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Abstract

The problem of designing physical-layer network coding (PNC) schemes via nested lattices is considered. Building

on the compute-and-forward (C&F) relaying strategy of Nazer and Gastpar, who demonstrated its asymptotic gain

using information-theoretic tools, an algebraic approachis taken to show its potential in practical, non-asymptotic,

settings. A general framework is developed for studying nested-lattice-based PNC schemes—called lattice network

coding (LNC) schemes for short—by making a direct connection between C&F and module theory. In particular,

a generic LNC scheme is presented that makes no assumptions on the underlying nested lattice code. C&F is re-

interpreted in this framework, and several generalized constructions of LNC schemes are given. The generic LNC

scheme naturally leads to a linear network coding channel over modules, based on which non-coherent network

coding can be achieved. Next, performance/complexity tradeoffs of LNC schemes are studied, with a particular focus

on hypercube-shaped LNC schemes. The error probability of this class of LNC schemes is largely determined by

the minimum inter-coset distances of the underlying nestedlattice code. Several illustrative hypercube-shaped LNC

schemes are designed based on Construction A and D, showing that nominal coding gains of3 to 7.5 dB can be

obtained with reasonable decoding complexity. Finally, the possibility of decoding multiple linear combinations is

considered and related to the shortest independent vectorsproblem. A notion of dominant solutions is developed

together with a suitable lattice-reduction-based algorithm.

Index Terms

Lattice network coding, nested lattice code, finite generated modules over principal ideal domains, Smith normal

form.
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I. I NTRODUCTION

Nested-lattice-based physical-layer network coding (LNC)is a type of compute-and-forward (C&F) relaying strategy

[1] that is emerging as a compelling information transmission scheme in Gaussian relay networks. LNC exploits

the property that integer linear combinations of lattice points are again lattice points. Based on this property, relays

in LNC attempt to decode their received signals into integerlinear combinations of codewords, which they then

forward. This approach induces an end-to-end network coding channel from which the transmitted information can

be recovered by solving a linear system.

In this paper, we develop a generic LNC scheme that makes no particular assumption on the structure of the

underlying nested lattice code, thereby enabling a varietyof code-design techniques. A key aspect of this approach is

a so-called “linear labeling” of the points in a nested lattice code that gives rise to a beneficial compatibility between

theC-linear arithmetic operations performed by the wireless channel and the linear operations in the message space

that are required for linear network coding. Similar to vector-space-based noncoherent network coding (e.g., [2]),

the linear labelings of this paper induce a noncoherent end-to-end network coding channel with a message space

having, in general, a module-theoretic algebraic structure, thereby providing a foundation for achieving noncoherent

network coding over general Gaussian relay networks.

We study the error performance of a class of hypercube-shaped LNC schemes, and show that the error performance

is largely determined by the minimum inter-coset distance of the underlying nested lattice code. By way of

illustration, we adapt several known lattice constructions to give three exemplar LNC schemes that provide nominal

coding gains of 3 to 7.5 dB while admitting reasonable decoding complexity.

We also study the possibility that a relay may attempt to decode more than one linearly independent combination

of messages, and we relate this problem to the “shortest independent vectors problem” in lattices [3]. For this

problem, a notion of dominant solutions is introduced together with a lattice-reduction-based algorithm, which may

be of independent interest.

LNC can be seen as generalization of several previous physical layer network coding (PNC) schemes [4]–[6].

The earliest PNC schemes were applied to a two-way relay channel in which the relay attempts to decode the

modulo-two sum (XOR) of the transmitted messages. It was observed in [7], [8] that the XOR can be replaced by a

family of functions satisfying the so-called “exclusive law of network coding.” Furthermore, the choice of function

can potentially be adapted to the instantaneous channel realizations, although a complicated computer search may

be needed [8] to choose the function optimally, even in the case of low-dimensional constellations such as16-QAM.

Because LNC considers only linear combinations, not general functions, it provides an efficient method, even in

high-dimensional spaces, to perform such channel-adaptive decoding. Further PNC schemes presented in [9]–[12]

aim to approach the capacities of various two-way relay channels. A survey of PNC for two-way relay channels

can be found in [13].

The use of nested lattice codes (or Voronoi constellations)in PNC was first proposed in [6], [9], leading to the

development of C&F relaying. A key feature of the C&F strategy is that no channel state information (CSI) is
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Fig. 1. Illustration of a two-round physical-layer networkcoding scheme.

required at the transmitters. In contrast to alternative advanced strategies such as noisy network coding [14] and

quantize-map-and-forward strategy [15], [16], the C&F strategy does not require global channel-gain information

at the destinations. All of these make C&F an appealing candidate for practical implementation.

The C&F strategy can be enhanced by assuming CSI at the transmitters [17] or by installing multiple antennas

at the relays and destinations [18], [19]. Practical code constructions for C&F are presented (see, e.g., [20]–[23]).

A recent survey of C&F can be found in [24].

After the conference publication of an earlier version of this work [25] (see also [26], [27]), several papers have

appeared following our algebraic framework. For example, the work of [28] presents several design examples based

on Eisenstein lattices, which can achieve a shaping gain of 0.167 dB compared to our examples based on Gaussian

lattices. The work of [29] studies the existence of asymptotically-good nested lattices over Eisenstein integers,

which can offer higher computation rates for certain channel realizations compared to the computation rates in [1]

(which are based on Gaussian integers).

The remainder of this paper is organized as follows. SectionII presents motivating examples to illustrate the

role of algebra in PNC. Section III reviews some well-known mathematical preliminaries that will be useful in

setting up our algebraic framework. Section IV presents a problem formulation of linear PNC and summarizes

some of Nazer-Gastpar’s main results in the context of our formulation. Section V studies the algebraic properties

of LNC, presenting a generic LNC scheme that induces an end-to-end linear network coding channel over modules.

Section VI turns to the geometric properties of LNC, presenting a union bound estimate as well as some design

criteria. Section VII contains several illustrative design examples for practical LNC schemes, showing that a decent

nominal coding gain is quite possible under practical constraints. Section VIII studies the problem of choosing

multiple coefficient vectors, which is closely related to some known lattice problems. Section IX presents simulation

results, while Section X concludes this paper.

II. M OTIVATING EXAMPLES

In this section, we illustrate the role of algebra in PNC witha particular focus on two-way relay channels,

where two terminals attempt to exchange their messagesW1,W2 through a central relay, as shown in Fig. 1. For

this channel model, a PNC scheme consists of two rounds of communication. In the first round, the terminals

simultaneously transmit their signalsX1, X2 to the relay, and the relay tries to decode a functionf(W1,W2) of the

messages from the received signalY . In the second round, the relay broadcasts the decoded function f(W1,W2)
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Fig. 2. Transmitted QPSK constellation.

to the terminals, based on which each terminal recovers the other message with its own message held as side

information.

To illustrate how a PNC scheme works, we assume that the channels between terminals and the relay are complex-

valued flat-fading channels with additive white Gaussian noise, that the messagesW1,W2 take values in the set

{00, 01, 10, 11}, and that (uncoded) Gray-labeled quaternary phase-shift-keying (QPSK) modulation is used, with

the signal constellation given in Fig. 2. The channel gains between the terminals and the relay are denoted ash1

andh2. Furthermore, we assume that the relay aims to decode the XORof the messages.

We first consider the ideal special case in which the channel gains are precisely unity, i.e.,h1 = h2 = 1. The

received constellation is depicted in Fig. 3(a), together with the decision region for XOR decoding. Although some

received points are overlapping, say point(W1,W2) = (01, 11) and point(11, 01), the overlapping points have the

same XOR value, resulting in no ambiguity.

Next, suppose that the channel gains areh1 = 1, h2 = i. In this scenario, unfortunately, overlapping points have

different XOR values; see Fig. 3(b). For instance, point(01, 10) has XOR value01 ⊕ 10 = 11; whereas point

(11, 11) has XOR value00.

To solve this ambiguity, one natural attempt is to let the relay decode some linear function instead of the XOR.

For example, if the relay interprets each messageWℓ = [wℓ1 wℓ2] (ℓ = 1, 2) as an element inF4 by mapping it to

wℓ1α + wℓ2 (whereα is a primitive element ofF4) and tries to decode the functionf1(W1,W2) = W1 + αW2,

then both point(01, 10) and point(11, 11) give rise to the same value10. However, there are still some ambiguities

that cannot be resolved by this function (the shaded dots in Fig. 3(b)).

In fact, no linear functions overF4 can resolve all the ambiguities in the received constellation, and the relay

has to make use of the structure of a finite ring rather than that of a finite field. Specifically, let the relay interpret

each messageWℓ = [wℓ1 wℓ2] aswℓ1 + wℓ2i ∈ Z2[i] with addition and multiplication defined as

a+ bi+ c+ di = [a+ c]2 + [b + d]2i,

(a+ bi)(c+ di) = [ac− bd]2 + [ad+ bc]2i,

where [·]2 denotes the mod2 operation. Then the functionf2(W1,W2) = W1 + iW2 is able to resolve all the

ambiguities in Fig. 3(b). Moreover, the functionf2 works well even under other channel gains. In other words, the

finite ring Z2[i] seems to be a “good match” for QPSK constellation. This is nota coincidence. As we will see

July 4, 2013 DRAFT



5

(a)

(b)

Fig. 3. Received constellations with QPSK when (a)h1 = h2 = 1, and (b)h1 = 1, h2 = i.

later, every nested-lattice-based constellation has sucha good match.

III. A LGEBRAIC PRELIMINARIES

In this section we recall some essential facts about principal ideal domains, modules, and the Smith normal form,

all of which will be useful for our study of the algebraic properties of complex nested lattices. All of this material

is standard; see, e.g., [30]–[32]. We also introduce basic concepts and notation about lattices, mainly based on [33],

[34].
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A. Rings and Ideals

We begin with some common definitions and notations for rings. All rings in this paper will be commutative

with identity 1 6= 0. Let R be a ring. We will letR∗ denote the nonzero elements ofR, i.e., R∗ = R \ {0}. An

elementa is a divisor of an elementb in R, written a | b, if b = ac for some elementc ∈ R. An elementu ∈ R is

called aunit of R if u | 1. A non-unit elementp ∈ R is called aprime of R if wheneverp | ab for some elements

a andb in R, then eitherp | a or p | b. An elementa of R∗ is a called azero-divisorif ab = 0 for someb ∈ R∗.

If R contains no zero-divisors, thenR is an integral domain.

An ideal of R is a nonempty subsetI of R that is closed under addition and inside-outside multiplication, i.e.,

for all a, b ∈ I, a+ b ∈ I and for alla ∈ I and allr ∈ R, ar ∈ I. If A is any nonempty subset ofR, let 〈A〉 be

the smallest ideal ofR containingA, called theideal generated byA. An ideal generated by a single element is

called aprincipal ideal. A ring in which every ideal is principal is called aprincipal ideal ring (PIR).

Let R be a ring and letI be an ideal ofR. Two elementsa andb are said to becongruentmoduloI if a−b ∈ I.

Congruence moduloI is an equivalence relation whose equivalence classes are (additive) cosetsa+ I of I in R.

The quotient ringof R by I, denotedR/I, is the ring obtained by defining addition and multiplication operations

on the cosets ofI in R in the usual way, as

(a+ I) + (b+ I) = (a+ b) + I and (a+ I)× (b+ I) = (ab) + I.

B. Principal Ideal Domains

An integral domain in which every ideal is principal is called a principal ideal domain(PID). The integersZ

form a PID. In the context of complex lattices, typical examples of a PID include the Gaussian integersZ[i] and

the Eisenstein integersZ[ω], whereω = e2πi/3. Formally, Gaussian integers are the setZ[i] , {a+ bi : a, b ∈ Z},

and Eisenstein integers are the setZ[ω] , {a+ bω : a, b ∈ Z}.

The Gaussian integersZ[i] have four units (±1,±i). A Gaussian integer is called aGaussian primeif it is a

prime inZ[i]. A Gaussian integera+ bi is a Gaussian prime if and only if it satisfies exactly one of the following:

1) |a| = |b| = 1;

2) one of|a|, |b| is zero and the other is a prime number inZ of the form4j+3 (with j a nonnegative integer);

3) both of |a|, |b| are nonzero anda2 + b2 is a prime number inZ of the form4j + 1.

Note that these properties are symmetric with respect to|a| and |b|. Thus, if a + bi is a Gaussian prime, so are

{±a± bi} and{±b± ai}.

The Eisenstein integersZ[ω] have six units (±1,±ω,±ω2). An Eisenstein integer is called anEisenstein prime

if it is a prime in Z[ω]. An Eisenstein integera+ bω is an Eisenstein prime if and only if it satisfies exactly one

of the following:

1) a+ bω is a product of a unit inZ[ω] and a prime number inZ of the form3j + 2;

2) |a+ bω|2 = a2 − ab+ b2 is a prime number inZ.

Let T be a PID and letπ ∈ T . Then it is known that the quotientT/〈π〉 is a PIR [32].
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C. Modules

Modules are to rings as vector spaces are to fields. Formally,let R be a commutative ring with identity1 6= 0.

An R-module is a setM together with 1) a binary operation+ on M under whichM is an abelian group, and 2)

an action ofR on M which satisfies the same axioms as those for vector spaces.

An R-submodule ofM is a subset ofM which itself forms anR-module. LetN be a submodule ofM . The

quotient groupM/N can be made into anR-module by defining an action ofR satisfying, for allr ∈ R, and all

x+N ∈ M/N , r(x +N) = (rx) +N . Hence,M/N is often referred to as aquotientR-module.

Let M andN beR-modules. A mapϕ : M → N is called anR-module homomorphismif the mapϕ satisfies

1) ϕ(x+ y) = ϕ(x) + ϕ(y), for all x, y ∈ M and

2) ϕ(rx) = rϕ(x), for all r ∈ R, x ∈ M .

The kernel ofϕ is defined askerϕ , {m ∈ M : ϕ(m) = 0}. Clearly,kerϕ is a submodule ofM .

An R-module homomorphismϕ : M → N is called anR-module isomorphismif it is both injective and

surjective. In this case, the modulesM andN are said to beisomorphic, denoted byM ∼= N . An R-moduleM

is called afree module ofrank t if M ∼= Rt for some nonnegative integert.

There are several isomorphism theorems for modules. The so-called “first isomorphism theorem” is useful for

this paper.

Theorem 1 (First Isomorphism Theorem for Modules [31, p. 349]): Let M,N be R-modules and letϕ : M →
N be anR-module homomorphism. Thenkerϕ is a submodule ofM andM/ kerϕ ∼= ϕ(M).

D. Modules over a PID

Finitely-generated modules over PIDs play an important role in this paper, and are defined as follows.

Definition 1 (Finitely-Generated Modules):Let R be a commutative ring with identity1 6= 0 and letM be an

R-module. For any subsetA of M , let 〈A〉 be the smallest submodule ofM containingA, called thesubmodule

generated byA. If M = 〈A〉 for some finite subsetA, thenM is said to befinitely generated.

A finite module (i.e., a module that contains finitely many elements) is always finitely generated, but a finitely-

generated module is not necessarily finite. For example, theeven integers2Z form aZ-module generated by{2}.

The following structure theorem says that, ifT is a PID, then a finitely-generatedT -module is isomorphic to a

finite direct product ofT -modules of the formT or T/〈π〉.
Theorem 2 (Structure Theorem for Finitely-Generated Modules over a PID—Invariant Factor Form [31, p. 462]):

Let T be a PID and letM be a finitely-generatedT -module. Then for some integert ≥ 0 and nonzero non-unit

elementsπ1, . . . , πk of T satisfying the divisibility relationsπ1 | π2 | · · · | πk,

M ∼= T t × T/〈π1〉 × T/〈π2〉 × · · · × T/〈πk〉.

The elementsπ1, . . . , πk, called theinvariant factorsof M , are unique up to multiplication by units inT . The

integert is called thefree rankof M .
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E. Matrices over a PID

Let Rm×n denote the set of allm×n matrices overR. For any matrixA ∈ Rm×n, we denote byai,j the entry

at theith row andjth column ofA. A matrix D ∈ Rm×n is called adiagonal matrixif di,j = 0 wheneveri 6= j.

Note that a diagonal matrix need not be square. A diagonal matrix D can be written asD = diag(d1, . . . , dr),

wherer = min{m,n}, anddi = di,i for i = 1, . . . , r.

A square matrixU ∈ Rn×n is invertible if UV = VU = In for someV ∈ Rn×n, whereIn denotes then× n

identity matrix. The set of invertible matrices inRn×n, denoted asGLn(R), forms a group—the so-calledgeneral

linear group—under matrix multiplication. Two matricesA,B ∈ Rm×n are said to beequivalentif there exist

invertible matricesP ∈ GLm(R) andQ ∈ GLn(R) such thatB = PAQ. We will write A ≈ B if A andB are

equivalent.

Definition 2 (Smith Normal Form):LetA ∈ Rm×n and letr = min{m,n}. A diagonal matrixD = diag(d1, . . . , dr)

is called aSmith normal formof A if D ≈ A andd1 | d2 | · · · | dr in R.

Note thatd1 | d2 | · · · | dr in R if and only if 〈d1〉 ⊇ 〈d2〉 ⊇ · · · ⊇ 〈dr〉. In particular, if di is a unit inR,

thend1, . . . , di are all units inR. Similarly, if di = 0, thendi, . . . , dr are all0. Thus, ifD = diag(d1, . . . , dr) is

a Smith normal form ofA, then the diagonal entriesd1, . . . , dr of D can be expressed as

d1, . . . , dr = u1, . . . , ui
︸ ︷︷ ︸

i

, di+1, . . . , di+j
︸ ︷︷ ︸

j

, 0, . . . , 0
︸ ︷︷ ︸

k

whereu1, . . . , ui are units inR, di+1, . . . , di+j are nonzero, non-unit elements inR, andi, j, k ≥ 0 with i+j+k = r.

The nonzero entries{u1, . . . , ui, di+1, . . . , di+j} are called asequence of invariant factorsof A.

The Smith normal form theorem says that every matrix over a PID has a Smith normal form whose sequence of

invariant factors is unique up to multiplication by units.

Theorem 3 (Smith Normal Form Theorem [32, p. 194]):Let T be a PID. Then anyA ∈ Tm×n has a Smith

normal form. Furthermore, ifD1 = diag(d1, . . . , dr) andD2 = diag(s1, . . . , sr) are two Smith normal forms of

A, then〈di〉 = 〈si〉 for all i = 1, . . . , r.

F. Lattices and Lattice Codes

Recall that a real latticeΛ ∈ Rn is a regular array of points inRn. Algebraically, a real lattice is defined as a

discreteZ-submodule ofRn. A latticeΛ ∈ Rn may be specified by a set ofm basis (row) vectorsg1, . . . ,gm ∈ Rn,

consisting of allZ-linear combinations of the basis vectors, i.e.,

Λ = {rGΛ : r ∈ Z
m},

whereGΛ ,
[

gT
1 | · · · |gT

m

]T

∈ Rm×n is called agenerator matrixfor Λ. Note thatGΛ is not unique for a given

Λ. We callm the rank of Λ, andn thedimensionof Λ. Clearly,m ≤ n, because otherwise the basis vectors cannot

be linearly independent. Whenm = n, Λ is called afull-rank real lattice.

Complex lattices are natural generalizations of real lattices. LetT be a discrete subring ofC forming a PID.

Typical examples ofT include the Gaussian integersZ[i] and the Eisenstein integersZ[ω]. A T -lattice Λ in Cn is
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a discreteT -submodule ofCn, consisting of allT -linear combinations of a set of basis vectors. Throughout this

paper, we will focus on full-rankT -lattices for simplicity, but all the results can be easily extended to the case of

non-full-rankT -lattices.

A few important notions are associated with aT -lattice. An n-dimensionalT -latticeΛ partitions the spaceCn

into congruent cells. Such a partition is not unique. The most important example is based on thenearest neighbor

quantizerQNN
Λ that sends a pointx ∈ Cn to a nearest lattice point in Euclidean distance, i.e.,

QNN
Λ (x) = λ ∈ Λ, if ∀λ′ ∈ Λ

(
‖x− λ‖ ≤ ‖x− λ

′‖
)
,

where ties are broken in a systematic manner. TheVoronoi cellVΛ(λ) associated with eachλ ∈ Λ is defined as the

set of all points inCn that are closest toλ, i.e.,VΛ(λ) , {x ∈ Cn : QNN
Λ (x) = λ}. The cellVΛ(0) associated with

the origin is often referred to as theVoronoi regionof Λ. Clearly, the Voronoi cells{VΛ(λ)} have the following

three properties:

1) Each cellVΛ(λ) is a shift of the cellVΛ(0) by λ ∈ Λ, i.e.,VΛ(λ) = λ+ VΛ(0).

2) The cells do not intersect, i.e.,VΛ(λ) ∩ VΛ(λ
′) = ∅ for all λ 6= λ

′.

3) The union of the cells covers the whole space, i.e.,
⋃

λ∈Λ VΛ(λ) = Cn.

In general, any collection of cells{RΛ(λ)} that satisfies the above three conditions is called a set offundamental

cells. The cellRΛ(0) associated with the origin is called afundamental regionand will also be denoted simply by

RΛ. Note that every fundamental region of a latticeΛ has exactly the same volume, which is denoted byV (Λ).

A lattice quantizerQΛ : Cn → Λ corresponding toRΛ sends every pointx ∈ Cn to the lattice pointλ that is

associated with the fundamental cellRΛ(λ) containingx, i.e.,

QΛ(x) = λ ∈ Λ, if x ∈ RΛ(λ).

Hence, any pointx in Cn can be uniquely expressed as the sum of a lattice point and a point in the fundamental

regionRΛ, i.e., x = QΛ(x) + (x−QΛ(x)), wherex −QΛ(x) is a point inRΛ. This implies that, for all lattice

pointsλ ∈ Λ and all vectorsz ∈ Cn,

QΛ(λ+ z) = λ+QΛ(z). (1)

The modulo-Λ operation is defined, for a fixedQΛ, as

x mod Λ = x−QΛ(x).

Clearly, the modulo-Λ operation always outputs a point in the fundamental regionRΛ. The modulo-Λ operation

has a geometrical interpretation:

x mod Λ = (x+ Λ) ∩RΛ,

where thelattice shiftx+ Λ is defined asx+ Λ = {x+ λ : λ ∈ Λ}.

A T -sublatticeΛ′ of Λ is a subset ofΛ which is itself aT -lattice. Two latticesΛ′ andΛ are said to benested

if Λ′ is a sublattice ofΛ, i.e.,Λ′ ⊆ Λ.
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For eachλ ∈ Λ, the lattice shiftλ+Λ′ is a coset ofΛ′ in Λ, and the pointλ mod Λ′ is called thecoset leaderof

λ+Λ′. Two cosetsλ1+Λ′ andλ2+Λ′ are either identical (whenλ1−λ2 ∈ Λ′) or disjoint (whenλ1−λ2 /∈ Λ′).

Thus, the set of all distinct cosets ofΛ′ in Λ, denoted byΛ/Λ′, forms a partition ofΛ. Algebraically,Λ/Λ′ is a

quotientT -module, hereafter called aT -lattice quotient.

A nested lattice codeL(Λ,Λ′) is defined as the set of all coset leaders inΛ/Λ′, i.e.,

L(Λ,Λ′) = Λ mod Λ′ = {λ mod Λ′ : λ ∈ Λ}.

Geometrically,L(Λ,Λ′) is the intersection of the latticeΛ with the fundamental regionRΛ′ , i.e.,

L(Λ,Λ′) = Λ ∩RΛ′ .

For this reason, the fundamental regionRΛ′ is often interpreted as theshaping region. Note that there is a bijection

betweenΛ/Λ′ andL(Λ,Λ′); in particular,

|Λ/Λ′| = |L(Λ,Λ′)| = V (Λ′)/V (Λ).

Finally, we mention that, for reasons of energy-efficiency,it is often useful to consider a translated version of

nested lattice codes. For any fixed translation vectord ∈ Cn, a translated nested lattice codeL(Λ,Λ′,d) is defined

as

L(Λ,Λ′,d) = (d+ Λ) mod Λ′ = (d+ Λ) ∩RΛ′ .

IV. PROBLEM STATEMENT

This section gives a general definition of alinear physical-layer network coding (or compute-and-forward) scheme,

and also describes the assumptions on the system model made in this paper. We focus on the problem faced by a

receiver node of decoding one or more linear combinations ofsimultaneously transmitted messages, as it is at the

heart of any system employing physical-layer network coding (see [24] for such a discussion). We conclude the

section by briefly describing some achievability results obtained by Nazer and Gastpar in [1].

While linear network coding is traditionally defined over a finite field [35], [36], our description considers a more

general notion of linear network coding over a finite commutative ring R. In this context, the message space, i.e.,

the set from where message packets are drawn, is no longer a vector space, but anR-module [37]. As hinted at in

Sec. II and as will become clear in Sec. V, ring-linear network coding is required if we wish to ensure compatibility

with a generallattice network coding scheme.

A. System Model

Consider a multiple-access channel withL transmitters and a single receiver subject to block fading and additive

white Gaussian noise, as illustrated in Fig. 4.

Channel inputs are denoted byx1, . . . ,xL ∈ C
n and the channel output is given by

y =

L∑

ℓ=1

hℓxℓ + z

July 4, 2013 DRAFT
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Fig. 4. Computing a linear function over a Gaussian multiple-access channel.

whereh1, . . . , hL ∈ C are channel gains (fading coefficients) andz ∼ CN (0, N0In) is a circularly-symmetric

jointly-Gaussian complex random vector. We assume that thechannel gains are perfectly known at the receiver but

areunknownat the transmitters.

Transmitterℓ is subject to a power constraint given by

1

n
E
[
‖xℓ‖2

]
≤ Pℓ

where the expectation is taken with respect to a uniform distribution over the corresponding message space. For

simplicity (and without loss of generality), we assume thatthe power constraint is symmetric,P1 = · · · = PL , P ,

and that any asymmetric power constraints are incorporatedby appropriately scaling the channel gainshℓ.

For convenience, we define

SNR , P/N0.

Note that the received SNR corresponding to signalxℓ is equal to|hℓ|2P/N0. Hence, the interpretation ofSNR

as the average received SNR is only valid whenE[|hℓ|2] = 1.

B. Linear Physical-Layer Network Coding

Let R be afinite commutative ring with identity1 6= 0 and letT be some (usually infinite) commutative ring

such that there exists a surjective ring homomorphismσ : T → R. Let theambient spaceW be a finiteR-module.

Note thatσ automatically makesW into a T -module by definingaw = σ(a)w, for all a ∈ T and allw ∈ W .

As an example, we may haveT = Z, R = Z/〈2〉, W = Z/〈2〉, and σ(a) = a + 〈2〉. In the following setup,

“digital-layer” network coding operates onW overR, while physical-layer network coding operates onW overT ,

and the ring homomorphismσ guarantees the compatibility of such operations.

For eachℓ ∈ {1, . . . , L}, let themessage spaceof transmitterℓ be anR-submoduleWℓ ⊆ W . A T -linear PNC

scheme with block lengthn consists ofL encoders

Eℓ : Wℓ → C
n

each taking a message vectorwℓ ∈ Wℓ to a signal vectorxℓ ∈ C
n, and a decoder

D : Cn → W
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that takes a received signaly ∈ C
n and attempts to compute one (or more)T -linear combination(s) of the messages,

such as

u =

L∑

ℓ=1

aℓwℓ ∈ W

whose coefficientsaℓ ∈ T may or may not have been specifieda priori. It is understood that anyT -linear

combinations computed by the decoder are subsequently delivered to the digital layer asR-linear combinations,

such as

u =

L∑

ℓ=1

aℓwℓ =

L∑

ℓ=1

σ(aℓ)wℓ ∈ W

obtained by the application ofσ on each coefficient.

The above generic description of the decoder may be specialized depending on the problem at hand. Specifically,

any further information given to the decoder (such as side information about the channel gains) will be denoted as

additional arguments toD. Similarly, any further information provided by the decoder will be denoted as additional

outputs ofD. Note that, in this paper, we always assume that the channel-gain vectorh , (h1, . . . , hL) ∈ CL is

perfectly known at the receiver.

For simplicity of notation, letW ∈ WL be a matrix corresponding to the vertical stacking ofw1, . . . ,wL ∈ W ,

taken as row vectors. If the coefficient vectora = (a1, . . . , aL) ∈ TL for the desired linear combination is specified

a priori, we will write

D : Cn × C
L × TL → W, û = D(y|h, a).

In this case, a decoding error is made ifû 6= aW. The corresponding probability of error is denoted byPe(h, a).

This decoder is illustrated in Fig. 4.

If no coefficient vectors are givena priori, but instead are required to computed “on-the-fly” by the receiver,

then we will write

D : Cn × C
L → Wm × TLm

(û1, . . . , ûm, a1, . . . , am) = D(y|h)

wherem denotes the number of linear combinations computed. In thiscase, a decoding error is made ifûi 6= aiW,

for somei ∈ {1, . . . ,m}.

Since a message is transmitted overn (complex) channel uses, we define themessage rate(spectral efficiency)

for transmitterℓ as Rmes ,ℓ , 1
n log2 |Wℓ|, measured in bits per complex dimension. Throughout the paper we

assume that all encoders are identical,E1 = . . . = Eℓ , E , thus there is a single message spaceW with message

rate

Rmes ,
1

n
log2 |W |.

As the following examples illustrate, a number of existing PNC schemes can be described in this framework.

Example 1:Let L = 2, n = 1, T = Z andR = W = Z/〈2〉. Consider the encoder

E(w) = γ

(

σ̃(w)− 1

2

)

, w ∈ Z/〈2〉
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whereγ > 0 is a scaling factor, and̃σ : Z/〈2〉 → Z is defined as

σ̃(w) =







1, whenw = 1 + 〈2〉

0, whenw = 0 + 〈2〉.

Supposeh = [1 1] ∈ C2. Let a = [1 1] ∈ Z2 be a fixed coefficient vector. Then a decoder can be constructed as

D(y|h, a) =







1 + 〈2〉, if |Re{y}| < γ/2

0 + 〈2〉, otherwise.

This is the simplest form of PNC [4], [5], which may be understood as XOR decoding under BPSK modulation,

in the case of two users with equal channel gains.

Example 2:Let L = 2, n = 1, T = Z[i] andR = W = Z[i]/〈m〉, wherem is some positive integer. Consider

the encoder

E(w) = γ (σ̃(w)− d) , w ∈ Z[i]/〈m〉

whered =
(
m−1
2

)
(1 + i), γ > 0 is a scaling factor, and̃σ : Z[i]/〈m〉 → Z[i] is defined as

σ̃(a+ bi+ 〈m〉) = (a mod m) + (b mod m)i.

First, supposeh = [1 1] ∈ C2. Let a = [1 1] ∈ Z[i]2 be the fixed coefficient vector. Then a natural (although

suboptimal) decoder is given by

D(y|h, a) = (⌊Re{y′}⌉ mod m) + (⌊Im{y′}⌉ mod m) i + 〈m〉,

wherey′ = y/γ+(a1+ a2)d and⌊·⌉ denotes the rounding operation. This scheme is known as them2-QAM PNC

scheme [4]. Next, supposeh = [1 i] ∈ C2. Let a = [1 i] ∈ Z[i]2 be the fixed coefficient vector. Then the above

decoder generalizes the example discussed in Sec. II.

C. Achievable Rates

We now mention some known achievable rates for the case of a single given coefficient vector, under the

assumptions of Section IV-A. These results were obtained byNazer and Gastpar [1].

Theorem 4 ([1]): For all ǫ > 0, all sufficiently largen, and some appropriately chosen prime integerp, there

exists aZ[i]-linear PNC scheme with block lengthn satisfying the following properties:

1) the message space isW = (Z[i]/〈p〉)k for somek;

2) for any channel-gain vectorh ∈ CL and any non-zero coefficient vectora ∈ Z[i]L, the probability of decoding

errorPe(h, a) is smaller thanǫ if k is such that the message rateRmes is smaller than the computation rate

Rcomp(h, a) , max
α∈C

log2

(
SNR

‖αh− a‖2 SNR+|α|2
)

.

Moreover, the optimal value ofα in the above expression is given by

αopt =
ahH SNR

‖h‖2 SNR+1
(2)
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which results in

Rcomp(h, a) = log2

(
SNR
aMaH

)

,

where

M = SNR IL − SNR2

SNR ‖h‖2 + 1
hHh (3)

andIL is theL× L identity matrix.

Remark:In the proof of the above result,p has to grow appropriately withn such thatn/p → 0 asn → ∞ [1].

Theorem 4 is based on the existence of a “good” sequence of nested lattices of increasing dimension. Criteria

to design low complexity, finite-dimensional PNC schemes are not immediately obvious from these results. In the

remainder of this paper, we will develop an algebraic framework for studying linear PNC schemes, which facilitates

the construction and analysis of practical PNC schemes.

V. L ATTICE NETWORK CODING

A. Linear Labelings

Let T be a discrete subring ofC forming a PID, and letΛ ⊆ Cn and Λ′ ⊆ Λ be two full-rankT -lattices

(called fine and coarse, respectively) so that the index|Λ/Λ′| of Λ′ in Λ is finite. Recall thatΛ/Λ′ is a quotient

T -module, i.e., it is a set closed under addition and multiplication by elements ofT . Specifically, addition of cosets

is defined as(λ1 + Λ′) + (λ2 + Λ′) , (λ1 + λ2 + Λ′), for all λ1,λ2 ∈ Λ, multiplication by r ∈ T is defined

asr(λ + Λ′) , (rλ + Λ′), for all λ ∈ Λ, and multiplication distributes over addition. An immediate consequence

is that
∑L

ℓ=1 rℓ(λℓ + Λ′) = (
∑L

ℓ=1 rℓλℓ) + Λ′, i.e., aT -linear combination of cosets is determined by the linear

combination of their coset representatives. This is the main property exploited in a lattice network coding (LNC)

scheme.

Conceptually, an LNC scheme is aT -linear PNC scheme based on a finite lattice quotientΛ/Λ′, in which each

transmitter sends an information-embedding coset througha coset representative, and each receiver recovers one or

moreT -linear combinations of the transmitted coset representatives (which can potentially be forwarded to other

nodes according to the same scheme). Upon receiving enough such combinations, the destination is able to decode

all information-embedding cosets from the transmitters.

To facilitate practical implementation, we will specify a map ϕ : Λ → W from lattice points inΛ to messages

in the message spaceW for use in the above architecture. The mapϕ must satisfy two conditions:

1) all points in the same coset are mapped to the same message,i.e., if for any two pointsλ1,λ2 ∈ Λ with

λ1 − λ2 ∈ Λ′, ϕ(λ1) = ϕ(λ2);

2) the mapϕ is T -linear, i.e., for allr1, r2 ∈ T and allλ1,λ2 ∈ Λ, we haveϕ (r1λ1 + r2λ2) = r1ϕ(λ1) +

r2ϕ(λ2).

We refer to the mapϕ as alinear labelingof Λ. As we shall see, it is this linear labeling that induces a natural

compatibility between theC-linear arithmetic of the multiple access channel observedby the receiver and the

T -linear arithmetic desired in the message space.
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Fig. 5. Linear labelings for Examples 3 and 4.

The existence of the aforementioned linear labeling is guaranteed by the following theorem, which provides a

canonical decompositionfor any finiteT -lattice quotientΛ/Λ′.

Theorem 5:Let T be a PID and letΛ and Λ′ ⊆ Λ be T -lattices such that|Λ/Λ′| is finite. Then, for some

nonzero, non-unit elementsπ1, π2, . . . , πk ∈ T satisfying the divisibility relationsπ1 | π2 | · · · | πk, we have

Λ/Λ′ ∼= T/〈π1〉 × T/〈π2〉 × · · · × T/〈πk〉. (4)

Moreover, there exists a surjectiveT -module homomorphismϕ : Λ → T/〈π1〉 × · · · × T/〈πk〉 whose kernel isΛ′.

Proof: The first statement follows from Theorem 2 sinceΛ/Λ′ is a finite T -module. The second statement

then follows from the First Isomorphism Theorem [31].

Evidently, the mapϕ is obtained as the composition of the natural projection fromΛ to the quotientΛ/Λ′ with the

isomorphism of (4). According to Theorem 5, when the messagespaceW is taken as the canonical decomposition

in the right-hand side of (4), i.e.,

W = T/〈π1〉 × T/〈π2〉 × · · · × T/〈πk〉,

the mapϕ is indeed a linear labeling. The following examples providetwo concrete linear labelings, which are

depicted in Fig. 5.

Example 3:Let Λ = Z[i] andΛ′ = 3Z[i]. Let T = Z[i] andW = Z[i]/〈3〉. Consider the mapϕ : Λ → W given

by

ϕ(a+ bi) = a+ bi+ 〈3〉.

It is easy to check that the mapϕ is Z[i]-linear and its kernel is3Z[i].

Example 4:Let Λ be the (real) hexagonal lattice generated byg1 = (1, 0) andg2 = (1/2,
√
3/2). Let Λ′ = 3Λ.

Let T = Z andW = Z/〈3〉 × Z/〈3〉. Consider the mapϕ : Λ → W given by

ϕ(ag1 + bg2) = (a mod 3, b mod 3).

It is easy to check that the mapϕ is Z-linear and its kernel is3Λ.
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Linear labelings play a key role in LNC, as they directly map aT -linear combination of transmitted lattice points

to a T -linear combination of transmitted messages, i.e., the latter can be immediately extracted from the former.

It is also convenient to define an inverse operation, mappinga message to a corresponding lattice point; this is

done through anembedding map̃ϕ : W → Λ. This map must be an injective function compatible with the linear

labeling, so it must satisfy

ϕ(ϕ̃(w)) = w, for all w ∈ W.

Equipped with a linear labelingϕ and and embedding map̃ϕ, a high-level description of a generic LNC scheme

can be given as follows. Each encoderℓ maps a messagewℓ ∈ W to a lattice pointxℓ ∈ Λ labeled bywℓ, i.e.,

xℓ = ϕ̃(wℓ). The decoder, upon the reception ofy, and given a coefficient vectora = (a1, . . . , aL), attempts to

compute theT -linear combination of transmitted lattice points

λ =
L∑

ℓ=1

aℓxℓ

from which it would be able to extract the corresponding linear combination of messages

u = ϕ(λ) =

L∑

ℓ=1

aℓϕ(xℓ) =

L∑

ℓ=1

aℓwℓ.

In more detail, the decoder proceeds in three steps. First, it scales the received signal by a factor ofα, obtaining

αy = α

L∑

ℓ=1

hℓxℓ + αz = λ + n (5)

where

n =
L∑

ℓ=1

(αhℓ − aℓ)xℓ + αz (6)

is called theeffective noise. Note that we can view (5) as anequivalent point-to-point channelunder lattice coding:

an effective messageu is encoded as a lattice pointλ, which is then additively corrupted by the (signal-dependent

and not necessarily Gaussian) effective noisen.

Second, the decoder quantizes the scaled received signal with the fine lattice to obtain

λ̂ = QΛ(αy) = QΛ(λ+ n) = λ +QΛ(n) (7)

where (7) follows from the property (1) of a lattice quantizer.

The last step is to apply the linear labeling, obtaining

û = ϕ(λ̂) = ϕ (λ+QΛ(n)) = u+ ϕ (QΛ(n)) .

The decoder makes an error if and only ifϕ (QΛ(n)) = 0 and therefore if and only ifQΛ(n) ∈ Λ′. This is

intuitive: if QΛ(n) ∈ Λ′, then the decoded lattice pointλ̂ is in the same coset asλ and is thus labeled withu. On

the other hand, if the decoded lattice pointλ̂ is labeled withu, then we must haveϕ(QΛ(n)) = 0, which implies

QΛ(n) ∈ Λ′, since the kernel ofϕ is Λ′.
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Fig. 6. Encoding and decoding architecture for LNC.

To sum up, the above encoding-decoding architecture is depicted in Fig. 6. The encoderE : W → Cn is given

by

xℓ = E(wℓ) = ϕ̃(wℓ)

and the decoderD : Cn × CL × TL is given by

û = D(y|h, a) = ϕ(QΛ(αy))

whereα is a scaling factor chosen by the decoder based onh anda, which will be discussed fully in the next

section. Intuitively, the purpose ofα is to reduce the effective noisen, by trading off betweenself noise(the first

term in (6) due to non-integer channel gains) and Gaussian noise.

Clearly, the encoding-decoding complexity of an LNC schemeis not essentially different from that for a point-to-

point channel using the same nested lattice code. Further, the error probability of the scheme can be characterized

by Proposition 1, as explained before.

Proposition 1: The messageu =
∑L

ℓ=1 aℓwℓ is computed incorrectly if and only ifQΛ(n) /∈ Λ′. That is,

Pr[û 6= u] = Pr[QΛ(n) /∈ Λ′].

In practice, the nearest-neighbor quantizerQNN
Λ is often preferred in the implementation of the decoder. This

is to reduce the error probability, as we will see in Sec. VI. Moreover, for reasons of energy-efficiency, a nested

lattice codeL(Λ,Λ′) is usually preferred in the implementation of the encoder. In this case, the encoder takes the

messages inW to their minimum-energycoset representatives, i.e., the embedding map is chosen tosatisfy

ϕ̃(wℓ) = ϕ̃(wℓ) mod Λ′

where the shaping regionRΛ′ is chosen as the Voronoi region.

Sometimes, atranslatednested lattice code can be used to further reduce the energy consumption. Such techniques

are well studied in the area of Voronoi constellations (see,e.g., [38], [39]). Specifically, a translated version of a

generic LNC scheme consists of an encoderE : W × Cn → Cn

xℓ = E(wℓ | dℓ) , (dℓ + ϕ̃(wℓ)) mod Λ′

and a decoderD : Cn × CL ×RL × (Cn)L → W

û = D(y | h, a, {dℓ}) , ϕ

(

QΛ

(

αy −
L∑

ℓ=1

aℓdℓ

))

.
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Note that Proposition 1 holds unchanged in this case.

Finally, note that the message rate of an LNC scheme can be computed geometrically as well as algebraically,

as

Rmes =
1

n
log2 (V (Λ′)/V (Λ))

=
1

n

k∑

i=1

log2 |T/〈πi〉|.

B. Construction of the Linear Labeling

In this section, by applying the Smith normal form theorem, we provide an explicit construction of the linear

labelingϕ and an embedding map̃ϕ.

Theorem 6:Let Λ/Λ′ be a finite nestedT -lattice quotient. Then there exist generator matricesGΛ andGΛ′ for

Λ andΛ′, respectively, satisfying

GΛ′ =




diag(π1, . . . , πk) 0

0 In−k



GΛ. (8)

In this case,

Λ/Λ′ ∼= T/〈π1〉 × · · · × T/〈πk〉.

Moreover, the map

ϕ : Λ → T/〈π1〉 × · · · × T/〈πk〉

given by

ϕ(rGΛ) = (r1 + 〈π1〉, . . . , rk + 〈πk〉)

is a surjectiveT -module homomorphism with kernelΛ′.

Proof: Let G̃Λ and G̃Λ′ be any generator matrices forΛ andΛ′, respectively. TheñGΛ′ = JG̃Λ, for some

nonsingular matrixJ ∈ T n×n. SinceT is a PID, by Theorem 3, the matrixJ has a Smith normal formD =

diag(d1, . . . , dn). SinceJ is nonsingular, the diagonal entriesd1, . . . , dn of D are all nonzero. Thus,d1, . . . , dn

can be expressed as

d1, . . . , dn = u1, . . . , un−k, π1, . . . , πk

whereu1, . . . , un−k are units inT , π1, . . . , πk are nonzero, non-unit elements inT . It follows that

D ≈ D̃ ,




diag(π1, . . . , πk) 0

0 In−k



 .

Therefore,J ≈ D̃ and there exist invertible matricesP,Q ∈ GLn(T ) such thatD̃ = PJQ. We take

GΛ = Q−1G̃Λ

GΛ′ = PG̃Λ′

as new generator matrices forΛ andΛ′. Clearly, we haveGΛ′ = D̃GΛ. This proves the first statement.
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Since the second statement follows immediately from the third statement and the First Isomorphism Theory, we

need only to prove the third statement here. That is, we must show that the mapϕ is a surjectiveT -homomorphism

with kernelΛ′. Since it is easy to check that the mapϕ is surjective andT -linear, we will show that the kernel of

ϕ is Λ′. Note that

ϕ(rGΛ) = 0 ⇐⇒ ∀i ∈ {1, . . . , k}ri ∈ 〈πi〉.

Note also that

Λ′ = {rGΛ : ri ∈ 〈πi〉},

becauseGΛ′ = D̃GΛ. Hence, the kernel ofϕ is indeedΛ′.

Theorem 6 constructs a linear labelingϕ : Λ → W explicitly. The key step is to find two generator matricesGΛ

andGΛ′ satisfying the relation (8). This can be achieved by using the Smith normal form theorem. To construct

an embedding map̃ϕ, one shall find a pre-image for each messagew = (r1 + 〈π1〉, . . . , rk + 〈πk〉). Clearly, one

natural choice ofϕ̃(w) is given by

ϕ̃(w) = (r1, . . . , rk, 0, . . . , 0
︸ ︷︷ ︸

n−k

)GΛ,

which provides an explicit expression for̃ϕ(w).

The use of the Smith normal form in coding theory is not new. Inthe work of Forney [39], [40], it was applied

to study the structure of convolutional codes as well as the linear labeling for real lattices. The goal of the Smith

normal form theorem is to reduce an arbitrary matrix to a diagonal matrix, whose diagonal entries are the invariant

factors. In the context of complexT -lattices, such a diagonal matrix reveals the nesting structure between the fine

lattice and the coarse lattice, leading to a transparent linear labeling.

C. End-to-End Perspective

In this section, we study the use of LNC in a non-coherent network model (where destinations have no knowledge

of the operations of relay nodes) rather than the coherent network model described in [1]. To provide a context

for our study, we consider a Gaussian relay network in which ageneric LNC scheme is used in conjunction with

a scheduling algorithm. The scheduling algorithm indicates, at each time slot, which nodes are transmitters and

which nodes are receivers. As a transmitter, a node first computes a random linear combination of the packets in

its buffer and then maps this combination to a transmitted signal. As a receiver, a node first decodes the received

signal into one or more linear combinations of the transmitted packets and then performs (some form of) Gaussian

elimination in order to discard redundant (linearly dependent) packets in the buffer.

Initially, only the source nodes have nonempty buffers containing the message packets. When the communication

ends, each destination node will have collected sufficiently many linear combinations of the message packets. This

induces an end-to-end linear network-coding channel in which the message spaceW is, in general, aT -module

T/〈π1〉 × · · · × T/〈πk〉. Since modules over PIDs share much in common with vector spaces over finite fields, it

would be natural to expect that many useful techniques for non-coherent network coding can be adapted here.
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We use the technique of headers as an illustrating example inthis section. For convenience, we rewrite the

message space as

W = T/〈πk〉 × · · · × T/〈π1〉.

Similar to the vector-space case, we use the firstm components to store headers, and the lastk−m components to

store payloads, wherem is the number of message packets. Specifically, the header for the ith message packet is a

length-m tuple with 1 + 〈πk−i+1〉 at positioni and0+ 〈πk−j+1〉 at other positions (where1 ≤ j ≤ m andj 6= i).

Example 5:Let the message spaceW = Z/〈12〉×Z/〈6〉×Z/〈2〉×Z/〈2〉. Suppose there are2 original messages

in the system. Then the matrixW of the source messages is of the form

W =




1 + 〈12〉 0 + 〈6〉 a+ 〈2〉 b+ 〈2〉
0 + 〈12〉 1 + 〈6〉 c+ 〈2〉 d+ 〈2〉



 ,

wherea, b, c, d ∈ Z.

Recall that, when the message space is a vector space, Gauss-Jordan elimination is used to recover the payloads

at the destinations. As one may expect, for a more general message space, some modification of Gauss-Jordan

elimination is needed. It turns out that the key step in the modification is to transform a2 × 1 matrix to a row

echelon form: givena, b ∈ T , returns, t, u, v, g ∈ T such that



s t

u v








a

b



 =




g

0





where the determinant,sv − tu, is a unit fromT .

Example 6:Suppose that the matrixW of the message packets is given in Example 5. Suppose that a destination

has received two linear combinations,2w1 + 3w2 and3w1 + 2w2. Then the matrixY of the received packets at

the destination isY =




2 3

3 2



W, which is in the form of

Y =




2 + 〈12〉 3 + 〈6〉 c+ 〈2〉 d+ 〈2〉
3 + 〈12〉 2 + 〈6〉 a+ 〈2〉 b+ 〈2〉



 .

To recover the payloads, we reduce the first column ofY to a row echelon form. Since



2 −1

−3 2








2

3



 =




1

0





overZ and the determinant,2× 2− (−1)× (−3) = 1, is a unit inZ, we multiply the matrix




2 −1

−3 2



 with Y,

obtaining

Y1 =




2 −1

−3 2



Y

=




1 + 〈12〉 4 + 〈6〉 a+ 〈2〉 b+ 〈2〉
0 + 〈12〉 1 + 〈6〉 c+ 〈2〉 d+ 〈2〉



 .
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In this way, we transform the matrixY to a row echelon form. Next, we transform the matrixY to a reduced row

echelon form, which can be done by subtracting4 times the second row from the first row, i.e.,

Y2 =




1 −4

0 1



Y1.

Now it is easy to check thatY2 = W. In other words, the payloads are recovered correctly.

Although Example 6 only illustrates the decoding procedurefor the case ofm = 2, it can be extended to the

case ofm > 2 through a simple mathematical induction.

Finally, we would like to point out that the design of headersin Example 5 is suboptimal, and a better design

can be made by using matrix canonical forms. The developmentof this idea is beyond the scope of this paper and

will instead be discussed in a separate paper [41].

VI. PERFORMANCEANALYSIS FOR LATTICE NETWORK CODING

In this section, we turn from algebra to geometry, presenting an error-probability analysis as well as its implica-

tions.

A. Error Probability for LNC

Recall that, according to Proposition 1, the error probability of decoding a linear functionu is Pr[û 6= u] =

Pr[QΛ(n) /∈ Λ′], wheren is the effective noise given by (6). Note that the effective noisen is not necessarily

Gaussian, making the analysis nontrivial. To alleviate this difficulty, we focus on a special case in which the shaping

regionRΛ′ is a (rotated) hypercube inCn, i.e.,

RΛ′ = γUHn (9)

where γ > 0 is a scalar factor,U is any n × n unitary matrix, andHn is a unit hypercube inCn defined

by Hn = ([−1/2, 1/2)+ i[−1/2, 1/2))
n. This case corresponds to the so-calledhypercube shapingin [42]. The

assumption of hypercube shaping not only simplifies the analysis of error probability, but also has some practical

advantages, for example, the complexity of the shaping operation is generally low. However, as we will see later,

there is no shaping gain under hypercube shaping. This is expected, since similar results hold for the use of lattice

codes in point-to-point channels [39], [42].

In the sequel, we will provide an approximate upper bound forthe error probability for LNC schemes admitting

hypercube shaping. This upper bound is closely related to certain geometrical parameters of a lattice quotient as

defined below.

Let us define theminimum (inter-coset) distanceof a lattice quotientΛ/Λ′ as

d(Λ/Λ′) , min
λ1,λ2∈Λ:λ1−λ2 6∈Λ′

||λ1 − λ2||

= min
λ∈Λ\Λ′

||λ||
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whereΛ \ Λ′ denotes the set difference{λ ∈ Λ : λ /∈ Λ′}. Note thatd(Λ/Λ′) corresponds to the length of the

shortest vectors inΛ \ Λ′. Let K(Λ/Λ′) denote the number of these shortest vectors.

We have the following union bound estimate on the error probability.

Theorem 7 (Probability of Decoding Error):Suppose that the shaping regionRΛ′ is a (rotated) hypercube and

that all the transmitted vectors are independent and uniformly distributed overRΛ′ . Suppose thatQΛ(·) is a nearest-

neighbor quantizer. Then a union bound estimate on the errorprobability in decoding a specified linear combination

is

Pe(h, a)

/ min
α∈C

K(Λ/Λ′) exp

(

− d2(Λ/Λ′)

4N0(|α|2 + SNR ‖αh− a‖2)

)

. (10)

Moreover, the optimal value ofα, i.e., the value ofα that minimizes the right-hand side of (10), is given by (2),

which results in

Pe(h, a) / K(Λ/Λ′) exp

(

− d2(Λ/Λ′)

4N0aMaH

)

(11)

where the matrixM is given by (3).

The proof is given in Appendix A. Note that the proof assumes the use of random dithering (translation by a random

vector chosen uniformly at random from the shaping region) at the encoders, so that the transmitted vectors are

uniformly distributed over the shaping region.

Theorem 7 implies that the lattice quotientΛ/Λ′ should be designed such thatK(Λ/Λ′) is minimized and

d(Λ/Λ′) is maximized (under a given message rateRmes and SNR), which will be discussed fully in Sec. VII.

Further, if the receiver has the freedom to choose the coefficient vectora, it needs to minimize the termaMaH,

which, as observed in [18], is a shortest vector problem. Theorem 7 can be extended to other shaping methods. A

particular example is provided in [28].

B. Nominal Coding Gain

Similarly to the point-to-point case, we define thenominal coding gainof Λ/Λ′ as

γc(Λ/Λ
′) ,

d2(Λ/Λ′)

V (Λ)1/n
.

Note that the nominal coding gain is invariant to scaling. For an LNC scheme with hypercube shaping, we have

V (Λ′) = γ2n and P = γ2/6 where γ > 0 is the scalar factor in (9). Thus,V (Λ′)1/n = 6P . Note also that

V (Λ)1/n = 2−RmesV (Λ′)1/n. It follows that the union bound estimate in (11) can be expressed as

Pe(h, a) / K(Λ/Λ′) exp

(

−3

2
γc(Λ/Λ

′)2−Rmes
SNR
aMaH

)

.

Thus, for a given spectral efficiencyRmes, the performance of such an LNC scheme can be characterized by the

parametersK(Λ/Λ′) andγc(Λ/Λ′).

Note that the nominal coding gain of a baseline lattice quotient Z[i]n/πZ[i]n is equal to1 for all π ∈ Z[i]∗.

Thus,γc(Λ/Λ′) provides a first-order estimate of the performance improvement of an LNC scheme over a baseline
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LNC scheme. For this reason,γc(Λ/Λ′) will be used as a figure of merit of LNC schemes in the rest of this paper;

yet the effect ofK(Λ/Λ′) cannot be ignored in a more detailed assessment of LNC schemes.

VII. D ESIGN OFNESTEDLATTICES

In this section, we adapt several known lattice constructions to produce pairs of nested lattices with simple

message space and high coding gain.

A. Constructions of Nested Lattices

Known methods for designing lattices include ConstructionA and Construction D as well as their complex

versions (see, e.g., [34]). Here, we adapt these methods to construct pairs of nested lattices. In all of our examples,

the Voronoi region of the coarse lattice is chosen as its fundamental region.

1) Nested Lattices via Construction A:Let p > 0 be a prime number inZ. Let C be a linear code of lengthn over

Z/〈p〉. Without loss of generality, we may assume the linear codeC is systematic. Define a “real Construction A

lattice” [34] as

Λr , {λ ∈ Z
n : σ(λ) ∈ C},

whereσ : Zn → (Z/〈p〉)n is the natural projection map. (Here, the subscriptr stands for “real.”) Define

Λ′
r , {pr : r ∈ Z

n}.

It is easy to see thatΛ′
r is a sublattice ofΛr. Hence, we obtain a pair of nestedZ-latticesΛr ⊇ Λ′

r from the linear

codeC.

Now we “lift” this pair of nestedZ-lattices to a pair of nestedZ[i]-lattices. LetΛ = Λr + iΛr, i.e.,

Λ = {λ ∈ Z[i]n : Re{λ}, Im{λ} ∈ Λr}.

Similarly, let Λ′ = Λ′
r + iΛ′

r. In this way, we obtain a pair of nestedZ[i]-latticesΛ ⊇ Λ′. A variant of this

construction was used by Nazer and Gastpar in [1].

To study the message space induced byΛ/Λ′, we specify two generator matrices satisfying the relation(8). On

the one hand, we note that the latticeΛr has a generator matrixGΛr
given by

GΛr
=




Ik Bk×(n−k)

0(n−k)×k pIn−k



 ,

whereσ([I B]) is a generator matrix forC. The lifted latticeΛ has a generator matrixGΛ that is identical toGΛr
,

but overZ[i]. On the other hand, we note that the latticeΛ′ has a generator matrixGΛ′ given by

GΛ′ =




pIk pBk×(n−k)

0(n−k)×k pIn−k



 .

These two generator matricesGΛ andGΛ′ satisfy

GΛ′ =




pIk 0

0 In−k



GΛ.
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It follows from Theorem 6 thatΛ/Λ′ ∼= (Z[i]/〈p〉)k. That is, the message space under this construction isW =

(Z[i]/〈p〉)k. In particular, the message rateRmes = k
n log2(p

2), sinceZ[i]/〈p〉 containsp2 elements.

Note that the message spaceW can be viewed as a freeZ[i]/〈p〉-module of rankk. In particular,W is a vector

space if and only if the prime numberp is a Gaussian prime, which is equivalent to saying thatp is of the form

4j + 3.

To study the nominal coding gainγc(Λ/Λ′) as well asK(Λ/Λ′), we relate them to certain parameters of the

linear codeC. To each codewordc = (c1 + 〈p〉, . . . , cn + 〈p〉) ∈ C, there corresponds a coset(c1, . . . , cn) + pZn

whose minimum-norm coset leader, denoted byσ∗(c), is given by

σ∗(c) = (c1 − ⌊c1/p⌉ × p, . . . , cn − ⌊cn/p⌉ × p),

where⌊x⌉ is a rounding operation. The Euclidean weightwE(c) of c can then be defined as the squared Euclidean

norm of σ∗(c), that is,wE(c) = ‖σ∗(c)‖2. Thus, for example, whenc = (1 + 〈5〉, 3 + 〈5〉), σ∗(c) = (1,−2).

Clearly, the Euclidean weight ofc is equivalent to the2-norm of c defined in [43]. Letwmin
E (C) be the minimum

Euclidean weight of nonzero codewords inC, i.e.,

wmin
E (C) = min{wE(c) : c 6= 0, c ∈ C}.

Let A(wmin
E ) be the number of codewords inC with minimum Euclidean weightwmin

E (C). Then we have the

following result.

Proposition 2: Let C be a linear code overZ/〈p〉 and letΛ ⊇ Λ′ be a pair of nested lattices constructed from

C. Then

γc(Λ/Λ
′) =

wmin
E (C)

p2(1−k/n)

and

K(Λ/Λ′) =







2A
(
wmin

E (C)
)
2w

min

E (C), whenp = 2,

2A
(
wmin

E (C)
)
, whenp > 2.

The proof is in Appendix B.

Proposition 2 suggests that optimizing the nominal coding gain γc(Λ/Λ
′) amounts to maximizing the minimum

Euclidean weightwmin
E (C) of C, and that optimizingK(Λ/Λ′) amounts to minimizingA(wmin

E ).

2) Nested Lattices via Complex Construction A:Let π be a prime inT . Let C be a linear code of lengthn over

T/〈π〉. Without loss of generality, we may assume the linear codeC is systematic. Define a “complex Construction A

lattice” [34] as

Λ , {λ ∈ T n : σ(λ) ∈ C},

whereσ : T n → (T/〈π〉)n is the natural projection map. Define

Λ′ , {πr : r ∈ T n}.

It is easy to seeΛ′ is a sublattice ofΛ. Hence, we obtain a pair of nested latticesΛ ⊇ Λ′ from the linear codeC.
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To study the message space induced byΛ/Λ′, we specify two generator matrices satisfying the relation(8). It is

well-known thatΛ has a generator matrixGΛ given by

GΛ =




Ik Bk×(n−k)

0(n−k)×k πIn−k



 ,

and thatΛ′ has a generator matrixGΛ′ given by

GΛ′ =




πIk πBk×(n−k)

0(n−k)×k πIn−k



 .

These two generator matrices satisfy

GΛ′ =




πIk 0

0 In−k



GΛ.

Hence, we haveΛ/Λ′ ∼= (T/〈π〉)k. That is, the message space under this construction isW = (T/〈π〉)k. Sinceπ

is a prime inT , T/〈π〉 is a finite field andW is a vector space of dimensionk. Thus, this construction is preferable

to the previous construction, if the message space is required to be a vector space. For instance, ifT = Z[ω] and

π = 2, then the message spaceW is a vector space overF4. This never happens under the previous construction,

since2 is not a prime inZ[i].

To study the nominal coding gainγc(Λ/Λ′) as well asK(Λ/Λ′), we again relate them to the parameters of

the linear codeC with a particular focus onT = Z[i] (due to hypercube shaping). The definition of the minimum

Euclidean weightwmin
E (C) is the same as the previous definition, except for the fact that the minimum-norm coset

leaderσ∗(c) is given by

σ∗(c) = (c1 − ⌊c1/π⌉ × π, . . . , cn − ⌊cn/π⌉ × π),

where the rounding operation⌊x⌉ sendsx ∈ C to the closest Gaussian integer in the Euclidean distance.

Proposition 3: Let C be a linear code overZ[i]/〈π〉 and letΛ ⊇ Λ′ be a pair of nested lattices constructed from

C. Then

γc(Λ/Λ
′) =

wmin
E (C)

|π|2(1−k/n)

and

K(Λ/Λ′) =







A
(
wmin

E (C)
)
4w

min

E (C), when |π|2 = 2,

A
(
wmin

E (C)
)
, otherwise.

The proof is in Appendix C.

3) Nested Lattices via Construction D:Let p > 0 be a prime inZ. Let C1 ⊆ · · · ⊆ Cs be nested linear codes

of lengthn over Z/〈p〉, whereCi has parameters[n, ki] for i = 1, . . . , s. As shown in [34], there exists a basis

{g1, . . . ,gn} for the vector space(Z/〈p〉)n such that

1) g1, . . . ,gki
spanCi for i = 1, . . . , s; and

2) if G denotes the matrix with rowsg1, . . . ,gn, some permutation of the rows ofG gives an upper triangular

matrix with diagonal elements equal to1 + 〈p〉.
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(In fact,G can be constructed by applying Gaussian elimination to the generator matrices of the nested linear codes

iteratively.)

Using the nested linear codes{Ci, 1 ≤ i ≤ s}, we define a “real Construction D lattice” [34] as

Λr ,







s∑

i=1

ki∑

j=1

pi−1βij σ̃(gj) : βij ∈ {0, . . . , p− 1}







+ psZn (12)

where σ̃ is the natural embedding map from(Z/〈p〉)n to {0, . . . , p − 1}n. (For completeness, we will show in

Appendix D thatΛr is indeed a lattice; we will also give an explicit generator matrix for Λr.)

Note that the lattice defined byΛ′
r , {psr : r ∈ Z

n} is a sublattice ofΛr. Hence, we obtain a pair of nested

Z-latticesΛr ⊇ Λ′
r from the nested linear codes{Ci, 1 ≤ i ≤ s}.

Next, we lift this pair of nestedZ-lattices to a pair of nestedZ[i]-lattices. That is, we setΛ = Λr + iΛr and

Λ′ = Λ′
r + iΛ′

r. In this way, we obtain a pair of nestedZ[i]-latticesΛ ⊇ Λ′. In Appendix E, we will show that

there exist two generator matricesGΛ andGΛ′ satisfying

GΛ′ = diag(ps, . . . , ps
︸ ︷︷ ︸

k1

, ps−1, . . . , ps−1

︸ ︷︷ ︸

k2−k1

, . . . , 1, . . . , 1
︸ ︷︷ ︸

n−ks

)GΛ. (13)

It follows from Theorem 6 that

Λ/Λ′ ∼= (Z[i]/〈ps〉)k1 × · · · × (Z[i]/〈p〉)ks−ks−1 .

In particular, the message rateRmes =
∑

i ki

n log2(p
2). When s = 1, this construction is reduced to the first

construction. Although this construction induces a more complicated message space, it is able to produce pairs of

nested lattices with higher nominal coding gains, as shown in the following result.

Proposition 4: Let C1 ⊆ · · · ⊆ Cs be nested linear codes of lengthn over Z/〈p〉 and letΛ ⊇ Λ′ be a pair of

nested lattices constructed from{Ci}. Thenγc(Λ/Λ′) is lower bounded by

γc(Λ/Λ
′) ≥ min1≤i≤s{p2(i−1)wmin

E (Ci)}
p2(s−

∑
a
i=1

ki/n)
,

andK(Λ/Λ′) is upper bounded by

K(Λ/Λ′) ≤







2
∑s

i=1 2
AiAi, whenp = 2

2
∑s

i=1 Ai, whenp > 2

whereAi is the number of codewords inCi with minimum Euclidean weightwmin
E (Ci).

The proof is given in Appendix F.

Now we will apply Propositions 2 and 4 to show the advantage ofpairs of nested lattices constructed via

Construction D. LetΛA ⊇ Λ′
A be a pair of nested lattices constructed from a linear[n, k] codeC (overZ/〈p〉) via

Construction A. Then by Proposition 2,γc(ΛA/Λ
′
A) = wmin

E (C)/p2(1−k/n). Suppose that the linear codeC has an
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TABLE I

POLYNOMIAL CONVOLUTIONAL ENCODERS THAT ASYMPTOTICALLY ACHIEVE THE UPPER BOUND.

ν g(D) γc(Λ/Λ′)

1 [1 + (1 + i)D, (1 + i) +D] 2 (3 dB)

2 [1 +D + (1 + i)D2, (1 + i) + (1 − i)D +D2] 3 (4.77 dB)

[n, k′] subcodeC′ with wmin
E (C′) ≥ p2wmin

E (C). Let ΛD ⊇ Λ′
D be a pair of nested lattices constructed fromC and

C′ via Construction D. Then by Proposition 4,

γc(ΛD/Λ
′
D) ≥

p2wmin
E (C)

p2(2−(k+k′)/n)

=
wmin

E (C)
p2(1−(k+k′)/n)

> γc(ΛA/Λ
′
A).

In other words, given a pair of nested lattices via Construction A, there exists a pair of nested lattices via

Construction D with higher nominal coding gain if the linearcodeC has a subcodeC′ with wmin
E (C′) ≥ p2wmin

E (C).

B. Design Examples

We present three design examples to illustrate the design tools developed in Sec. VII-A. All of our design

examples feature short packet length and reasonable decoding complexity, since the purpose of this paper is to

demonstrate the potential of LNC schemes in practical settings. (A more elaborate scheme, based on signal codes

[44], is described in [22].)

Example 7:Consider a rate-1/2 terminated (feed-forward) convolutional code overZ[i]/〈3〉 with ν memory

elements. Suppose the input sequenceu(D) is a polynomial of degree less thanµ. Then this terminated convolutional

code can be regarded as a[2(µ+ ν), µ] linear block codeC. Using the method based on complex Construction A,

we obtain a pair of nested latticesΛ ⊇ Λ′.

Note that the minimum Euclidean weightwmin
E (C) of C can be bounded as

wmin
E (C) ≤ 3(1 + ν),

for all rate-1/2 terminated (feed-forward) convolutional codes overZ[i]/〈3〉. This upper bound can be verified by

considering the input sequenceu(D) = 1. Hence, the nominal coding gainγc(Λ/Λ′) satisfies

γc(Λ/Λ
′) ≤ 1 + ν.

When ν = 1, 2 and µ ≫ ν, this upper bound can be asymptotically achieved by polynomial convolutional

encoders shown in Table I.

Note that whenν = 1 or 2, the encoder state space size is9 or 81. Note also that the lattice decoderDΛ can

be implemented through a modified Viterbi decoder as discussed in Appendix G. Thus, this example demonstrates

that a nominal coding gain of3 to 5 dB can be easily obtained with reasonable decoding complexity.
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Our next example illustrates how to use our design tools to improve an existing construction presented in [45].

Example 8:Consider nested linear codesC1 ⊆ C2 of lengthn overZ/〈2〉, whereC1 is an [n, k1, d1] code with

d1 ≥ 4 andC2 is the [n, n] trivial code. Using the method based on Construction D, we obtain a pair of nested

latticesΛ ⊇ Λ′.

In this case, we will show that the nominal coding gainγc(Λ/Λ′) = 4/4(1−k1/n). On the one hand, by

Proposition 4,

γc(Λ/Λ
′) ≥ min{wmin

H (C1), 4wmin
H (C2)}

4(2−
∑

2

i=1
ki/n)

= 4/4(1−k1/n).

On the other hand, by definition,

γc(Λ/Λ
′) = d2(Λ/Λ′)/V (Λ′)1/n

= d2(Λ/Λ′)/4(2−
∑

2

i=1
ki/n) (14)

≤ 4/4(1−k1/n) (15)

where (14) follows from the facts thatV (Λ′) = V (Λ)4k1+k2 andV (Λ′) = 42n; (15) follows from the fact that

(2, 0, . . . , 0) is a lattice point inΛ but not inΛ′.

Finally, in Table II we list several candidates forC1 as well as their corresponding nominal coding gains. These

candidates are all extended Hamming codes withd1 = 4.

We note that Ordentlich-Erez’s construction in [45] can be regarded as a special case of Example 8. In their

construction,C1 is chosen as a rate5/6 cyclic LDPC code of length64800. Example 8 suggests that their nominal

coding gain is4/41/6 (5.02 dB) with message rate2(1+5/6) ≈ 3.67. Example 8 also suggests that there are many

ways to improve the nominal coding gain. For example, whenC1 is chosen as a[256, 247] extended Hamming

code, the nominal coding gain is5.81 dB with message rate2(1 + 247
256 ) ≈ 3.93.

Our third example illustrates how to design high-coding-gain nested lattices based on turbo lattices [46].

Example 9:Consider nested Turbo codesC1 ⊆ C2 over Z/〈2〉. As shown in [46],C1 can be a rate-1/3 Turbo

code withd1 = 28 andC2 can be a rate-1/2 Turbo code withd2 = 13. Using the method via Construction D, we

obtain a pair of nested latticesΛ ⊇ Λ′. In this case, by Proposition 4,

γc(Λ/Λ
′) ≥ min{d1, 4d2}

4(2−
∑

2

i=1
ki/n)

= 28/4(2−1/2−1/3) = 7.45 dB.

The message rate is given byRmes = 5/3 ≈ 1.67.

Finally, some other design examples of high-performance nested lattice codes, which are of a similar spirit, can

be found, e.g., in [21], [22], [28], [29], [47], Also, similar methods of designing practical compute-and-forward

have been recently proposed. See, e.g., [23], [48], [49].

VIII. D ECODING MULTIPLE L INEAR COMBINATIONS

In this section, we consider the problem when a receiver has the freedom to choose coefficient vectors. For ease

of presentation, we mainly focus on the case of complex Construction A in which the message space is a vector

space overT/〈π〉. The main result of this section is that, under separate decoding, the problem of decoding multiple
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TABLE II

SEVERAL EXTENDED HAMMING CODES AND CORRESPONDING NOMINAL CODING GAINS.

n k γc(Λ/Λ′)

32 26 3.08 (4.89 dB)

64 57 3.44 (5.36 dB)

128 120 3.67 (5.64 dB)

256 247 3.81 (5.81 dB)

linear combinations is related to theshortest independent vectors problem[3], and can be solved through some

existing methods.

In general, upon deciding the coefficient vectorsa1, . . . , am, the receiver can perform joint decoding or separate

decoding to recover the linear combinationsui = aiW. Here, we confine our attention to separate decoding in

which each linear combinationui = aiW is decoded independently through the use ofD(y | h, ai). In this case,

the union bound estimate on the decoding error for eachai is

Pe(h, ai) / K(Λ/Λ′) exp

(

− d2(Λ/Λ′)

4N0aiMaH
i

)

.

To optimize the above union bound estimates, the coefficientvectorsa1, . . . , am should be chosen such that each

aiMaH
i is made as small as possible under the constraint thatā1, . . . , ām are linearly independentover T/〈π〉,

where āi = σ(ai) is the natural projection ofai (from T to T/〈π〉). Clearly, this constraint ensures that every

recovered linear combinationui is useful overT/〈π〉.
We say a solution{a1, . . . , am} is feasibleif ā1, . . . , ām are linearly independent overT/〈π〉. Since each̄ai is

of dimensionL, we assume thatm ≤ L because otherwise no feasible solution exists.

In the sequel, we will show that there exists a feasible solution that simultaneouslyoptimizes eachaiMaH
i .

We call such feasible solutionsdominant solutions. Formally, letM = LLH be the Cholesky decomposition of

M, whereL is some lower triangular matrix. (The existence ofL comes from the fact thatM is Hermitian and

positive-definite.) Clearly,aMaH = ‖aL‖2.

Definition 3 (Dominant Solutions):A feasible solution{a1, . . . , am} (with ‖a1L‖ ≤ . . . ≤ ‖amL‖) is called a

dominant solutionif for any feasible solutiona′1, . . . , a
′
m (with ‖a′1L‖ ≤ . . . ≤ ‖a′mL‖), the following inequalities

hold

‖aiL‖ ≤ ‖a′iL‖, i = 1, . . . ,m.

Although the dominant solutions seem to be a natural concept, the existence of them is not immediate from the

definition, and a separate argument is needed.
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Theorem 8:A feasible solution{a1, . . . , am} defined by

a1 = argmin {‖aL‖ | ā is nonzero}

a2 = argmin {‖aL‖ | ā, ā1 are linearly independent}
...

am = argmin {‖aL‖ | ā, ā1, . . . , ām−1 are linearly ind.}

always exists, and is a dominant solution.

The proof is given in Appendix H.

We now propose a three-step method of finding a dominant solution. In the first step, we construct a ball

B(ρ) = {x ∈ CL | ‖x‖ ≤ ρ} that containsm lattice pointsv1L, . . . ,vmL such thatv̄1, . . . , v̄m are linearly

independent, wherēvi = σ(vi) is the natural projection ofvi. In the second step, we order all lattice points within

B(ρ) based on their lengths, producing an ordered setSρ with ‖v1L‖ ≤ ‖v2L‖ ≤ · · · ≤ ‖v|Sρ|L‖. Finally, we find

a dominant solution{a1, . . . , am} by using a greedy search algorithm given as Algorithm 1.

Algorithm 1 Greedy Search for Dominant Solution

Input: An ordered setSρ = {v1L,v2L, . . . ,v|Sρ|L} with ‖v1L‖ ≤ ‖v2L‖ ≤ · · · ≤ ‖v|Sρ|L‖.

Output: An optimal solution{a1, . . . , am}.

1. Seta1 = v1. Seti = 1 andj = 1.

2. while i < |Sb| andj < m do

3. Set i = i+ 1.

4. if v̄i, ā1, . . . , āj are linearly independentthen

5. Set j = j + 1. Setaj = vi.

6. end if

7. end while

The correctness of our proposed method follows immediatelyfrom Theorem 8. Our proposed method is in the

spirit of sphere-decoding algorithms, since sphere-decoding algorithms also enumerate all lattice points within a

ball centered at a given vector. The selection of the radiusρ plays an important role here, just as it does for

sphere-decoding algorithms. Ifρ is too large, then the second step may incur excessive computations. If ρ is too

small, then the first step may fail to construct a ball that containsm linearly independent̄v1, . . . , v̄m.

In practice, lattice-reduction algorithms [50] may be usedto determine an appropriate radiusρ, as shown in the

following proposition.

Proposition 5: Let {b1, . . . ,bL} be areduced basis[50] for L. If ρ is set to be‖bm‖, then the setSρ contains

at leastm lattice pointsv1L, . . . ,vmL such thatv̄1, . . . , v̄m are linearly independent.

Proof: Let vi = biL
−1 for i = 1, . . . , L. Let V be anL×L matrix with vi as itsith row. Since{b1, . . . ,bL}

is a reduced basis, it follows that the matrixV is invertible. In particular,̄v1, . . . , v̄m are linearly independent for

July 4, 2013 DRAFT



31

!2 0 2 4 6

10
!4

10
!3

10
!2

10
!1

10
0

SNR [dB]

F
ra

m
e
!

E
rr

o
r 

R
a
te

 

 

Nazer!Gastpar

Rate!1/2 (! = 2)

Rate!1/2 (! = 1)

Fig. 7. Error performance of three LNC schemes in Scenario 1.

all integersm ≤ L.

There are many existing lattice-reduction algorithms in the literature. Among them, the Lenstra-Lenstra-Lovász

(LLL) algorithm [51] is of particular importance. Moreover, the LLL algorithm has been extended from real lattices

to complex lattices over Euclidean domains [52], [53]. SinceZ[i] andZ[ω] are special cases of Euclidean domains,

the extended LLL algorithm can be used to handle the cases ofT = Z[i] andT = Z[ω].

Interestingly, whenL is small, some efficient lattice-reduction algorithms can directly output dominant solutions.

Such algorithms, which are generalizations of Gauss’ algorithm (see, e.g., [54]), are described in [55], [56].

IX. SIMULATION RESULTS

As described in Section I, there are many potential application scenarios for LNC, the most promising of which

may involve multicasting from one (or more) sources to multiple destinations via a wireless relay network. Since we

wish to avoid introducing higher-layer issues (e.g., scheduling), in this paper, we focus here on a two-transmitter,

single receiver multiple-access configuration, which may be regarded as a building block component of a more

complicated and realistic network application. In particular, we focus on the following three scenarios:

1) The channel gains are fixed; the receiver chooses a single linear function.

2) The channel gains are Rayleigh faded; the receiver chooses a single linear function.

3) The channel gains are Rayleigh faded; the receiver chooses two linear functions.

In each scenario, we evaluate the performance of four LNC schemes: the Nazer-Gastpar scheme, two LNC schemes

proposed in Example 7, and the baseline LNC scheme overZ[i]/〈3〉 as defined in Sec. VII. Since we are interested in

LNC schemes with short packet lengths, each transmitted signal consists of200 complex symbols in our simulations.
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Fig. 8. Error performance of various LNC schemes in Scenario2.

A. Scenario 1 (Fixed Channel Gains; Single Coefficient Vector)

Fig. 7 depicts the frame-error rates of three LNC schemes as afunction of SNR. Here, the channel-gain vector

h is set toh = [−1.17 + 2.15i 1.25 − 1.63i]. Nevertheless, as we have shown in Sec. VII, the results are not

particularly sensitive to the choice forh; similar results are achieved for other fixed choices forh. For the two

LNC schemes proposed in Example 7, the parameterµ+ ν is set to100 and the corresponding message rates are

99
100 log2(3) (ν = 1) and 98

100 log2(3) (ν = 2), respectively. For the Nazer-Gastpar scheme, the messagerate is set to

log2(3), which is quite close to the previous two message rates. The decoding rule for the Nazer-Gastpar scheme

is as follows: a frame error occurs if and only iflog2(3) ≥ log2(SNR /aMaH), wherea is the single coefficient

vector. From Fig. 7, we observe that the gap to the Nazer-Gastpar scheme is around5 dB at an error-rate of1%.

We also observe that the second LNC scheme (with state space of size81) outperforms the first LNC scheme (with

state space of size9) by about2 dB.

B. Scenario 2 (Rayleigh-faded Channel Gains; Single Coefficient Vector)

Fig. 8(a) shows the frame-error rates of three LNC schemes asa function ofSNR. The setup is the same as in

Scenario 1, except that the coefficient vectora changes withh. As seen in Fig. 8(a), the gap to the Nazer-Gastpar

July 4, 2013 DRAFT



33

20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

F
ra

m
e

−
E

rr
o

r 
R

a
te

 

 

Nazer−Gastpar, 1st

Rate−1/2 (ν = 2), 1st

Rate−1/2 (ν = 1), 1st

Nazer−Gastpar, 2nd

Rate−1/2 (ν = 2), 2nd

Rate−1/2 (ν = 1), 2nd
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scheme is around5 dB at an error-rate of1%.

Fig. 8(b) shows the frame-error rates of the baseline LNC scheme (overZ[i]200/3Z[i]200) and the9-QAM PNC

scheme described in Example 2. For the9-QAM scheme, the coefficient vectora is set to[1 1] as explained in

Example 2. To make a fair comparison, the coefficient vectora in the baseline LNC scheme satisfiesa1 6= 0, a2 6= 0,

which comes from the “exclusive law of network coding” as discussed in [7], [8]. As seen in Fig. 8(b), the baseline

LNC scheme outperforms the9-QAM scheme by more than6 dB at an error-rate of1%. In other words, even the

baseline LNC scheme is able to effectively mitigate phase misalignment due to Rayleigh fading. Finally, note that

Fig. 8(a) and Fig. 8(b) are separated because they have different message rates (log2(3) in Fig. 8(a) and2 log2(3)

in Fig. 8(b)).

C. Scenario 3 (Rayleigh-faded Channel Gains; Two Coefficient Vectors)

Fig. 9 depicts the frame-error rates of three LNC schemes as afunction ofSNR. Here the two coefficient vectors

are chosen by using the lattice-reduction algorithm proposed in [55]. The configurations for the three LNC schemes

are precisely the same as those in Fig. 8. The frame-error rates for the first linear combination are depicted in solid

lines, while the error rates for the second linear combination are depicted in dashed lines. From Fig. 9, we observe

similar trends of error rates as in Fig. 8. We also observe that the first linear combination is much more reliable

than the second one.

X. CONCLUSION

In this paper, the problem of constructing LNC schemes via finite-dimensional nested lattices has been studied.

A generic LNC scheme has been defined based on an arbitrary pair of nested lattices. The message space of the

generic scheme is a finite module in general, whose structuremay be analyzed using the Smith normal form theorem.

These results not only give rise to a convenient characterization of the message space of the Nazer-Gastpar scheme,
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but also lead to several generalized constructions of LNC schemes. All of these constructions are compatible with

header-based random linear network coding.

An estimate of the error probability for hypercube-shaped LNC schemes has been derived, showing that the pair

of nested latticesΛ ⊇ Λ′ should be designed such thatd(Λ/Λ′) is maximized andK(Λ/Λ′) is minimized. These

criteria lead to several specific methods for optimizing nested lattices. In particular, the nominal coding gain for

pairs of nested lattices has been introduced, which serves as an important figure of merit for comparing various

LNC schemes. In addition, several concrete examples of practical LNC schemes have been provided, showing that a

nominal coding gain of3 to 7.5 dB is easily obtained under reasonable decoding complexityand short packet length.

Finally, the problem of choosing multiple coefficient vectors is discussed, which is connected to some well-studied

lattice problems, such as the shortest independent vectorsproblem and the lattice reduction problem.

We believe that there is still much work to be done in this area. One direction for follow-up work would be

the design and analysis of higher-layer scheduling algorithms for LNC schemes. Another direction would be the

study of more general shaping methods beyond hypercube shaping. A particular example along this direction is

given in [28]. A third direction would be the construction ofmore powerful LNC schemes, which has been partially

explored in several recent papers, e.g., [21], [22], [29], [47]. We believe that the algebraic framework given in this

paper can serve as a good basis for these developments.

APPENDIX

A. Proof of Theorem 7

We upper bound the error probabilityPr[QNN
Λ (n) /∈ Λ′]. Consider the (non-lattice) set{Λ \ Λ′} ∪ {0}, i.e., the

set differenceΛ\Λ′ adjoined with the zero vector. LetRV (0) be the Voronoi region of0 in the set{Λ\Λ′}∪{0},

i.e.,

RV (0) = {x ∈ C
n : ∀λ ∈ Λ \ Λ′ (‖x− 0‖ ≤ ‖x− λ‖)} .

We have the following upper bound forPr[QNN
Λ (n) /∈ Λ′].

Lemma 1:Pr[QNN
Λ (n) /∈ Λ′] ≤ Pr[n /∈ RV (0)].

Proof:

Pr[n ∈ RV (0)] = Pr[∀λ ∈ Λ \ Λ′ (‖n− 0‖ ≤ ‖n− λ‖)]

= Pr[∀λ ∈ Λ \ Λ′ (‖n− 0‖ < ‖n− λ‖)].

Note that if‖n− 0‖ < ‖n− λ‖ for all λ ∈ Λ \ Λ′, thenQNN
Λ (n) /∈ Λ \ Λ′, as0 is closer ton than any element

in Λ \ Λ′. Thus,

Pr[n ∈ RV (0)] ≤ Pr[QNN
Λ (n) /∈ Λ \ Λ′] = Pr[QNN

Λ (n) ∈ Λ′].
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We further upper bound the probabilityPr[n /∈ RV (0)]. Let Nbr(Λ \ Λ′) ⊆ Λ \ Λ′ denote the set of neighbors

of 0 in Λ \ Λ′, i.e., Nbr(Λ \ Λ′) is the smallest subset ofΛ \ Λ′ such thatRV (0) is precisely the set

{x ∈ C
n : ∀λ ∈ Nbr(Λ \ Λ′) (‖x− 0‖ ≤ ‖x− λ‖)} .

Then, for anyν > 0, we have

P [n 6∈ RV (0)]

= P
[
‖n‖2 ≥ ‖n− λ‖2, someλ ∈ Nbr(Λ \ Λ′)

]

= P
[

Re{λHn} ≥ ‖λ‖2/2, someλ ∈ Nbr(Λ \ Λ′)
]

≤
∑

λ∈Nbr(Λ\Λ′)

P
[

Re{λHn} ≥ ‖λ‖2/2
]

(16)

≤
∑

λ∈Nbr(Λ\Λ′)

exp(−ν‖λ‖2/2)E
[

exp(νRe{λHn})
]

, (17)

where (16) follows from the union bound and (17) follows fromthe Chernoff bound. Sincen =
∑

ℓ(αhℓ−aℓ)xℓ+αz,

we have

E
[

exp
(
νRe{λHn}

)]

= E

[

exp

(

νRe

{

λ
H

(
∑

ℓ

(αhℓ − aℓ)xℓ + αz

)})]

= E
[

exp(νRe{λHαz})
]

·
∏

ℓ

E
[

exp(νRe{λH(αhℓ − aℓ)xℓ})
]

(18)

= exp

(
1

4
ν2‖λ‖2|α|2N0

)

·
∏

ℓ

E
[

exp(νRe{λH(αhℓ − aℓ)xℓ})
]

(19)

where (18) follows from the independence ofx1, . . . ,xL, z and (19) follows from the moment-generating function

of a circularly symmetric complex Gaussian random vector.

Lemma 2:Let x ∈ Cn be a complex random vector uniformly distributed over a hypercubeγUHn for some

γ > 0 and somen× n unitary matrix. Then

E
[
exp(Re{vHx})

]
≤ exp(‖v‖2γ2/24).
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Proof: First, we consider a special case where the unitary matrixU = In. In this case, we have

E
[
exp(Re{vHx})

]

= E
[
exp(Re{v}TRe{x}+ Im{v}T Im{x})

]

= E

[

exp

(
n∑

i=1

(Re{vi}Re{xi}+ Im{vi}Im{xi})
)]

=
n∏

i=1

E [exp(Re{vi}Re{xi}]E [exp Im{vi}Im{xi})] (20)

=

n∏

i=1

sinh(Re{vi}γ/2)
Re{vi}γ/2

sinh(Im{vi}γ/2)
Im{vi}γ/2

(21)

≤
n∏

i=1

exp

(
(Re{vi}γ)2

24

)

exp

(
(Im{vi}γ)2

24

)

(22)

= exp

(
γ2

24
‖v‖2

)

where (20) follows from the independence among each real/imaginary component, (21) follows from the moment-

generating function of a uniform random variable (note thatboth Re{xi} and Im{xi} are uniformly distributed over

[−γ/2, γ/2]), and (22) follows fromsinh(x)/x ≤ exp(x2/6) (which can be obtained by simple Taylor expansion).

Then we consider a general unitary matrixU. In this case, we havex = Ux′, wherex′ ∈ γ[−1/2, 1/2]2n, i.e.,

both Re{x′
i} and Im{x′

i} are uniformly distributed over[−γ/2, γ/2]. Hence,

E
[
exp(Re{vHx})

]
= E

[
exp(Re{vHUx′})

]

= E
[
exp(Re{(UHv)Hx′})

]

≤ exp

(
γ2

24
‖UHv‖2

)

= exp

(
γ2

24
‖v‖2

)

.

Note thatP = 1
nE[‖xℓ‖2] = γ2/6. Thus, we have

E
[

exp(νRe{λHn})
]

≤ exp

(
1

4
ν2‖λ‖2|α|2N0

)
∏

ℓ

exp(‖νλ(αhℓ − aℓ)‖2P/4)

= exp

(
1

4
ν2‖λ‖2|α|2N0 + ‖νλ‖2‖αh− a‖2P/4

)

= exp

(
1

4
‖λ‖2ν2N0Q(a, α)

)

,

where the quantityQ(a, α) is given by

Q(a, α) = |α|2 + SNR ‖αh− a‖2

andSNR = P/N0.
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It follows that, for all ν > 0,

Pr[n 6∈ RV (0)]

≤
∑

λ∈Nbr(Λ\Λ′)

exp

(

−ν‖λ‖2/2 + 1

4
‖λ‖2ν2N0Q(a, α)

)

.

Choosingν = 1/(N0Q(a, α)), we have

Pr[n 6∈ RV (0)] ≤
∑

λ∈Nbr(Λ\Λ′)

exp

(

− ‖λ‖2
4N0Q(a, α)

)

≈ K(Λ/Λ′) exp

(

− d2(Λ/Λ′)

4N0Q(a, α)

)

for high signal-to-noise ratios. Therefore, we have

Pr[QNN
Λ (n) /∈ Λ′] ≤ Pr[n /∈ RV (0)]

/ K(Λ/Λ′) exp

(

− d2(Λ/Λ′)

4N0Q(a, α)

)

.

Sinceα can be carefully chosen, we have

Pr[QNN
Λ (n) /∈ Λ′] / min

α∈C

K(Λ/Λ′) exp

(

− d2(Λ/Λ′)

4N0Q(a, α)

)

,

completing the proof for the first part of Theorem 7. The second part of Theorem 7 follows immediately when the

optimal value ofα is substituted.

B. Proof of Proposition 2

Recall thatd(Λr/Λ
′
r) is the length of the shortest vectors in the set differenceΛr \ Λ′

r. Hence, we have

d(Λr/Λ
′
r) = min

c6=0

‖σ∗(c)‖;

equivalently,d2(Λr/Λ
′
r) = minc6=0 ‖σ∗(c)‖2 = wmin

E (C). Recall thatΛ = Λr + iΛr. That is,Λ = Λr ×Λr. Hence,

we have

d2(Λ/Λ′) = d2(Λr/Λ
′
r) = wmin

E (C).

Note thatV (Λ′) = p2n and V (Λ′)/V (Λ) = p2k. Hence, we haveV (Λ) = p2(n−k). Combining the above two

results, we have

γc(Λ/Λ
′) = wmin

E (C)/p2(1−k/n).

We then turn toK(Λr/Λ
′
r) andK(Λ/Λ′). Whenp = 2, the minimum Euclidean weightwmin

E (C) of C is precisely

the minimum Hamming weight ofC. In this case,K(Λr/Λ
′
r) =

(
wmin

E (C)
)
2w

min

E (C), as shown in [34]. Whenp > 2,

the set differentΛr \ Λ′
r can be expressed as

Λr \ Λ′
r =

⋃

c6=0

{σ∗(c) + Λ′
r} .
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In this case,σ∗(c) is the unique coset leader for the cosetσ∗(c)+Λ′
r. Thus, the numberK(Λr/Λ

′
r) of the shortest

vectors inΛr \ Λ′
r is precisely the numberA

(
wmin

E (C)
)

of coset leaders with‖σ∗(c)‖2 = wmin
E (C). Hence, we

have

K(Λr/Λ
′
r) =







A
(
wmin

E (C)
)
2w

min

E (C), whenp = 2,

A
(
wmin

E (C)
)
, whenp > 2.

Recall thatΛ′ = Λ′
r + iΛ′

r. That is,Λ′ = Λ′
r × Λ′

r. It follows thatK(Λ/Λ′) = 2K(Λr/Λ
′
r), completing the proof.

C. Proof of Proposition 3

The proof is analogous to that of Proposition 2 with two differences. First,p is replaced by|π| in the expression

of γc(Λ/Λ′). This difference comes from the fact thatV (Λ′) = |π|2n andV (Λ′)/V (Λ) = |π|2k. Second, the case

of |π| = 2 gives an expression ofA
(
wmin

E (C)
)
4w

min

E (C) for K(Λ/Λ′). This is because if the cosetc+Λ′ contains

one shortest vector inΛ \ Λ′, then a total of4w
min

E (C) shortest vectors can be found in the cosetc + Λ′. Suppose

that (c1, . . . , cn) is one such shortest vector inc+Λ′. Then,(c1, . . . , cn) has preciselywmin
E (C) nonzero elements.

Moreover, for each nonzero element, saycj , if we change it to one of{−cj, i× cj, (−i)× cj}, then the new vector

has the same Euclidean norm and is still in the cosetc+ Λ′. Therefore, the number of shortest vectors inc+ Λ′

is 4w
min

E (C).

D. Λr in (12) is a Lattice

Let g̃j = σ̃(gj), for j = 1, . . . , ks. It is easy to check thatλ ∈ Λr if and only if λ = psr +
∑ks

j=1 cj g̃j for

somer ∈ Zn and cj ∈ {0, . . . , ps − 1} satisfying the division condition: whenkt < j ≤ kt+1, pt | cj (where

t = 1, . . . , s− 1).

Let λi = psri +
∑ks

j=1 cij g̃j (i = 1, 2) be two vectors fromΛr. Then we haver1, r2 ∈ Zn, and c1j , c2j ∈
{0, . . . , ps − 1} satisfy the division condition. Now consider the difference

λ1 − λ2 = ps(r1 − r2) +

ks∑

j=1

(c1j − c2j)g̃j .

We will show thatλ1 − λ2 ∈ Λr. We need the following lemma from elementary arithmetic.

Lemma 3:Let a, d ∈ Z with d 6= 0. Then there exist uniqueq, r ∈ Z such thata = qd+ r and0 ≤ r < |d|.
Using the above lemma, we havec1j − c2j = qjp

s + rj for someqj ∈ Z andrj ∈ {0, . . . , ps − 1}. Furthermore,

if pt dividesc1j − c2j , thenpt dividesrj , wheret = 1, . . . , s− 1. Thus,{rj} satisfy the division condition. Note

that

λ1 − λ2 = ps(r1 − r2 +
∑

j

qj g̃j) +
∑

j

rj g̃j .

Thus,λ1 − λ2 ∈ Λr, which implies thatΛr is indeed a lattice.

Next, we will construct a generator matrix forΛr. Let G̃ denote the matrix with rows̃g1, . . . , g̃n. Clearly, we

havedet(G̃) = 1 due to the way{gi} are constructed. This implies thatg̃1, . . . , g̃n spanZn overZ. That is, any

vectorr ∈ Zn can be expressed as an integer combination ofg̃1, . . . , g̃n. Consider the set of all integer combinations
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of the following vectors:̃g1, . . . , g̃k1
, pg̃k1+1, . . . , pg̃k2

, . . ., psg̃ks+1, . . . , p
sg̃n. On the one hand, it is easy to see

that any integer combination of these vectors is a lattice point in Λr. On the other hand, letλ = psr+
∑ks

j=1 cj g̃j

be a lattice point inΛr, wherer ∈ Z
n and{cj} satisfy the division condition. Recall thatr =

∑n
j=1 bj g̃j for some

bj ∈ Z. Thus, we have

λ =

ks∑

i=1

(ci + psbi)g̃i +

n∑

j=ks+1

psbjg̃j .

Sincept | ci, whenkt < i ≤ kt+1, we havept | ci + ptbi, whenkt < i ≤ kt+1. Hence,λ is indeed an integer

combination of the above vectors. LetGΛr
be the matrix formed by these vectors. ThenGΛr

is a generator matrix

for Λr.

E. Proof of Relation (13)

The following two observations simplify the proof of the relation (13). First, it suffices to consider the case of

s = 2, since the case ofs > 2 is essentially the same. Second, it suffices to prove the relation for the pair of nested

Z-latticesΛr ⊇ Λ′
r, i.e.,

GΛ′

r
= diag(p2, . . . , p2

︸ ︷︷ ︸

k1

, p, . . . , p
︸ ︷︷ ︸

k2−k1

, 1, . . . , 1
︸ ︷︷ ︸

n−k2

)GΛr
(23)

due to the lifting operation.

Next we will construct two generator matricesGΛr
andGΛ′

r
satisfying the above relation. Let̃gi denoteσ̃(gi),

for i = 1, . . . , n. On the one hand, by Appendix D, there exists a generator matrix GΛr
of Λr consisting of basis

vectorsg̃1, . . . , g̃k1
, pg̃k1+1, . . . , pg̃k2

, p2g̃k2+1, . . . , p
2g̃n. On the other hand, the vectors{p2g̃1, . . . , p

2g̃n} form

a basis ofΛ′
r, becausẽg1, . . . , g̃n spanZn overZ. By comparing these two bases forΛr andΛ′

r, we conclude that

there exist two generator matricesGΛr
andGΛ′

r
satisfying Relation (23).

F. Proof of Proposition 4

It suffices to consider the cases = 2, since the case ofs > 2 is essentially the same. Consider a lattice point

λ ∈ Λr \ Λ′
r given by

λ = p2r+

k1∑

j=1

β1j g̃j +

k2∑

j=1

pβ2j g̃j ,

whereβij ∈ {0, . . . , p− 1}. Clearly, someβij must be nonzero, because otherwiseλ = p2r ∈ Λ′
r. We consider the

following two cases.

Case 1: someβ1j is nonzero. In this case, we construct a new latticeΛr1 = {pr +∑k1

j=1 βj g̃j : r ∈ Zn, βj ∈
{0, . . . , p − 1}} and a new sublatticeΛr

′
1 = {pr : r ∈ Zn}. Clearly, we haveλ ∈ Λr1 and λ /∈ Λr

′
1. Thus,

λ ∈ Λr1 \ Λr
′
1. Note that the nested lattice pairΛr1 ⊇ Λr

′
1 can be obtained from the codeC1 by Construction A.

Thus, we have‖λ‖2 ≥ wmin
E (C1) and the number of lattice pointsλ of the Euclidean weightwmin

E (C1) is upper

bounded byK(Λr1/Λr
′
1).

Case 2: allβ1j are zero, and someβ2j is nonzero. In this case, we construct a new latticeΛr2 = {pr +
∑k2

j=1 βjg̃j : r ∈ Zn, βj ∈ {0, . . . , p − 1}} and a new sublatticeΛr
′
2 = {pr : r ∈ Zn}. Clearly, we have
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λ = p2r+
∑k2

j=1 pβ2j g̃j ∈ pΛr2 andλ /∈ pΛr
′
2. Thus,λ ∈ pΛr2 \ pΛr

′
2. Similar to Case 1, the nested lattice pair

Λr2 ⊇ Λr
′
2 can be obtained from the codeC2 by Construction A. Thus, we have‖λ‖2 ≥ p2wmin

E (C2), and the

number of lattice pointsλ of the Euclidean weightwmin
E (C2) is upper bounded byK(Λr2/Λr

′
2).

Combining the above two cases, we have, for allλ ∈ Λr \Λ′
r, that‖λ‖2 ≥ min{wmin

E (C1), p2wmin
E (C2)}, which

implies thatd2(Λr/Λ
′
r) ≥ min{wmin

E (C1), p2wmin
E (C2)}. Recall thatΛ = Λr × Λr. Hence, we have

d2(Λ/Λ′) = d2(Λr/Λ
′
r)

≥ min{wmin
E (C1), p2wmin

E (C2)}.

Note thatV (Λ′) = p4n andV (Λ′)/V (Λ) = p2(k1+k2), since eachβij ∈ {0, . . . , p − 1}. Hence, we haveV (Λ) =

p2(2n−k1−k2) and

γc(Λ/Λ
′) = d2(Λ/Λ′)/p2(2−(k1+k2)/n)

≥ min{wmin
E (C1), p2wmin

E (C2)}
p2(2−(k1+k2)/n)

.

We also haveK(Λr/Λ
′
r) ≤ K(Λr1/Λr

′
1) + K(Λr2/Λr

′
2) andK(Λ/Λ′) = 2K(Λr/Λ

′
r), completing the proof

for the cases = 2.

G. Modified Viterbi Decoder for Example 7

We will show that the nearest neighbor quantizerQNN
Λ can be implemented through a modified Viterbi decoder.

First, note thatQNN
Λ solves the following optimization problem

minimize ‖λ− αy‖ (24)

subject to λ ∈ Λ.

Second, note that the problem (24) is equivalent to

minimize ‖σ̃(c) + λ
′ − αy‖ (25)

subject to c ∈ C (26)

λ
′ ∈ Λ′.

This is because each lattice pointλ ∈ Λ can be expressed asλ = σ̃(c) + Λ′, wherec = σ(λ) andλ′ ∈ Λ′.

Third, note that Problem (25) is equivalent to

minimize ‖[σ̃(c) − αy] mod Λ′‖ (27)

subject to c ∈ C,

where [x] mod Λ′ is defined as[x] mod Λ′ , x − QNN
Λ′ (x). This is becauseλ′ = −QNN

Λ′ (σ̃(c) − αy) solves

Problem (25) for anyc ∈ C.

Now it is easy to see the problem (27) can be solved through a modified Viterbi decoder with the metric given

by ‖[·] mod Λ′‖ instead of‖ · ‖. Therefore, the nearest neighbor quantizerQNN
Λ can be implemented through a

modified Viterbi decoder.
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H. Proof of Theorem 8

First, we show the existence of the solution{a1, . . . , am} by induction onm.

If m = 1, then the vectora1 can be chosen such thata1L is one of the shortest lattice points. Note thata1 is

not divisible byπ; otherwise it will not be one of the shortest lattice points.In other words,̄a1 is indeed nonzero.

Hence, the solutiona1 always exists whenm = 1.

Now suppose the solution{a1, . . . , ak} exists whenk < m. We will show the existence of the vectorak+1.

Consider the following set

A = {a ∈ TL : ā1, . . . , āk, ā are linearly independent}.

Clearly, the setA is nonempty, sincek < m. Then the vectorak+1 can be chosen as

ak+1 = argmin
a∈A

‖aL‖.

This proves the existence of the vectorak+1, which completes the induction.

Second, we show that the solution{a1, . . . , am} is a dominant solution by induction onm.

If m = 1, then‖a1L‖ ≤ ‖b1L‖ for any feasible solutionb1, sincea1L is one of the shortest lattice points.

Now suppose that{a1, . . . , ak} is a dominant solution whenk < m. We will show that{a1, . . . , ak, ak+1} is

also a dominant solution.

Suppose that{b1, . . . ,bk,bk+1} is a feasible solution with‖b1L‖ ≤ . . . ≤ ‖bk+1L‖. Since b̄1, . . . , b̄k are

linearly independent, we have

‖aiL‖ ≤ ‖biL‖, i = 1, . . . , k.

It remains to show‖ak+1L‖ ≤ ‖bk+1L‖. We consider the following two cases.

1) If there exists somebi (i = 1, . . . , k + 1) such thatā1, . . . , āk, b̄i are linearly independent, then by the

construction ofak+1, we have

‖ak+1L‖ ≤ ‖biL‖ ≤ ‖bk+1L‖.

2) Otherwise, each̄bi can be expressed as a linear combination ofā1, . . . , āk. That is,

b̄i ∈ Span{ā1, . . . , āk}.

This is contrary to the fact that̄b1, . . . , b̄k+1 are linearly independent, since anyk + 1 vectors in a vector

space of dimensionk are linearly dependent.

Therefore, we have‖ak+1L‖ ≤ ‖bk+1L‖, which completes the induction.
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