1 (indicating nothing found) only,
irrespective of . From (6), it is straightforward to define
the averagenormalized modified retrieval rank(ANMRR),
giving just one number indicating the retrieval quality over all
queries. The ANMRR is defined as

(7)

ANMRR is the evaluation criterion used in all of the MPEG-7
color core experiments. Evidence was shown that the ANMRR
measure approximately coincides linearly with the results of
subjective evaluation about retrieval accuracy of search engines
[12]. Of course, evaluation of visual descriptors cannot be based
only on retrieval accuracy. Further criteria are compactness,
complexity of feature extraction and matching, scalability.
Interestingly enough, it was found in the core experiments that
there is a strong interrelationship between the compactness
of a descriptor (as counted in numbers of bits needed for
the representation), and the retrieval accuracy. This allows
the setup of “rate-accuracy curves” (similar to SNR-based
rate-distortion curves widely used in image and video coding).
To make evaluation of the descriptors mostly independent
from the design of the matching procedure, common matching
methods have been used within core experiments wherever
possible. Most experiments relied on the L1 norm, while some
adopted the L2 norm and certain others employed statistical
distance measures.

III. COLOR

Color is perhaps the most expressive of all the visual features
and has been extensively studied in the image retrieval research
during the last decade. A schematic of the color descriptors
in the current version of the MPEG-7 Final Committee Draft
(FCD) [1] is shown in Fig. 1. The color descriptors consist of a
number of histogram descriptors, a dominant color descriptor,
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Fig. 1. MPEG-7 color descriptors.

and a color layout descriptor (CLD). Definition of this set of de-
scriptors was done to serve different application domains while
keeping the number of possible variants to a minimum, to guar-
antee interoperability between differently generated MPEG-7
color descriptions (see below). It is beyond the scope of this
paper to summarize the whole selection process that occurred
in the core experiments process; in general, descriptors were ac-
cepted and defined based on detailed studies of their efficiency
(in terms of descriptor size and retrieval accuracy), complexity,
as well as other criteria like applicability to a broad range of ap-
plications.

Color descriptors originating from histogram analysis have
played a central role in the development of visual descriptors
in MPEG-7. First, a generic color histogram descriptor was
defined that would be able to capture the color distribution
with reasonable accuracy for image search and retrieval appli-
cations. However, there are too many independent dimensions
in a generic color histogram. These include choice of color
space, choice of quantization in color space, and quantization
of the histogram values. It was soon realized (after extensive
experiments) that leaving this choice to the user would defeat
the very purpose of the standard, i.e., the interoperability
between descriptors generated by different MPEG-7 systems.
There was a clear need to limit the set of histogram derived
descriptors. Thescalable color descriptor(SCD) is defined in
the hue-saturation-value (HSV) color space with fixed color
space quantization, and uses a novel Haar transform encoding.
The Haar transform based encoding facilitates a scalable repre-
sentation of the description, as well as complexity scalability
for feature extraction and matching procedures. This descriptor
can be extended to a collection of pictures or a group of frames
from a video, and thegroup of frames/group of pictures(GoP)
descriptor specifies different ways of constructing such a
histogram. Thecolor structure histogramaims at identifying
localized color distributions using a small structuring window.
To ensure interoperability, the color structure histogram is
constructed in thehue-min-max-difference(HMMD) color
space. A description of the HMMD color space is given in
Section III-A.

The dominant colordescriptor gives the distribution of the
salient colors in the image. Unlike the bin quantization in the
histograms, the specification of colors in a dominant color de-
scriptor is limited only by the color space quantization. Its pur-

pose is to provide an effective, compact, and intuitive represen-
tation of colors present in a region of interest.

The CLD captures the spatial layout of the dominant colors
on a grid superimposed on the region of interest. This is a very
compact descriptor that is very effective in fast browsing and
search applications. It can be applied to still images, as well as
to video segments.

The following sections provide more technical details on each
of these color descriptors beginning with a brief description of
the color spaces used in MPEG-7.

A. Color Space

The different color spaces used in MPEG-7 include the fa-
miliar monochrome, RGB, HSV, YCrCb, and the new HMMD.
The monochrome (intensity only) space is also supported. This
corresponds to the component in the YCrCb space. It is pos-
sible to define RGB with reference chromaticity primaries, if
available from the capture process. The conversion from nor-
malized RGB (where the values of each of the spectral compo-
nents range from 0 to 1) to the other color spaces are shown in
Fig. 2.

The HSV color space is a popular choice for manipulating
color. The HSV color space is developed to provide an intuitive
representation of color and to approximate the way in which hu-
mans perceive and manipulate color. RGB to HSV is a nonlinear,
but reversible, transformation. The hue (H) represents the dom-
inant spectral component—color in its pure form, as in green,
red, or yellow. Adding white to the pure color changes the color:
the less white, the more saturated the color is. This corresponds
to the saturation (S). The value (V) corresponds to the brightness
of color. The coordinate system is cylindrical, and is often rep-
resented by a subspace defined by a six-sided inverted pyramid.
The top of the pyramid corresponds to , with the “white”
at the center. The hue is measured by the angle around the ver-
tical axis, with red corresponding to 0. The saturation ranges
from 0 at the center to 1 on the surface of the pyramid. An in-
verted cone is also used to denote the subspace instead of the
pyramid.

A new color space, the HMMD color space, is also supported
in MPEG-7. The hue has the same meaning as in the HSV space,
and max and min are the maximum and minimum among the

, and values, respectively. The diff component is defined
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(a)

(b)

(c)

Fig. 2. Color spaces used in MPEG-7. (a) RGB to YCbCr color space. (b) RGB to HSV color space. (c) RGB to HMMD color space.

as the difference between max and min. Only three of the four
components are sufficient to describe the HMMD space. This
color space can be depicted using the double cone structure as
shown in Fig. 3. In the MPEG-7 core experiments for image re-
trieval, it was observed that the HMMD color space is very ef-
fective and compared favorably with the HSV color space. Note
that the HMMD color space is a slight twist on the HSI color
space [6], where thediff component is scaled by the intensity
value. The HMMD color space is used in the color structure de-
scriptor (CSD).

To ensure inter-operability, the color spaces allowed for the
various color descriptors are constrained by the standard. The
dominant color descriptor allows color specification in any of
the color spaces supported by MPEG-7. The RGB space is not
very efficient for search and retrieval tasks and is not explicitly
used in any color descriptor. The SCD uses the HSV space and
the color structure histogram uses the HMMD space. The CLD
is defined for the YCrCb space. These color space descriptors
are also used outside of the visual descriptors, for example, in
specifying “media properties” in suitable description schemes.

B. SCD

The generic Color Histogram Descriptor defined in early
MPEG-7 experiments is a compound descriptor consisting of
color space, color quantization and histogram descriptors. This
would allow specification of color histograms with varying
numbers of bins and nonuniform quantization of different color
spaces. However, it was not desirable to provide too much flex-
ibility in such a specification, as it would limit interoperability
between different descriptions based on MPEG-7. The SCD
addresses the interoperability issue by fixing the color space to

Fig. 3. HMMD color space.

HSV, with a uniform quantization of the HSV space to 256 bins.
The bin values are nonuniformly quantized to a 11-bit value.

This method achieves full interoperability between different
resolutions of the color representation, ranging from 16 bits/his-
togram at the low end to approximately 1000 bits/histogram at
the high end. Of course, the accuracy of the feature description is
highly dependent on the number of bits used. However, core ex-
periments have shown that good retrieval results are still achiev-
able using only 64 bits, while excellent results can be obtained
using medium or full resolution of the descriptor.

The HSV space is uniformly quantized into a total of 256
bins. This includes 16 levels in H, four levels in S, and four
levels in V. The histogram values are truncated into a 11-bit
integer representation. To achieve a more efficient encoding, the
11-bit integer values are first mapped into a “nonlinear” 4-bit
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Fig. 4. (a) Basic unit of Haar transform. (b) A schematic diagram of SCD generation.

representation, giving higher significance to the small values
with higher probability.

This 4-bit representation of the 256-bin HSV histogram
would require 1024 bits/histogram, which is too large a number
in the context of many MPEG-7 applications. To lower this
number and make the application scalable, the histograms are
encoded using a Haar transform.

The basic unit of the Haar transform consists of a sum oper-
ation and a difference operation [see Fig. 4(a)], which relate to
primitive low- and high-pass filters. Summing pairs of adjacent
histogram lines is equivalent to the calculation of a histogram
with half number of bins. If this process is performed iteratively,
usage of subsets of the coefficients in the Haar representation is
equivalent to histograms of 128, 64, 32bins, which are all
calculated from the source histogram.

The high-pass (difference) coefficients of the Haar transform
express the information contained in finer-resolution levels
(with higher number of bins) of the histogram. Natural image
signals usually exhibit high redundancy between adjacent
histogram lines. This can be explained by the “impurity”
(slight variation) of colors caused by variable illumination and
shadowing effects. Hence, it can be expected that the high-pass
coefficients expressing differences between adjacent histogram
bins usually have only small values. Exploiting this property,
it is possible to truncate the high-pass coefficients to integer
representation with only a low number of bits.

Fig. 4(b) shows the block diagram of the complete system.
The output representation is scalable in terms of numbers of
bins, by varying the number of coefficients used. Interoper-
ability between different resolution levels is retained due to the
scaling property of the Haar transform. Thus, matching based
on the information from subsets of coefficients guarantees an
approximation. Table I shows the relationship between numbers
of Haar coefficients as specified in the SCD and partitions in
the components of a corresponding HSV histogram that could
be reconstructed from the coefficients.

A different type of scalability is achieved by scaling the
quantized (integer) representation of the coefficients to different
numbers of bits. The “difference” coefficients in the Haar trans-
form can take either positive or negative values. The sign part

TABLE I
EQUIVALENT PARTITIONING OF THE HSV COLOR SPACE

FOR DIFFERENTCONFIGURATIONS OF THESCD

is always retained whereas the magnitude part can be scaled
by skipping the least significant bits. Using the sign-bit only (1
bit/coefficient) leads to an extremely compact representation,
while good retrieval efficiency is retrained. At the highest
accuracy level, 1–8 bits are defined for integer representations
of the magnitude part, depending on the relevance of the
respective coefficients. In between these extremes, it is possible
to scale to different resolution levels. For example, consider a
set of five coefficients whose magnitudes are encoded using 8,
4, 7, 3, and 7 bits, respectively. If the lowest 3 bits are discarded
in the scalable bit representation, only 5, 1, 4, 0, and 4 bits
remain to encode the absolute value.

In similarity matching of histograms, the L1 norm (sum of
absolute differences) usually results in good retrieval accuracy.
L1-norm-based matching can likewise be applied in the Haar
transform domain; however, results are not identical (except for
the case where the “high-pass” coefficients have identical signs
in the two descriptions compared), as matching directly in the
histogram domain. In the case where only the sign bit is used
(all bit planes representing the absolute value discarded), the L1
norm degenerates to a Hamming distance, allowing even less
complexity in the search.

For computing the retrieval accuracy of the SCD, the
ANMRR measure as described in Section II is used. The
number of Haar coefficients used for matching was between
16 and 256 (see Table I), by which bin-number scalability is
achieved. For bit plane scalability, a 1 bit (sign only) represen-
tation to a full range representation was explored. The results
are shown in Fig. 5. In addition, the ANMRR was calculated
in the histogram domain after performing an inverse Haar
transform. This is given by the plot labeled H-Rec in Fig. 5.
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Fig. 5. Results with different numbers of Haar coefficients (16–256) quantized
at different numbers of bits. H-Rec signifies retrieval results after reconstruction
of histogram from Haar coefficients at full bit resolution.

Matching in the histogram domain appears to provide the best
overall performance, as shown by the H-Rec curve. The results
show that a reasonable performance can be achieved even at
16 and 32 bits/histogram representations and the performance
appears to saturate at around 128 and 256 bits/histogram.

Matching coefficients directly in the Haar space is equal in
complexity compared to matching in the histogram space, as-
suming the number of coefficients equal the number of his-
togram bins and the distance measures are the same in both
cases. The complexity of generating the Haar coefficients is
marginal compared to generating the histograms, and as such
does not add to the feature extraction complexity.

Comparison of different-size representations in the SCD is
quite simple. In SCD, it is straightforward to perform matching
on subsets of Haar coefficients, which correspond to a coarser
approximation of the source histogram. This also allows appli-
cation of coarse-to-fine matching. For a given query, a coarse
version of SCD is matched first to select a subset of image can-
didates in a database, and a refined matching based on more co-
efficients is performed only for this subset. Such a procedure
can achieve significant speed up in similarity search in large
databases.

The GoP extends the SCD application to a collection of im-
ages, video segments, or moving regions. In the GoP descriptor,
three different ways of computing the joint color histogram
values for the whole series using the individual histograms from
items within the collection are identified: averaging, median
filtering, and histogram intersection. This joint color histogram
is then processed as in the SCD using the Haar transform and
encoded.

C. CSD

This descriptor expresses local color structure in an image
using an -structuring element. It counts the number of
times a particular color is contained within the structuring
element as the structuring element scans the image. Sup-
pose denote the quantized colors.
A color structure histogram can then be denoted by

, where the value in each bin represents
the number of structuring elements in the image containing one
or more pixels with color . The HMMD color space is used
in this descriptor.

TABLE II
HMMD COLOR SPACE QUANTIZATION FOR CSD

The CSD is defined using four color space quantization oper-
ating points: 184, 120, 64, and 32 bins. To construct a 184-level
quantized color, HMMD color space is quantized nonuniformly
as follows. The whole HMMD color space is divided into five
subspaces. This sub-space division is performed on the diff pa-
rameter (see Section III-A). For the respective subspaces, uni-
form color quantization on the Hue and Sum values results in a
184-level color quantization. The number of quantization levels
for each subspace for different number of histogram bins is
given in Table II.

In order to compute the CSD, an -structuring element
is used. Even though the total number of samples is kept fixed
at 64, the spatial extent of the structuring element scales with
the image size. The following simple rule determines the spatial
extent of the structuring element (equivalently, the sub sampling
factor) given the image size:

(8)

where
image width and height, respectively;
spatial extent of the structuring element;
sub-sampling factor.

For images smaller than pixels, an element
with no sub-sampling is used. As another example, if the image
size is , then , and . So,
every alternate sample along the rows and columns of a

-structuring element is then used to compute the histogram.
Fig. 6 (only a part of the image is shown) shows the struc-

turing element in the initial location at the upper left corner of
the image. The structuring element slides over the image and
is shifted by one pixel in Fig. 6(a) and by two pixels in case
Fig. 6(b). Case (b) corresponds to sub-sampling of the image
by two in both directions and subsequently applying the same

-structuring element. Each bin of the CSD represents
the number of locations of the structuring element at which a
pixel with color falls inside the element. The origin of the
structure element is defined by its top-left sample. The locations
of the structure element over which the descriptor is accumu-
lated are defined by the grid of pixels of the possibly sub-sam-
pled input image.

The bin values of the CSD are normalized by the
number of locations of the structuring element and lie in the
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Fig. 6. Structuring elements for images with different resolutions: (a)320�

240 and (b)640� 480.

TABLE III
ANMRR RESULTS FOR THECSD USING THE HMMD COLOR SPACE

range . The bin values are then nonlinearly quantized
to 8 bits/bin.

CSDs containing 120, 64, or 32 bins are computed based
on approximations computed using the 184-bin descriptor. The
mapping of the 184-bin descriptor to a descriptor with a lower
number of bins is defined by re-quantizing the color represented
by each bin of the 184-bin descriptor into the more coarsely
quantized color space as specified in Table II.

Similar to the other histogram descriptors, an L distance mea-
sure is used to compute the dissimilarity between two CSDs.
Table III shows the performance of this descriptor for varying
number of bins and bit quantization. The common color dataset
was slightly modified by the addition of few more query im-
ages so as to illustrate the qualitative difference in the retrieval
performance between the color structure and scalable color his-
tograms.

D. Dominant Color

A set of dominant colors in a region of interest or in an image
provide a compact description that is easy to index. The target
application is similarity retrieval in large image databases using
color. Colors in a given region are clustered into a small number
of representative colors. The feature descriptor consists of the
representative colors, their percentages in the region, spatial co-
herency of the dominant colors, and color variances for each
dominant color. A similarity measure similar to the quadratic
color histogram distance measure is defined for this descriptor.
The representative colors can be indexed in the 3-D color space
thus avoiding the high-dimensional indexing problems associ-
ated with the traditional color histogram. For similarity retrieval,
each representative color in the query image or region is used in-
dependently to find regions containing that color. The matches

from all of the query colors are then combined to obtain the final
retrievals. An efficient indexing scheme for the dominant color
descriptor is presented in [4].

The difference between the dominant color descriptor and the
color histogram descriptor is that the representative colors are
computed from each image instead of being fixed in the color
space, thus allowing the feature representation to be accurate as
well as compact.

In order to compute this descriptor, the colors present in a
given image or region are first clustered (see [4] and [7] for more
details). This results in a small number of colors and the percent-
ages of these colors are calculated. As an option, the variances of
the colors assigned to a given dominant color are also computed.
The percentages of the colors present in the region should add
up to 1. A spatial coherency value is also computed that differ-
entiates between large color blobs versus colors that are spread
all over the image. The descriptor is thus defined by

(9)

where
th dominant color;

its percentage value;
its color variance.

The color variance is an optional field. The spatial coherencyis
a single number that represents the overall spatial homogeneity
of the dominant colors in the image. The number of dominant
colors can vary from image to image and a maximum of eight
dominant colors can be used to represent the region. The per-
centage values are quantized to 5 bits each. The color quanti-
zation depends on the color space specifications defined for the
entire database and need not be specified with each descriptor.

The method described in [1] for dominant color extraction is
based on using the generalized Lloyd algorithm for color clus-
tering. This problem is formulated as one of minimizing the dis-
tortion in each cluster

(10)

where
centroid of cluster ;
color vector at pixel;
perceptual weight for pixel .

The perceptual weights are calculated from the local pixel sta-
tistics to account for the fact that human vision perception is
more sensitive to changes in smooth regions than in textured re-
gions. These perceptual weights are given in [1]. The variance
of the colors associated with a cluster, (and hence the domi-
nant color ) is then computed and quantized to 3 bits per color
variance.

The normalized average number of connecting pixels of the
corresponding dominant color using a masking window
measures the spatial coherence of a given dominant color. The
overall spatial variance is then a linear combination of the in-
dividual spatial variances with the corresponding percentages

being the weights. The spatial variance is quantized to 5 bits,
where 31 means highest confidence and 1 means no confidence.
0 is used for cases where it is not computed.
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TABLE IV
ANMRR RESULTS FOR THEDOMINANT CLD

TABLE V
ANMRR RESULTS FOR THEDOMINANT COLOR WITH SPATIAL COHERENCE

An average of 5.3 colors per image are used for the MPEG-7 common color dataset. Increasing the number of bits
beyond 5 did not give significant improvements. While assigning the bits to individual dominant colors gave better per-
formance, the increased complexity of the descriptor was the main factor in choosing a single spatial coherence value.

Each object or region in the database is represented using
the dominant color descriptor as defined in (9). Typically, 3–4
colors provide a good characterization of the region colors.
Given a query image, similarity retrieval involves searching the
database for similar color distributions as the input query. Since
the number of representative colors is small, one can first search
the database for each of the representative colors separately,
and then combine the results. Searching for individual colors
can be done very efficiently in a 3-D color space.

Consider two dominant color descriptors,
and

. Ignoring the
optional variance parameter and the spatial coherence, the
dissimilarity between the two descriptors can be
computed as

(11)

where the subscripts 1 and 2 in all variables stand for descrip-
tions and respectively, and is the similarity coefficient
between two colors and

(12)

where
Euclidean distance between two colors

and ;
maximum distance for two colors to be considered sim-
ilar;

.
In particular, this means that any two dominant colors from one
single description are at least distance apart. A normal value
for is between 10–20 in the CIE-LUV color space and for

is between 1.0–1.5. The above dissimilarity measure can be
shown to be equivalent to the quadratic distance measure that is
commonly used in comparing two color histogram descriptors.
This distance can be modified to take into account the optional
variance [2]. One can then take a linear combination of the spa-
tial coherency and the above distance to give a combined dis-
tance as suggested in [2].

The binary semantics of the dominant color descriptor spec-
ifies 3 bits to represent the number of dominant colors and 5
bits for each of the percentage values (uniform quantization of

). The color space quantization is not part of the descriptor.
The optional color variances are encoded at 3 bits per color with
nonuniform quantization. This is equivalent to 1 bit per compo-
nent space in the 3-D color spaces. The ANMRR results on the
CLD are given in Table IV. Here, the respective color spaces
are uniformly quantized to 6 bits per color value. The results
are shown for different number of average number of domi-
nant colors used. Table V gives results using the spatial vari-
ance parameter and comparing with the dc descriptor (without
variance). These results differ somewhat from those in Table IV
due to the different color spaces and quantization used in the ex-
periments. It should be noted that one of the main objectives of
the dominant color descriptor is to provide a compact and intu-
itive representation of salient colors in a given region of interest.
The datasets and evaluation does not truly reflect this objective,
and the results provided are to be interpreted accordingly. On
the other hand, they did serve the useful purpose of identifying
different extensions and as a baseline for comparisons among
competing dominant color descriptors.

E. CLD

The CLD is designed to capture the spatial distribution of
color in an image or an arbitrary-shaped region. The spatial dis-
tribution of color constitutes an effective descriptor for sketch-
based image retrieval, content filtering using image indexing,
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and visualization. The functionality of this descriptor can also
be achieved using a combination of grid structure descriptor and
grid-wise dominant colors. However, such a combination would
require a relatively large number of bits, and matching will be
more complex and expensive. For several applications, a com-
pact yet effective descriptor is needed, and the CLD satisfies
these needs.

The CLD is a compact descriptor that uses representative
colors on an grid followed by a DCT and encoding of the
resulting coefficients. The feature extraction process consists of
two parts; grid based representative color selection and DCT
transform with quantization. An input picture is divided into 64

blocks and their average colors are derived. Note that it
is implicitly recommended that the average color be used as the
representative color for each block. This partitioning process is
important to guarantee the resolution or scale invariance. The
derived average colors are transformed into a series of coeffi-
cients by performing DCT. A few low-frequency coeffi-
cients are selected using zigzag scanning and quantized to form
a CLD. The color space adopted for CLD is YCrCb.

For matching two CLDs, and
the following distance measure is used:

(13)

Here, represent theth DCT coefficients
of the respective color components. The distances are weighted
appropriately, with larger weights given to the lower frequency
components.

Fig. 7 shows the performance of this descriptor on the
common color dataset and illustrates the bit-size scalability.
The default recommended number of bits is 63. This includes
six Y coefficients, and three each of Cr and Cb coefficients.
The dc values are quantized to 6 bits and the remaining to
5 bits each. These results demonstrate that the CLD is quite
effective in image retrieval. The results also compare favorably
with a grid based dominant color approach wherein the image
is partitioned and dominant colors for these partitions are used
to represent the layout. This descriptor can also be used for fast
video browsing and retrieval.

IV. TEXTURE

Texture, like color, is a powerful low-level descriptor for
image search and retrieval applications. MPEG-7 is considering
three texture descriptors at this time. The first one is referred to
as the “texture browsing descriptor” and characterizes percep-
tual attributes such as directionality, regularity, and coarseness
of a texture. The second one, the “homogeneous texture
descriptor ” (HTD) provides a quantitative characterization
of homogeneous texture regions for similarity retrieval. It is
based on computing the local spatial-frequency statistics of the

Fig. 7. Experimental results for the CLD.

texture. The last one, the “local edge histogram descriptor,”
is useful when the underlying region is not homogeneous in
texture properties.

A. Texture Browsing Descriptor

This is a compact descriptor that requires only 12 bits (max-
imum) to characterize a texture’s regularity (2 bits), direction-
ality bits , and coarseness bits . A texture may have
more than one dominant direction and associated scale. For this
reason, the specification allows a maximum of two different di-
rections and coarseness values.

The regularity of a texture is graded on a scale of 0 to 3, with 0
indicating an irregular or random texture. A value of 3 indicates
a periodic pattern with well-defined directionality and coarse-
ness values. There is some flexibility (or implied ambiguity) in
the two values in between. Having a well-defined directionality
even in the absence of a perceivable micro-pattern is considered
more regular than a pattern that lacks directionality and period-
icity [Fig. 8(b)], even if the individual micro-patterns are clearly
identified as in Fig. 8(c).

The directionality of a texture is quantized to six values,
ranging from 0 to 150 in steps of 30. The texture in Fig. 8(a)
has strong vertical and horizontal directionalities. Up to two
directions can be specified. Three bits are used to represent the
different directions. The value “0” is used to signal textures that
do not have any dominant directionality, and the remaining di-
rections are represented by values from 1 to 6. Associated with
each dominant direction is a coarseness component. Coarseness
is related to image scale or resolution. It is quantized to four
levels, with 0 indicating a fine grain texture and a “3” indicating
a coarse texture. These values are also related to the frequency
space partitioning (see Fig. 9) used in computing the HTD.

The computation of the browsing descriptor is described in
detail in [11]. The image is filtered using a bank of scale and
orientation selective band-pass filters and the filtered outputs
are then used to compute the texture browsing descriptor com-
ponents. The image filtering part is similar to the one for the
HTD (see below) and as such both these descriptors can be effi-
ciently computed. Since the descriptor semantics can be related
to human perception of the texture, manual specification of the
descriptor is also possible.

This descriptor is useful for browsing applications, and in
conjunction with the HTD can help in fast and accurate image
retrieval. In browsing, any combination of the three main
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Fig. 8. Examples of regularity component.

Fig. 9. Frequency layout for texture feature extraction.

components—regularity, directionality, and coarseness—can
be used to browse the database. For example, one can look for
textures that are very regular and oriented at 30. In similarity
retrieval, the texture browsing descriptor can be used to find a
set of candidates with similar perceptual properties and then
use the HTD to get a precise similarity match list among the
candidate images.

B. HTD

The HTD provides a quantitative characterization of texture
for similarity-based image-to-image matching. This descriptor
is computed by first filtering the image with a bank of orien-
tation and scale sensitive filters, and computing the mean and
standard deviation of the filtered outputs in the frequency do-
main. Previous extensive work on this feature descriptor has
shown that this descriptor is robust, effective, and easy to com-
pute [1], [5], [8], [10], [17]. During the MPEG-7 Core Experi-
ments, it was realized that the computational complexity of this
descriptor can be reduced significantly by computing the values
in the frequency domain rather than in the spatial domain, and
an efficient implementation using Radon transform is described
in [18].

The computation of this descriptor is as follows. The fre-
quency space is partitioned into 30 channels with equal divisions
in the angular direction (at 30intervals) and octave division in
the radial direction (five octaves), as shown in Fig. 9. In a nor-
malized frequency space W , the center frequencies
of the feature channels are spaced equally in 30in angular di-
rection such thatq , where is angular index with

. In the radial direction, the center frequen-
cies of the neighboring feature channels are spaced one octave
apart such that where is radial
index andW is the highest center frequency. The var-
ious channels are numbered as shown in Fig. 9 and the channel
index can be expressed as .

The individual feature channels are modeled using 2-D
Gabor functions. Gabor functions are modulated Gaussians.
The Fourier transform of a 2-D Gabor function in the polar
coordinates can be written as

W q
W W

S

q q

S
(14)

For the bank of filters used, the filter parameters are selected
such that the half-maximum contours of the 2-D Gaussians of
adjacent filters in the radial and angular directions touch each
other. In the angular direction,S has a constant value of

. In the radial direction,S depends on the octave
bandwidth and is written as

S (15)

The image texture energy in each of the filtered channels is then
computed. Note that this is equivalent to weighting the Fourier
transform coefficients of the image with a Gaussian centered
at the frequency channels as defined above. The deviation of
the energy is also computed. Both the energy and the energy
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Fig. 10. Computing the edge histogram descriptor.

deviation are then logarithmically scaled to obtain two numbers,
and , for the th feature channel. The HTD is then given by

(16)

The first two components of the feature vector are the mean in-
tensity and the standard deviation of the image texture, respec-
tively. The details of nonlinear scaling and quantization of these
values can be found in the current MPEG-7 visual final com-
mittee draft [1].

Similarity Matching: The distance between two HTDs is
computed as follows:

distance

(17)

The recommended normalization value is the standard de-
viation of for a given database.

Note that shifting the feature vector components corre-
sponding to a given scale value is equivalent to a rotation in
space.Rotation invariant matching[16] can be achieved by
shifting the query vector components appropriately before
matching with the database items. In patching two patternsand
, the minimum of the distances between the shiftedth pattern

vector and the th feature vector is then used as the distance
between the two patternsand . This can be written as

f distance f

wheref 30 . Then, for rotation invariant matching, distance
is calculated as

minimum of f to

The performance of this texture descriptor is evaluated on a
large texture image dataset consisting of images from the Bro-
datz album [1], aerial images [9], and stock photo images and
textures from Corel. For rotation and scale invariant matching,
additional images are created by digitally scaling and rotating
the texture images from the above datasets. The total number of
images used in the Core Experiments exceeds 10 000. On the
Brodatz data set, with experimental conditions as described in
[10], the retrieval accuracy is about 77%.

C. Edge Histogram Descriptor

The edge histogram descriptor captures the spatial distribu-
tion of edges, somewhat in the same spirit as the CLD. The dis-
tribution of edges is a good texture signature that is useful for
image to image matching even when the underlying texture is
not homogeneous. The computation of this descriptor is fairly
straightforward (see Fig. 10) . A given image is first sub-di-
vided into sub-images, and local edge histograms for each
of these sub-images is computed . Edges are broadly grouped
into five categories: vertical, horizontal, 45diagonal, 135 di-
agonal, and isotropic (nonorientation specific). Thus, each local
histogram has five bins corresponding to the above five cate-
gories. The image partitioned into 16 sub-images results in 80
bins. These bins are nonuniformly quantized using 3 bits/bin,
resulting in a descriptor of size 240 bits [1].

To compute the edge histograms, each of the 16 sub-images
is further subdivided into image blocks. The size of these image
blocks scale with the image size and is assumed to be a power of
2. The number of image blocks per sub-image is kept constant,
independent of the original image dimensions, by scaling their
size appropriately. A simple edge detector is then applied to each
of the macro-block, treating the macro-block as a pixel
image. The pixel intensities for the partitions of the image
block are computed by averaging the intensity values of the cor-
responding pixels. The edge-detector operators include four di-
rectional selective detectors and one isotropic operator (Fig. 11).
Those image blocks whose edge strengths exceed a certain min-
imum threshold are used in computing the histogram.

Thus, for an image block, we can compute five edge strengths,
one for each of the five filters from Fig. 11. If the maximum of
these edge strengths exceed a certain preset threshold, then the
corresponding image block is considered to be an edge block.
An edge block contributes to the edge histogram bins. The edge
computation method is quite simple and can be applied directly
to MPEG-2 compressed bit streams.

Each of the image blocks labeled as edge blocks contribute to
the appropriate bin of the histogram descriptor. These values are
normalized to . A nonlinear quantization of the bin values
results in a 3 bits/bin representation.

Similarity Matching: Note that there are a total of 80 bins, 3
bits/bin, in the edge histogram. One can use the 3-bit number as
an integer value directly and compute the L1 distance between
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(a) (b) (c) (d) (e)

Fig. 11. Filters for edge detection.

Fig. 12. ANMRR results for the edge histogram descriptor.

two edge histograms. A slightly better performance is obtained
if the 3-bit values are decoded using look-up tables.

An interesting variation is to compute an extended histogram
from these 80 bins [15]. The extended histogram is obtained by
grouping the image blocks (and the corresponding bins). The
extended bins are referred to as the global and semi-global his-
tograms. The global histogram is obtained by combining all the
16 image blocks. The semi-global histograms are computed by
pooling the image blocks/bins by rows (four rows), columns
(four columns) and in groups of (five groups). This results
in five bins for the global histogram and for the semi-
global histograms from the 80 local histogram bins. The total
number of bins is thus 150. A weighted L1 measure, with the
distances corresponding to the global bins given more weight
than the others, is used to compute the distance between two
edge histograms. In the evaluation, a set of about 11 000 im-
ages from the MPEG-7 collection is used. On this data set, the
ANMRR is about 0.34 using the 80-bin edge histograms and
improved to about 0.30 when the extended histograms are used.
In both cases, the bins are represented at 3 bits/bin.

The edge histogram descriptor is found to be quite effective for
representing natural images with the primary application being
image-to-image matching. The performance can be further en-
hanced by using this descriptor in conjunction with other image
features, such as color [13]. Similar to color, this descriptor can
be used in scene change detection and key frame clustering in
video. One observed limitation of this descriptor, unlike the
HTD, is that it cannot be used for object based image retrieval.

V. CONCLUSION

In this paper, we have presented the technical details of color
and texture descriptors currently in the MPEG-7 standard. The
color descriptors include two histogram-based descriptors,
the SCD and the CSD, the dominant color descriptor, and the

CLD. The histogram descriptors capture the global distribution
of color where as the dominant color descriptor represents
the dominant colors present. The CLD captures the spatial
distribution or layout of the colors in a compact representation.
While MPEG-7 standards accommodate different color spaces,
most of the color descriptors are constrained to one or a limited
number of color spaces for ensuring inter-operability.

The texture descriptors include a HTD and an edge histogram
texture descriptor. Both these descriptors support search and re-
trieval based on content descriptions. In addition, a compact tex-
ture based browsing descriptor is also supported.

All these descriptors have been rigorously tested and eval-
uated following the MPEG-7 Core Experiment procedures to
ensure their effectiveness and efficiency in a wide variety of
applications based on multimedia content description. While
MPEG-7 standardizes only the representation of these descrip-
tors, a detailed description of the recommended methods for ex-
tracting and matching the descriptors are presented in the cur-
rent visual XM document [2] that is intended to become a non-
normative part of the MPEG-7 standard as a Technical Report.

The MPEG-7 Final Committee Draft was just released at the
time of writing this paper [1]. While most of the technical work
on color and texture descriptors have been completed, there are
a few interesting technologies which are still in various stages
of evaluations. Notably, the color descriptors discussed in this
article are mainly suited for natural images and video and will
cover the needs of the bulk of applications based on content de-
scriptions. However, for synthetic images or for very specialized
domains such as bio-medical imagery, refinements of existing
descriptors and/or additional descriptors may be needed.
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