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REFERENCES 31iterative collision checker. We observed no dramatic slowdown of the planner.A challenging research goal would now be to extend the method to dynamic scenes.One �rst question is: How should a roadmap computed for a given workspace be up-dated if a few obstacles are removed or added? Answering this question would beuseful to apply our method to scenes subject to small incremental changes. Suchchanges occur in many manufacturing (e.g., assembly) cells; while most of the ge-ometry of such a cell is permanent and stationary, a few objects (e.g., �xtures) areadded or removed between any two consecutive manufacturing operations. Similarincremental changes also occur in automatic graphic animation. A second question is:How should the learning and query phase be modi�ed if some obstacles are movingalong known trajectories? An answer to this question might consist of applying ourroadmap method in the con�guration�time space of the robot [Lat91]. The roadmapwould then have to be built as a directed graph, since local paths between any twonodes must monotonically progress along the time axis, with possibly additional con-straints on their slope and curvature to re
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30In [KL94a, KL94b, O�S94] prior versions of the method have been applied to agreat variety of holonomic robots including planar and spatial articulated robots withrevolute, prismatic, and/or spherical joints, �xed or free base, and single or multiplekinematic chains. In [�Sve93, �SO94] a variation of the method (essentially one witha di�erent general local planner) was also run successfully on examples involvingnonholonomic car-like robots.Experimental results show that our method can e�ciently solve problems whichare beyond the capabilities of other existing methods. For example, for planar artic-ulated robots with many dofs, the customized implementation of Section 5 is muchmore consistent than the Randomized Path Planner (RPP) of [BL91]. Indeed, thelatter can be very fast on some di�cult problems, but it may also take prohibitivetime on some others. We have not observed such disparity with our roadmap method.Moreover, after su�cient learning (usually on the order of a few dozen seconds), theprobabilistic roadmap method answers queries considerably faster than RPP. How-ever, when the learning time is included in the planning time, RPP is faster on manyproblems, since it does not perform any substantial precomputation.An important question is how our method scales up when we consider scenes withmore complicated geometry, since the cost of collision checking can be expected toincrease. First, let us note that in 2D workspaces the e�ect is likely to be limited ifthe bitmap collision-checking technique of Section 4 is used. Indeed, once bitmapshave been precomputed, collision checking is a constant-time operation; and the costof computing bitmaps using the FFT-based technique described in [Kav93] only de-pends on the resolution (i.e., the size) of these bitmaps. However, more complicatedgeometry may require increasing bitmap resolution in order to represent geometric de-tails with desired accuracy. With 3D workspaces the situation is completely di�erent,since we can no longer use the bitmap technique. Our experiments in 3D workspacesreported in [KL94b] show that the higher cost of collision checking mainly increasesthe duration of the learning phase. Indeed, in the query phase, collision checking isneeded only to connect the start and goal con�gurations to the roadmap. The resultsin [KL94b] also show that the duration of the learning phase remains quite reason-able (on the order of minutes), but they were obtained with simple 3D geometry (forexample, the robot links were line segments). For more complicated geometries, theuse of an iterative collision checker, like the one in [Qui93], will be advantageous. Thecollision checker in [Qui93] considers sucessive approximations of the objects and itsrunning time, on the average, does not depend much on the geometric complexityof the scenes. RPP is another planner that heavily relies on collision checking. Forlong we ran RPP on geometrically simple problems; but, recently, we used it to auto-matically animate graphic 3D scenes of complex geometry [KKKL94] using the above



29TL TC TE Success Rate (%)(min) (min) (min) C1 C4 C7 C85 3.3 1.7 76.7 10.0 23.3 26.710 6.7 3.3 96.7 66.7 70.0 53.315 10 5.0 96.7 73.3 66.7 80.020 13.3 6.7 100.0 93.3 83.3 93.325 16.7 8.3 100.0 96.7 96.7 100.030 20 10 100.0 100.0 100.0 100.0Figure 12: Results with general planner for scene of Fig. 2 (with expansion).planner succeeds to connect the speci�ed con�gurations to the roadmap, over manyindependently constructed roadmaps, for di�erent learning times. In such di�cultcases, clearly, customization is desirable, if not necessary.7 ConclusionWe have described a two-phase method to solve robot motion planning problemsin static workspaces. In the learning phase, the method constructs a probabilisticroadmap as a collection of con�gurations randomly selected across free C-space. Inthe query phase, it uses this roadmap to quickly process path planning queries, eachspeci�ed by a pair of con�gurations. The learning phase includes a heuristic evaluatorto identify di�cult regions in the free C-space and increase the density of the roadmapin those regions. This feature is key to solving di�cult queries.The method is general and can be applied to virtually any type of holonomic robot.Furthermore, it can be easily customized to run more e�ciently on some family ofproblems. Customization consists of replacing general components of the method,such as the local planner, by more speci�c ones �tting better the characteristics ofthe considered scenes. In this paper we have reported on the application of the methodto planar articulated robots. We have described techniques to customize the methodto such robots and we have presented experimental results with both a general anda customized implementation of the method. The customized implementation cansolve very di�cult path planning queries involving many-dof robots in a fraction ofa second, after a learning time of a few dozen seconds. The general implementatione�ciently solves less di�cult, but still challenging problems, demonstrating the powerof our method.



28TL TC TE Success rate in Scene 1 Success rate in Scene 2(sec) (sec) (sec) (%) (%)5 3.33 1.67 50 3710 6.66 3.34 80 8715 10 5 97 9320 13.33 6.67 100 100Figure 11: Results with general planner for scenes of Fig. 9 and 10.con�gurations s and g. Then, for a �xed construction time TC and expansion time TE(hence, a �xed learning time TL), we independently create 30 roadmaps. For each ofthese roadmaps we only consider its main connected component and we test whetherthe query with con�gurations (s; g) succeeds within 2.3 seconds. In other words, wetest whether both s and g can be quickly connected to the main connected componentof the roadmap with the method described in Section 3.2. We repeat this experi-ment for a number of di�erent construction times TC and expansion times TE, withTE = TC=2). For each such pair of times we report the success rate in percent of thequery phase.The other parameters have the following �xed values, which are almost the same asin the experimentation reported in the previous section: maxdist = 0:5, eps = 0:01,maxneighbors= 30, TRB expand = 0:01, TRB query = 0:05 sec, and NRB query = 45.Again, for the interpretation of the values for maxdist and eps, note that we scaledthe two scenes in a way that the workspace obstacles just �t into the unit square.In both Figures 9 and 10 the start con�guration s is shown in dark grey, andthe goal con�guration R in white. In each �gure, several robot con�gurations alonga path solving the query are displayed using various grey levels. The results of theexperiments described above are given in Figure 11. We see that the query in scene 1is solved in all 30 cases after having learned for 20 seconds. Learning for 10 secondsthough su�ces to successfully answer the query in 80% of the cases. In scene 2 weobserve a similar behavior.These results show that the general implementation is able to e�ciently solverather complicated planning problems. However, when applied to problems involvingmore dofs, like those in the previous section, the learning times required to buildgood roadmaps are much longer. For example, experiments indicated that about 30minutes of learning are required in order to obtain roadmaps that capture well thefree C-space connectivity of the scene shown in Figure 2. Figure 12 reports someexperimental results. As in Section 5, we show the percentage of times that our
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Figure 9: Scene 1, with four-dof robot.
Figure 10: Scene 2, with �ve-dof robot.



26the roadmaps produced. Actual timings for connecting C1; : : : ; C8 to the roadmapsare also in the order of a fraction of a second and path planning between any two ofthe eight shown con�gurations takes a fraction of a second.6 Results with general implementationThe customized implementation used in the previous section solves e�ciently pathplanning problems involving planar articulated robots. In this section we wish todemonstrate that the general implementation of the planner still gives very goodresults for a variety of examples.The planner considered here is essentially an implementation of the method de-scribed in Section 3. Unlike the customized implementation, this implementationdoes not use any speci�c techniques for local path planning, collision checking, ordistance computation. Hence, as described in Section 3, the local path constructedbetween any two con�gurations is the straight line segment joining them in C-space;the distance function D is the one de�ned by Equ. (1); and collision checking is doneanalytically, using routines from the PLAGEO library [Gie93]. We report here onexperimentation conducted with articulated robots with 4 or 5 joints connected bypolygonal links. However, as noted before, the same implementation is directly ap-plicable to other holonomic robots, e.g., robots with polyhedral links moving in 3Dworkspaces.The experiments were conducted on a Silicon Graphics Indigo2 workstation withan R4400 processor running at 150 MHZ. This machine is rated on the SPECMARKSbenchmark with 96.5 SPECfp92 and 90.4 SPECint92. It is comparable to the machinewe used for the results in the previous section.We present results obtained with two representative examples. In scene 1, shownin Figure 9, we have a 4-dof robot with three revolute joints and one prismatic joint(indicated by the double arrow). Scene 2, shown in Figure 10, is a slightly moredi�cult one, with a �ve-revolute-joint robot and narrow areas in the workspace. Formost existing planners, motion planning problems in both these scenes would bechallenging ones. Still, they are considerably easier than in the scenes of Section 5,due to the relatively low number of dofs of the two robots, and the presence of onlyfew tight areas in the workspaces of the robots.The experiments conducted with these two test scenes are similar, though some-what simpler, than those in Section 5. For each scene, we consider only two \di�cult"
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Figure 6: Scene 2, with 7-revolute-joint free-base robot.TL TC TE Avg. Success Rate (%)(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C820.40 13.32 7.08 565 100.0 13.3 13.3 13.3 13.3 93.3 13.3 13.330.45 19.83 10.62 936 93.3 30.0 33.3 30.0 30.0 90.0 30.0 33.340.18 26.15 14.03 1571 100.0 60.0 60.0 60.0 60.0 100.0 60.0 60.050.20 32.63 17.57 2333 100.0 93.3 93.3 93.3 93.3 100.0 93.3 93.360.43 39.35 21.08 2850 100.0 93.3 93.3 93.3 93.3 100.0 93.3 93.370.33 45.80 24.53 3366 100.0 96.7 96.7 96.7 96.7 100.0 96.7 96.780.18 52.15 28.03 3837 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0Figure 7: Results with customized planner for scene of Fig. 6 (with expansion).TL TC TE Avg. Success Rate (%)(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C820.25 20.25 0.00 517 96.7 3.3 3.3 3.3 10.0 80.0 3.3 3.330.22 30.22 0.00 971 100.0 26.7 33.3 26.7 30.0 93.3 33.3 30.040.30 40.30 0.00 1348 100.0 33.3 33.3 33.3 33.3 100.0 33.3 33.350.06 50.05 0.02 2171 100.0 76.7 76.7 76.7 76.7 100.0 76.7 76.760.01 60.01 0.00 2632 100.0 80.0 80.0 80.0 80.0 100.0 80.0 80.070.28 70.28 0.00 3190 100.0 90.0 90.0 90.0 90.0 100.0 90.0 90.080.31 80.30 0.02 3836 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0Figure 8: Results with customized planner for scene of Fig. 6 (no expansion).



24TL TC TE Size of Connection to roadmap time (sec)(sec) (sec) (sec) Components C1 C2 C3 C4 C5 C6 C7 C820.3 13.3 7.0 902,135,22 0.02 F 1.12 F 0.23 0.45 F 0.2530.2 19.7 10.5 1607,144,12 0.00 0.02 F 0.40 F 0.55 0.00 F40.4 26.3 14.1 2389,12 0.00 0.08 0.00 0.17 0.00 0.02 0.00 0.0750.3 32.8 17.5 2879,43,15,10 0.02 0.02 0.00 0.17 0.07 0.00 0.02 0.0560.4 39.3 21.1 3251,39,34 0.03 0.02 0.00 0.02 0.02 0.02 0.02 0.1270.2 45.6 24.6 3717,50,43 0.02 0.02 0.00 0.00 0.02 0.00 0.02 0.0280.2 52.1 28.1 4128,50,47 0.02 0.02 0.02 0.15 0.02 0.02 0.02 0.07Figure 5: Timings for connecting con�gurations to the roadmap.to the roadmaps produced. A simple breadth-�rst search algorithm typically takes lessthan 0:1 second to �nd a path between two nodes of the roadmaps in our examples.Thus, path planning between any two of C1; : : : ; C8 takes only a fraction of a second.This was the case for any two con�gurations we tried in the scene of Figure 2 andnot only the eight con�gurations considered here.Figure 4 shows the percentage of successful connections to roadmaps created withno expansion. The corresponding rows of the tables in Figures 3 and 4 report resultsobtained in the same learning time. We generated 30 independent roadmaps in eachrow in Figure 4. We again show the average number of nodes in their largest com-ponent (column 4) and the success rate when trying to connect C1; : : : ; C8 to theseroadmaps. In general, the percentages of successful connections are lower in this ta-ble. The di�erence shows more clearly when the learning time is small. If we areinterested in obtaining a solution to a path planning problem as fast as possible, it isthus better to spend part of the time allocated to the learning phase on the expansionstep rather than spend it completely on the construction step. As mentioned above,the ratio TC=TE = 2 gives good results over a wide range of problems.Free-base articulated robot. We have performed the same experiments for afree-base articulated robot (see Figure 6). The robot has a total of 7 dof: 2 for itsfree base and 5 for its revolute joints. The parameter values are the same as in theprevious experiments.Figures 7 and 8 show the results obtained with and without expansion, respec-tively. Again, in almost all cases, the percentage of successful connections to theroadmaps is greater with expansion than without (for the same total learning time).After a learning phase of 70 seconds, almost all con�gurations can be connected to
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Figure 2: Scene 1, with 7-revolute-joint �xed-base robot.TL TC TE Avg. Success Rate (%)(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C820.4 13.3 7.0 975 100.0 26.7 36.7 13.3 40.0 96.7 26.7 43.330.0 19.5 10.5 1548 100.0 70.0 53.3 70.0 50.0 100.0 70.0 56.740.2 26.1 14.0 2102 100.0 80.0 76.7 80.0 80.0 100.0 80.0 83.350.1 32.5 17.5 2635 100.0 90.0 90.0 90.0 93.3 96.7 90.0 93.360.1 39.0 21.0 3147 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.070.4 45.8 24.6 3669 100.0 96.7 100.0 96.7 100.0 100.0 96.7 100.080.6 52.4 28.1 4061 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0Figure 3: Results with customized planner for scene of Fig. 2 (with expansion).TL TC TE Avg. Success Rate (%)(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C820.2 20.2 0.0 947 100.0 10.0 23.3 10.0 26.7 73.3 10.0 23.330.3 30.3 0.0 1506 100.0 46.7 46.7 46.7 46.7 93.3 46.7 46.740.3 40.3 0.0 2150 100.0 73.3 76.7 73.3 76.7 100.0 73.3 76.750.3 50.3 0.0 2740 100.0 90.0 100.0 90.0 100.0 100.0 90.0 100.060.1 60.1 0.0 3211 100.0 90.0 100.0 90.0 100.0 93.3 90.0 100.070.3 70.3 0.0 3668 100.0 96.7 100.0 96.7 100.0 100.0 96.7 100.080.2 80.2 0.0 4103 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0Figure 4: Results with customized planner for scene of Fig. 2 (no expansion).



22We present results obtained with two representative scenes shown in Figures 2(�xed-base robot) and 6 (free-base robot):Fixed-base articulated robot. Figure 2 shows eight con�gurations forming thetest set of a �xed-base articulated robot in a scene with several narrow gates.Column 1 of the table in Figure 3 shows the total time, TL, spent in the learningphase. This time is broken into TC and TE in columns 2 and 3, with TE = TC=2.The values of the other parameters of the planner are: maxdist = 0:4, eps = 0:01(for the interpretation of these two values note that the workspace is described asa unit square), maxneighbors = 30, TRB expand = 0:01 sec, TRB query = 0:05 sec,NRB query = 45.For every row of the table in Figure 3 we separately generated 30 roadmaps, eachwith the indicated learning time. The roadmaps generated for di�erent rows were alsocomputed independently, that is, no roadmap in some row was reused to construct alarger one in following row.Column 4 in Figure 3 gives the average number of nodes, over the 30 runs, inthe largest roadmap component at the end of the learning phase. Columns 5 though12 are labeled with the eight con�gurations C1; : : : ; C8 of Figure 2. They report thesuccess rate when trying to connect, in less that 2.5 seconds, the corresponding con�g-uration to each of the 30 produced roadmaps. One trial (as de�ned by the parametersmaxdist, maxneighbors, TRB query, and NRB query) was made per roadmap.The table in Figure 3 shows that after a learning time of 60 seconds or more (rows5, 6, and 7), all eight con�gurations of Figure 2 are successfully connected to thegenerated roadmaps with very few exceptions. These are all located in row 6, wherecon�gurations C3, C4 and C7 were not connected to the produced roadmap, once outof the 30 trials of that row. Such exceptions are to be expected with a randomizedtechnique.Let us also note that actual timings for the connections of C1; : : : ; C8 to theroadmaps are very small: only a fraction of a second. This is shown in Figure 5where we report the time it takes to connect the con�gurations to one of the 30roadmaps produced, after learning times of 20, 30, 40, 50, 60, 70 and 80 seconds.Failure to connect to the largest component produced in less than 2.5 seconds isdenoted by `F'. In that table we report in column 4 the size of all the componentsproduced with more than 10 nodes. It is easy to see that after a preprocessing timeof 40 seconds, there is a clear di�erence in the size of the major component and thesmaller ones. The latter contain only a small percentage of the total nodes and theirpresence does not a�ect path planning times.Path planning will succeed between any two con�gurations that can be connected



21� TC, the time to be spent in the construction step;� TE, the time to be spent in the expansion step;� maxdist, the maximal distance between nodes that the local planner may tryto connect;� eps, the constant used to discretize local paths before collision checking;� maxneighbors, the maximum number of calls of the local planner per node;� TRB expand, the duration of the computation of a random-bounce walk per-formed during the expansion step (learning phase);� NRB query, the maximum number of rbws allowed for connecting the start orgoal con�guration to the roadmap (query phase);� TRB query, the duration of the computation of each of the rbws during thequery phase.(Notice that the last two parameters determines an upper bound on the time it takesto answer a query.)For each test scene, we �rst input a set of con�gurations by hand, which we re-fer to as the test set. For a �xed TC and TE, we then independently create manydi�erent roadmaps starting with di�erent values of the random value generator. Inthe examples discussed here we only keep the largest connected component of theroadmap; other components, if any, are simply discarded. We then try to connectthe same con�guration to each of these roadmaps and we record the percentage oftimes our planner succeeds to make a connection in a prespeci�ed amount of time (2.5seconds). In this way, we believe that we present a quite realistic characterizationof the performance of our planner. In particular, we ensure that the results do notre
ect just a lucky run, or a bad one. We independently repeat the same experimentfor a number of di�erent times TC and TE. For the other parameters described above,we choose �xed values throughout the experiments based on some preliminary experi-mental results. Notice that it is important to choose the con�gurations in the test setmanually. For obvious reasons, a random generation similar to the one used duringthe learning phase tends to produce con�gurations that are very easily connected tothe roadmap. Instead, proceeding manually allows us to select \interesting" con�gu-rations, for example con�gurations where the robot lies in narrow passages betweenworkspace obstacles. It is unlikely that the random generator of the learning phaseproduced many such con�gurations.



20Clearly, this technique is not yet practical for 3D workspaces, since it requires thegeneration of 6D bitmaps.As mentioned above, there are many other ways of adjusting our general path plan-ning method to a speci�c robot. For example, when placed in cluttered workspaces,robots of the type considered in this section yield C-spaces in which collision-free con-�gurations form a tiny portion (typically a fraction of 1%) of the total space. Hence,a small ratio of the con�gurations which are randomly generated in the learning phaseare collision-free. Most generated con�gurations are rejected by the collision-checkingtest. Several optimizations can be applied in this step. For example, we can draw thecon�guration coordinates in sequence from the base to the endpoint of the robot, andcheck a link for collision as soon as its location gets determined in order to discardcon�gurations outside free C-space as early as possible.However, too much speci�c tuning may not always be desirable, since it ultimatelyrequires frequent changes in the implemented planner. At some point the gains ine�ciency become too small and are no longer worth the burden of making the speci�cchanges and keeping track of them.5 Results with customized implementationIn this section we consider an implementation of the general method presented inSection 3, in which the local planner, the collision checker, and the distance func-tion have been replaced by the speci�c ones described in Section 4. Actually to beprecise, while collision checking with obstacles is done using the bitmap technique,self-collisions are detected analytically.The planner is implemented in C and for the experiments reported here we useda DEC Alpha workstation (Model Flamingo). This machine is rated on the SPEC-MARKS benchmark with 126.0 SPECfp92, 74.3 SPECint92 and is running underDEC OSF/1.We have tested our planner on a number of test scenes. Each such scene consistsof a 2D workspace containing polygonal obstacles and a planar articulated robotwhose links are line segments (see Figures 2 and 6). By no means does this re
ect alimitation of the method. In particular, the speci�c local planner and collision checkerof Section 4 apply as well to robots made of polygonal links (though several bitmapsmay then be required). However, modeling links by line segments facilitates quickchanges in the description of the robot and makes the graphic display of paths veryeasy.The parameters given to our planner, which we consider in this section, are:



19at con�guration a. We de�ne D by:(a; b) 2 C � C 7! D(a; b) = 0@q+1Xi=1 kJi(a)� Ji(b)k21A1=2 ;where kJi(x) � Ji(y)k is the Euclidean distance between Ji(a) and Ji(b). When therobot has a �xed base, the �rst term of the above sum is zero. This function is abetter approximation of the area swept by the robot along the local paths computedby the speci�c local planner than the general distance function de�ned by Equ. (1).Collision checking. The 2D workspace allows for a very fast collision checkingtechnique. In this technique each link of the robot is regarded as a distinct robotwith two dofs of translation and one dof of rotation. A bitmap representing the 3Dcon�guration space of this robot is precomputed, with the \0"'s describing the freesubset of this space and the \1"'s describing the subset where the link collides withan obstacle. When a con�guration is checked for collision, the 3D con�guration ofeach link is computed and tested against its C-space bitmap, which is a constant-time operation. The con�guration of a link is particularly fast to compute when thespeci�c local planner is used, since this planner directly provides the coordinates oftwo points in the link. Note that we need not always create one bitmap for each linkof the robot. For example, when all the links are line segments (as in Figure 1), asingle bitmap can be computed, for the shortest link, by modeling the longer links astwo (or more) short line segments. However, collision checking for a long link thenrequires multiple access to the bitmap.The 3D bitmap for one link can be computed as a collection of 2D bitmaps, eachcorresponding to a �xed orientation of the link. If the link and the obstacles aremodeled as collections of possibly overlapping convex polygons, the construction ofa 2D bitmap can be done as follows [LRDG90]: First use the algorithm in [LP83] toproduce the vertices of the obstacles in the link's C-space. (This algorithm takes lineartime in the number of vertices of the objects.) Then draw and �ll the obstacles into the2D bitmap. (On many workstations, this second operation can be done very quicklyusing raster-scan hardware originally designed to e�ciently display �lled polygons ongraphic terminals.) Each 2D bitmap may also be computed using the FFT-basedmethod described in [Kav93]), whose complexity depends only on the size of thebitmap. This FFT method is also advantageous when the obstacles are originallyinput as bitmaps. In any case, experiments show that computing a 3D bitmap with asize on the order of 128� 128� 128 takes a few seconds. The computation of the 3Dbitmap(s) needed for collision checking is performed only once, prior to the learningphase.



18Local path planning. Let a and b be any two given con�gurations that we wish toconnect with the local planner. The local planner we use constructs a path as follows:It translates at constant relative velocity all the joints with an even index, i.e., allJ2�i's, along the straight lines in the workspace that connect their positions at con�g-uration a to their positions at con�guration b. During this motion the planner adjuststhe position of every other joint J2�i+1 using the straightforward inverse kinematicequations of this point relative to J2�i and J2�(i+1). Thus, the J2�i+1's \follow" themotion led by the J2�i's. If q is odd, the position of Jq is not determined by the aboverule; it is then computed by rotating joint Jq at constant revolute velocity relativeto the linear velocity of point Jq. Recall from Subsection 3.1.1 that a local path isdiscretized into a sequence of con�gurations for collision checking. When our speci�ctechnique is used, we must also verify that the coordinates of each such con�gurationare within joint limits. Thus, the motion is aborted if either a collision occurs, or ajoint moves beyond one of its limits, or a point J2�i+1 cannot follow the motion led bythe J1�i's. We have observed that in cases when the above motion does not manageto connect con�gurations a and b, it nevertheless brings the robot to a con�gurationb0 very close to b. It then pays o� to try to connect b0 and b with a straight line inC-space and only after this fails to declare failure of the local planner to connect aand b. In the following we will refer to the above planner as the speci�c local planner.The workspace region swept out by the robot along a local path computed by thespeci�c local planner between two con�gurations a and b is typically smaller than forthe path joining a and b by a straight line segment in con�guration space, which iscomputed by the general local planner described in Subsection 3.1.1. Hence, the localpaths generated by the speci�c planner are more likely to be collision-free than thosegenerated by the general planner. Also, collision checking is less expensive since, fora given eps, the discretization of the local path yields less con�gurations. On theother hand, the speci�c planner, though still very fast, is not as fast as the generalplanner. Indeed, checking that the dofs remain within joint limits along the localpath requires inverse kinematic computation to determine con�guration coordinatesalong the path. Furthermore, this check is not as rigorous, since it is performed onlyat a �nite number of con�gurations. Nevertheless, our experience has been that theoverall planning method performs signi�cantly better on examples involving many-dof planar articulated robots, when the speci�c local planner is used instead of thegeneral one.Distance computation. In association with the above local planning techniquewe propose the following distance function D in con�guration space: Let Ji(a), i =1; : : : ; q + 1 denote the position of the point Ji in the workspace, when the robot is
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J 1

J 2

J 3

J 4

J 5

J6Figure 1: A planar articulated robot.then J1 can translate freely in the plane and the robot is said to have a free base.The point Jq+1 (J6 in the �gure) is called the endpoint of the robot; actually, it is anypoint on the last link, preferably the one located the furthest away from Jq. Similarly,if the robot's base is free, J1 can be any point on L1, preferably the one located thefurthest away from J2. Each revolute joint Ji (i = 1 or 2 to q) has de�ned certaininternal joint limits, denoted by lowi and upi, with lowi < upi, which constrain therange of the possible orientations that Li can take relative to Li�1. If the robot'sbase is free, the translation of J1 is bounded along the x and y axes of the Cartesiancoordinate system embedded in the workspace by lowx and upx, and lowy and upy,respectively.We represent the C-space of such a q-link planar articulated robot by:[low1; up1]� [low2; up2]� : : :� [lowk; upk];if its base is �xed, and by:[lowx; upx]� [lowy; upy]� [0; 2�]� [low2; up2]� [low3; up3]� : : :� [lowk; upk];if its base is free. We call a self-collision con�guration any con�guration where twonon-adjacent links of the robot intersect each other. We may, or may not allow suchcon�gurations. If we do not allow them, as is the case in all the examples consideredin this paper, the free C-space is not only constrained by the obstacles, but alsoby the set of self-collision con�gurations. We assume that the joint limits preventself-collisions between any two adjacent links.We now discuss speci�c techniques for local path planning, distance computation,and collision checking that apply well to the family of robots de�ned above. The sametechniques can also be applied, possibly with minor adaptations, to other types ofarticulated robots, e.g., robots with prismatic joints and/or with multiple kinematicchains (see [KL94a]) and articulated robots in 3D workspace (see [KL94b]).



16are reconstructed. This makes the planning stage even faster. For example, thegeneral local planner of Subsection 3.1.1 aborts when a collision is detected. Duringplanning time, intermediate con�gurations on a path induced by this planner have tobe recomputed, since they have not been stored, but we do not need to check each ofthem for collision. The situation is di�erent if the local planner does not abort whena collision is detected but performs a certain action. Then, in the planning stagecollision must be checked along the recomputed path so that the same action can berepeated just after the collision is detected.If path planning queries fail frequently, this is an indication that the roadmapmay not adequately capture the connectivity of the free C-space. Hence, more timeshould be spent on the learning phase, i.e., TL should be increased. However, it isnot necessary to construct a new roadmap from scratch. Since the learning phase isincremental, we can simply extend the current roadmap by resuming the construc-tion step algorithm and/or the expansion step algorithm, starting with the currentroadmap graph, thus interweaving the learning and the query phases.4 Application to planar articulated robotsThis section and the next two describe the application of our planning method to pla-nar articulated robots with �xed or free bases. In this section we present techniquesspeci�c to these robots that can be substituted for more general techniques in theplanning method in order to increase its e�ciency. The purpose of this presentationis to illustrate the easiness with which the general method for holonomic robots canbe engineered to better suit the needs of a particular application. Many other speci�ctunings, not discussed here, are possible. In Section 5 we will discuss experimentswith an implementation of the method that embeds the speci�c techniques describedbelow, while in Section 6 we will present experimental results with a general imple-mentation of the method to demonstrate that the method remains quite powerful,even without speci�c components. In the rest of the paper we will refer to these twoimplementations as the customized implementation and the general implementation,respectively.To make the following presentation shorter, we consider planar articulated robotswith revolute joints only, in arbitrary number. Figure 1 illustrates such a robot inwhich the links are line segments. The links, which may actually be any polygons,are denoted by L1 through Lq (in the �gure, q = 5). Points J2 through Jq designaterevolute joints. Point J1 denotes the base of the robot; it may, or may not, be �xedrelative to the workspace. If it is �xed, then J1 is also a revolute joint. If it is not,



3.2 The query phase 153.2 The query phaseDuring the query phase, paths are to be found between arbitrary input start andgoal con�gurations, using the roadmap constructed in the learning phase. Assumefor the moment that the free C-space is connected and that the roadmap consists of asingle connected component R. A query now consists of the following: Given a startcon�guration s and goal con�guration g, we try to connect s and g to some two nodesof R, respectively ~s and ~g, with feasible paths Ps and Pg. If this fails, the query fails.Otherwise, we compute a path P in R connecting ~s to ~g. A feasible path from s tog is eventually constructed by concatenating Ps, the local paths recomputed by thelocal planner when applied to pairs of consecutive nodes in P , and Pg reversed. Ifone wishes, this path may be improved by running a smoothing algorithm on it.The main question is how to compute the paths Ps and Pg. The queries shouldpreferably terminate quasi-instantaneously, so no expensive algorithm is desired here.Our strategy for connecting s to R is to consider the nodes in R in order of increasingdistance from s (according to D) and try to connect s to each of them with the localplanner, until one connection succeeds. We ignore nodes located further than maxdistaway from s, because we consider that the chance of success of the local planner is toolow. If all connection attempts fail, we perform one or more random-bounce walks,as described in Subsection 3.1.2. But, instead of adding the node at the end of eachsuch rbw to the roadmap, we now try to connect it to R with the local planner. Assoon as s is successfully connected to R, we apply the same procedure to connect gto R.In general, however, the roadmap may consist of several connected componentsRi,i = 1; 2; : : : ; p. This is usually the case when the free C-space is itself not connected.It may also happen when free C-space is connected, for instance if the roadmap is notdense enough. If the roadmap contains several components, we �rst try to connectboth the start and goal con�gurations s and g to two nodes in the same component.To do this, we consider the components of the roadmap in order of increasing distancefrom fs; gg; for each component we proceed as we did above with the single componentR. We de�ne the distance between fs; gg and a component Ri as follows: Let thedistance D(c;Ri) between a con�guration c and Ri be the minimum of D(c; n) for alln 2 Ri. The distance between fs; gg and Ri is the maximumofD(s;Ri) andD(g;Ri).If the connection of s and g to some component Ri succeeds, a path is constructed asin the single-component case. The method returns failure whenever it fails to connectboth s and g to the same roadmap component. Since in most examples the roadmapconsists of rather few components, failure is rapidly detected.Finally, we should note that certain kinds of local planners render unnecessary therecomputation of collisions along the network edges when the corresponding paths



3.1 The learning phase 14add up to one, i.e.: w(c) = rf(c)Pa2N rf (a) :Once we have decided which nodes to expand, we have to choose how to performthis expansion. We have done experiments with di�erent techniques and we have�nally selected a technique which makes use of what we call random-bounce walks(or rbw). For holonomic robots, an rbw consists of repeatedly picking at random adirection of motion in C-space and moving in this direction until an obstacle is hit.When a collision occurs, a new random direction is chosen. And so on. To expand anode c, we compute one rbw starting from c. We limit the computation time, i.e., theduration of the rbw, to a short amount (say, 0.01 seconds). The �nal con�gurationn reached by the rbw and the edge (c; n) are included into R. Moreover, the pathcomputed between c and n is explicitly stored, since it was generated by a non-deterministic technique. We also record the fact that n belongs to the same connectedcomponent as c. Then we try to connect n to the other connected components of thenetwork in the same way as in the construction step. The expansion step thus nevercreates new components in R. At worst, it fails reducing the number of components.The weights w(c) are computed only once at the beginning of the expansion stepand are not modi�ed when new nodes are added to R. Hence, the nodes to expandare all selected from the set of nodes generated during the construction step. Alterna-tively, we could update the weights whenever the expansion step inserts a new nodeinto N . We believe that the potential gain of recomputing weights is largely o�set bythe time it requires.Once the expansion step is over, the remaining small components of R, if any,are discarded. Here, a component is considered small if its number of nodes is lessthan some mincomponent percent (typically 0.01%) of the total number of nodes inN . The graph R after discarding the small components represents the roadmap thatwill be used during the query phase. It may contain one or several components.Let TL be the time allocated to the learning phase, i.e. the computation of theroadmap. Clearly, the range of adequate values for TL depends on the consideredscene, so that an adequate value should be determined experimentally for each newscene. Another important parameter is how TL is divided between the constructionstep (time TC) and the expansion step (time TE). Our experience is that a 2:1 ratio,i.e, TC = 2TL=3 and TE = TL=3, gives good results over a large range of problems.



3.1 The learning phase 13of roadmap con�gurations in regions of Cf that are believed to be di�cult. Since the\gaps" between components of the graph R are typically located in these regions, theconnectivity of R is likely to increase.We propose the following probabilistic scheme for the expansion step. With eachnode c in N we associate a positive weight w(c) that is a heuristic measure of the\di�culty" of the region around c. Thus, w(c) is large whenever c is considered tobe in a di�cult region. We normalize w so that all weights together (for all nodes inN) add up to one. Then, repeatedly, we select a node c from N with probability:Pr(c is selected) = w(c);and we expand this node.It now remains to de�ne the heuristic weight w(c). One possibility is to count thenumber of nodes of N lying within some prede�ned distance of c. If this number islow, the obstacle region probably occupies a large subset of c's neighborhood. Thissuggests that w(c) could be de�ned inversely proportional to the number of nodeswithin some distance of c. Another possibility is to look at the distance dc fromc to the nearest connected component not containing c. If this distance is small,then c lies in a region where two components failed to connect, which indicates thatthis region might be a di�cult one (it may also be actually obstructed). This idealeads to de�ning w(c) inversely proportional to dc. Alternatively, rather than usingthe structure of R to identify di�cult regions, we could de�ne w(c) according tothe behavior of the local planner. For example, if the local planner often failed toconnect c to other nodes, this is also an indication that c lies in a di�cult region.Which particular heuristic function should be used depends to some extent on theinput scene. Nevertheless, the following function, which is based on the latter idea,has produced good results whenever we tried it:� During the construction step, for each new node c, compute the failure ratiorf (c) de�ned by: rf (c) = f(c)n(c) + 1 ;where n(c) is total number of times the local planner tried to connect c toanother node and f(c) is the number of times it failed. (Note: Whenever thelocal planner fails to connect two nodes c and n, this failure is counted in boththe failure ratios of c and n. In this way, the con�gurations that are included inN at the very beginning of the construction step get meaningful failure ratios.)� At the beginning of the expansion step, for every node c in N compute w(c)proportional to the failure ratio, but scaled appropriately so that all weights



3.1 The learning phase 12The distance function. The function D is used to both construct and sort theset Nc of candidate neighbors of each new node c. It should be de�ned so that, forany pair (c; n) of con�gurations, D(c; n) re
ects the chance that the local planner willfail to compute a feasible path between these con�gurations. One possibility is thusto de�ne D(c; n) as a measure (area/volume) of the workspace region swept by therobot when it moves along the path computed by the local planner between c andn in the absence of obstacles. Thus, each local planner would automatically induceits own speci�c distance function. In general, though, exact computation of sweptareas/volumes tends to be rather time-consuming. Instead, rough but inexpensive-to-evaluate approximations of the swept-region measure or functions that vary approxi-mately like this measure give better practical results. For example, when the generallocal planner described above is used to connect c and n, D(c; n) may be de�ned asthe longest Euclidean distance that any point on the robot travels in workspace, whenthe robot moves along the line segment joining c and n in con�guration space, i.e.:D(c; n) = maxx2robot kx(n)� x(c)k; (1)where x denotes a point on the robot, x(c) is the position of x in the workspace whenthe robot is at con�guration c, and kx(n)� x(c)k is the Euclidean distance betweenx(c) and x(n).3.1.2 The expansion stepIf the number of nodes generated during the construction step is large enough, theset N gives a fairly uniform covering of the free C-space. In easy scenes R is then wellconnected. But in more constrained ones where free C-space is actually connected,R often consists of a few large components and several small ones. It therefore doesnot e�ectively capture the connectivity of Cf . More generally, the number of largecomponents in R usually exceeds the number of connected components in Cf ; and Ralso contains an even larger number of very small components. We have frequentlyobserved this situation in our experiments.The expansion step is intended to improve the connectivity of the graph R gen-erated by the construction step. Typically, if the graph is disconnected in a placewhere Cf is not, this place corresponds to some narrow, hence di�cult region of thefree C-space. The idea underlying the expansion step is to select a number of nodesfrom N which are likely to lie in such regions and to \expand" them. By expanding acon�guration c, we mean selecting a new free con�guration in the neighborhood of c,adding this con�guration to N , and trying to connect it to other nodes of N , in thesame way as in the construction step. So, the expansion step increases the density



3.1 The learning phase 11constant).2 Then, for each con�guration ci, test whether the robot, when positionedat ci and \grown" by eps, is collision-free, using the collision checker discussed above.If none of the m con�gurations yield collision, conclude that the path is collision-free.Since eps is constant, the computation of the robot bodies grown by eps is done onlyonce. In the following we will refer to this local planner as the general local planner.The node neighbors. Another important choice to be made is that of the can-didate neighbors of a node c. The de�nition of the set Nc considerably a�ects theperformance of the construction step because, together, the executions of the localplanner form the single most time-consuming operation at this step.We must thus prevent executions of the local planner that do not lead to e�ectivelyextending the knowledge stored in the roadmap. First, as mentioned before, we do nottry to connect con�gurations that are already in the same connected component of theroadmap. Second, we try to avoid calls of the local planner that are likely to returnfailure, by submitting only pairs of con�gurations whose relative distance (accordingto the distance function D) is smaller than some constant threshold maxdist. Thus:Nc � f~c 2 N jD(c; ~c) � maxdistg:This still leaves several possibilities for the actual de�nition of Nc. We have doneexperiments with di�erent de�nitions and the following one gives good results over awide range of problems. We consider as candidate neighbors of c all nodes in N withindistance maxdist of c. That is, according to the algorithm outline given above, wetry to connect c to all nodes in the neighborhood of c de�ned by maxdist, in order ofincreasing distance from c; but we skip those nodes which are in the same connectedcomponent c at the time the connection is to be tried. By considering elements ofNc in this order we expect to maximize the chances of quickly connecting c to othercon�gurations and, consequently, reduce the number of calls to the local planner(since every successful connection results in merging two connected components intoone).In our experiments we found useful to bound the size of the set Nc by someconstant maxneighbors (typically on the order of 30). This additional criterion guar-antees that, in the worst case, the running time of each iteration of the main loop ofthe construction step algorithm is independent of the current size of R. Thus, theconstruction step takes linear time in the size of the graph it constructs.2Throughout this paper symbols in teletyped characters are used to denote parameters of theplanning method.



3.1 The learning phase 10If a non-deterministic planner was used instead, local paths would simply have tobe stored in the roadmap. The roadmap would require more space, but this wouldnot be a major problem.Concerning how fast the local planner should be, there is clearly a tradeo� betweenthe time spent in each individual call of this planner and the number of calls. If apowerful local planner was used, it would often succeed in �nding a path when oneexists. Hence, relatively few nodes would be required to build a roadmap capturingthe connectivity of the free C-space su�ciently well to reliably answer path planningqueries. Such a local planner would probably be rather slow, but this could besomewhat compensated by the small number of calls needed. On the other hand, avery fast planner is likely to be less successful. It will require more con�gurationsto be included in the roadmap; so, it will be called more often, but each call will becheaper.The choice of the local planner also a�ects the query phase. The purpose ofhaving a learning phase is to make it possible to answer path planning queries quasi-instantaneously. It is thus important to be able to connect any given start and goalcon�gurations to the roadmap, or to detect that no such connection is possible, veryquickly. This requires that the roadmap be dense enough, so that it always containsa few nodes (at least one) to which it is easy to connect each of the start and goalcon�gurations. It thus seems preferable to use a very fast local planner, even if itis not too powerful, and build large roadmaps with con�gurations widely distributedover free C-space. We actually tried several local planners, some very fast, someslower but more powerful, and our experimental observations clearly con�rmed thisconclusion (e.g., see [Mas92, �Sve93]).Choosing a very fast local planner for the learning phase has two other advantages.First, the same local planner can then be used during the query phase to connect thestart and goal con�gurations to the roadmap. Second, local paths do not have to bememorized in the roadmap.A quite general such local planner, which is applicable to all holonomic robots,connects any two given con�gurations by a straight line segment in con�gurationspace and checks this line segment for collision and joint limits (if any). Verifyingthat a straight line segment remains within joint limits is straightforward. On theother hand, collision checking can be done as follows [BL91]: First, discretize the linesegment (more generally, any path generated by the local planner) into a number ofcon�gurations c1; : : : ; cm, such that for each pair of consecutive con�gurations (ci; ci+1)no point on the robot, when positioned at con�guration ci, lies further than some epsaway from its position when the robot is at con�guration ci+1 (eps is an input positive



3.1 The learning phase 9a pseudo-metric in C. (We only require that D be symmetrical and non-degenerate.)The construction step algorithm can now be outlined as follows:(1) N  ;(2) E  ;(3) loop(4) c a randomly chosen free con�guration(5) Nc  a set of candidate neighbors of c chosen from N(6) N  N [ fcg(7) forall n 2 Nc, in order of increasing D(c; n) do(8) if :same connected component(c; n) ^�(c; n) then(9) E  E [ f(c; n)g(10) update R's connected componentsThis outline leaves a number of components unspeci�ed. Indeed, we still mustde�ne how random con�gurations are created in (4), propose a local planner for (8),clarify the notion of a candidate neighbor in (5), and choose the distance function Dused in (7).Creation of random con�gurations. The nodes of R should constitute a ratheruniform random sampling of Cf . Every such con�guration is obtained by drawingeach of its coordinates from the interval of values of the corresponding dof usingthe uniform probability distribution over this interval. The obtained con�guration ischecked for collision. If it is collision-free, it is added to N ; otherwise, it is discarded.Collision checking requires testing if any part of the robot intersects an obstacleand if two distinct bodies of the robot intersect each other. It can be done using avariety of existing general techniques. In the general implementation considered inSection 6 the test is performed analytically using optimized routines from the PLA-GEO library [Gie93]. Alternatively, we could use an iterative collision checker, likethe one described in [Qui93], which automatically generates successive approxima-tions of the objects involved in the collision test. In 2D workspaces, we may use afaster, but more speci�c collision checker (see Section 4).The local planner. The local planner should be both deterministic and very fast.These requirements are not strict, however.



3.1 The learning phase 8few nodes. The second step is aimed at further improving the connectivity of thisgraph. It selects nodes of R which, according to some heuristic evaluator, lie in dif-�cult regions of C-space and expand the graph around these nodes by generatingadditional nodes in their neighborhoods. Hence, the covering of free C-space by the�nal roadmap is not uniform, but depends on the local intricacy of that space.3.1.1 The construction stepInitially the graph R = (N;E) is empty, i.e., N = E = ;. Then, repeatedly, arandom free con�guration is generated and added to N . For every such new node c,we select a number of nodes from the current N and we try to connect c to each ofthem using the local planner. Whenever this planner succeeds to compute a feasiblepath between c and a selected node n, the edge (c; n) is added to E. The actual localpath is not memorized.The selection of the nodes to which we try to connect c is done as follows: First,a set Nc of candidate neighbors is chosen from N . This set is made of nodes withina certain distance of c, for some metric D. Then we pick nodes from Nc in order ofincreasing distance from c. We try to connect c to each of the selected nodes if it isnot already graph-connected to c. Hence, no cycles can be created and the resultinggraph is a forest, i.e., a collection of trees. Since a query would never succeed thanksto an edge that is part of a cycle, it is indeed sensible not to consume time and spacecomputing and storing such an edge. However, in some cases, the absence of cyclesmay lead the query phase to construct unnecessary long paths. This drawback caneasily be eliminated by applying smoothing techniques to either the roadmap duringthe learning phase, or the particular paths constructed by the query phase, or both.Even if the roadmap contained cycles, such smoothing operations would eventuallyproduce better paths.Whenever the local planner succeeds to �nd a path between two nodes, the con-nected components of R are dynamically updated. Therefore, no graph search isrequired for deciding whether a node picked from Nc is already connected to c, ornot.To make our presentation more precise, let:� � be a symmetrical function Cf �Cf ! f0; 1g, which returns whether the localplanner can compute a feasible path between the two free con�gurations givenas arguments;� D be a function C � C ! R+ [ f0g, called the distance function, de�ning



7Finally, it should be noted that another planner which bares similarities with ourapproach, but was developed independently of our two teams, is proposed in [HST94].3 The general methodWe now describe our path planning method in general terms for a holonomic robotwithout focusing on any speci�c type of robot. During the learning phase a datastructure called the roadmap is constructed in a probabilistic way for a given scene,i.e., a given robot and a given workspace. In the query phase, the roadmap is usedto solve individual path planning problems in this scene. Each problem is speci�edby a start con�guration and a goal con�guration of the robot.The roadmap is constructed as an undirected graph R = (N;E). The nodesin N are randomly generated free con�gurations of the robot and the edges in Ecorrespond to (simple) paths; an edge (a; b) corresponds to a feasible path connectingthe con�gurations a and b. These paths, which we refer to as local paths, are computedby an extremely fast, though not very powerful planner, called the local planner. Thelocal paths are not explicitly stored in the roadmap, since recomputing them is verycheap. This saves considerable space, but requires the local planner to succeed andfail deterministically. We assume here that the learning phase is entirely performedbefore any path planning query is processed. However, as we already noted, thelearning and query phases could also be interwoven.In the query phase, given a start con�guration s and a goal con�guration g, themethod �rst tries to connect s and g to some two nodes ~s and ~g in N . If successful, itthen searches R for a sequence of edges in E connecting ~s to ~g. Finally, it transformsthis sequence into a feasible path for the robot by recomputing the correspondinglocal paths and concatenating them.In the following, we let C denote the robot's C-space and Cf its free subset (alsocalled the free C-space).3.1 The learning phaseThe learning phase consists of two successive steps, which we refer to as the construc-tion and the expansion step. The objective of the former is to obtain a reasonablyconnected graph, with enough vertices to provide a rather uniform covering of freeC-space and make sure that most \di�cult" regions in this space contain at least a



6too short, the computed roadmap may not represent the connectivity of free C-spacewell. Actually, in our planner, the roadmap is never guaranteed to fully represent freeC-space connectivity, though if we let our techniques run long enough it eventuallywill (but we don't know how long is enough). However, while building the roadmap,our method heuristically identi�es \di�cult" regions in free C-space and generatesadditional con�gurations in those regions to increase network connectivity. There-fore, the �nal distribution of con�gurations in the roadmap is not uniform across freeC-space; it is denser in regions considered di�cult by the heuristic function. Thisfeature helps to construct roadmaps of reasonable size that represent free C-spaceconnectivity well. In particular, it allows our implemented planner to e�ciently solvetricky problems requiring choices among several narrow passages, i.e., the kind ofproblems that RPP tackles poorly.Note also that, like most practical methods for many-dof robots (one exception isthe method in [FT89]), RPP is a one-shot method, i.e., it does not precompute anyknowledge of the free C-space that is transferred from one run to another. Conse-quently, on problems that both RPP and our method solve well, the latter is usuallymuch faster, once it has constructed a good roadmap. But, if the learning time isincluded in the duration of the path planning process (which should be the case when-ever planning is done only once in a given workspace), there are many problems forwhich RPP is faster.The authors of this paper are from two di�erent teams and the work presentedhere builds upon previous work they did separately. A single-shot random plannerwas described in [Ove92] and was subsequently expanded into a learning approachin [O�S94]. In these papers the emphasis was on robots with a rather low numberof dofs. Similar techniques have been applied both to car-like robots that can moveforward and backward (symmetrical nonholonomic robots) and car-like robots thatcan only move forward [�Sve93, �SO94]. Independently, a preprocessing scheme similarto the learning phase was introduced in [KL93] for planning the paths of many-dofrobots. This scheme also builds a probabilistic roadmap in free C-space, but focuseson the case of many-dof robots. The need to expand the roadmap in \di�cult" regionsof C-space was noted there and addressed with simple techniques. Better expansiontechniques were introduced in [KL94a, KL94b]. The present paper combines the ideasof these previous papers and extends them into a more powerful and faster planner.Since it only presents a limited subset of the experimental results we have obtainedwith our method, the interested reader is encouraged to look into our previous papersfor additional results, in particular results involving other types of robots. Thoughcomputation times reported in these papers were obtained with previous versions ofour method, their orders of magnitude remain meaningful.



5larger.- Techniques for both computing potential functions and escaping local minima inhigh-dimensional C-spaces are presented in [BL91, BLL92]. The Randomized PathPlanner (RPP) described in [BL91] escapes local minima by executing random walks.It has been successfully experimented on di�cult problems involving robots with 3to 31 dofs. It has also been used in practice with good results to plan motions forperforming riveting operations on plane fuselages [GMKL92]. Recently, RPP hasbeen embedded in a larger \manipulation planner" to automatically animate graphicscenes involving human �gures modeled with 62 dofs [KKKL94]. However, severalexamples have also been identi�ed where RPP behaves poorly [CG93, ZG93]. In theseexamples, RPP falls into local minima whose basins of attraction are mostly boundedby obstacles, with only narrow passages to escape. The probability that any randomwalk �nds its way through such a passage is almost zero. In fact, once one knowshow RPP computes the potential �eld, it is not too di�cult to create such examples.One way to prevent this from happening is to let RPP randomly use several potentialfunctions, but this solution is rather time consuming. In [BF94] a very promisingmethod based variational dynamic programming is presented and that method cantackle problems of similar complexity to the problems solved by RPP.Other interesting lines of work include the following: In [GG92, GZ94] a sequen-tial framework with backtracking is proposed for serial manipulators and in [CH92] amotion planner with performance proportional to task di�culty is developed for arbi-trary many-dof robots operating in cluttered environments. The planner in [Kon91]�nds paths for six-dof manipulators using heuristic search techniques that limit thepart of the C-space that is explored and the planner in [ATBM92] utilizes genetic al-gorithms to help search for a path in high dimensional C-spaces. Parallel processingtechniques are investigated in [CG93, LPO91].The planning method presented in this paper di�ers signi�cantly from the methodsreferenced above, which are for the most part based on potential �eld or cell decom-position approaches. Instead, our method applies a roadmap approach [Lat91], thatis, it constructs a network of paths in free C-space. Previous roadmap methods in-clude the visibility graph [LPW79], Voronoi diagram [OY82], and silhouette [Can88]methods. All these three methods compute in a single shot a roadmap that com-pletely represents the connectivity of the free C-space. But the visibility graph andVoronoi diagram methods are limited to low-dimensional C-spaces. In theory thesilhouette method applies to C-spaces of any dimension, but its complexity makesit little practical. In contrast, our method builds a roadmap incrementally usingprobabilistic techniques. These techniques apply to C-spaces of any dimension andproduce a roadmap in any amount of time allocated to them. Of course, if this time is



42 Relation to previous workPath planning for robots in known and static workspaces has been studied exten-sively over the last two decades [Lat91]. Recently there has been renewed interestin developing heuristic, but practical path planners. For few-dof robots, many suchplanners have been designed and some are extremely fast (e.g., [BLL92, LRDG90]).Considerable attention is now directed toward the creation of e�cient heuristic plan-ners for many-dof robots. Indeed, while such robots are becoming increasingly usefulin industrial applications, complete methods in that case have overwhelming com-plexity. New emerging applications also motivate that trend, e.g., computer graphicanimation, where motion planning can drastically reduce the amount of data inputby human animators, and molecular biology, where motion planning can be used tocompute motions of molecules (modeled as spatial linkages with many dofs) dockingagainst other molecules.The complexity of complete path planning methods in high-dimensional con�gu-ration spaces has led researchers to seek heuristic methods that embed weaker notionsof completeness (e.g., probabilistic completeness) and/or can be partially adapted tospeci�c problem domains in order to boost performance in those domains.In recent years, some of the most impressive results were obtained using potential�eld planning methods. Such methods are indeed attractive, since the main heuristicfunction they use to guide the search for a path, the potential �eld, can easily beadapted to the speci�c problem to be solved, in particular the scene and the goalcon�guration. Two main lines of research are particularly noteworthy:- A method using a \dynamic" potential �eld is proposed in [FT87] for planningthe paths of robots with many dofs. The potential function depends not only on thedistance between the robot and the obstacles, but also on the rate of variation of thisdistance along the current direction of motion of the robot. The method can be veryfast on rather simple examples, but it may get stuck at local minima of the potentialfunction on more di�cult ones. It was used to compute paths of an 8-dof manipulatoramong vertical pipes in a nuclear plant, with interactive human assistance to escapelocal minima. In [FT90] the same authors present a learning scheme to avoid fallinginto local minima. During the learning phase, probabilities of moving between neigh-boring con�gurations without falling into a local minimum are accumulated in an rnarray, where n is the number of dofs and r is the number of intervals discretizing therange of each dof. During the planning phase, these probabilities are used as anotherheuristic function (in addition to the potential function) to guide the robot away fromthe local minima. This learning scheme was applied with some success to robots withup to 6 dofs. However, the size of the rn array becomes impractical when n grows



3local planner, to the considered robots. Overall, we found the method quite easy toimplement and run. Many details can be engineered in one way or another to �tbetter the characteristics of an application domain.We have demonstrated the power of our method by applying it to a number ofdi�cult motion planning problems involving a variety of robots. In this paper wereport in detail on experiments with planar articulated robots (or linkages) withmany dofs moving in constrained workspaces. However, the method is directly ap-plicable to other kinds of holonomic robots, such as spatial articulated robots in 3Dworkspaces [KL94b]. Additionally, a version of the method described here has beensuccessfully applied to nonholonomic car-like robots [�SO94]. In all cases, experimen-tal results show that the learning times required for the construction of adequateroadmaps, i.e., roadmaps that capture well the connectivity of the free C-space, arelow. They range from a few seconds1 for relatively easy problems to a few minutesfor the most di�cult problems we have dealt with. Once a good roadmap has beenconstructed, path planning queries are processed in a fraction of a second.The very small query times make our planning method particularly suitable formany-dof robots performing several point-to-point motions in known static workspaces.Examples of tasks meeting these conditions include maintenance of cooling pipes ina nuclear plant, point-to-point welding in car assembly, and cleaning of airplane fuse-lages. In such tasks, many dofs are needed to achieve successive desired con�gurationsof the end-e�ector while avoiding collisions of the rest of the arm with the complicatedworkspace. Explicit programming of such robots is tedious and time consuming. Ane�cient and reliable planner would considerably reduce the programming burden.This paper is organized as follows: Section 2 gives an overview of some previousresearch and relates our work to this research. Section 3 describes our motion planningmethod in general terms, i.e., without focusing on any speci�c type of holonomicrobot. Both the learning phase and the query phase are discussed here in detail.Next, in Sections 4, 5, and 6 we apply our method to planar articulated robots. InSection 4 we describe speci�c techniques that can be substituted for more generalones in the planner to handle these robots more e�ciently (especially when thesehave many dofs). In Sections 5 and 6 we describe a number of experiments andtheir results; we also analyze how variations of some parameter values a�ect planningresults. Section 5 presents results obtained with a customized implementation ofthe method embedding the speci�c techniques of Section 4. Section 6 discusses otherexperimental results obtained with a general implementation of the method. Section 7concludes the paper.1All running times reported in this paper have been obtained on a DEC Alpha workstation,except those given in Section 6 which were obtained with a Silicon Graphics Indigo workstation.



21 IntroductionWe present a new planning method which computes collision-free paths for robots ofvirtually any type moving among stationary obstacles (static workspaces). However,our method is particularly interesting for robots with many degrees of freedom (dof),say �ve or more. Indeed, an increasing number of practical problems involve suchrobots, while very few e�ective motion planning methods, if any, are available to solvethem. The method proceeds according to two phases: a learning phase and a queryphase.In the learning phase a probabilistic roadmap is constructed by repeatedly generat-ing random free con�gurations of the robot and trying to connect these con�gurationsusing some simple, but very fast motion planner. We call this planner the local plan-ner. The roadmap thus formed in the free con�guration space (C-space [LP83]) ofthe robot is stored as an undirected graph R. The con�gurations are the nodes of Rand the paths computed by the local planner are the edges of R. The learning phaseis concluded by some postprocessing of R to improve its connectivity.Following the learning phase, multiple queries can be answered. A query asksfor a path between two given free con�gurations of the robot. To process a querythe method �rst attempts to connect the given start and goal con�gurations to twonodes of the roadmap, with paths that are feasible for the robot. Next, a graphsearch is done to �nd a sequence of edges connecting these nodes in the roadmap.Concatenation of the successive path segments transforms this sequence into a feasiblepath for the robot.Notice that the learning and the query phases do not have to be executed sequen-tially. Instead, they can be interwoven to adapt the size of the roadmap to di�cultiesencountered during the query phase, thus increasing the learning 
avor of our method.For instance, a small roadmap could be �rst constructed; this roadmap could thenbe augmented (or reduced) using intermediate data generated while queries are beingprocessed. This interesting possibility will not be explored in the paper, though itis particularly useful to conduct trial-and-error experiments in order to decide howmuch computation time should be spent in the learning phase.To run our planning method the values of several parameters must �rst be selected,e.g., the time to be spent in the learning phase. While these values depend on theconsidered scene, i.e., the robot and the workspace, it has been our experience thatgood results are obtained with values spanning rather large intervals. Thus, it isnot di�cult to choose one set of satisfactory values for a given scene or family ofscenes, through some preliminary experiments. Moreover, increased e�ciency can beachieved by tailoring several components of our planning method, in particular the
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