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Abstract

The problem of designing physical-layer network coding (JNchemes via nested lattices is considered. Building
on the compute-and-forward (C&F) relaying strategy of Naaed Gastpar, who demonstrated its asymptotic gain
using information-theoretic tools, an algebraic approeckaken to show its potential in practical, non-asymptotic
settings. A general framework is developed for studyingtetéattice-based PNC schemes—called lattice network
coding (LNC) schemes for short—by making a direct connectietween C&F and module theory. In particular,
a generic LNC scheme is presented that makes no assumptiotite aunderlying nested lattice code. C&F is re-
interpreted in this framework, and several generalizedstantions of LNC schemes are given. The generic LNC
scheme naturally leads to a linear network coding channel ovodules, based on which non-coherent network
coding can be achieved. Next, performance/complexityeéfd of LNC schemes are studied, with a particular focus
on hypercube-shaped LNC schemes. The error probabilityhisf dlass of LNC schemes is largely determined by
the minimum inter-coset distances of the underlying nefaéitte code. Several illustrative hypercube-shaped LNC
schemes are designed based on Construction A and D, shoahgiéminal coding gains df to 7.5 dB can be
obtained with reasonable decoding complexity. Finallg possibility of decoding multiple linear combinations is
considered and related to the shortest independent vegtoldem. A notion of dominant solutions is developed

together with a suitable lattice-reduction-based albarit

Index Terms

Lattice network coding, nested lattice code, finite gersetahodules over principal ideal domains, Smith normal
form.
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I. INTRODUCTION

Nestedlattice-based physical-layer network coding (LN€a type of compute-and-forward (C&F) relaying strategy
[1] that is emerging as a compelling information transnaiesscheme in Gaussian relay networks. LNC exploits
the property that integer linear combinations of latticéng@are again lattice points. Based on this property, gelay
in LNC attempt to decode their received signals into intdgexar combinations of codewords, which they then
forward. This approach induces an end-to-end network gpdirannel from which the transmitted information can
be recovered by solving a linear system.

In this paper, we develop a generic LNC scheme that makes niwyar assumption on the structure of the
underlying nested lattice code, thereby enabling a vaoétpode-design techniques. A key aspect of this approach is
a so-called “linear labeling” of the points in a nested tatcode that gives rise to a beneficial compatibility between
the C-linear arithmetic operations performed by the wirelesarotel and the linear operations in the message space
that are required for linear network coding. Similar to \wespace-based noncoherent network coding (e.g., [2]),
the linear labelings of this paper induce a noncoherentterehid network coding channel with a message space
having, in general, a module-theoretic algebraic strugttirereby providing a foundation for achieving noncoheren
network coding over general Gaussian relay networks.

We study the error performance of a class of hypercube-shlad€ schemes, and show that the error performance
is largely determined by the minimum inter-coset distanéehe underlying nested lattice code. By way of
illustration, we adapt several known lattice constructitm give three exemplar LNC schemes that provide nominal
coding gains of 3 to 7.5 dB while admitting reasonable demgpdiomplexity.

We also study the possibility that a relay may attempt to deaoore than one linearly independent combination
of messages, and we relate this problem to the “shortespertient vectors problem” in lattices| [3]. For this
problem, a notion of dominant solutions is introduced tbgetwith a lattice-reduction-based algorithm, which may
be of independent interest.

LNC can be seen as generalization of several previous pdiyisiger network coding (PNC) schemes [4]-[6].
The earliest PNC schemes were applied to a two-way relayrmehan which the relay attempts to decode the
modulo-two sum (XOR) of the transmitted messages. It waemvks in [7], [8] that the XOR can be replaced by a
family of functions satisfying the so-called “exclusiveMaf network coding.” Furthermore, the choice of function
can potentially be adapted to the instantaneous chann@atans, although a complicated computer search may
be needed [8] to choose the function optimally, even in tise cd low-dimensional constellations suchl&sQAM.
Because LNC considers only linear combinations, not gériaretions, it provides an efficient method, even in
high-dimensional spaces, to perform such channel-adagt¢oding. Further PNC schemes presented|in[[9]-[12]
aim to approach the capacities of various two-way relay nbfn A survey of PNC for two-way relay channels
can be found in[[13].

The use of nested lattice codes (or Voronoi constellatiaom$NC was first proposed in [6], ][9], leading to the

development of C&F relaying. A key feature of the C&F strateg that no channel state information (CSI) is
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Fig. 1. lllustration of a two-round physical-layer netwarkding scheme.

required at the transmitters. In contrast to alternativeaaded strategies such as noisy network coding [14] and
guantize-map-and-forward stratedy [15], [16], the C&Fattgy does not require global channel-gain information
at the destinations. All of these make C&F an appealing aitdifor practical implementation.

The C&F strategy can be enhanced by assuming CSI at the titters17] or by installing multiple antennas
at the relays and destinations [18], [19]. Practical codastroictions for C&F are presented (see, elg.| [20]-[23]).
A recent survey of C&F can be found in_[24].

After the conference publication of an earlier version aé twork [25] (see alsd [26]/[27]), several papers have
appeared following our algebraic framework. For exampie,work of [28] presents several design examples based
on Eisenstein lattices, which can achieve a shaping gainl&70dB compared to our examples based on Gaussian
lattices. The work of[[29] studies the existence of asymgpadii-good nested lattices over Eisenstein integers,
which can offer higher computation rates for certain chamealizations compared to the computation rates In [1]
(which are based on Gaussian integers).

The remainder of this paper is organized as follows. Sedfiqpresents motivating examples to illustrate the
role of algebra in PNC. Sectidnllll reviews some well-knowathematical preliminaries that will be useful in
setting up our algebraic framework. Section] IV presents @blem formulation of linear PNC and summarizes
some of Nazer-Gastpar’s main results in the context of ormédation. Sectiofi V studies the algebraic properties
of LNC, presenting a generic LNC scheme that induces an e linear network coding channel over modules.
Section[V] turns to the geometric properties of LNC, presgna union bound estimate as well as some design
criteria. Sectiom VI contains several illustrative dasigxamples for practical LNC schemes, showing that a decent
nominal coding gain is quite possible under practical aamsts. Sectiof_VIIl studies the problem of choosing
multiple coefficient vectors, which is closely related toreoknown lattice problems. SectibnlIX presents simulation

results, while SectiohIX concludes this paper.

Il. MOTIVATING EXAMPLES

In this section, we illustrate the role of algebra in PNC wahparticular focus on two-way relay channels,
where two terminals attempt to exchange their mess&jedV, through a central relay, as shown in Fig. 1. For
this channel model, a PNC scheme consists of two rounds ofreorication. In the first round, the terminals
simultaneously transmit their signal§;, X to the relay, and the relay tries to decode a funcf¢i’;, W5) of the

messages from the received sigial In the second round, the relay broadcasts the decodeddanttiv;, Wa)
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Fig. 2. Transmitted QPSK constellation.

to the terminals, based on which each terminal recovers ther anessage with its own message held as side
information.

To illustrate how a PNC scheme works, we assume that the elebatween terminals and the relay are complex-
valued flat-fading channels with additive white Gaussiars@&othat the messagég;, W, take values in the set
{00,01, 10,11}, and that (uncoded) Gray-labeled quaternary phaseghyitig (QPSK) modulation is used, with
the signal constellation given in Figl 2. The channel gaiesvken the terminals and the relay are denotedl;as
and ho. Furthermore, we assume that the relay aims to decode the &fQife messages.

We first consider the ideal special case in which the chanaiglsgare precisely unity, i.eh; = hy = 1. The
received constellation is depicted in Hig. 3(a), togethith whe decision region for XOR decoding. Although some
received points are overlapping, say paifit;, W5) = (01,11) and point(11,01), the overlapping points have the
same XOR value, resulting in no ambiguity.

Next, suppose that the channel gains flare= 1, hy = 4. In this scenario, unfortunately, overlapping points have
different XOR values; see Fi@ll 3(b). For instance, pdint, 10) has XOR valued1l ¢ 10 = 11; whereas point
(11,11) has XOR valu)0.

To solve this ambiguity, one natural attempt is to let theyalecode some linear function instead of the XOR.
For example, if the relay interprets each messHge= [wy1 we2] (¢ = 1,2) as an element iff, by mapping it to
wpra + wee (Wherea is a primitive element off,) and tries to decode the functiofy (W1, Wa) = Wi 4+ aWhs,
then both poin{01, 10) and point(11, 11) give rise to the same valui@. However, there are still some ambiguities
that cannot be resolved by this function (the shaded dotsgn3¢b)).

In fact, no linear functions ovef, can resolve all the ambiguities in the received constelatand the relay
has to make use of the structure of a finite ring rather thahdha finite field. Specifically, let the relay interpret

each messagl/; = [wy1 wea] aSwer + weai € Zo[i] with addition and multiplication defined as
a+bi+c+di=[a+c+[b+d2,
(a+bi)(c+ di) = [ac — bd]2 + [ad + bc]ai,

where [-]; denotes the mo@ operation. Then the functioffi, (W1, W3) = Wi + il is able to resolve all the
ambiguities in Fig[B(b). Moreover, the functigh works well even under other channel gains. In other words, th

finite ring Z,[i] seems to be a “good match” for QPSK constellation. This isanobincidence. As we will see
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Fig. 3. Received constellations with QPSK when f@)= ho = 1, and (b)h; = 1, he = 1.

later, every nested-lattice-based constellation has augbod match.

I1l. ALGEBRAIC PRELIMINARIES

In this section we recall some essential facts about praddieal domains, modules, and the Smith normal form,
all of which will be useful for our study of the algebraic perties of complex nested lattices. All of this material
is standard; see, e.d., [30]=[32]. We also introduce bamicepts and notation about lattices, mainly based on [33],
[34].
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A. Rings and Ideals

We begin with some common definitions and notations for rirgkrings in this paper will be commutative
with identity 1 # 0. Let R be a ring. We will letR* denote the nonzero elements Bf i.e., R* = R\ {0}. An
elementq is adivisor of an elemenb in R, writtena | b, if b = ac for some element € R. An elementu € R is
called aunit of R if | 1. A non-unit elemenp € R is called aprime of R if wheneverp | ab for some elements
a andb in R, then either | a or p | b. An elementa of R* is a called azero-divisorif ab = 0 for someb € R*.

If R contains no zero-divisors, theR is anintegral domain

An ideal of R is a nonempty subsdt of R that is closed under addition and inside-outside multgtian, i.e.,
foralla,be I,a+belandforalla € I and allr € R, ar € I. If A is any nonempty subset dt, let (4) be
the smallest ideal oR? containing A, called theideal generated byd. An ideal generated by a single element is
called aprincipal ideal A ring in which every ideal is principal is called @incipal ideal ring (PIR).

Let R be a ring and lef be an ideal ofR. Two elements andb are said to beongruentmodulo! if a—b € I.
Congruence moduld is an equivalence relation whose equivalence classes ddiiya) cosets: + I of I in R.
The quotient ringof R by I, denotedR/I, is the ring obtained by defining addition and multiplicatioperations

on the cosets of in R in the usual way, as

(a+1)+O+1)=(a+bd)+Tand(a+1)x (b+1)=(ab)+ 1.

B. Principal Ideal Domains

An integral domain in which every ideal is principal is calla principal ideal domain(PID). The integersZ
form a PID. In the context of complex lattices, typical exaespof a PID include the Gaussian integ&lg] and
the Eisenstein integet&[w], wherew = ¢27%/3. Formally, Gaussian integers are the E&fl £ {a + bi : a,b € Z},
and Eisenstein integers are the &) = {a + bw : a,b € Z}.

The Gaussian integef8[:] have four units £1,+4). A Gaussian integer is called @aussian primef it is a
prime in Z[:]. A Gaussian integet + bi is a Gaussian prime if and only if it satisfies exactly one &f fibllowing:

1) fal = ol = 1;

2) one of|a|, |b| is zero and the other is a prime numberZrof the form4; + 3 (with j a nonnegative integer);

3) both of|a|,|b| are nonzero and? + b2 is a prime number it of the form4; + 1.

Note that these properties are symmetric with respedtft@nd |b|. Thus, if a + bi is a Gaussian prime, so are
{+a + bi} and {£b + ai}.

The Eisenstein integet&[w] have six units £1, +w, +w?). An Eisenstein integer is called disenstein prime

if it is a prime in Z[w]. An Eisenstein integes + bw is an Eisenstein prime if and only if it satisfies exactly one

of the following:
1) a+ bw is a product of a unit irZ[w] and a prime number i of the form3; + 2;
2) la+bw|? = a® — ab+ b* is a prime number irZ.

Let T be a PID and letr € T. Then it is known that the quotiefit/(r) is a PIR [32].
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C. Modules

Modules are to rings as vector spaces are to fields. Formatly? be a commutative ring with identity # 0.
An R-module is a sef\f together with 1) a binary operation on M under which} is an abelian group, and 2)
an action ofR on M which satisfies the same axioms as those for vector spaces.

An R-submodule ofM is a subset of\/ which itself forms anR-module. LetN be a submodule of/. The
quotient groupM /N can be made into aR-module by defining an action @R satisfying, for allr € R, and all
x4+ N € M/N, r(x+ N) = (rz) + N. Hence,M/N is often referred to as quotient R-module

Let M and N be R-modules. A mapp : M — N is called anR-module homomorphisiifii the map¢ satisfies

1) o(x +vy) = ¢(z) + ¢(y), for all z,y € M and

2) p(rx) =re(x), forall r € R,z € M.

The kernel ofp is defined aser o £ {m € M : ¢(m) = 0}. Clearly, ker ¢ is a submodule of\/.

An R-module homomorphisnp : M — N is called anR-module isomorphisnif it is both injective and
surjective. In this case, the modul@$ and N are said to bésomorphi¢ denoted byM = N. An R-module M
is called afree module ofrank ¢ if M = R for some nonnegative integér

There are several isomorphism theorems for modules. Theaked “first isomorphism theorem” is useful for
this paper.

Theorem 1 (First Isomorphism Theorem for Modules [31, p.]B4fet M, N be R-modules and letp : M —
N be anR-module homomorphism. Théter ¢ is a submodule of\f and M/ ker ¢ = o(M).

D. Modules over a PID

Finitely-generated modules over PIDs play an importarg inlthis paper, and are defined as follows.

Definition 1 (Finitely-Generated Modules):et R be a commutative ring with identity # 0 and letM be an
R-module. For any subset of M, let (A) be the smallest submodule 8f containingA, called thesubmodule
generated byA. If M = (A) for some finite subsetl, then M is said to befinitely generated

A finite module (i.e., a module that contains finitely manynedmts) is always finitely generated, but a finitely-
generated module is not necessarily finite. For exampleetlea integer@Z form a Z-module generated bj2}.

The following structure theorem says that/Tifis a PID, then a finitely-generatéd-module is isomorphic to a
finite direct product of7’-modules of the forn¥" or T/ ().

Theorem 2 (Structure Theorem for Finitely-Generated Mesldver a PID—Invariant Factor Forni_[31, p. 462)):
Let T be a PID and letM be a finitely-generate@-module. Then for some integér> 0 and nonzero non-unit

elementsry, ..., of T satisfying the divisibility relationsr; | 7o | - - - | 7k,
M = Tt X T/<7T1> X T/<7T2> X oo X T/<7Tk>

The elementsry, ..., , called theinvariant factorsof M, are unique up to multiplication by units . The

integert is called thefree rankof M.
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E. Matrices over a PID

Let R™*™ denote the set of allh x n matrices ovetR. For any matrixA € R™*™, we denote by, ; the entry
at theith row andjth column of A. A matrix D € R™*" is called adiagonal matrixif d; ; = 0 whenever; # j.
Note that a diagonal matrix need not be square. A diagonalbmEt can be written adD = diag(dy, ..., d;),
wherer = min{m,n}, andd; =d;; fori=1,...,r.

A square matrixU € R™*" is invertibleif UV = VU =1, for someV € R"*", wherel,, denotes the: x n
identity matrix. The set of invertible matrices ®R"*", denoted a$sL,(R), forms a group—the so-callegeneral
linear group—under matrix multiplication. Two matriceA, B € R™*" are said to besquivalentif there exist
invertible matricesP € GL,,,(R) andQ € GL,(R) such thatB = PAQ. We will write A = B if A andB are
equivalent.

Definition 2 (Smith Normal Form)Let A € R™*" and letr = min{m, n}. A diagonal matrixD = diag(d, ..., d,)

is called aSmith normal formof A if D ~ A andd; |day | ---| d,. in R.

Note thatdy | d2 | --- | d,- in R if and only if (d1) 2 (d2) 2 --- 2 (d,). In particular, ifd; is a unit in R,
thends,...,d; are all units inR. Similarly, if d; = 0, thend,, ..., d, are all0. Thus, ifD = diag(ds,...,d,) is
a Smith normal form ofA, then the diagonal entrie, ..., d, of D can be expressed as

dl,...,dr = ul,...,ui,di_ﬂ,...7di+j,0,...,0
i j k
whereus, ..., u; are units ink, d;y1, . . ., di+; are nonzero, non-unit elementsiy andi, j, k > 0 with i+j+k = r.
The nonzero entrie$us, ..., u;, diy1, ..., diy; ; are called assequence of invariant factosf A.

The Smith normal form theorem says that every matrix over@ s a Smith normal form whose sequence of
invariant factors is unique up to multiplication by units.

Theorem 3 (Smith Normal Form Theorem[32, p. 194]kt 7' be a PID. Then amyA € T"*™ has a Smith
normal form. Furthermore, iD; = diag(ds,...,d,) andDy = diag(sy,...,s,) are two Smith normal forms of

A, then(d;) = (s;) forall i=1,...,r.

F. Lattices and Lattice Codes

Recall that a real latticd € R™ is a regular array of points ifR™. Algebraically, a real lattice is defined as a
discreteZ-submodule oR™. A lattice A € R™ may be specified by a set of basis (row) vectorgy, ..., g, € R,

consisting of allZ-linear combinations of the basis vectors, i.e.,
A={rGp:rezZ™},

whereG, £ [ng| e |g£}T € R™*™ is called agenerator matrixfor A. Note thatG, is not unique for a given
A. We callm therank of A, andn the dimensiornof A. Clearly,m < n, because otherwise the basis vectors cannot
be linearly independent. When = n, A is called afull-rank real lattice.

Complex lattices are natural generalizations of realdatti LetT be a discrete subring of forming a PID.

Typical examples of" include the Gaussian integefs:] and the Eisenstein integefgw]. A T-lattice A in C™ is
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a discretel’-submodule ofC", consisting of allT-linear combinations of a set of basis vectors. Throughbist t
paper, we will focus on full-rank’-lattices for simplicity, but all the results can be easiktemded to the case of
non-full-rank 7-lattices.

A few important notions are associated witHl alattice. An n-dimensionall’-lattice A partitions the spac&”
into congruent cellsSuch a partition is not unique. The most important exampleaised on thaearest neighbor

quantizer@\N that sends a point € C" to a nearest lattice point in Euclidean distance, i.e.,
OWNx)=AeA, ifFVYNeA(x—A<x—X]),

where ties are broken in a systematic manner. Vtv@noi cellV, (A) associated with each € A is defined as the
set of all points inC™ that are closest td\, i.e., VA(A) = {x € C" : O\N(x) = A}. The cellV4(0) associated with
the origin is often referred to as théoronoi regionof A. Clearly, the Voronoi cell{V,(A)} have the following
three properties:

1) Each cellV, () is a shift of the cellVy (0) by X € A, i.e., VA(A) = A+ VA (0).

2) The cells do not intersect, .84 (X) N VA (X') = 0 for all X # X.

3) The union of the cells covers the whole space, ., Va(A) = C™.
In general, any collection of cellsRA(A)} that satisfies the above three conditions is called a sktrafamental
cells The cellR,(0) associated with the origin is calledfandamental regiomnd will also be denoted simply by
Ra. Note that every fundamental region of a lattitehas exactly the same volume, which is denoted/tf\).

A lattice quantizer@, : C™ — A corresponding tdR, sends every poink € C" to the lattice pointA that is

associated with the fundamental c&l (A) containingx, i.e.,
Oa(x) =A €A, if xeRA(N).

Hence, any poink in C™ can be uniquely expressed as the sum of a lattice point andnaipahe fundamental
regionRy, i.e.,x = Qa(x) + (x — Qa(x)), wherex — Q, (x) is a point inR,. This implies that, for all lattice
points A € A and all vectorz € C",

OA(A+2) =X+ 9Oa(z). (1)

The moduloA operation is defined, for a fixe@,, as
x mod A = x — O (x).

Clearly, the moduldA operation always outputs a point in the fundamental regon The moduloA operation
has a geometrical interpretation:

xmod A = (x4 A) NRa,

where thelattice shiftx + A is defined ax + A = {x+ X : XA € A}
A T-sublatticeA’ of A is a subset ofA which is itself aT-lattice. Two latticesA’ and A are said to benested

if A’ is a sublattice ofA, i.e., A’ C A.
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For each\ € A, the lattice shift\+ A’ is a coset ofA’ in A, and the pointA mod A’ is called thecoset leadenf
A+ A’. Two cosets\; + A’ andX; + A’ are either identical (whei; — Ay € A’) or disjoint (whenA; — Xz ¢ A').
Thus, the set of all distinct cosets af in A, denoted byA/A’, forms a partition ofA. Algebraically, A/A’ is a
qguotient7-module, hereafter called ‘&-lattice quotient

A nested lattice cod€(A, A’) is defined as the set of all coset leaders\in\’, i.e.,
LA, A)=Amod A" ={Amod A": X € A}.
Geometrically,L(A, A’) is the intersection of the lattica with the fundamental regio®R 4., i.e.,
LAAN)=ANRA .

For this reason, the fundamental regiBn. is often interpreted as thghaping regionNote that there is a bijection
betweenA /A’ and L(A, A’); in particular,

[A/A] = LA, A = V(A)/V(A).

Finally, we mention that, for reasons of energy-efficieritys often useful to consider a translated version of
nested lattice codes. For any fixed translation vedter C*, atranslated nested lattice cod& A, A’, d) is defined
as

L(AA,;d)=(d+A)mod A" = (d+A)NRy.

IV. PROBLEM STATEMENT

This section gives a general definition direear physical-layer network coding (or compute-and-forwahame,
and also describes the assumptions on the system model malie paper. We focus on the problem faced by a
receiver node of decoding one or more linear combinationsirafiltaneously transmitted messages, as it is at the
heart of any system employing physical-layer network cgdisee [[24] for such a discussion). We conclude the
section by briefly describing some achievability resultsaoted by Nazer and Gastpar in [1].

While linear network coding is traditionally defined over aité¢ field [35], [36], our description considers a more
general notion of linear network coding over a finite comntiuéaring R. In this context, the message space, i.e.,
the set from where message packets are drawn, is no longeter wpace, but a-module [37]. As hinted at in
Sec[Tl and as will become clear in SEG. V, ring-linear netnawding is required if we wish to ensure compatibility

with a generallattice network coding scheme.

A. System Model

Consider a multiple-access channel withtransmitters and a single receiver subject to block fadimd additive
white Gaussian noise, as illustrated in Fijy. 4.

Channel inputs are denoted Ry, ...,x; € C" and the channel output is given by

L
Y= hxi+z
=1
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L
s th \
— =1 l
Wy < X2 =] Gaussian Y > D .
g MAC g > u
: L
W, —> & |2k u= EW‘W 4
— =1
Fig. 4. Computing a linear function over a Gaussian mukgseess channel.
where hy,...,h; € C are channel gains (fading coefficients) and~ CN(0, NoI,,) is a circularly-symmetric

jointly-Gaussian complex random vector. We assume thatliamnel gains are perfectly known at the receiver but
are unknownat the transmitters.

Transmitter/ is subject to a power constraint given by
1 2
~Elx]?] < Ps

where the expectation is taken with respect to a unifornridigion over the corresponding message space. For
simplicity (and without loss of generality), we assume tihat power constraint is symmetri€; = --- = P, £ P,
and that any asymmetric power constraints are incorporayeappropriately scaling the channel gains
For convenience, we define
SNR £ P/N,.

Note that the received SNR corresponding to sigaals equal to|h,|? P/Ny. Hence, the interpretation SNR

as the average received SNR is only valid whgih,|?] = 1.

B. Linear Physical-Layer Network Coding

Let R be afinite commutative ring with identityl # 0 and let7 be some (usually infinite) commutative ring
such that there exists a surjective ring homomorphisn?’ — R. Let theambient spacéV be a finite R-module.
Note thato automatically make$V into a T-module by definingagw = o(a)w, for all a € T and allw € W.
As an example, we may havE = Z, R = Z/(2), W = Z/(2), ando(a) = a + (2). In the following setup,
“digital-layer” network coding operates div' over R, while physical-layer network coding operates idhover T,
and the ring homomorphism guarantees the compatibility of such operations.

For eachl € {1,..., L}, let themessage spacef transmitter/ be an R-submodulelV, C W. A T-linear PNC

scheme with block length consists ofZ. encoders
5@ Wy — cn
each taking a message vecteoy € 1, to a signal vectok, € C", and a decoder

D:C"—=W
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that takes a received signale C™ and attempts to compute one (or mofé)inear combination(s) of the messages,

such as

L
u= Zasz eWw
=1

whose coefficientsi, € 7' may or may not have been specifiedpriori. It is understood that an{ -linear

combinations computed by the decoder are subsequentlyedstdi to the digital layer a®-linear combinations,
such as

L L

u= ZagWg = Z olag)we e W

=1 1

(=
obtained by the application of on each coefficient.

The above generic description of the decoder may be spsmibtiepending on the problem at hand. Specifically,
any further information given to the decoder (such as siderimation about the channel gains) will be denoted as
additional arguments t®. Similarly, any further information provided by the decodéll be denoted as additional
outputs of D. Note that, in this paper, we always assume that the chayaielvectorh £ (hy,...,hy) € CL is
perfectly known at the receiver.

For simplicity of notation, leW € W’ be a matrix corresponding to the vertical stackingaaf, ..., wy € W,
taken as row vectors. If the coefficient vector= (a1, ...,ar) € T* for the desired linear combination is specified
a priori, we will write

D:C"xClxTE - W, a=D(yh,a).

In this case, a decoding error is madeiit£ aW. The corresponding probability of error is denoted By(h, a).
This decoder is illustrated in Fig] 4.

If no coefficient vectors are givea priori, but instead are required to computed “on-the-fly” by theeneer,
then we will write

D:C" x Cl —» wm x ™
(ﬁlv"'aﬁM7a17"'aam):D(y|h)

wherem denotes the number of linear combinations computed. Incdse, a decoding error is madeiif # a; W,
for somei € {1,...,m}.

Since a message is transmitted ouefcomplex) channel uses, we define thessage ratéspectral efficiency)
for transmitter? as Rmes ¢+ = %logQ |We|, measured in bits per complex dimension. Throughout theepag
assume that all encoders are identi@l= ... = & £ &, thus there is a single message sp#cawvith message
rate

1
Rimes = - log, |[WV].

As the following examples illustrate, a number of existing@schemes can be described in this framework.
Example liLet L=2,n=1,T =Z andR =W = Z/(2). Consider the encoder

ew) = (3t0) - 3 ) wez/
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where~ > 0 is a scaling factor, ané : Z/(2) — Z is defined as

1, whenw =1+ (2)
0, whenw =0+ (2).

Supposeh = [1 1] € C2. Leta = [1 1] € Z? be a fixed coefficient vector. Then a decoder can be consthacte
14(2), if Refy} <v/2

0+ (2), otherwise

D(yh,a) =

This is the simplest form of PNC [4],[5], which may be undewst as XOR decoding under BPSK modulation,
in the case of two users with equal channel gains.
Example 2:Let L =2, n =1, T = Z[i] and R = W = Z[i]/{m), wherem is some positive integer. Consider
the encoder
E(w) = (3(w) —d), w e Z[i)/(m)

whered = (1) (1 +1), v > 0 is a scaling factor, ané : Z[i]/(m) — Z[i] is defined as
g(a+ bi + (m)) = (a mod m) + (b mod m)i.

First, supposéh = [1 1] € C2. Leta = [1 1] € Z[i]* be the fixed coefficient vector. Then a natural (although

suboptimal) decoder is given by
D(y|h,a) = (|[Re{y’}] mod m) + ([Im{y'}] mod m)i + (m),

wherey’ = y/v+ (a1 +az2)d and|-] denotes the rounding operation. This scheme is known as:th@ AM PNC
schemel[4]. Next, suppode = [1 i] € C2. Leta = [1 4] € Z[i]* be the fixed coefficient vector. Then the above

decoder generalizes the example discussed in[Sec. II.

C. Achievable Rates

We now mention some known achievable rates for the case ohglesigiven coefficient vector, under the
assumptions of Sectidn TVAA. These results were obtainetl&yer and Gastpar][1].
Theorem 4 [[1]): For all e > 0, all sufficiently largen, and some appropriately chosen prime integethere

exists aZ[i]-linear PNC scheme with block length satisfying the following properties:

1) the message spaceli§ = (Z[i]/(p))" for somek;
2) for any channel-gain vectdr ¢ C* and any non-zero coefficient vectarc Z[i]*, the probability of decoding
error P.(h, a) is smaller thare if & is such that the message r&g.s is smaller than the computation rate
SNR )
loh —al|2 SNR +|«|2 ) °

Reomp(h, a) £ I(rylg(éclogg (

Moreover, the optimal value af in the above expression is given by

ah™ SNR

— Bt 2
APt = RZSNR +1 2)
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which results in

SNR
oms(8) =0 (31 )
where )
SNR y
M= SNRL = SNRImE+ 1 )

andI; is the L x L identity matrix.
Remark:In the proof of the above resulp, has to grow appropriately with such thatn/p — 0 asn — oo [1].
Theorem# is based on the existence of a “good” sequence tchktices of increasing dimension. Criteria
to design low complexity, finite-dimensional PNC schemes rast immediately obvious from these results. In the
remainder of this paper, we will develop an algebraic framewor studying linear PNC schemes, which facilitates

the construction and analysis of practical PNC schemes.

V. LATTICE NETWORK CODING
A. Linear Labelings

Let T be a discrete subring of forming a PID, and letA € C™ and A’ C A be two full-rank T-lattices
(calledfine and coarse respectively) so that the inded/A’| of A’ in A is finite. Recall thatA/A’ is a quotient
T-module, i.e., it is a set closed under addition and muttgilon by elements df'. Specifically, addition of cosets
is defined agA; + A') + (A2 + A') & (A + X2 + A), for all Ay, A2 € A, multiplication byr € T is defined
asr(A+A') £ (rA + A), for all X € A, and multiplication distributes over addition. An immeiaonsequence
is thatZéL:1 re(Ae +A) = (Zle reAe) + A, i.e., aT-linear combination of cosets is determined by the linear
combination of their coset representatives. This is thennpaoperty exploited in a lattice network coding (LNC)
scheme.

Conceptually, an LNC scheme is7alinear PNC scheme based on a finite lattice quotient’, in which each
transmitter sends an information-embedding coset thraugbset representative, and each receiver recovers one or
more T'-linear combinations of the transmitted coset represiemiwhich can potentially be forwarded to other
nodes according to the same scheme). Upon receiving enaieghcembinations, the destination is able to decode
all information-embedding cosets from the transmitters.

To facilitate practical implementation, we will specify aamy : A — W from lattice points inA to messages
in the message spad® for use in the above architecture. The mapnust satisfy two conditions:

1) all points in the same coset are mapped to the same messagd, for any two pointsA;, A2 € A with

A=A €N, (A1) = p(A2);
2) the mapy is T-linear, i.e., for allr1,r72 € T and allA1, A2 € A, we havey (r1 A1 +r2A2) = r1o(A1) +
ra(A2).
We refer to the mapy as alinear labelingof A. As we shall see, it is this linear labeling that induces airzt
compatibility between theC-linear arithmetic of the multiple access channel obsergdhe receiver and the

T-linear arithmetic desired in the message space.
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Fig. 5. Linear labelings for Examplés 3 apH 4.

The existence of the aforementioned linear labeling is auiged by the following theorem, which provides a
canonical decompositiofor any finite 7'-lattice quotientA /A’.
Theorem 5:Let T be a PID and letA and A’ C A be T-lattices such thatA/A’| is finite. Then, for some

nonzero, non-unit elements, ms, ..., € T satisfying the divisibility relationsr; | 75 | - - - | 7, we have
AN 2T/ {my) x T/{ma) x -+ x T/{mp). (4)

Moreover, there exists a surjectiZ®@module homomorphismp : A — T/{m) x --- x T'/(m) whose kernel is\’.
Proof: The first statement follows from Theorem 2 sind¢A’ is a finite T-module. The second statement

then follows from the First Isomorphism Theorem [[31]. [ ]

Evidently, the map is obtained as the composition of the natural projectiomfroto the quotient\ /A’ with the
isomorphism of[(#). According to Theordm 5, when the messpgeelV is taken as the canonical decomposition

in the right-hand side of{4), i.e.,
W = T/(m) x T/{ms) x --- x T/ (m),

the mapy is indeed a linear labeling. The following examples provid® concrete linear labelings, which are
depicted in Fig[b.
Example 3:Let A = Z[i] and A’ = 3Z[i]. Let T = Z[i] andW = Z[i]/(3). Consider the map : A — W given
by
ola+bi) = a+bi+ (3).

It is easy to check that the mapis Z[i]-linear and its kernel iSZ][i].
Example 4:Let A be the (real) hexagonal lattice generatedghy= (1,0) andg, = (1/2,v/3/2). Let A’ = 3A.
LetT =Z andW = Z/(3) x Z/(3). Consider the mag : A — W given by

v(agy + bgz) = (a mod 3,bmod 3).

It is easy to check that the mapis Z-linear and its kernel iSA.
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Linear labelings play a key role in LNC, as they directly map-éinear combination of transmitted lattice points
to aT-linear combination of transmitted messages, i.e., therlaan be immediately extracted from the former.

It is also convenient to define an inverse operation, mappimgessage to a corresponding lattice point; this is
done through arembedding mag : W — A. This map must be an injective function compatible with tmedar
labeling, so it must satisfy

o(p(w)) =w, forallweW.

Equipped with a linear labeling and and embedding map a high-level description of a generic LNC scheme
can be given as follows. Each encodemaps a message, € W to a lattice pointx, € A labeled bywy, i.e.,
x¢ = ¢(wy). The decoder, upon the receptionyfand given a coefficient vecter = (ay,...,ar), attempts to

compute thel-linear combination of transmitted lattice points

L
A= E ayXy
=1

from which it would be able to extract the corresponding dineombination of messages

L L
u=¢p(A)= Zaggo(Xg) = Z agwy.
(=1 =1

In more detail, the decoder proceeds in three steps. Rirstaies the received signal by a factoregfobtaining

L
ay:aZthg—i—ozz:)\—i—n (5)
(=1
where
L
n= Z(ahg —ap)X¢+ az (6)
(=1

is called theeffective noiseNote that we can view(5) as aquivalent point-to-point channehder lattice coding:
an effective message is encoded as a lattice poixt which is then additively corrupted by the (signal-deperide
and not necessarily Gaussian) effective naise

Second, the decoder quantizes the scaled received sigthathei fine lattice to obtain

A=09x(ay) = Qa(A+1n) =X+ Qx(n) (7)

where [T) follows from the property{1) of a lattice quantize

The last step is to apply the linear labeling, obtaining

o>

= (X)) = o (A+Qa(m) = u+¢(Qa(n)).

The decoder makes an error if and only4f(Qa(n)) = 0 and therefore if and only ifQx(n) € A’. This is
intuitive: if Q(n) € A’, then the decoded lattice poiitis in the same coset asand is thus labeled withi. On
the other hand, if the decoded lattice pahnis labeled withu, then we must havex(Q, (n)) = 0, which implies

Ox(n) € A/, since the kernel op is A'.
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’ y:Zthg-i-Z

(=1

Fig. 6. Encoding and decoding architecture for LNC.

To sum up, the above encoding-decoding architecture isctigpin Fig.[6. The encodet : W — C” is given
by
x¢ = E(wWe) = §(wy)

and the decodeP : C* x CF x T* is given by
4 =D(ylh,a) = ¢(Qa(y))

where« is a scaling factor chosen by the decoder basedh @and a, which will be discussed fully in the next
section. Intuitively, the purpose ef is to reduce the effective noisg by trading off betweerself noise(the first
term in [8) due to non-integer channel gains) and Gaussi&eno

Clearly, the encoding-decoding complexity of an LNC schésnaot essentially different from that for a point-to-
point channel using the same nested lattice code. Furtieerror probability of the scheme can be characterized
by Propositiori 1L, as explained before.

Proposition 1: The messager = Zleagw is computed incorrectly if and only i2x(n) ¢ A’. That is,
Prfa # u] = Pr[Qa(n) ¢ A,

In practice, the nearest-neighbor quanti)N is often preferred in the implementation of the decodersThi
is to reduce the error probability, as we will see in Sed. Viorbver, for reasons of energy-efficiency, a nested
lattice codeL(A, A’) is usually preferred in the implementation of the encodethis case, the encoder takes the

messages i/ to their minimum-energyoset representatives, i.e., the embedding map is chossatishy
P(wy) = ¢(wy) mod A’

where the shaping regioR . is chosen as the Voronoi region.
Sometimes, ranslatednested lattice code can be used to further reduce the enengymption. Such techniques
are well studied in the area of Voronoi constellations (eg,, [38], [39]). Specifically, a translated version of a

generic LNC scheme consists of an encofleriV x C* — C"
Xy = 5(Wg | dg) £ (dg + @(W@)) mod A’

and a decodeD : C" x C* x RY x (CML - W

a="D(y|ha{d}) = ¢ (QA (ay — Zagdg)) )

(=1
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Note that Proposition]1 holds unchanged in this case.
Finally, note that the message rate of an LNC scheme can beputethgeometrically as well as algebraically,

as

Rimes = - log, (V(A')/V/(4))
1 k
= = log, [T/ (m)|.
=1

B. Construction of the Linear Labeling

In this section, by applying the Smith normal form theorene provide an explicit construction of the linear
labeling ¢ and an embedding map.
Theorem 6:Let A/A’ be a finite nested-lattice quotient. Then there exist generator matri€gs and G for

A and A/, respectively, satisfying

diag(m1,...,m) O
GA' = GA. (8)
0 Infk
In this case,

A/N 2T/ {m) X - < T/ {mg).

Moreover, the map

w:A—=>T/{m) X xT/{mg)

given by
o(rGp) = (r1 + (m), ..., 16 + (7k))

is a surjectivel-module homomorphism with kerngl’.

Proof: Let G, and G/ be any generator matrices for and A’, respectively. TherG, = JG,, for some
nonsingular matrixJ € 7"*". SinceT is a PID, by Theorem]3, the matrix has a Smith normal fornD =
diag(ds,...,d,). SinceJ is nonsingular, the diagonal entri€s, ..., d, of D are all nonzero. Thus/y,...,d,

can be expressed as

dl,...,dn =Ulyeeo s Up—kyT1y..., Tk
whereu, ..., u,_; are units inT', 7, ..., T, are nonzero, non-unit elementsin It follows that
DaD 2 diag(m1,...,m) O

0 Infk

Therefore J ~ D and there exist invertible matricd3, Q € GL,,(T) such thatD = PJQ. We take
Gr=Q 'Gy
Gy = PGA/

as new generator matrices farand A’. Clearly, we haveG . = DG . This proves the first statement.
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Since the second statement follows immediately from thed thiatement and the First Isomorphism Theory, we
need only to prove the third statement here. That is, we nhat $hat the mag is a surjectivel’-homomorphism
with kernel A’. Since it is easy to check that the mags surjective and’-linear, we will show that the kernel of
¢ is A’. Note that

p(rGp) =0 < Vie{l,...,k}r; € (m).

Note also that
N ={rGy :r; € (m)},

becauseG, = DG . Hence, the kernel ap is indeedA’. [ |

Theoreni6 constructs a linear labelipg A — W explicitly. The key step is to find two generator matridés
and G, satisfying the relation[{8). This can be achieved by usirg $Imith normal form theorem. To construct
an embedding map, one shall find a pre-image for each message- (r; + (m),...,7% + (mx)). Clearly, one
natural choice ofp(w) is given by

SO(W) = (rla' "7T/€701' "70)GA1
N——
n—=k
which provides an explicit expression fg(w).

The use of the Smith normal form in coding theory is not newtha work of Forney[[39],[140], it was applied
to study the structure of convolutional codes as well as itheal labeling for real lattices. The goal of the Smith
normal form theorem is to reduce an arbitrary matrix to a dra matrix, whose diagonal entries are the invariant
factors. In the context of compleK-lattices, such a diagonal matrix reveals the nesting stradetween the fine

lattice and the coarse lattice, leading to a transpareaatifabeling.

C. End-to-End Perspective

In this section, we study the use of LNC in a non-coherent agtwnodel (where destinations have no knowledge
of the operations of relay nodes) rather than the coheremtank model described in_[1]. To provide a context
for our study, we consider a Gaussian relay network in whigeaeric LNC scheme is used in conjunction with
a scheduling algorithm. The scheduling algorithm indisai each time slot, which nodes are transmitters and
which nodes are receivers. As a transmitter, a node first ct@spa random linear combination of the packets in
its buffer and then maps this combination to a transmittgdali As a receiver, a node first decodes the received
signal into one or more linear combinations of the transdifpackets and then performs (some form of) Gaussian
elimination in order to discard redundant (linearly depemt)l packets in the buffer.

Initially, only the source nodes have nonempty buffers aming the message packets. When the communication
ends, each destination node will have collected suffigfemihny linear combinations of the message packets. This
induces an end-to-end linear network-coding channel incivithe message spag¥ is, in general, &’-module
T/(m) x -+ x T/{m). Since modules over PIDs share much in common with vectorzespaver finite fields, it

would be natural to expect that many useful techniques forewherent network coding can be adapted here.
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We use the technique of headers as an illustrating exampthisnsection. For convenience, we rewrite the
message space as
W =T/(mp) x - xT/{m).

Similar to the vector-space case, we use the firstomponents to store headers, and the Aastn components to

store payloads, whene is the number of message packets. Specifically, the head#rdéth message packet is a

lengthsn tuple with 1 4 (m,_;4+1) at positioni and0 + (mx_;+1) at other positions (wheré < j <m andj # 7).
Example 5:Let the message spatE = Z/(12) x Z/(6) x Z/(2) x Z/(2). Suppose there aeoriginal messages

in the system. Then the matr®W of the source messages is of the form

1+(12) 04+ (6) a+(2) b+ (2)
0+(12) 1+(6) c+(2) d+(2)

W:

3

wherea, b, ¢, d € Z.

Recall that, when the message space is a vector space, Gadasr elimination is used to recover the payloads
at the destinations. As one may expect, for a more generatagesspace, some maodification of Gauss-Jordan
elimination is needed. It turns out that the key step in thalifieation is to transform & x 1 matrix to a row

echelon form: giveru,b € T, returns, t,u,v,g € T such that

where the determinanty — tu, is a unit fromT'.
Example 6:Suppose that the matri® of the message packets is given in Exaniple 5. Suppose thatiaation

has received two linear combinatior¥sy; + 3ws and3w; + 2ws. Then the matrixY of the received packets at

2 3
the destination iy = ‘W, which is in the form of
3 2

24+ (12) 3+(6) c+(2) d+(2)
3+(12) 2+(6) a+(2) b+(2)

To recover the payloads, we reduce the first columiYofo a row echelon form. Since

2 1
overZ and the determinang x 2 — (—1) x (—3) = 1, is a unit inZ, we multiply the matrix with Y,

obtaining
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In this way, we transform the matri¥ to a row echelon form. Next, we transform the maflixto a reduced row

echelon form, which can be done by subtractinimes the second row from the first row, i.e.,

1 —4
Y, = Y.
0 1
Now it is easy to check tha¥, = W. In other words, the payloads are recovered correctly.
Although Exampld16 only illustrates the decoding procedarethe case ofn = 2, it can be extended to the
case ofm > 2 through a simple mathematical induction.
Finally, we would like to point out that the design of headierExampleb is suboptimal, and a better design
can be made by using matrix canonical forms. The developwfethtis idea is beyond the scope of this paper and

will instead be discussed in a separate paper [41].

VI. PERFORMANCEANALYSIS FORLATTICE NETWORK CODING

In this section, we turn from algebra to geometry, presgnén error-probability analysis as well as its implica-
tions.

A. Error Probability for LNC

Recall that, according to Propositioh 1, the error probigbidf decoding a linear functiom is Pr[i # u] =
Pr[Qa(n) ¢ A’], wheren is the effective noise given by1(6). Note that the effectiwise n is not necessarily
Gaussian, making the analysis nontrivial. To alleviate thfficulty, we focus on a special case in which the shaping

regionRy. is a (rotated) hypercube i@™, i.e.,
Ra =~UH, )

where~y > 0 is a scalar factorU is any n x n unitary matrix, and#,, is a unit hypercube inC" defined
by H, = ([-1/2,1/2)+1i[-1/2,1/2))". This case corresponds to the so-callggercube shapingn [42]. The
assumption of hypercube shaping not only simplifies theyaisbf error probability, but also has some practical
advantages, for example, the complexity of the shapingatiwer is generally low. However, as we will see later,
there is no shaping gain under hypercube shaping. This isat&, since similar results hold for the use of lattice
codes in point-to-point channels [39], [42].

In the sequel, we will provide an approximate upper boundtiererror probability for LNC schemes admitting
hypercube shaping. This upper bound is closely related tmioegeometrical parameters of a lattice quotient as
defined below.

Let us define theminimum (inter-coset) distana#f a lattice quotient\ /A’ as

d(A/N) £ [[ A1 — A2]|

min
A1, A2EA:NT — A2 g

= min [|All
AEA\A!
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where A \ A’ denotes the set differende\ € A : A ¢ A’}. Note thatd(A/A’) corresponds to the length of the
shortest vectors ik \ A’. Let K(A/A’) denote the number of these shortest vectors.

We have the following union bound estimate on the error plodiba

Theorem 7 (Probability of Decoding Error)Suppose that the shaping regi®). is a (rotated) hypercube and
that all the transmitted vectors are independent and unifodistributed ovefR »,. Suppose tha@, (-) is a nearest-

neighbor quantizer. Then a union bound estimate on the prafrability in decoding a specified linear combination

is
P.(h,a)
. *(A/N)
< 4 _
%?é%K(A/A)eXp( 4N0(|a|2+SNR|ah—a|2))' (10)

Moreover, the optimal value aof, i.e., the value ofx that minimizes the right-hand side &f{10), is given @y (2),
which results in

2 /
Pt a) £ KA ep (ol ) 1)

where the matrixM is given by [[3).

The proof is given in Appendix]A. Note that the proof assuniesutse of random dithering (translation by a random
vector chosen uniformly at random from the shaping regidntha encoders, so that the transmitted vectors are
uniformly distributed over the shaping region.

Theorem[VV implies that the lattice quotieny A’ should be designed such that(A/A’) is minimized and
d(A/A’) is maximized (under a given message rRig.s and SNR), which will be discussed fully in Se€_VII.
Further, if the receiver has the freedom to choose the camffiwectora, it needs to minimize the termMa',
which, as observed in [18], is a shortest vector problem.ofé®[7 can be extended to other shaping methods. A

particular example is provided in_[28].

B. Nominal Coding Gain

Similarly to the point-to-point case, we define theminal coding gairof A/A’ as

wld/N) 2GR,

Note that the nominal coding gain is invariant to scalingr &0 LNC scheme with hypercube shaping, we have
V(A') = 4" and P = 4?/6 wherey > 0 is the scalar factor in[{9). Thug/(A’)'/» = 6P. Note also that
V(A)Y/7 = 2= Rmes 7 (A/)1/7 |t follows that the union bound estimate [N [11) can be esged as

3 SNR
< / 2 o — Rmes
pe(h,a)%K(A/A)exp< 2%(A/A )2 —aMaH> .

Thus, for a given spectral efficiend¥mes, the performance of such an LNC scheme can be characterizéueb
parameterd< (A/A’) and~.(A/A).
Note that the nominal coding gain of a baseline lattice qumtZ[i]"/xZ[i]" is equal tol for all = € Z[:]*.

Thus,~.(A/A’) provides a first-order estimate of the performance impraanof an LNC scheme over a baseline
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LNC scheme. For this reasom,(A/A’) will be used as a figure of merit of LNC schemes in the rest of gaiper;

yet the effect of K(A/A’) cannot be ignored in a more detailed assessment of LNC scheme

VIl. DESIGN OFNESTEDLATTICES

In this section, we adapt several known lattice construaetito produce pairs of nested lattices with simple

message space and high coding gain.

A. Constructions of Nested Lattices

Known methods for designing lattices include Constructiorand Construction D as well as their complex
versions (see, e.gl, [B4]). Here, we adapt these methodsiract pairs of nested lattices. In all of our examples,
the Voronoi region of the coarse lattice is chosen as its dumehtal region.

1) Nested Lattices via Construction Aetp > 0 be a prime number iZ. LetC be a linear code of length over
Z/(p). Without loss of generality, we may assume the linear adde systematic. Define a “real Construction A
lattice” [34] as

A2 {NeZ":0(X) eCy,

whereo : Z™ — (Z/(p))™ is the natural projection map. (Here, the subscrigtands for “real.”) Define
A & {pr:recZ"}.

It is easy to see that!. is a sublattice of\,.. Hence, we obtain a pair of nest&dlatticesA, O A/, from the linear
codeC.

Now we “lift" this pair of nestedZ-lattices to a pair of nested[:]-lattices. LetA = A, +iA,, i.e.,
A={X € Z[{]" : Re{A},Im{A} € A,.}.

Similarly, let A’ = Al 4+ iA]. In this way, we obtain a pair of nestel:]-latticesA D A’. A variant of this
construction was used by Nazer and Gastpalin [1].
To study the message space induced\y\’, we specify two generator matrices satisfying the relaf@n On

the one hand, we note that the lattite has a generator matriéa,, given by

Gr = I B (n-k) ’
On—tyxr  Plu—k
whereo([I B]) is a generator matrix fo€. The lifted latticeA has a generator matri, that is identical toG,,.,

but overZ[i]. On the other hand, we note that the lattitehas a generator matri& . given by

G — ply PBrx(n—k)

O(n—k)xk o) P
These two generator matric€s, and G, satisfy

Gy = Ga.
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It follows from Theorenp that\ /A’ = (Z[i]/(p))*. That is, the message space under this constructid is:
(Z[i]/(p))k. In particular, the message raes = £ log, (p?), sinceZl[i]/(p) containsp® elements.

Note that the message spdde can be viewed as a freg[i|/(p)-module of rankk. In particular,W is a vector
space if and only if the prime numberis a Gaussian prime, which is equivalent to saying th&t of the form
45 + 3.

To study the nominal coding gaim.(A/A’) as well asK(A/A’), we relate them to certain parameters of the
linear codeC. To each codeword = (c¢; + (p),...,cn + (p)) € C, there corresponds a cosgt, ..., c,) + pZ™

whose minimum-norm coset leader, denoteddtiyc), is given by

o*(c) = (c1 — [er/p] X p,...,cn = [en/P] X D),

where|z] is a rounding operation. The Euclidean weight(c) of ¢ can then be defined as the squared Euclidean
norm of o*(c), that is,wg(c) = [lo*(c)||?>. Thus, for example, when = (1 + (5),3 + (5)), o*(c) = (1, —2).
Clearly, the Euclidean weight af is equivalent to th&-norm of ¢ defined in [43]. Letw®(C) be the minimum

Euclidean weight of nonzero codewordsdni.e.,
Wi (C) = min{wg(c) : c #0, c€C}.

Let A(wBi™) be the number of codewords it with minimum Euclidean weighto'3*(C). Then we have the
following result.

Proposition 2: Let C be a linear code oveZ/(p) and letA O A’ be a pair of nested lattices constructed from
C. Then

wiin(C)
%(A/A/) = W

and
K(A/A) 24 (wp™(C)) 2vE"(©), whenp = 2,
24 (wEn(0)), whenp > 2.
The proof is in AppendiXB.

Propositio 2 suggests that optimizing the nominal codiaip g.(A/A’) amounts to maximizing the minimum
Euclidean weighto2i*(C) of C, and that optimizingk (A/A’) amounts to minimizingA (w®i).

2) Nested Lattices via Complex Constructionléet = be a prime inI'. Let C be a linear code of length over
T/ (m). Without loss of generality, we may assume the linear @éddesystematic. Define a “complex Construction A
lattice” [34] as

AE{XNeT": 0(N) €CY,

whereo : T™ — (T/(x))™ is the natural projection map. Define
N E{rr:reT"}).

It is easy to seé\’ is a sublattice ofA. Hence, we obtain a pair of nested latticks A’ from the linear code.
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To study the message space induced\y\’, we specify two generator matrices satisfying the relaf@n It is

well-known thatA has a generator matri&e, given by

Gy — I B (n-k) ’
O(nfk)xk ok

and thatA’ has a generator matri& . given by

1 TBLy«(n—
Gy = k kx(n—k)
O(n—k)xk i PR
These two generator matrices satisfy
7wl 0
GA' = GA.
0 Infk

Hence, we have\ /A’ = (T/(r))*. That is, the message space under this constructié¥ is (T/(r))*. Sincer

is a prime inT, T/(r) is a finite field and¥ is a vector space of dimensié@n Thus, this construction is preferable
to the previous construction, if the message space is ®edjt@ be a vector space. For instanceT i Z[w] and

m = 2, then the message spaldé is a vector space ovéf,. This never happens under the previous construction,
since?2 is not a prime inZ[i].

To study the nominal coding gaif.(A/A’) as well asK(A/A’), we again relate them to the parameters of
the linear code with a particular focus off’ = Z[i] (due to hypercube shaping). The definition of the minimum
Euclidean weight'2i"(C) is the same as the previous definition, except for the fadttttaminimum-norm coset
leaderc*(c) is given by

o*(c)=(c1 — lai/m] X7, cn — |en/m] X @),

where the rounding operatior:] sendsz € C to the closest Gaussian integer in the Euclidean distance.
Proposition 3: Let C be a linear code ovef[i]/(m) and letA D A’ be a pair of nested lattices constructed from
C. Then

n_ wE"(C)
’YC(A/A ) - |7T|2(1_k/n)

and

(/A — A (wp(C)) 4°E"(©), when|r|? = 2,
A (wp™(C)) , otherwise

The proof is in Appendix .

3) Nested Lattices via Construction :et p > 0 be a prime inZ. LetC; C --- C C; be nested linear codes
of lengthn overZ/(p), whereC; has parameterg:, k;] for i = 1,...,s. As shown in [[34], there exists a basis
{g1,...,g.} for the vector spacéZ/(p))" such that

1) g1,...,8k SpanC; fori=1,...,s; and

2) if G denotes the matrix with rowsg, ..., g,, Some permutation of the rows & gives an upper triangular

matrix with diagonal elements equal tot+ (p).
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(In fact, G can be constructed by applying Gaussian elimination to #meegator matrices of the nested linear codes
iteratively.)

Using the nested linear cod¢€;, 1 < i < s}, we define a “real Construction D lattice” [34] as

s ki
A 2NN 0 Bya () By €40, p— 1}

i=1 j=1
+p°Z" (12)

where & is the natural embedding map fro(Z/(p))™ to {0,...,p — 1}"™. (For completeness, we will show in
Appendix[D thatA, is indeed a lattice; we will also give an explicit generataatrix for A,..)

Note that the lattice defined by, £ {p°r : r € Z"} is a sublattice ofA,.. Hence, we obtain a pair of nested
Z-lattices A, O Al from the nested linear codd€;, 1 < < s}.

Next, we lift this pair of nested-lattices to a pair of neste@[:]-lattices. That is, we sek = A, + iA, and
A = Al +iAl. In this way, we obtain a pair of nestétli|-latticesA D A’. In Appendix[E, we will show that

there exist two generator matric€s, and G, satisfying

Gy =diag(p®,...,p%p° L .07 1, )Gy, (13)
—_— —
k1 ko—kq n—ks
It follows from Theoren{b that

AJA = ) < x (20 (),
Do ki

n

In particular, the message raRyes = log,(p?). Whens = 1, this construction is reduced to the first
construction. Although this construction induces a mormplicated message space, it is able to produce pairs of
nested lattices with higher nominal coding gains, as shawthé following result.

Proposition 4: Let C; C --- C C, be nested linear codes of lengthover Z/(p) and letA © A’ be a pair of
nested lattices constructed frofd;}. Then~.(A/A’) is lower bounded by

min; <<, {p?"Dwin(C;)}
pQ(S—Zle ki/n) ’

Ye(A/A) =
and K (A/A") is upper bounded by

KA/ < 257 24 4;, whenp=2
230 A, whenp > 2
where A4; is the number of codewords i@ with minimum Euclidean weight'5" (C;).
The proof is given in Appendik]F.
Now we will apply Proposition§12 andl 4 to show the advantagepaifs of nested lattices constructed via
Construction D. LetAp D A), be a pair of nested lattices constructed from a lifeak] codeC (overZ/(p)) via

Construction A. Then by Propositidn 2,.(Aa/A%) = wgi(C)/p**~*/™). Suppose that the linear codehas an
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TABLE |

POLYNOMIAL CONVOLUTIONAL ENCODERS THAT ASYMPTOTICALLY ACHIEVE THE UPPER BOUND

v g(D) Ye(A/A)
1 [1+ (144D, (1+1)+ D] 2 (3dB)
2 | 1+D+(1+4)D?, (144)+(1—i)D+ D?] | 3(4.77 dB)

[n, k'] subcodeC’ with w»(C’) > p?wiin(C). Let Ap 2 Af, be a pair of nested lattices constructed frénand
C’ via Construction D. Then by Propositidh 4,
2, ,min

p wg™(C)
Ye(Ap/Ap) > P2 (kTR /m)

W™ (C)
p2(0=(RFE)/n)

> ve(Aa/AR).

In other words, given a pair of nested lattices via ConstouctA, there exists a pair of nested lattices via

Construction D with higher nominal coding gain if the lineardeC has a subcod€’ with w2 (C") > p*wn™(C).

B. Design Examples

We present three design examples to illustrate the desigls eveloped in Se¢._VIHA. All of our design
examples feature short packet length and reasonable deradmplexity, since the purpose of this paper is to
demonstrate the potential of LNC schemes in practicalrggdti(A more elaborate scheme, based on signal codes
[44], is described in[[22].)

Example 7:Consider a ratd-/2 terminated (feed-forward) convolutional code ov&fi]/(3) with » memory
elements. Suppose the input sequen@®) is a polynomial of degree less thanThen this terminated convolutional
code can be regarded ag2{u + v), u] linear block code&C. Using the method based on complex Construction A,
we obtain a pair of nested latticesD A’.

Note that the minimum Euclidean weight2"(C) of C can be bounded as
wi™(C) < 3(1+v),

for all rated/2 terminated (feed-forward) convolutional codes o#i]/(3). This upper bound can be verified by

considering the input sequene¢D) = 1. Hence, the nominal coding gain(A/A’) satisfies
VC(A/A/) <l+4w

Whenrv = 1,2 and ¢ > v, this upper bound can be asymptotically achieved by polyabgonvolutional
encoders shown in Tablé I.

Note that whernv = 1 or 2, the encoder state space sizedisr 81. Note also that the lattice decodBy, can
be implemented through a modified Viterbi decoder as dismigs AppendiX G. Thus, this example demonstrates

that a nominal coding gain df to 5 dB can be easily obtained with reasonable decoding contplexi ]
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Our next example illustrates how to use our design tools orawe an existing construction presentedlin| [45].
Example 8:Consider nested linear codés C C, of lengthn overZ/(2), whereC; is an[n, ki,d;] code with
dy > 4 and(C, is the [n, n] trivial code. Using the method based on Construction D, wiioba pair of nested

latticesA D A.
In this case, we will show that the nominal coding gain(A/A’) = 4/4(1—%1/7) On the one hand, by

Propositior 4, , ,
min{wi™ (C1), 4wy (C2)}

Ye(A/A) > e > = 4/40-k1/m)
On the other hand, by definition,
Ye(A/N) = A2 (A/N) V(A7
= d2(A/N) /4~ ki/n) (14)
< 47407/ s)

where [I#) follows from the facts thaf(A’) = V(A)4*1+*2 and V(A’) = 427; ([@T) follows from the fact that
(2,0,...,0) is a lattice point inA but not inA’.

Finally, in Table[dl we list several candidates 6y as well as their corresponding nominal coding gains. These
candidates are all extended Hamming codes wjth- 4. [ |

We note that Ordentlich-Erez’s construction in][45] can bgarded as a special case of Exanigle 8. In their
construction(; is chosen as a rat&/6 cyclic LDPC code of lengtl$4800. Example 8 suggests that their nominal
coding gain ist/4'/6 (5.02 dB) with message rat&(1+5/6) ~ 3.67. Exampld8 also suggests that there are many
ways to improve the nominal coding gain. For example, wheris chosen as #256,247] extended Hamming
code, the nominal coding gain 81 dB with message rat2(1 + %g) ~ 3.93.

Our third example illustrates how to design high-codingageested lattices based on turbo lattices [46].

Example 9:Consider nested Turbo cod€s C C» overZ/(2). As shown in [[46],C; can be a ratd-/3 Turbo
code withd; = 28 and(C, can be a ratd-/2 Turbo code withd, = 13. Using the method via Construction D, we
obtain a pair of nested lattices D A’. In this case, by Propositidd 4,

min{d1 ) 4d2}

!/
>\ mreS
Ve(A/A) = 4= ki/n)

= 28/4(271/271/3) — 7 45 dB.

The message rate is given Bes = 5/3 =~ 1.67.
Finally, some other design examples of high-performanctetklattice codes, which are of a similar spirit, can
be found, e.g., in[[21],[122], [28],129], [47], Also, similanethods of designing practical compute-and-forward

have been recently proposed. See, e.al, [23], [48], [49].

VIII. D ECODING MULTIPLE LINEAR COMBINATIONS

In this section, we consider the problem when a receiver hadreedom to choose coefficient vectors. For ease
of presentation, we mainly focus on the case of complex Qoctidbn A in which the message space is a vector

space ovefl’/ (). The main result of this section is that, under separatediegpthe problem of decoding multiple
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TABLE I
SEVERAL EXTENDED HAMMING CODES AND CORRESPONDING NOMINAL CODING GAINS

n k Ye(A/A)
32 | 26 | 3.08 (4.89 dB)
64 | 57 | 3.44 (5.36 dB)
128 | 120 | 3.67 (5.64 dB)
256 | 247 | 3.81 (5.81 dB)

linear combinations is related to thehortest independent vectors probl¢8), and can be solved through some
existing methods.

In general, upon deciding the coefficient vectars. . ., a,,,, the receiver can perform joint decoding or separate
decoding to recover the linear combinations = a;W. Here, we confine our attention to separate decoding in
which each linear combination, = a; W is decoded independently through the useDg§ | h, a;). In this case,
the union bound estimate on the decoding error for eacis

/
P.(h,a;) § K(A/A) exp (—%) |

To optimize the above union bound estimates, the coeffisiectorsa;, . . ., a,, should be chosen such that each
al-MaiH is made as small as possible under the constraintahat. ., a,, arelinearly independenbver T'/(r),
wherea; = o(a;) is the natural projection of; (from T to T'/(x)). Clearly, this constraint ensures that every
recovered linear combination; is useful overT'/(r).

We say a solutiofay, ..., a,,} is feasibleif a;,...,a,, are linearly independent ov&t/(r). Since eacla; is
of dimensionL, we assume thati < L because otherwise no feasible solution exists.

In the sequel, we will show that there exists a feasible amiuthat simultaneouslyoptimizes eacha;Ma.

We call such feasible solutiordominant solutionsFormally, letM = LLY be the Cholesky decomposition of
M, whereL is some lower triangular matrix. (The existencelofcomes from the fact thavl is Hermitian and

positive-definite.) ClearlyaMat = ||aL||2.

Definition 3 (Dominant Solutions)A feasible solution{ay,...,a,} (with ||a;L|| < ... < ||a,,L]|) is called a
dominant solutiorif for any feasible solutiora], ..., a/, (with ||ajL|| < ... < |al,L]), the following inequalities
hold

laL] < aLll, i = 1,...,m.

Although the dominant solutions seem to be a natural contleptexistence of them is not immediate from the

definition, and a separate argument is needed.
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Theorem 8:A feasible solution{a, ..., a,,} defined by

a; = argmin{||aL| | a is nonzerd
a; = argmin{||aL| | a,a; are linearly independeht
a,, = argmin{|aL| |a,ay,...,a,_1 are linearly ind}

always exists, and is a dominant solution.
The proof is given in AppendikH.

We now propose a three-step method of finding a dominantisalutn the first step, we construct a ball
B(p) = {x € CL' | ||x|| < p} that containsm lattice pointsv;L,...,v,,L such thatv,...,v,, are linearly
independent, where; = o(v;) is the natural projection of;. In the second step, we order all lattice points within
B(p) based on their lengths, producing an ordered%ewith ||v,L|| < ||voL|| < --- < [vis, L] Finally, we find

a dominant solutioq ay, ...,a.} by using a greedy search algorithm given as Algorifim 1.

Algorithm 1 Greedy Search for Dominant Solution
Input: An ordered setS, = {viL,voL,...,v|s L} with [[v;L|| < [[voL| < --- < |lvis, L]

Output: An optimal solution{as,...,an}.
1. Seta; = v;. Seti =1 andj = 1.
2. while i < |S,| andj < m do

3. Seti=1+1.

4. if v;,a1,...,a; are linearly independerthen
5. Setj =j+ 1. Seta; = v;.

6. endif

7. end while

The correctness of our proposed method follows immedidtelyn TheoreniB. Our proposed method is in the
spirit of sphere-decoding algorithms, since sphere-diegpdlgorithms also enumerate all lattice points within a
ball centered at a given vector. The selection of the ragiydays an important role here, just as it does for
sphere-decoding algorithms. ifis too large, then the second step may incur excessive catiqms. If p is too
small, then the first step may fail to construct a ball thattamsm linearly independenty, ..., v,,.

In practice, lattice-reduction algorithms |[50] may be usedietermine an appropriate radigsas shown in the
following proposition.

Proposition 5: Let {b,,..., b} be areduced basi§s50] for L. If p is set to be|b,, ||, then the seS, contains
at leastm lattice pointsv,L, ..., v, L such thatvy,...,v,, are linearly independent.

Proof: Letv; = b,L~! fori=1,..., L. LetV be anL x L matrix with v; as itsith row. Since{by,...,b}

is a reduced basis, it follows that the matNxis invertible. In particulary,, ..., v,, are linearly independent for
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Fig. 7. Error performance of three LNC schemes in Scenario 1.

all integersm < L. [ ]
There are many existing lattice-reduction algorithms ia lterature. Among them, the Lenstra-Lenstra-Lovasz
(LLL) algorithm [51] is of particular importance. Moreovehe LLL algorithm has been extended from real lattices
to complex lattices over Euclidean domains|[52].|[53]. ®ifi| andZ[w] are special cases of Euclidean domains,
the extended LLL algorithm can be used to handle the cas&s-ofZ[i] andT = Z[w].
Interestingly, whenl is small, some efficient lattice-reduction algorithms cé@eatly output dominant solutions.

Such algorithms, which are generalizations of Gauss’ dlyor (see, e.g.[[54]), are described in[55],][56].

IX. SIMULATION RESULTS

As described in Sectidn |, there are many potential appdinagcenarios for LNC, the most promising of which
may involve multicasting from one (or more) sources to nplétidestinations via a wireless relay network. Since we
wish to avoid introducing higher-layer issues (e.g., scttied), in this paper, we focus here on a two-transmitter,
single receiver multiple-access configuration, which mayrégarded as a building block component of a more
complicated and realistic network application. In patécuwe focus on the following three scenarios:

1) The channel gains are fixed; the receiver chooses a siimgler Ifunction.

2) The channel gains are Rayleigh faded; the receiver ckamsingle linear function.

3) The channel gains are Rayleigh faded; the receiver clsoms® linear functions.

In each scenario, we evaluate the performance of four LN@rsels: the Nazer-Gastpar scheme, two LNC schemes
proposed in Exampld 7, and the baseline LNC schemeZjégf(3) as defined in SeE.MII. Since we are interested in

LNC schemes with short packet lengths, each transmittetbkapnsists 0200 complex symbols in our simulations.
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Fig. 8. Error performance of various LNC schemes in Scenario

A. Scenario 1 (Fixed Channel Gains; Single Coefficient \fgcto

Fig.[7 depicts the frame-error rates of three LNC schemesfasaion of SNR. Here, the channel-gain vector
h is set toh = [-1.17 + 2.15¢ 1.25 — 1.63i]. Nevertheless, as we have shown in VII, the results are n
particularly sensitive to the choice fdr; similar results are achieved for other fixed choices liorFor the two
LNC schemes proposed in Example 7, the parameterv is set t0o100 and the corresponding message rates are
% log,(3) (v =1) and% log,(3) (v = 2), respectively. For the Nazer-Gastpar scheme, the mesatges set to
log,(3), which is quite close to the previous two message rates. Elgeding rule for the Nazer-Gastpar scheme
is as follows: a frame error occurs if and onlylifg,(3) > log,(SNR /aMa''), wherea is the single coefficient
vector. From Fig[]7, we observe that the gap to the Nazerg@ascheme is around dB at an error-rate ot %.
We also observe that the second LNC scheme (with state spatze®1) outperforms the first LNC scheme (with

state space of siz@) by about2 dB.

B. Scenario 2 (Rayleigh-faded Channel Gains; Single Caexffid/ector)

Fig.[8(a) shows the frame-error rates of three LNC schemesfasction ofSNR. The setup is the same as in

Scenario 1, except that the coefficient veciocthanges witth. As seen in Figl18(a), the gap to the Nazer-Gastpar
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Fig. 9. Error performance of three LNC schemes in Scenario 3.

scheme is around dB at an error-rate of%.

Fig.[8(b) shows the frame-error rates of the baseline LN@s&h (overZ[i]2°° /37Z[i]*°°) and the9-QAM PNC
scheme described in Examiile 2. For 1AM scheme, the coefficient vectaris set to[1 1] as explained in
Exampld2. To make a fair comparison, the coefficient vestiorthe baseline LNC scheme satisfigs# 0, as # 0,
which comes from the “exclusive law of network coding” asadissed in[[7],[[8]. As seen in Figl 8(b), the baseline
LNC scheme outperforms th2QAM scheme by more thaé dB at an error-rate 0f%. In other words, even the
baseline LNC scheme is able to effectively mitigate phassmalighment due to Rayleigh fading. Finally, note that
Fig.[8(a) and Figl18(b) are separated because they haveetiffmessage rate®§,(3) in Fig.[8(a) and2log,(3)
in Fig.[8(b)).

C. Scenario 3 (Rayleigh-faded Channel Gains; Two Coeffidientors)

Fig.[d depicts the frame-error rates of three LNC schemesfasaion of SNR. Here the two coefficient vectors
are chosen by using the lattice-reduction algorithm predas [55]. The configurations for the three LNC schemes
are precisely the same as those in Eig. 8. The frame-erres fat the first linear combination are depicted in solid
lines, while the error rates for the second linear combamatire depicted in dashed lines. From FEig. 9, we observe
similar trends of error rates as in Figl 8. We also observe tia first linear combination is much more reliable

than the second one.

X. CONCLUSION

In this paper, the problem of constructing LNC schemes vigefidimensional nested lattices has been studied.
A generic LNC scheme has been defined based on an arbitrarpfpaested lattices. The message space of the
generic scheme is a finite module in general, whose struotasebe analyzed using the Smith normal form theorem.

These results not only give rise to a convenient charactiéoiz of the message space of the Nazer-Gastpar scheme,
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but also lead to several generalized constructions of LN@®s@s. All of these constructions are compatible with
header-based random linear network coding.

An estimate of the error probability for hypercube-shap&tllschemes has been derived, showing that the pair
of nested lattices\ O A’ should be designed such th&tA/A’) is maximized andi'(A/A’) is minimized. These
criteria lead to several specific methods for optimizingtegdattices. In particular, the nominal coding gain for
pairs of nested lattices has been introduced, which sersemamportant figure of merit for comparing various
LNC schemes. In addition, several concrete examples otipgh¢. NC schemes have been provided, showing that a
nominal coding gain o8 to 7.5 dB is easily obtained under reasonable decoding complarityshort packet length.
Finally, the problem of choosing multiple coefficient verstés discussed, which is connected to some well-studied
lattice problems, such as the shortest independent vegtotdem and the lattice reduction problem.

We believe that there is still much work to be done in this a@ae direction for follow-up work would be
the design and analysis of higher-layer scheduling algorit for LNC schemes. Another direction would be the
study of more general shaping methods beyond hypercubénghap particular example along this direction is
given in [28]. A third direction would be the constructionmire powerful LNC schemes, which has been patrtially
explored in several recent papers, elg.] [21]] [22]! [28T]] We believe that the algebraic framework given in this

paper can serve as a good basis for these developments.

APPENDIX
A. Proof of Theorernl7
We upper bound the error probabilifyr[Q\N(n) ¢ A’]. Consider the (non-lattice) s\ \ A’} U {0}, i.e., the
set difference\ \ A’ adjoined with the zero vector. L&y (0) be the Voronoi region 06 in the set{ A\ A’} U{0},
ie.,
Ry(0)={xeC": YA A\AN (|x-0| <|x—-AD}.
We have the following upper bound férr[O\N(n) ¢ A’].
Lemma 1:Pr[Q1’\\‘N(n) ¢ A'] < Prln ¢ Ry (0)].
Proof:
Prin € Ry (0)] = Pr[vA € A\ A (|n—0| < |n— A|)]
=PryA € A\ A (n - 0] < [ln — A[)].
Note that if[n — 0| < [[n — Al for all A € A\ A, thenOQ\N(n) ¢ A\ A’, as0 is closer ton than any element
in A\ A’. Thus,
Pr[n € Ry (0)] < Pr[Q\N(n) ¢ A\ A'] = Pr[Q\N(n) € A'].
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We further upper bound the probabilifr[n ¢ Ry (0)]. Let Nbr{A \ A’) C A\ A’ denote the set of neighbors
of 0in A\ A/, i.e.,, Nbi(A \ A’) is the smallest subset df \ A’ such thatRy (0) is precisely the set
{xeC": VA eNbr(A\A)(|x—=0| < |x—=A]D}.
Then, for anyv > 0, we have
Pl ¢ Ry (0)]
=P [|n]|> > [m — A||*, someX € Nbr(A\ A')]

—p [Re{AHn} > || A]2/2, someA € Nbr(A\ A’)]

< ¥ P[Re{AHn}ZHAHQ/z} (16)
AENbr(A\A’)
< Y eV AP/2)E [exp(-Re{A"n})] an
AENbr(A\A’)

where [16) follows from the union bound afhd{17) follows fréme Chernoff bound. Sinae = ", (ah¢—as)x,+az,

we have

E [exp (VRe{)\H n})}

exp <uRe{)\H <;(ah4 — )% + az> })1

=F [exp(uRe{)\Haz})}

11 [exp(yRe{A” (ahg — ag)x@})} (18)
4

=F

—exp (2IAPla N )
11 [exp(yRe{A” (ahg — ag)x@})} (19)
4

where [I8) follows from the independencexof, ..., xr,z and [I9) follows from the moment-generating function
of a circularly symmetric complex Gaussian random vector.
Lemma 2:Let x € C™ be a complex random vector uniformly distributed over a higpbe+yU%H,, for some

~ > 0 and somen x n unitary matrix. Then

E [exp(Re(v"x})] < exp([v][292/24).
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Proof: First, we consider a special case where the unitary mairix I,,. In this case, we have

E [exp(Re{v"'x})]
= E [exp(Re{v}" Re{x} + Im{v}"Im{x})]

=K

exp (Z (Re{v;}Re{x;} + Im{vi}lm{xi})>]

i=1

= H E [exp(Re{v;}Re{x;}] F [exp Im{v; }Im{x;})] (20)

1 sinh(Re{v;}v/2) sinh(Im{v;}v/2)

U Ree v &)
L R V; 2 | V; 2

< P (FL2Y o (o) -

1

2
Y
—exp (317

where [20) follows from the independence among each readfinary component (21) follows from the moment-

K2

generating function of a uniform random variable (note thath R€x;} and Im{x;} are uniformly distributed over
[—~v/2,7/2]), and [22) follows fromsinh(z)/x < exp(z2/6) (which can be obtained by simple Taylor expansion).
Then we consider a general unitary matfik In this case, we have = Ux’, wherex’ € v[-1/2,1/2]*", i.e.,

both Rgx}} and Im{x/} are uniformly distributed ovef—~/2,~/2]. Hence,
B [exp(Re{v"'x})] = E [exp(Re[v"Ux'})]
= E [exp(Re{ (U"v)"x'})]

< ’Y_Q UH 2
<exp (LU

2
)
— e (JI1?).

Note thatP = 1 E[||x¢||*] = 42/6. Thus, we have
E [exp(uRe{AHn})}

1
< exp (302 IA 1ol No ) T exp(lvA(ats = o) P/4)
4

ex
ex

1
b (§72IAPIar? N + 01 ah - a]?P/1)
1
—exp (1A MR ).
where the quantity)(a, «) is given by
Q(a.0) = [of? + SNR ah

andSNR = P/Ny.
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It follows that, for allv > 0,
Pr[n € Ry (0)]
< X ew (VAR PR )

AENbr(A\A’)
Choosingr = 1/(NoQ(a, «)), we have

Pring¢ Ry(O) < Y | p( 4N0Q<a,a>)

AENDr(A\A/

~ K(A/N)exp G%)

for high signal-to-noise ratios. Therefore, we have
Pr[Q)"(n) ¢ A'] < Pr[n ¢ Ry (0)]
d*(A/A") )

< K(A/A)exp <—m

Sincea can be carefully chosen, we have

Pr{QY"(n) ¢ A') £ min K (A/A)) exp <_ d>(A/A") ) |

4NOQ(aa Oé)
completing the proof for the first part of Theorér 7. The secpart of Theoreml7 follows immediately when the

optimal value ofa is substituted.

B. Proof of Propositiof 2

Recall thatd(A,/AL) is the length of the shortest vectors in the set differeficg A/.. Hence, we have
I e * .
d(Ar /A7) = minlo” ()]}

equivalently,d?(A,/A!) = minco ||0*(c)||? = wB®(C). Recall thatA = A, +iA,. Thatis,A = A, x A,. Hence,
we have
d*(A/N) = d*(Ar /A7) = wE™(C).

Note thatV (A’) = p?>" and V(A')/V(A) = p**. Hence, we havé/(A) = p*(»=*), Combining the above two
results, we have
Ye(AJA) = wi™(C)/p* .

We then turn toK (A,./A]) and K (A/A’). Whenp = 2, the minimum Euclidean weight'2*(C) of C is precisely
the minimum Hamming weight af. In this case/ (A,/AL) = (w(C)) 2¥E ™€), as shown in[34]. Whep > 2,

the set different\,. \ A/. can be expressed as

AN = {0 (e) + AL}
c#0
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In this caseg™(c) is the unique coset leader for the coséfc) + A.. Thus, the numbeK (A, /A]) of the shortest
vectors inA, \ A/ is precisely the numbed (w2 (C)) of coset leaders withjo*(c)[|? = w™(C). Hence, we

have
A (wmin(C)) 2vE"(©) | whenp = 2,
K(AT/A/T): ( E ()) p

A (wp™(C)), whenp > 2.

Recall thatA’ = Al +iA]. Thatis,A’ = A/, x A/. It follows that K (A/A’) = 2K (A,/A}), completing the proof.

C. Proof of Proposition3

The proof is analogous to that of Propositldn 2 with two diffeces. Firstp is replaced by| in the expression
of v.(A/A’). This difference comes from the fact the{(A’) = |x|?" andV (A’)/V (A) = |=|?*. Second, the case
of |7| = 2 gives an expression of (w™(C)) 4¥E™(©) for K(A/A’). This is because if the coset+ A’ contains
one shortest vector it \ A’, then a total ofi“%"(©) shortest vectors can be found in the coset A’. Suppose
that(ci,...,c,) is one such shortest vector én- A’. Then,(ci, ..., c,) has preciselys’@®(C) nonzero elements.
Moreover, for each nonzero element, sgyif we change it to one of—c;, x ¢;, (—i) x ¢;}, then the new vector

has the same Euclidean norm and is still in the cesetA’. Therefore, the number of shortest vectorscin- A’

|S 4wmln( )'

D. A, in (I2) is a Lattice

Let g, = a(g;), for j = 1,...,k,. It is easy to check thah € A, if and only if A = p°r + Zf;l ¢;g; for
somer € Z™ and¢; € {0,...,p* — 1} satisfying the division condition: wheh;, < j < kiy1, p* | ¢; (where
t=1,...,s—1).

Let \; = p°r; + Zf;l ci;8; (i = 1,2) be two vectors fromA,. Then we haver;,ro € Z", andciyj,co; €

{0,...,p* — 1} satisfy the division condition. Now consider the differenc

ks
—X2=p 1‘1—1“2+E c1j — €25)8
=1

We will show thatA; — A2 € A,.. We need the following lemma from elementary arithmetic.

Lemma 3:Let a,d € Z with d # 0. Then there exist unique r € Z such thata = ¢d + r and0 < r < |d|.

Using the above lemma, we have; — cp; = ¢;p° +r; for someg; € Z andr; € {0,...,p* — 1}. Furthermore,
if p* dividescy; — co;, thenp' dividesr;, wheret = 1,...,s — 1. Thus,{r;} satisfy the division condition. Note
that

A=A =pi(ry—t2+ Y ;&) + D _1i8;.
j j

Thus,A\; — A2 € A, which implies thatA,. is indeed a lattice.
Next, we will construct a generator matrix fdx,. Let G denote the matrix with rowg, ..., g,. Clearly, we
havedet((}) =1 due to the way{g;} are constructed. This implies thgt, ..., g, spanZ™ overZ. That is, any

vectorr € Z" can be expressed as an integer combinatiagy of. . , g,,. Consider the set of all integer combinations
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of the following vectorsgy, ..., 8k, PSky+1,---sP8kas - - » P°Blot1,- - -, P°En. ON the one hand, it is easy to see
that any integer combination of these vectors is a lattidatgo A,.. On the other hand, lex = p°r + Zf;l ¢;i8;
be a lattice point im\,., wherer € Z" and{c;} satisfy the division condition. Recall that= >""_, b;g; for some

b; € Z. Thus, we have
ks

)\:Z(ci-i-psbi)grf— Z p°b;g;.

i=1 Jj=ks+1
Sincep? | ¢;, whenk; < i < k11, we havep’ | ¢; + p'b;, whenk;, < i < k1. Hence,\ is indeed an integer
combination of the above vectors. L&t,, be the matrix formed by these vectors. THaR, is a generator matrix
for A,.

E. Proof of Relation[(1I3)

The following two observations simplify the proof of the agbn [I3). First, it suffices to consider the case of
s = 2, since the case of > 2 is essentially the same. Second, it suffices to prove théoelor the pair of nested
Z-latticesA, D A/, i.e.,
GA/T :diag(p27"'7p27p7"'7p517"'31)GAr (23)
——— —— ——
kl kg*kl n*k2
due to the lifting operation.

Next we will construct two generator matric€k,, and G, satisfying the above relation. L& denotes (g;),
fori =1,...,n. On the one hand, by AppendiX D, there exists a generatom@tg. of A, consisting of basis
VECIOISE 1, ..., 8ky» DEky 1y - > PEko» D°Bhotl,- -, D°En. ON the other hand, the vectofs?g, ..., p%g,} form
a basis ofA], because;, . .., g, spanZ™ overZ. By comparing these two bases fay and A/, we conclude that

there exist two generator matric€s,, and G, satisfying Relation[(23).

F. Proof of Propositioi 4

It suffices to consider the case= 2, since the case of > 2 is essentially the same. Consider a lattice point
A€ A\ Al given by

k1 ko
A=pr+ > B+ Y phaig),
=1 =

where;; € {0,...,p—1}. Clearly, some3;; must be nonzero, because otherwldse- p°r € A/.. We consider the
following two cases.

Case 1: somé;; is nonzero. In this case, we construct a new latiice = {pr + 2?1:1 Bigj:r € ZL", B €
{0,...,p — 1}} and a new sublatticd,; = {pr : r € Z"}. Clearly, we have\ € A,; and X ¢ A,}. Thus,
X € A1\ A}. Note that the nested lattice pair; D A,; can be obtained from the codg by Construction A.
Thus, we have|A||? > w®i®(C;) and the number of lattice points of the Euclidean weighty2i*(C;) is upper
bounded byK (A1 /A,}).

Case 2: allg;; are zero, and somg,; is nonzero. In this case, we construct a new latice = {pr +

Zfilﬂjgj :r e Z"B; € {0,...,p— 1}} and a new sublatticé\,, = {pr : r € Z"}. Clearly, we have
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A =p’r+ Zfilpﬂzjgj € pA.o and X ¢ pA,,. Thus,\ € pA,, \ pA,5. Similar to Case 1, the nested lattice pair
Ao D A} can be obtained from the codk by Construction A. Thus, we have\|? > p*wiin(Cy), and the
number of lattice points\ of the Euclidean weight''#"(C,) is upper bounded by (A,.5/A,5).

Combining the above two cases, we have, foalt A, \ A/, that||A[|? > min{wB(Cy), p?wB™(Cs)}, Which

implies thatd?(A,/AL) > min{w®™®(C), p?wBi"(C2)}. Recall thatA = A, x A,. Hence, we have
d*(A/N') = d*(Ar /A7)
> min{wg™ (C1), p*wE™(C2)}.
Note thatV (A’) = p*™ and V' (A’)/V (A) = p*>*1+k2) since eachp;; € {0,...,p — 1}. Hence, we havé’ (A) =
p22n—ki—ka) ang
Ye(AJN) = d*(A/A') [p? 3 Fatha)/m)

 minfun(C), pPun(Cy)
- p2(2—(k1+k2)/n) ’

We also haveK (A,./AL) < K(A.1/A) + K(Aro/Ary) and K(A/A') = 2K (A,/AL), completing the proof

for the cases = 2.

G. Modified Viterbi Decoder for Examp]e 7

We will show that the nearest neighbor quantizd{N can be implemented through a modified Viterbi decoder.

First, note thato\N solves the following optimization problem
minimize ||\ — ay|| (24)
subjectto A € A.

Second, note that the problem124) is equivalent to

minimize ||5(c) + A — ay]| (25)
subjectto c€C (26)
A eN.

This is because each lattice poitc A can be expressed @s= G(c) + A/, wherec = o(A) and X\’ € A’.
Third, note that Probleni_(25) is equivalent to

minimize ||[5(c) — ay] mod A’|| (27)

subjectto c € C,

where [x] mod A’ is defined asix] mod A’ £ x — O\N(x). This is because&\" = —O\N(5(c) — ay) solves

Problem [[2b) for any € C.
Now it is easy to see the problen {27) can be solved through dified Viterbi decoder with the metric given
by ||[] mod A’|| instead of| - ||. Therefore, the nearest neighbor quantiZdf" can be implemented through a

modified Viterbi decoder.
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H. Proof of Theoreml8

First, we show the existence of the solutifay, ..., a,,} by induction onm.

If m = 1, then the vecton; can be chosen such thatL is one of the shortest lattice points. Note thatis
not divisible byr; otherwise it will not be one of the shortest lattice pointsother wordsa; is indeed nonzero.
Hence, the solutiom; always exists whem = 1.

Now suppose the solutiofay, ..., a;} exists wherk < m. We will show the existence of the vectay ;.

Consider the following set
A={aeTl:a),... a; a are linearly independeht
Clearly, the setd4 is nonempty, sincé < m. Then the vectoa,,, can be chosen as
= in ||aL]|.
A1 = argmn [aL]|

This proves the existence of the vectgy, 1, which completes the induction.

Second, we show that the solutidn,, ..., a,,} is a dominant solution by induction an.

If m =1, then||a;L|| < ||b,L|| for any feasible solutiom,, sincea;L is one of the shortest lattice points.

Now suppose thafay,...,a;} is a dominant solution wheh < m. We will show that{as,...,ax,ax41} is
also a dominant solution.

Suppose thatbs,...,bg, by 1} is a feasible solution withb;L|| < ... < |[bss1L||. Sinceby,..., b, are
linearly independent, we have

laiL]| < [IbiL, i =1,....k.

—

remains to show|a,1L|| < ||bx+1L||. We consider the following two cases.

1) If there exists somé; (i = 1,...,k + 1) such thata,,...,a,,b; are linearly independent, then by the
construction ofag1, we have

[ak+1 L] < [[b:L|| < [[bg1 L.
2) Otherwise, eacly; can be expressed as a linear combinatioagf . ., a;. That is,
Bi S Spar{él, ce ,ék}.

This is contrary to the fact thab,,..., b, are linearly independent, since ahy+ 1 vectors in a vector

space of dimensiok are linearly dependent.

Therefore, we havfla;1L|| < ||br+1L||, which completes the induction.
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