Cycle and Cocycle Coverings of Graphs

Sean McGuinness

THOMPSON RIVERS UNIVERSITY, KAMLOOPS BC, CANADA V2C5N3 E-mail: smcguinness@tru.ca

Received May 15, 2008; Revised October 23, 2009

Published online 2010 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jgt.20480

Abstract: In this article, we show that for any simple, bridgeless graph *G* on *n* vertices, there is a family \mathscr{C} of at most n-1 cycles which cover the edges of *G* at least twice. A similar, dual result is also proven for cocycles namely: for any loopless graph *G* on *n* vertices and ε edges having cogirth $g^* \ge 3$ and k(G) components, there is a family of at most $\varepsilon - n + k(G)$ cocycles which cover the edges of *G* at least twice. © 2010 Wiley Periodicals, Inc. J Graph Theory

MSC: 05D15; 05B35

Keywords: graph; cycle; cocycle

1. INTRODUCTION

For a graph G we let n(G) = |V(G)| and $\varepsilon(G) = |E(G)|$. We let k(G) denote the number of components of G. For a vertex $v \in V(G)$, we let $N_G(v)$ be the set of neighbors of v in G, and we let $E_v(G)$ be the set of edges in G incident to v. It should be noted that all graphs in this article will be allowed to have loops or multiple edges. The *circumference* of G is defined to be the length of a longest cycle in G, and is denoted by $\varepsilon(G)$. The *girth* of G is the length of a shortest cycle of G, and is denoted by g(G). In addition, the *cogirth*, $g^*(G)$, denotes the smallest size of a cocycle of G.

Journal of Graph Theory © 2010 Wiley Periodicals, Inc.

For disjoint subsets *X* and *Y* of vertices in a graph *G*, we denote by [X,Y] the set of edges having one endvertex in *X* and the other in *Y*. A *cutset* in *G* is a set of edges $[X, V(G) \setminus X]$, for some non-empty $X \subset V(G)$. We also denote such a set by $\partial(X)$. A *cocycle* is a minimal cutset; that is, a cutset not properly containing another cutset. Furthermore, a cocycle $C^* = [X, V(G) \setminus X]$ is said to be *non-trivial* if $|X| \ge 2$ and $|V(G) \setminus X| \ge 2$.

For a subset of edges $X \subseteq E(G)$ (respectively, vertices $X \subseteq V(G)$) in a graph G, we let G[X] be the subgraph induced by X.

For a matroid M, we let r(M) denote the rank of M and we let c(M) the length of a largest circuit (called the *circumference* of M). There is an interesting connection between various bounds on the size of a graph and the size of a matroid. To start with, for a simple graph G, we have an old, well-known bound for $\varepsilon(G)$ due to Erdős and Gallai [4] (see also [1, Section 3.4]).

Theorem 1.1 (Erdős–Gallai). For a simple graph G,

 $\varepsilon(G) \le \frac{1}{2}c(G)(n(G) - 1).$

Murty [9] showed that a similar looking bound holds for simple binary matroids having no F_7 -minor.

Theorem 1.2 (Murty). Let M be a simple binary matroid having no F_7 -minor. Then

$$|E(M)| \le \frac{1}{2}r(M)(r(M)+1)$$

and equality is attained if and only if $M \simeq M(K_{r+1})$.

In [8], I showed that the Erdős -Gallai bound and Murty bound have a common generalization.

Theorem 1.3 (McGuinness). Let M be a simple, connected binary matroid having no F_7 -minor. Then

$$|E(M)| \le \frac{1}{2}r(M)c(M).$$

In the same article, I made the following conjecture, which seems natural in light of the above theorem.

Conjecture 1.4. For a simple, connected binary matroid M having no F_7 -minor, there exists a collection of at most r(M) circuits which cover the elements of M at least twice.

For the special case of graphic matroids, the above conjecture asserts that for any simple, 2-connected graph G, there is a collection of at most n(G) - 1 cycles which cover the edges of G at least twice. In Section 3, we prove this special case and prove something stronger.

For a family of cycles or cocycles \mathscr{C} of a graph *G* and $e \in E(G)$, let

$$\mathscr{C}(e) = \{ C \in \mathscr{C} | e \in C \}, \quad \alpha_{\mathscr{C}}(e) = |\mathscr{C}(e)|.$$

A family of cycles (respectively, cocycles) \mathscr{C} is said to be a ≥ 2 -cycle cover (respectively, ≥ 2 -cocycle cover) if $\alpha_{\mathscr{C}}(e) \geq 2$ for all $e \in E(G)$. The first main result of this article is the following:

Theorem 1.5. Let G be a simple, bridgeless graph and let $x \in V(G)$. Then G has $a \ge 2$ -cycle cover \mathscr{C} such that (i) $|\mathscr{C}| \le n(G) - 1$ and (ii) for edges e having both endvertices in $N_G(x)$, it holds that $\alpha_{\mathscr{C}}(e) = 2$.

Interestingly, Bondy [2] conjectured that the edges of G can be covered exactly twice with at most n(G)-1 cycles, the so-called *Small cycle double cover conjecture*.

Conjecture 1.6 (Bondy). For a simple, 2-connected graph G, there is a collection of at most n(G)-1 cycles which cover the edges of G exactly twice.

In [5], Erdős, Goodman, and Pósa conjectured the following (see also [3, Problem 6]):

Conjecture 1.7 (Erdős, Goodman, Posa). For any simple, 2-connected graph G, there is a collection of at most n(G)-1 cycles which cover the edges of G.

This conjecture was subsequently proven by Pyber [10]. In [6], Fan showed that $\lfloor (2n(G)-1)/3 \rfloor$ cycles will suffice, this being the best possible. In light of this, Theorem 1.5 is somewhat surprising in that it implies that a ≥ 2 -cover cover exists with at most n(G)-1 cycles.

2. CYCLES

In this section, we shall prove the first of the main theorems, Theorem 1.5. The main ingredients in the proof are a *switching lemma* by Fan [6], and Li's theorem on perfect path double covers [7].

We shall use the following definitions given by Fan [6]. Let xy be an edge in a simple graph G where $N_G(y) \subseteq N_G(x) \cup \{x\}$. Let C be a cycle of G containing x. A cycle C' is a *transformation* of C if one of the following holds:

- (a) C' = C.
- (b) y∉V(C), and for w,z∈N_G(x) it holds that xw, xz∈E(C) and C' is one of the cycles (see Fig. 1):
 - (i) $C' = (C \setminus \{xz\}) \cup \{xy, yz\}.$
 - (ii) $C' = (C \setminus \{xw\}) \cup \{xy, yw\}.$
 - (iii) $C' = (C \setminus \{xz, xw\}) \cup \{yz, yw\}).$
- (c) $xy \in E(C)$ and there exist distinct $w, z \in N_G(x) \setminus \{y\}$ for which $yw, xz \in E(C)$. Then $C' = (C \setminus \{xz, yw\}) \cup \{yz, xw\}.$
- (d) $y \in V(C)$, and $xy \notin E(C)$. Suppose there are distinct $z_1, z_2 \in N_G(x) \setminus \{y\}$ and distinct $w_1, w_2 \in N_G(y) \setminus \{x\}$, such that $xz_1, xz_2, yw_1, yw_2 \in E(C)$. Assume that for i = 1, 2 that z_i and w_i lie in the same component of $C \setminus \{x, y\}$. Then we have that C' is

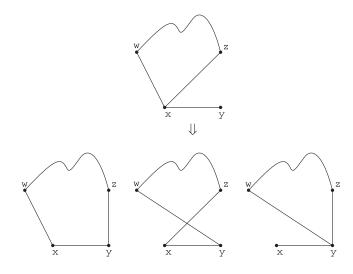


FIGURE 1. Cycle transformation (b).

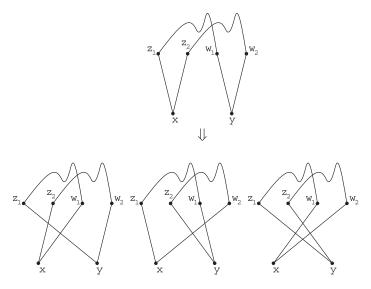


FIGURE 2. Cycle transformation (d).

one of the cycles (see Fig. 2):

- (i) $C' = (C \setminus \{xz_1, yw_1\}) \cup \{yz_1, xw_1\};$
- (ii) $C' = (C \setminus \{xz_2, yw_2\}) \cup \{yz_2, xw_2\};$
- (iii) $C' = (C \setminus \{xz_1, yw_1, xz_2, yw_2\}) \cup \{yz_1, xw_1, yz_2, xw_2\}.$

The following lemma by Fan [6, Switching Lemma] is central to the proof of Theorem 1.5.

Lemma 2.1 (The Switching Lemma). Let G be a simple graph and let $xy \in E(G)$ where $N_G(y) \subseteq N_G(x) \cup \{x\}$. Suppose that $\mathscr{C} = \{C_1, \ldots, C_m\}$ is a family of cycles such that $\alpha_{\mathscr{C}}(vy) \leq \alpha_{\mathscr{C}}(vx)$ for all $v \in N_G(x) \cap N_G(y)$. Let

$$Z = \{z_1, z_2, \dots, z_s\} \subseteq N_G(x) \cap N_G(y)$$

where $\alpha_{\mathscr{C}}(z_i y) < \alpha_{\mathscr{C}}(z_i x)$ for i = 1, ..., s. Then for any s integers $k_1, ..., k_s$ where $1 \le k_i \le \alpha_{\mathscr{C}}(z_i x) - \alpha_{\mathscr{C}}(z_i y)$, there is a family of cycles $\mathscr{C}' = \{C'_1, C'_2, ..., C'_m\}$ such that

- (i) C'_j is a transformation of C_j at xy, j = 1, ..., m.
- (ii) $\alpha_{\mathscr{C}'}(z_i y) = \alpha_{\mathscr{C}}(z_i y) + k_i$ and $\alpha_{\mathscr{C}'}(z_i x) = \alpha_{\mathscr{C}}(z_i x) k_i$, i = 1, ..., s.
- (iii) $\alpha_{\mathscr{C}'}(xy) = \alpha_{\mathscr{C}}(xy) + \theta$ where $\theta \leq \sum_{i=1}^{s} k_i, \ \theta \equiv \sum_{i=1}^{s} k_i \pmod{2}$.
- (iv) $\alpha_{\mathscr{C}'}(e) = \alpha_{\mathscr{C}}(e)$ for all $e \in E(G) \setminus (\{xy\} \cup \{z_i x, z_i y \mid 1 \le i \le s\})$.

We shall also make use of the following theorem of Li [7]:

Theorem 2.2 (Li). Let G be a simple graph on n vertices. There is a family of paths \mathcal{P} such that each edge belongs to exactly two paths of \mathcal{P} , and each vertex occurs exactly twice as an endvertex of paths in \mathcal{P} .

The above theorem had originally been conjectured by Bondy [2].

Note that a single vertex v is considered itself to be a path (the *trivial path*) and for such a path, v is counted twice as an endvertex of this path. If G has no isolated vertices, then we can choose \mathcal{P} so that it has no trivial paths in the above theorem. In this case, each vertex is the endvertex of two different paths in \mathcal{P} , and thus $|\mathcal{P}| = n$.

Let $xy \in E(G)$ and let $Z = N(y) \setminus (N(x) \cup \{x\})$. As defined in [6], we define an *edge*switching from y to x to be the operation on G where we delete the edges yz, $z \in Z$, and add the edges xz, $z \in Z$. The resulting graph is denoted by $G[y \rightarrow x]$. See Figure 3.

Proof of Theorem 1.5. Assume that the theorem is false and let *G* be graph and let $x \in V(G)$ be such that the theorem is false for *G* and *x*. Assume that *G* has n = n(G) vertices. Among such counterexamples choose *G* such that $\varepsilon(G)$ is minimum, and subject to $\varepsilon(G)$ being minimum, assume that $d_G(x)$ is maximum. Suppose first that $d_G(x) = n - 1$. Let $G' = G \setminus \{x\}$. Since *G* is bridgeless, *G'* has no isolated vertices, and thus by Theorem 2.2 there is a family of n-1 non-trivial paths \mathcal{P} where each edge of *G'* is covered exactly twice by paths in \mathcal{P} , and every vertex of *G'* is the endvertex of exactly two paths in \mathcal{P} . Let $\mathcal{P} = \{P_i | i = 1, 2, ..., n-1\}$, where P_i has endvertices u_i and v_i . For i = 1, 2, ..., n-1, let C_i be the cycle defined by $C_i = P_i \cup \{x, xu_i, xv_i\}$. Now $\mathscr{C} = \{C_1, C_2, ..., C_{n-1}\}$ is seen to be a collection of cycles where $\alpha_{\mathscr{C}}(e) = 2$ for all $e \in E(G)$, and \mathscr{C} is seen to satisfy (i) and (ii) of the theorem. We conclude that $d_G(x) < n-1$.

Let $xy \in E(G)$. Suppose first that xy belongs to no triangle of G (that is, $N_G(x) \cap N_G(y) = \emptyset$). Let G' = G/xy (that is, G contract xy) and let x' be the vertex formed when contracting the edge xy. We have that $\varepsilon(G') < \varepsilon(G)$ and G' is also seen to be simple and bridgeless. By assumption, there is a ≥ 2 -cycle cover \mathscr{C}' for G' where $|\mathscr{C}'| \le n(G') - 1 = n - 2$, and for each edge $e \in E(G')$, having both endvertices in $N_{G'}(x')$, it holds that $\alpha_{\mathscr{C}'}(e) = 2$. Let $\mathscr{C}'(x') = \{C' \in \mathscr{C}' | x' \in V(C')\}$, and

$$E'_{x} = \{x'v | v \in N_{G}(x) \setminus \{y\}\}, \quad E'_{y} = \{x'v | v \in N_{G}(y) \setminus \{x\}\}.$$

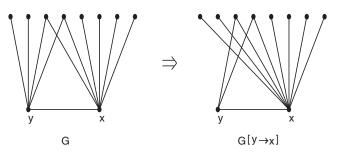


FIGURE 3. Edge-switching from y to x.

Let

$$\begin{split} & \mathscr{C}_1' = \{C' \in \mathscr{C}'(x') | C' \cap E'_x \neq \emptyset, C' \cap E'_y = \emptyset\}, \\ & \mathscr{C}_2' = \{C' \in \mathscr{C}'(x') | C' \cap E'_x = \emptyset, C' \cap E'_y \neq \emptyset\}, \\ & \mathscr{C}_3' = \mathscr{C}'(x') \backslash (\mathscr{C}_1' \cup \mathscr{C}_2'). \end{split}$$

Let

 $\mathscr{C}_1 = \mathscr{C}'_1, \quad \mathscr{C}_2 = \mathscr{C}'_2.$

Furthermore, let \mathscr{C}_3 be the collection of cycles obtained from \mathscr{C}'_3 by replacing each cycle $C' \in \mathscr{C}'$ with a cycle in *G* where $E(C) = E(C') \cup \{xy\}$. If $|\mathscr{C}_3| \ge 2$, then $\mathscr{C} = \mathscr{C}_1 \cup \mathscr{C}_2 \cup \mathscr{C}_3$ is seen to be a ≥ 2 -cycle cover of *G* where $|\mathscr{C}| = |\mathscr{C}'| = n-2$ and for each edge *e* having endpoints in $N_G(x)$ it holds that $\alpha_{\mathscr{C}}(e) = \alpha_{\mathscr{C}'}(e) = 2$ (since *e* is also an edge with endpoints in $N_{G'}(x')$).

Suppose that $|\mathscr{C}_3| \leq 1$. Then, $|\mathscr{C}_1| \geq 1$ and $|\mathscr{C}_2| \geq 1$. Let $C \in \mathscr{C}_2$, and let *P* be a path of shortest length between *x* and *V*(*C*) in $G \setminus \{xy\}$. Let $\{z\} = V(P) \cap V(C)$, and let *P'* be a path in *C* between *y* and *z*. Let C_1 be the cycle $C_1 = P \cup P' \cup \{xy\}$, and let C_2 be the cycle $C_2 = C \triangle C'$. See Figure 4. Let $\mathscr{C} = \mathscr{C}_1 \cup (\mathscr{C}_2 \setminus \{C\}) \cup \{C_1, C_2\} \cup \mathscr{C}_3$. Then it is seen that \mathscr{C} is a ≥ 2 -cycle cover for *G*, where $|\mathscr{C}| = |\mathscr{C}'| + 1 \leq n-1$. Furthermore, since *P* is a shortest path from *x* to *V*(*C*), it contains no edge with both endpoints in $N_G(x)$. Thus for each edge *e* having endpoints in $N_G(x)$, it holds that $\alpha_{\mathscr{C}}(e) = \alpha_{\mathscr{C}'}(e) = 2$.

From the above, it holds that for each edge $xy \in E_x(G)$, $N_G(x) \cap N_G(y) \neq \emptyset$. Since x is not adjacent to every other vertex of G, there is an edge $xy \in E_x(G)$, where $N_G(y) \setminus N_G(x) \neq \emptyset$. Let $G' = G[y \to x]$. Given that xy belongs to a triangle in G, it is seen that G' is bridgeless. We have $\varepsilon(G') = \varepsilon(G)$, and $d_{G'}(x) > d_G(x)$. By assumption, there exists a ≥ 2 -cycle cover \mathscr{C}' for G for which $|\mathscr{C}'| \leq n-1$ and $\alpha_{\mathscr{C}'}(e) = 2$ for all edges e having both endpoints in $N_{G'}(x)$. Let $Z = N_G(y) \setminus N_G(x)$, and $G'' = G' \cup \{yz \mid z \in Z\}$. Then \mathscr{C}' can be viewed as a collection of cycles of G'' where $\alpha_{\mathscr{C}'}(yz) = 0$ for all $z \in Z$. For each $v \in Z$, we have $\alpha_{\mathscr{C}'}(xv) > \alpha_{\mathscr{C}'}(yv) = 0$. Furthermore, for each $v \in N_{G''}(x) \cap N_{G''}(y) \setminus Z$, it holds that $\alpha_{\mathscr{C}'}(yv) = 2$ since $v, y \in N_{G'}(x)$, and hence $\alpha_{\mathscr{C}'}(xv) \geq \alpha_{\mathscr{C}'}(yv) = 2$. Thus by Lemma 2.1, we can switch the cycles in \mathscr{C}' to obtain a collection of cycles \mathscr{C} in G''

CYCLE AND COCYCLE COVERINGS OF GRAPHS 7

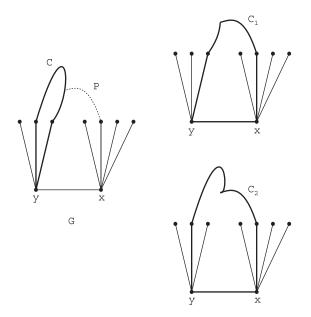


FIGURE 4. Splitting the cycle C.

where

 $\begin{aligned} \alpha_{\mathscr{C}}(yz) &= \alpha_{\mathscr{C}'}(xz) \quad \text{for all } z \in Z, \\ \alpha_{\mathscr{C}}(xz) &= 0 \quad \text{for all } z \in Z, \\ \alpha_{\mathscr{C}}(xy) &\geq \alpha_{\mathscr{C}'}(xy), \\ \alpha_{\mathscr{C}}(e) &= \alpha_{\mathscr{C}'}(e) \quad \text{for all } e \in E(G'') \setminus \{xz, yz | z \in Z\} \cup \{xy\}. \end{aligned}$

Now \mathscr{C} is seen to be a ≥ 2 -cycle cover of *G* where $|\mathscr{C}| = |\mathscr{C}'| \leq n-1$, and for each edge *e* having endpoints in $N_G(x)$, it holds that $\alpha_{\mathscr{C}}(e) = \alpha_{\mathscr{C}'}(e) = 2$. With this we arrive at a final contradiction.

3. COCYCLES

In this section, we prove that a "dual" result to Theorem 1.5 holds for cocycles.

For a graph G, let $r^*(G) = \varepsilon(G) - n(G) + k(G)$, which is the rank of the cocircuit matroid $M^*(G)$. We say that two cocycles $C_i^* = [X_i, Y_i]$, $i = 1, 2 \operatorname{cross} \operatorname{if} X_1 \cap X_2 \neq \emptyset$, $Y_1 \cap Y_2 \neq \emptyset$, and $X_i \cap Y_j \neq \emptyset$ for all $i, j \in \{1, 2\}$ where $i \neq j$. We write $C_i^* \land C_j^*$. For edges e and f, we say that a cocycle $C^* = [X, Y]$ separates e and f if e is an edge of G[X] and f is an edge of G[Y], or vice versa. Similarly, for vertices u and v we say that C^* separates u and v if $u \in X$ and $v \in Y$, or vice versa.

For edges $e = u_1v_1$ and $f = u_2v_2$ and cocycles $C_1^* = [X_1, V(G) \setminus X_1]$ and $C_2^* = [X_2, V(G) \setminus X_2]$ containing *e*, *f*, we say that the pair (C_1^*, C_2^*) crosses (e, f) if u_1 and u_2

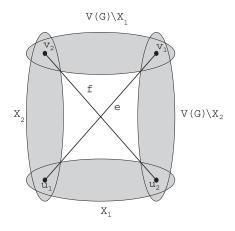


FIGURE 5. Pair of cocycles crossing (e,f).

are separated by exactly one of C_1^* or C_2^* . See Figure 5. Observe that if *e* and *f* are incident, then no pair of cocycles can cross (e, f).

- For a \geq 2-cocycle cover \mathscr{C}^* , we say that (e, f) is a *bad pair* for \mathscr{C}^* if
- (i) no cocycle of \mathscr{C}^* separates e and f, and
- (ii) for some C_1^* , $C_2^* \in \mathscr{C}^*$, it holds that $\mathscr{C}^*(e) = \mathscr{C}^*(f) = \{C_1^*, C_2^*\}$ and (C_1^*, C_2^*) crosses (e, f).

For edges e and f and cocycles C_1^*, C_2^* satisfying (ii), we write $(e, f) \leftrightarrow (C_1^*, C_2^*)$ and refer to (C_1^*, C_2^*) as a *bad pair of cocyles*. We observe that if $(e, f) \leftrightarrow (C_1^*, C_2^*)$, then $C_1^* \land C_2^*$. If \mathscr{C}^* is a ≥ 2 -cocycle cover with no bad pairs of cocycles, then we say that \mathscr{C}^* is good.

Lemma 3.1. Let $C^* = [X, Y]$ be a cocycle in a 2-connected graph G and let $e \in E(G) \setminus C^*$. Then there exist cocycles C_1^*, C_2^* where $e \in C_i^*, i = 1, 2, and C^* \subset C_1^* \cup C_2^*$.

Proof. Let $e \in E(G)$ where $e = u_1u_2$ and $u_1, u_2 \in X$. Since *G* is 2-connected, there exist two internally disjoint paths $P_i = v_{i1}e_{i1}v_{i2}e_{i2}\dots e_{i(k_i-1)}v_{ik_i}$, $i = 1, 2, \text{ from } \{u_1, u_2\}$ to *Y*, where $u_i = v_{i1}$ and $v_{ik_i} \in Y_i$, for i = 1, 2 and $v_{ij} \in V(G)$, $e_{ij} \in E(G)$, $i = 1, 2; j = 1, \dots, k_i$. Let $P'_i = v_{i1}e_{i1}v_{i2}e_{i2}\dots e_{i(k_i-2)}v_{i(k_i-1)}$, i = 1, 2, be the portion of the path P_i lying in G[X]. Let *T* be a spanning tree of G[X] containing P'_1 , P'_2 , and *e*, and let T_1 , T_2 be the components of $T \setminus e$, where T_i contains P'_i , i = 1, 2. Let $C^*_i = \partial(V(T_i))$, i = 1, 2. Then $e \in C^*_i$, i = 1, 2. Furthermore, $G[V(G) \setminus V(T_1)]$ is connected since $V(G) \setminus V(T_1) = V(T_2) \cup Y$, and $G[V(T_2)]$ is connected to G[Y] by the edge $e_{2(k_2-1)}$. Likewise, $G[V(G) \setminus V(T_2)]$ is also connected. Thus C^*_i , i = 1, 2, are cocycles and $C^* \subset C^*_1 \cup C^*_2$.

We refer to the pair of cocycles (C_1^*, C_2^*) in the above lemma as an *e-splitting* of C^* . We now present the second of the main results in this article.

Theorem 3.2. Let G be a loopless graph on n vertices having cogirth $g^* \ge 3$. Then there exists a good ≥ 2 -cocycle cover \mathscr{C}^* of G where $|\mathscr{C}^*| \le r^*(G)$.

Proof. By induction on $\varepsilon(G)$. Suppose $\varepsilon(G) = 3$. Then n(G) = 2 and G is a multiple 3-edge. In this case, $C^* = E(G)$ is itself a cocycle, and $\mathscr{C}^* = \{C^*, C^*\}$ is seen to be a good ≥ 2 -cocycle cover with $r^*(G) = 2$ cocycles. We shall assume that G is a loopless graph on n vertices where $\varepsilon(G) > 3$, $g^*(G) \geq 3$, and the theorem is true for all loopless having cogirth at least 3 and less edges than G. We shall make some reductions (A)–(E) below on G.

(A) G is connected.

Proof. If G is not connected, then by assumption, the theorem would hold for each of its components. Taking \mathscr{C}^* to be the union of the good ≥ 2 -cocycle covers over the components over G would yield a good ≥ 2 -cocycle cover of G with $|\mathscr{C}^*| \leq r^*(G)$. Thus we may assume that G is connected.

(**B**) G is 2-connected.

Proof. Suppose G is not 2-connected. Then we can express G as the union $G = G_1 \cup G_2$ where G_1 and G_2 have exactly one vertex in common. Then G_i , i=1,2, is loopless, and $g^*(G_i) \ge 3$, i=1,2. By assumption, G_i has a good ≥ 2 -cocycle cover \mathscr{C}_i^* where $|\mathscr{C}_i^*| \le r^*(G_i)$, i=1,2. Let $\mathscr{C}^* = \mathscr{C}_1^* \cup \mathscr{C}_2^*$. Then

$$|\mathscr{C}^*| \le r^*(G_1) + r^*(G_2) = \sum_{i=1}^2 (\varepsilon(G_i) - n(G_i) + 1) = \varepsilon(G) - (n(G_1) + n(G_2)) + 2$$

We also have $n(G) = n(G_1) + n(G_2) - 1$. Thus we obtain

$$|\mathscr{C}^*| \leq \varepsilon(G) - (n(G) + 1) + 2 = r^*(G).$$

Since each of the collections \mathscr{C}_i^* , i=1,2, is a good ≥ 2 -cocycle cover of G_i , one sees that \mathscr{C}^* is a good ≥ 2 -cocycle cover of G. Thus we may assume that G is 2-connected.

(C) There is an edge $e \in E(G)$ which belongs to no non-trivial 3-cocycle.

Proof. Suppose this assertion is false, and assume that every edge of *G* belongs to a non-trivial 3-cocycle. Among all non-trivial 3-cocycles, let $C^* = \{e_1, e_2, e_3\} = [X, Y]$, where $e_i = u_i v_i$, $u_i \in X$, $v_i \in Y$, i = 1, 2, 3, and C^* is chosen so that |X| is minimum. Let $e'_1 \in E(G[X])$, and let $C'^* = [X', Y'] = \{e'_1, e'_2, e'_3\}$ be a non-trivial 3-cocycle containing e'_1 . By the minimality of |X|, it holds that $X' \not\subset X$ and $Y' \not\subset X$. In particular, this means that $X' \cap Y \neq \emptyset$, and $Y' \cap Y \neq \emptyset$. We also observe that since $e'_1 \in E(G[X])$, it must hold that $X' \cap X \neq \emptyset$ and $Y' \cap X \neq \emptyset$. Thus $C^* \land C'^*$. Given that $|C^*| = |C'^*| = 3$ and $g^*(G) \ge 3$, it follows by elementary counting arguments that

$$|\partial(X \cap X')| = |\partial(X \cap Y')| = |\partial(Y \cap X')| = |\partial(Y \cap Y')| = 3.$$

Now if $|X \cap X'| > 1$, then $\partial(X \cap X')$ is a non-trivial 3-cocyle where $X \cap X' \subset X$. This contradicts thus choice of *X*. Thus $|X \cap X'| = 1$, and similarly, $|X \cap Y'| = 1$. Now it is readily seen that $|C^*| = |\partial(X)| \neq 3$, a contradiction. We conclude that at least one edge belongs to no non-trivial 3-cocycle.

Let e = uv be an edge of *G* which belongs to no non-trivial 3-cocycle of *G*, where $3 \le d_G(u) \le d_G(v)$. Let $A_u^* = \partial(\{u\}), A_v^* = \partial(\{v\}), \text{ and } A_{uv}^* = \partial(\{u, v\})$. (**D**) $d_G(u) = 3$.

Proof. Suppose $d_G(u) \ge 4$. Let $H = G \setminus e$. Since e belongs to no non-trivial 3-cocycle and $4 \le d_G(u) \le d_G(v)$, it follows that e belongs to no 3-cocycle. Consequently, $g^*(H) \ge 3$. By assumption, there exists a good ≥ 2 -cocycle cover $\mathscr{B}^* = \{B_i^* | i = 1, ..., k\}$, of H where $B_i^* = [X_i, Y_i]$, $u \in X_i$, i = 1, ..., k. Define cocycles C_i^* , i = 1, ..., k, of G in the following way: if $v \in X_i$, let $C_i^* = B_i^*$; otherwise, let $C_i^* = B_i^* \cup \{e\}$. Then C_i^* , i = 1, ..., k, are seen to be cocycles of G. If $e \in C_i^*$ for some $1 \le i \le k$, then let $C_{k+1}^* = A_u^*$. Then $\mathscr{C}^* = \{C_1^*, ..., C_{k+1}^*\}$ is seen to be a ≥ 2 -cocycle cover with $k+1 \le r^*(H)+1=r^*(G)$ cocycles. To show that \mathscr{C}^* is good, we suppose that (e_1, e_2) is a bad pair of edges for \mathscr{C}^* , and $(e_1, e_2) \leftrightarrow (C_i^*, C_j^*)$. Given that $C_i^* \land C_j^*$, it holds that $i, j \ne k+1$. Since $e \in C_{k+1}^*$, it follows that $e \ne e_1, e_2$. Now it is seen that (e_1, e_2) is a bad pair for \mathscr{B}^* , a contradiction. Thus \mathscr{C}^* is good.

On the other hand, if $e \notin C_i^*$ for i = 1, ..., k, then let (C_{k1}^*, C_{k2}^*) be an *e*-splitting for C_k^* and define $\mathscr{C}^* = (\{C_1^*, ..., C_{k-1}^*\} \cup \{C_{k1}^*, C_{k2}^*\}$. Then \mathscr{C}^* is seen to be a ≥ 2 -cocycle cover of *G* where $|C^*| = k + 1 \leq r^*(G)$. We observe that $e \in C_{kj}^*$, j = 1, 2, and $C_{k1}^*C_{k2}^*$, and as such *e* belongs to no bad pair for \mathscr{C}^* . Since \mathscr{B}^* is good, there is no bad pair of edges (e_1, e_2) for \mathscr{C}^* where $e_1, e_2 \in E(H)$. Consequently, \mathscr{C}^* is good.

(E) $d_G(u) = 3$ and $d_G(v) = 3$.

Proof. By (**D**), we may assume that $d_G(u)=3$. Suppose $d_G(v) \ge 4$. Let $E_u(G) = \{e_1, e_2, e_3\}$ where $e_1 = uu_1$ and $e_2 = uu_2$. Since *G* is 2-connected (by (**B**)), we may assume that $u_1 \ne v$. If $u_2 = v$, let $H = (G \setminus \{u\}) \cup \{f\}$ where $f = u_1v$. Then $r^*(H) = r^*(G) - 1$ and $g^*(G) \ge 3$ (since *e* belongs to no non-trivial 3-cocycle). By assumption, there exists a good ≥ 2 -cocycle cover $\mathscr{B}^* = \{B_1^*, \dots, B_k^*\}$ of *H*. Now the cocycles of \mathscr{B}^* can be modified slightly so as to obtain cocycles C_1^*, \dots, C_k^* of *G* which cover all the edges of $E(G) \setminus E_u(G)$ at least twice, and the edges of $E_u(G)$ at least once. Then $\{C_1^*, \dots, C_k^*, A_u^*\}$ is seen to be a good ≥ 2 -cocycle cover of *G*. Thus we may assume that $u_2 \ne v$, and similarly, $u_1 \ne u_2$.

Let $H = (G \setminus \{u\}) \cup \{f\}$ where $f = u_1u_2$. Then $r^*(H) = r^*(G) - 1$, and $g^*(H) \ge 3$ (since *e* belongs to no non-trivial 3-cocycle of *G*). By assumption, there exists a good ≥ 2 -cocycle cover $\mathscr{B}^* = \{B_1^*, \dots, B_k^*\}$ of *H* where $k \le r^*(H)$. Assume that $B_i^* = [X_i, Y_i]$, $i = 1, \dots, k$. Since e_1 belongs to at least two cocycles of \mathscr{B}^* , we may assume that $e_1 \in B_1^*$ and $e_1 \in B_2^*$. We shall define cocycles C_i^* , $i = 1, 2, \dots, k+1$, as follows: let

$$(C_1^*, C_2^*) = \begin{cases} ([X_1 \cup \{u\}, Y_1], [X_2, Y_2 \cup \{u\}]), & \text{if } v \in X_2 \cap Y_1; \\ ([X_1, Y_1 \cup \{u\}], [X_2 \cup \{u\}, Y_2]), & \text{otherwise.} \end{cases}$$

For i = 3, ..., k, let

$$C_i^* = \begin{cases} [X_i \cup \{u\}, Y], & \text{if } u_2 \in X_i; \\ [X_i, Y_i \cup \{u\}], & \text{if } u_2 \in Y_i. \end{cases}$$

Let $C_{k+1}^* = A_u^*$ and $\mathscr{C}^* = \{C_i^* | i = 1, ..., k+1\}$. Then \mathscr{C}^* is seen to be a ≥ 2 -cocycle cover of G with $k+1 \leq r^*(G)$ cocycles. Suppose that \mathscr{C}^* is not good, and let (f_1, f_2) be a bad pair for \mathscr{C}^* where $(f_1, f_2) \leftrightarrow (C_i^*, C_j^*)$. We have that $C_i^* \land C_j^*$, and hence $C_{k+1}^* \neq C_i^*, C_j^*$, and consequently $f_1, f_2 \in E(G) \setminus E_u(G)$. However, this means that (f_1, f_2) is a bad pair for \mathscr{B}^* , contradicting the fact that \mathscr{B}^* is good. Thus \mathscr{C}^* is good.

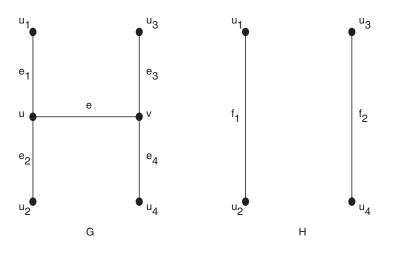


FIGURE 6. Deleting *e* to form *H*.

By (E), we may assume that $d_G(u) = d_G(v) = 3$ for the remainder of the proof. Let $E_u(G) = \{e_1, e_2, e\}$ and $E_v(G) = \{e_3, e_4, e\}$. Let $e_i = uu_i$, i = 1, 2, and $e_i = vu_i$, i = 3, 4. We may assume that u_1, u_2, v are distinct vertices; otherwise, we can use the same arguments as in the proof of (E) to show that *G* has a good ≥ 2 -cocycle cover. Likewise, we may assume that u_3, u_4 , and v are distinct vertices. Let $H = (G \setminus \{u, v\}) \cup \{f_1, f_2\}$ where $f_1 = u_1u_2$ and $f_2 = u_3u_4$. See Figure 6. Since *e* belongs to no non-trivial 3-cocycle of *G*, it follows that $g^*(H) \geq 3$. It is also seen that $r^*(H) = r^*(G) - 1$. Thus by assumption, there is a good ≥ 2 -cocycle cover $\mathscr{B}^* = \{B_1^*, \dots, B_k^*\}$ of *H* where $B_i = [X_i, Y_i], i = 1, \dots, k$.

We define the following cutsets of G:

$$B_{i,i}^* = [X_i, Y_i \cup \{u, v\}],$$

$$B_{i,u}^* = [X_i \cup \{u\}, Y_i \cup \{v\}],$$

$$B_{i,v}^* = [X_i \cup \{v\}, Y_i \cup \{u\}],$$

$$B_{i,uv}^* = [X_i \cup \{u, v\}, Y_i].$$

For i = 1, ..., k, let $\alpha_i = (a_{i1}, a_{i2}, a_{i3}) \in \mathbb{Z}_2^3$, where for j = 1, 2, 3

$$a_{ij} = \begin{cases} 1, & \text{if } u_{j+1} \in X_i; \\ 0, & \text{if } u_{j+1} \in Y_i. \end{cases}$$

For $i = 1, \ldots, k$ let

$$A_{i}^{*} = \begin{cases} B_{i,u}^{*}, & \text{if } \boldsymbol{\alpha}_{i} \neq (0,1,1), (1,1,1); \\ B_{i,v}^{*}, & \text{if } \boldsymbol{\alpha}_{i} = (0,1,1); \\ B_{i,uv}^{*}, & \text{if } \boldsymbol{\alpha}_{i} = (1,1,1). \end{cases}$$

See Figure 7.

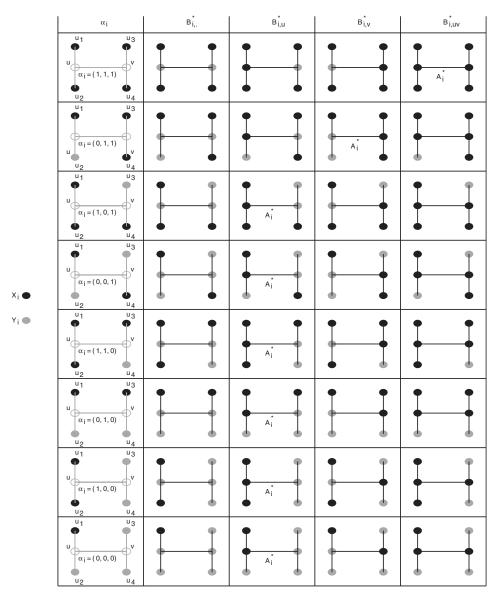


FIGURE 7. Table of cocycles.

Let $A_{k+1}^* = A_{uv}^* = \{e_1, e_2, e_3, e_4\}$. We shall show that, with one exception, the cocycles of \mathscr{B}^* which contain f_1 and f_2 can be transformed into cocycles of G in such a way that e_1, e_2, e_3, e_4 are covered at least once, and e is covered at least twice. We shall consider three cases:

Case 1: $\{f_1, f_2\} \not\subset B_i^*, i = 1, ..., k$. Given that \mathscr{B}^* is a ≥ 2 cover for H, we may assume that $f_1 \in B_1^*, B_2^*$ and $f_2 \in B_3^*, B_4^*$. Then

 $\alpha_1, \alpha_2 \in \{(0,0,0), (0,1,1)\}, \alpha_3, \alpha_4 \in \{(1,0,1), (1,1,0)\}.$

We define C_1^* , C_2^* in the following way:

$$(C_1^*, C_2^*) = \begin{cases} (B_{1,u}^*, B_{2,\cdot}^*), & \text{if } \alpha_1 = (0, 0, 0), & \alpha_2 = (0, 0, 0); \\ (B_{1,u}^*, B_{2,v}^*), & \text{if } \alpha_1 = (0, 0, 0), & \alpha_2 = (0, 1, 1); \\ (B_{1,v}^*, B_{2,u}^*), & \text{if } \alpha_1 = (0, 1, 1), & \alpha_2 = (0, 0, 0); \\ (B_{1,v}^*, B_{2,uv}^*), & \text{if } \alpha_1 = (0, 1, 1), & \alpha_2 = (0, 1, 1). \end{cases}$$

Similarly, we define C_3^* and C_4^* where

$$(C_3^*, C_4^*) = \begin{cases} (B_{3,uv}^*, B_{4,u}^*), & \text{if } \alpha_3 = (1,1,0), & \alpha_4 = (1,1,0); \\ (B_{3,u}^*, B_{4,u}^*), & \text{if } \alpha_3 = (1,1,0), & \alpha_4 = (1,0,1); \\ (B_{3,u}^*, B_{4,u}^*), & \text{if } \alpha_3 = (1,0,1), & \alpha_4 = (1,1,0); \\ (B_{3,uv}^*, B_{4,u}^*), & \text{if } \alpha_3 = (1,0,1), & \alpha_4 = (1,0,1). \end{cases}$$

For i=5,...,k+1, let $C_i^*=A_i^*$. Then $\mathscr{C}^*=\{C_1^*,...,C_{k+1}^*\}$ is seen to be a ≥ 2 -cocycle cover of G with $k+1 \leq r^*(G)$ cocycles. Suppose \mathscr{C}^* is not good and let (g,h) be a bad pair of edges where $(g,h) \leftrightarrow (C_i^*,C_j^*)$, for some i < j. Since \mathscr{B}^* is good, at least one of g or h belongs to $E_u(G) \cup E_v(G)$, and we may assume that this holds for g. Since $C_{k+1}^* = C_{uv}^*$, it separates e from any edge in $E(G) \setminus \{e_1, e_2, e_3, e_4\}$. Thus (e, e') is not a bad pair for all $e' \in E(G) \setminus \{e_1, e_2, e_3, e_4\}$. Moreover, $(e, e_i), i=1,2,3,4$, is not a bad pair since $e \notin C_{k+1}^*$. Thus $g \neq e$, and hence $g \in \{e_1, e_2, e_3, e_4\} = C_{k+1}^*$. Consequently, $C_j^* = C_{k+1}^*$, and hence $h \in \{e_1, e_2, e_3, e_4\}$. Noting that g and h cannot be incident, we may assume that $g \in \{e_1, e_2\}$ and $h \in \{e_3, e_4\}$. It must hold that $C_i^* \in \{C_1^*, C_2^*, C_3^*, C_4^*\}$. However, by construction, none of the cocycles $C_1^*, C_2^*, C_3^*, C_4^*$ contain edges from both $\{e_1, e_2\}$ and $\{e_3, e_4\}$. Thus (g, h) cannot be a bad pair. We conclude that \mathscr{C}^* is good.

Case 2: There exists exactly one $B_i^* \in \mathscr{B}^*$ such that $\{f_1, f_2\} \subseteq B_i^*$.

We may assume that $\{f_1, f_2\} \subseteq B_1^*, f_1 \in B_2^*$, and $f_2 \in B_3^*$. Furthermore, we may assume without loss of generality that $\alpha_1 = (0, 1, 0)$. We observe that $\alpha_2 \in \{(0, 0, 0), (0, 1, 1)\}$ and $\alpha_3 \in \{(1, 0, 1), (1, 1, 0)\}$. We shall define C_1^*, C_2^*, C_3^* in the following way:

$$(C_{1}^{*}, C_{2}^{*}, C_{3}^{*}) = \begin{cases} (B_{1, \cdot}^{*}, B_{2, u}^{*}, B_{3, u}^{*}), & \text{if } \boldsymbol{\alpha}_{2} = (0, 0, 0), \ \boldsymbol{\alpha}_{3} = (1, 0, 1); \\ (B_{1, v}^{*}, B_{2, u}^{*}, B_{3, u}^{*}), & \text{if } \boldsymbol{\alpha}_{2} = (0, 0, 0), \ \boldsymbol{\alpha}_{3} = (1, 1, 0); \\ (B_{1, u}^{*}, B_{2, v}^{*}, B_{3, u}^{*}), & \text{if } \boldsymbol{\alpha}_{2} = (0, 1, 1), \ \boldsymbol{\alpha}_{3} = (1, 0, 1); \\ (B_{1, uv}^{*}, B_{2, v}^{*}, B_{3, u}^{*}), & \text{if } \boldsymbol{\alpha}_{2} = (0, 1, 1), \ \boldsymbol{\alpha}_{3} = (1, 1, 0). \end{cases}$$

For i=4,...,k+1, let $C_i^*=A_i^*$. Now $\mathscr{C}^*=\{C_1^*,...,C_{k+1}^*\}$ is seen to be a ≥ 2 -cocycle cover of G with $k+1 \leq r^*(G)$ cocycles. Suppose \mathscr{C}^* is not good, and (g,h) is a bad pair where $(g,h) \leftrightarrow (C_i^*,C_j^*)$, for some i < j. Similar to Case 1, we have that $C_j^*=C_{k+1}^*, C_i^* \in \{C_1^*,C_2^*,C_3^*\}$ and $g,h \in \{e_1,e_2,e_3,e_4\}$. We may assume that $g \in \{e_1,e_2\}$ and $h \in \{e_3,e_4\}$. Since there are only two cocycles in \mathscr{C}^* which contain edges from both $\{e_1,e_2\}$ and $\{e_3,e_4\}$, namely C_1^* and C_{k+1}^* , it holds that $(g,h) \leftrightarrow (C_1^*,C_{k+1}^*)$. Observe that in all cases,

 C_3^* separates g and h. Thus (g,h) cannot be a bad pair, a contradiction. We conclude that \mathscr{C}^* is good.

Case 3: At least two cocycles of \mathscr{B}^* contain both f_1 and f_2 .

We may assume that $\{f_1, f_2\} \subseteq B_i^*$, i=1,2, and $\alpha_1 = (0,1,0)$. We have that $\alpha_2 \in \{(0,1,0), (0,0,1)\}$. Suppose first that $\alpha_2 = (0,1,0)$. Let $C_1^* = B_{1,u}^*$, $C_2^* = B_{2,v}^*$, and for $i=3,\ldots,k+1$, let $C_i^* = A_i^*$. Then $\mathscr{C}^* = \{C_1^*,\ldots,C_{k+1}^*\}$ is seen to be a ≥ 2 -cocycle cover of G with $k+1 \leq r^*(G)$ cocycles. If \mathscr{C}^* is not good, then there is a bad pair of edges (g,h). As in Cases 1 and 2, we have that $g,h \in \{e_1,e_2,e_3,e_4\}$, and we may assume that $g \in \{e_1,e_2\}$ and $h \in \{e_3,e_4\}$. Since $g,h \in C_{k+1}^* = A_{uv}^* = \{e_1,e_2,e_3,e_4\}$, and $\{e_1,e_2,e_3,e_4\} \subset C_1^* \cup C_2^*$, it follows that either $(g,h) \leftrightarrow (C_1^*,C_{k+1}^*)$ and $(g,h) = (e_2,e_3)$, or $(g,h) \leftrightarrow (C_2^*,C_{k+1}^*)$ and $(g,h) = (e_1,e_4)$. However, (e_2,e_3) is not a bad pair since C_2^* separates e_2 and e_3 . Similarly, (e_1,e_4) is not a bad pair since C_1^* separates e_1 and e_4 . This yields a contradiction, and consequently \mathscr{C}^* is good.

If $\alpha_2 = (0, 0, 1)$, let $C_1^* = B_{1, \cdot}^*$, and $C_2^* = B_{2, u}^*$. Let $C_i^* = A_i^*, i = 3, \dots, k+1$, and $\mathscr{C}^* = \{C_1^*, \dots, C_{k+1}^*\}$. To show that \mathscr{C}^* is a ≥ 2 -cocycle cover, we first note that the cocycles C_1^*, C_2^*, C_{k+1}^* cover the edges e_1, e_2, e_3, e_4 twice, but cover e only once. Note that (B_1^*, B_2^*) crosses (f_1, f_2) . If B_i^* separates f_1 from f_2 for some $i \geq 3$, then $\alpha_i = (1, 0, 0)$ and $A_i = B_{i,u}^*$. In this case, $e \in B_{i,u}^*$ and \mathscr{C}^* is seen to be a ≥ 2 -cocycle cover. If \mathscr{C}^* is not good and (g, h) is a bad pair, then as before, $g \in \{e_1, e_2\}$, $h \in \{e_3, e_4\}$, and $(g, h) \Leftrightarrow (C_j^*, C_{k+1}^*)$ where $j \in \{1, 2\}$. Then $(e_1, e_3) \leftrightarrow (C_1^*, C_{k+1}^*)$ or $(e_2, e_4) \leftrightarrow (C_2^*, C_{k+1}^*)$. However, C_i^* separates e_1 and e_3 , and it also separates e_2 and e_4 . Thus in this case \mathscr{C}^* is a good ≥ 2 -cocycle cover. Henceforth, we may assume that no cocycle of \mathscr{B}^* separates f_1 and f_2 .

Since \mathscr{B}^* is good, (f_1, f_2) cannot be a bad pair. Thus, either $f_1 \in B_{j^*}^*$ or $f_2 \in B_{j^*}^*$ for some $3 \le j^* \le k$. In particular, $j^* \ne (1, 1, 1)$. By construction,

$$C_{j^*}^* = A_{j^*}^* = \begin{cases} B_{j^*,u}^*, & \text{if } \alpha_{j^*} \neq (0,1,1); \\ B_{j^*,v}^*, & \text{if } \alpha_{j^*} = (0,1,1). \end{cases}$$

Hence $e \in C_{j^*}$ and e belongs to at least two cocyles of \mathscr{C}^* . Consequently, \mathscr{C}^* is a ≥ 2 cocycle cover of G with at most $k+1 \leq r^*(G)$ cocycles. If \mathscr{C}^* is not good then as before, there is a bad pair (g,h) where we may assume $g \in \{e_1, e_2\}$ and $h \in \{e_3, e_4\}$. Thus either $(g,h) \leftrightarrow (C_1^*, C_{k+1}^*)$ and $(g,h) = (e_1, e_3)$, or $(g,h) \leftrightarrow (C_2^*, C_{k+1}^*)$ and $(g,h) = (e_2, e_4)$. Now (C_1^*, C_{k+1}^*) can not be a bad pair of cocycles since $C_1^*C_{k+1}^*$. Suppose (C_2^*, C_{k+1}^*) is a bad pair and $(e_2, e_4) \leftrightarrow (C_2^*, C_{k+1}^*)$. Then $e_2, e_4 \notin C_{j^*}^*$, and by definition of A_{j^*} , it must hold that $\alpha_{j^*} \in \{(0, 1, 1), (1, 1, 0), (1, 0, 0)\}$. However, for each choice of α_{j^*} , it is seen that $C_j^* = A_{j^*}$ separates e_2 and e_4 . Thus (C_2^*, C_{k+1}^*) cannot be a bad pair, and consequently \mathscr{C}^* is good.

The proof of the theorem now follows from the consideration of Cases 1-3 above.

REFERENCES

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
- [2] J. A. Bondy, Small cycle double covers of graphs, In: Cycles and Rays, NATO ASI, Series C (G. Hahn, G. Sabidussi, and R. Woodrow, Eds.), Kluwer Academic Publisher, Dordrdecht, 1990, pp. 21–40.

- [3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Problem 6, Elsevier, New York, 1976.
- [4] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math Acad Sci Hungar 10 (1959), 337–356.
- [5] P. Erdős, A. W. Goodman, and L. Pósa, The representation of graphs by set intersections, Cdn J Math 18 (1966), 106–112.
- [6] G. Fan, Covers of Eulerian Graphs, J Comb Theory (B) 89 (2003), 173–187.
- [7] H. Li, Perfect path double covers in every simple graph, J Graph Theory 14 (1990), 645–650.
- [8] S. McGuinness, An Erdős—Gallai theorem for matroids, 2007, to appear in Annals of Combinatorics.
- [9] U. S. R. Murty, Extremal matroids with forbidden restrictions and minors, Congr Numeratum 17 (1976), 463–468, Proceedings of Seventh Southeastern Conference on Combinatorics, Graph Theory and Computing.
- [10] L. Pyber, An Erdős-Gallai conjecture, Combinatorica 5 (1985), 67-79.