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Abstract: In this article, we show that for any simple, bridgeless graph
G on n vertices, there is a family C of at most n−1 cycles which cover
the edges of G at least twice. A similar, dual result is also proven for
cocycles namely: for any loopless graph G on n vertices and � edges having
cogirth g∗ ≥3 and k(G) components, there is a family of at most �−n+k(G)
cocycles which cover the edges of G at least twice. � 2010 Wiley Periodicals, Inc.
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1. INTRODUCTION

For a graph G we let n(G)=|V(G)| and �(G)=|E(G)|. We let k(G) denote the number
of components of G. For a vertex v∈V(G), we let NG(v) be the set of neighbors
of v in G, and we let Ev(G) be the set of edges in G incident to v. It should be
noted that all graphs in this article will be allowed to have loops or multiple edges.
The circumference of G is defined to be the length of a longest cycle in G, and
is denoted by c(G). The girth of G is the length of a shortest cycle of G, and
is denoted by g(G). In addition, the cogirth, g∗(G), denotes the smallest size of a
cocycle of G.
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For disjoint subsets X and Y of vertices in a graph G, we denote by [X,Y] the
set of edges having one endvertex in X and the other in Y . A cutset in G is a
set of edges [X,V(G)\X], for some non-empty X⊂V(G). We also denote such a set
by �(X). A cocycle is a minimal cutset; that is, a cutset not properly containing another
cutset. Furthermore, a cocycle C∗ = [X,V(G)\X] is said to be non-trivial if |X|≥2 and
|V(G)\X|≥2.

For a subset of edges X⊆E(G) (respectively, vertices X⊆V(G)) in a graph G, we
let G[X] be the subgraph induced by X.

For a matroid M, we let r(M) denote the rank of M and we let c(M) the length of
a largest circuit (called the circumference of M). There is an interesting connection
between various bounds on the size of a graph and the size of a matroid. To start with,
for a simple graph G, we have an old, well-known bound for �(G) due to Erdős and
Gallai [4] (see also [1, Section 3.4]).

Theorem 1.1 (Erdős–Gallai). For a simple graph G,

�(G)≤ 1
2c(G)(n(G)−1).

Murty [9] showed that a similar looking bound holds for simple binary matroids
having no F7-minor.

Theorem 1.2 (Murty). Let M be a simple binary matroid having no F7-minor. Then

|E(M)|≤ 1
2 r(M)(r(M)+1)

and equality is attained if and only if M�M(Kr+1).

In [8], I showed that the Erdős -Gallai bound and Murty bound have a common
generalization.

Theorem 1.3 (McGuinness). Let M be a simple, connected binary matroid having
no F7-minor. Then

|E(M)|≤ 1
2r(M)c(M).

In the same article, I made the following conjecture, which seems natural in light
of the above theorem.

Conjecture 1.4. For a simple, connected binary matroid M having no F7-minor,
there exists a collection of at most r(M) circuits which cover the elements of M at least
twice.

For the special case of graphic matroids, the above conjecture asserts that for any
simple, 2-connected graph G, there is a collection of at most n(G)−1 cycles which
cover the edges of G at least twice. In Section 3, we prove this special case and prove
something stronger.

For a family of cycles or cocycles C of a graph G and e∈E(G), let

C(e)={C∈C|e∈C}, �C(e)=|C(e)|.
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A family of cycles (respectively, cocycles)C is said to be a≥2-cycle cover (respectively,
≥2-cocycle cover) if �C(e)≥2 for all e∈E(G). The first main result of this article is
the following:

Theorem 1.5. Let G be a simple, bridgeless graph and let x∈V(G). Then G has
a ≥2-cycle cover C such that (i) |C|≤n(G)−1 and (ii) for edges e having both
endvertices in NG(x), it holds that �C(e)=2.

Interestingly, Bondy [2] conjectured that the edges of G can be covered
exactly twice with at most n(G)−1 cycles, the so-called Small cycle double cover
conjecture.

Conjecture 1.6 (Bondy). For a simple, 2-connected graph G, there is a collection of
at most n(G)−1 cycles which cover the edges of G exactly twice.

In [5], Erdős, Goodman, and Pósa conjectured the following (see also
[3, Problem 6]):

Conjecture 1.7 (Erdős, Goodman, Posa). For any simple, 2-connected graph G,
there is a collection of at most n(G)−1 cycles which cover the edges of G.

This conjecture was subsequently proven by Pyber [10]. In [6], Fan showed that
	(2n(G)−1) /3
 cycles will suffice, this being the best possible. In light of this,
Theorem 1.5 is somewhat surprising in that it implies that a ≥2-cover cover exists
with at most n(G)−1 cycles.

2. CYCLES

In this section, we shall prove the first of the main theorems, Theorem 1.5. The main
ingredients in the proof are a switching lemma by Fan [6], and Li’s theorem on perfect
path double covers [7].

We shall use the following definitions given by Fan [6]. Let xy be an edge in a
simple graph G where NG(y)⊆NG(x)∪{x}. Let C be a cycle of G containing x. A cycle
C′ is a transformation of C if one of the following holds:

(a) C′ =C.
(b) y 
∈V(C), and for w,z∈NG(x) it holds that xw, xz∈E(C) and C′ is one of the

cycles (see Fig. 1):

(i) C′ = (C\{xz})∪{xy,yz}.
(ii) C′ = (C\{xw})∪{xy,yw}.
(iii) C′ = (C\{xz, xw})∪{yz,yw}).

(c) xy∈E(C) and there exist distinct w,z∈NG(x)\{y} for which yw,xz∈E(C). Then
C′ = (C\{xz,yw})∪{yz,xw}.

(d) y∈V(C), and xy 
∈E(C). Suppose there are distinct z1,z2∈NG(x)\{y} and distinct
w1,w2∈NG(y)\{x}, such that xz1,xz2,yw1,yw2∈E(C). Assume that for i=1,2
that zi and wi lie in the same component of C\{x,y}. Then we have that C′ is
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FIGURE 1. Cycle transformation (b).

FIGURE 2. Cycle transformation (d).

one of the cycles (see Fig. 2):
(i) C′ = (C\{xz1,yw1})∪{yz1,xw1};
(ii) C′ = (C\{xz2,yw2})∪{yz2,xw2};
(iii) C′ = (C\{xz1,yw1,xz2,yw2})∪{yz1,xw1,yz2,xw2}.

The following lemma by Fan [6, Switching Lemma] is central to the proof of
Theorem 1.5.

Journal of Graph Theory DOI 10.1002/jgt
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Lemma 2.1 (The Switching Lemma). Let G be a simple graph and let xy∈E(G)
where NG(y)⊆NG(x)∪{x}. Suppose that C={C1, . . . ,Cm} is a family of cycles such
that �C(vy)≤�C(vx) for all v∈NG(x)∩NG(y). Let

Z={z1,z2, . . . ,zs}⊆NG(x)∩NG(y)

where �C(ziy)<�C(zix) for i=1, . . . ,s. Then for any s integers k1, . . . ,ks where 1≤ki≤
�C(zix)−�C(ziy), there is a family of cycles C′ ={C′

1,C
′
2, . . . ,C

′
m} such that

(i) C′
j is a transformation of Cj at xy, j=1, . . . ,m.

(ii) �C′(ziy)=�C(ziy)+ki and �C′ (zix)=�C(zix)−ki, i=1, . . . ,s.
(iii) �C′(xy)=�C(xy)+� where �≤∑s

i=1 ki, �≡∑s
i=1 ki (mod2).

(iv) �C′(e)=�C(e) for all e∈E(G)\({xy}∪{zix,ziy |1≤ i≤s}).
We shall also make use of the following theorem of Li [7]:

Theorem 2.2 (Li). Let G be a simple graph on n vertices. There is a family of paths
P such that each edge belongs to exactly two paths of P, and each vertex occurs
exactly twice as an endvertex of paths in P.

The above theorem had originally been conjectured by Bondy [2].
Note that a single vertex v is considered itself to be a path (the trivial path) and

for such a path, v is counted twice as an endvertex of this path. If G has no isolated
vertices, then we can choose P so that it has no trivial paths in the above theorem. In
this case, each vertex is the endvertex of two different paths in P, and thus |P|=n.

Let xy∈E(G) and let Z=N(y)\(N(x)∪{x}). As defined in [6], we define an edge-
switching from y to x to be the operation on G where we delete the edges yz, z∈Z,
and add the edges xz, z∈Z. The resulting graph is denoted by G[y→x]. See Figure 3.

Proof of Theorem 1.5. Assume that the theorem is false and let G be graph and
let x∈V(G) be such that the theorem is false for G and x. Assume that G has n=n(G)
vertices. Among such counterexamples choose G such that �(G) is minimum, and
subject to �(G) being minimum, assume that dG(x) is maximum. Suppose first that
dG(x)=n−1. Let G′=G\{x}. Since G is bridgeless, G′ has no isolated vertices, and
thus by Theorem 2.2 there is a family of n−1 non-trivial paths P where each edge
of G′ is covered exactly twice by paths in P, and every vertex of G′ is the endvertex
of exactly two paths in P. Let P={Pi|i=1,2, . . . ,n−1}, where Pi has endvertices
ui and vi. For i=1,2, . . . ,n−1, let Ci be the cycle defined by Ci=Pi∪{x,xui,xvi}.
Now C={C1,C2, . . . ,Cn−1} is seen to be a collection of cycles where �C(e)=2 for
all e∈E(G), and C is seen to satisfy (i) and (ii) of the theorem. We conclude that
dG(x)<n−1.

Let xy∈E(G). Suppose first that xy belongs to no triangle of G (that is, NG(x)∩
NG(y)=∅). Let G′ =G /xy (that is, G contract xy) and let x′ be the vertex formed
when contracting the edge xy. We have that �(G′)<�(G) and G′ is also seen to be
simple and bridgeless. By assumption, there is a ≥2-cycle cover C′ for G′ where
|C′|≤n(G′)−1=n−2, and for each edge e∈E(G′), having both endvertices in NG′(x′),
it holds that �C′(e)=2. Let C′(x′)={C′ ∈C′|x′ ∈V(C′)}, and

E′
x={x′v|v∈NG(x)\{y}}, E′

y={x′v|v∈NG(y)\{x}}.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 3. Edge-switching from y to x.

Let

C′
1 = {C′ ∈C′(x′)|C′ ∩E′

x 
=∅,C′∩E′
y=∅},

C′
2 = {C′ ∈C′(x′)|C′ ∩E′

x=∅,C′∩E′
y 
=∅},

C′
3 =C′(x′)\(C′

1∪C′
2).

Let

C1=C′
1, C2=C′

2.

Furthermore, letC3 be the collection of cycles obtained from C′
3 by replacing each cycle

C′ ∈C′ with a cycle in G where E(C)=E(C′)∪{xy}. If |C3|≥2, then C=C1∪C2∪C3
is seen to be a ≥2-cycle cover of G where |C|=|C′|=n−2 and for each edge e
having endpoints in NG(x) it holds that �C(e)=�C′ (e)=2 (since e is also an edge with
endpoints in NG′(x′)).

Suppose that |C3|≤1. Then, |C1|≥1 and |C2|≥1. Let C∈C2, and let P be a path
of shortest length between x and V(C) in G\{xy}. Let {z}=V(P)∩V(C), and let P′
be a path in C between y and z. Let C1 be the cycle C1=P∪P′ ∪{xy}, and let C2
be the cycle C2=C�C′. See Figure 4. Let C=C1∪(C2\{C})∪{C1,C2}∪C3. Then
it is seen that C is a ≥2-cycle cover for G, where |C|=|C′|+1≤n−1. Further-
more, since P is a shortest path from x to V(C), it contains no edge with both
endpoints in NG(x). Thus for each edge e having endpoints in NG(x), it holds that
�C(e)=�C′(e)=2.

From the above, it holds that for each edge xy∈Ex(G), NG(x)∩NG(y) 
=∅. Since
x is not adjacent to every other vertex of G, there is an edge xy∈Ex(G), where
NG(y)\NG(x) 
=∅. Let G′ =G[y→x]. Given that xy belongs to a triangle in G, it is seen
that G′ is bridgeless. We have �(G′)= �(G), and dG′(x)>dG(x). By assumption, there
exists a ≥2-cycle cover C′ for G for which |C′|≤n−1 and �C′(e)=2 for all edges e
having both endpoints in NG′(x). Let Z=NG(y)\NG(x), and G′′ =G′∪{yz|z∈Z}. Then
C′ can be viewed as a collection of cycles of G′′ where �C′ (yz)=0 for all z∈Z. For
each v∈Z, we have �C′(xv)>�C′(yv)=0. Furthermore, for each v∈NG′′(x)∩NG′′ (y)\Z,
it holds that �C′ (yv)=2 since v,y∈NG′(x), and hence �C′(xv)≥�C′(yv)=2. Thus by
Lemma 2.1, we can switch the cycles in C′ to obtain a collection of cycles C in G′′
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FIGURE 4. Splitting the cycle C.

where

�C(yz)= �C′(xz) for all z∈Z,

�C(xz)= 0 for all z∈Z,

�C(xy)≥ �C′(xy),

�C(e)= �C′(e) for all e∈E(G′′)\{xz,yz|z∈Z}∪{xy}.

Now C is seen to be a ≥2-cycle cover of G where |C|=|C′|≤n−1, and for each edge
e having endpoints in NG(x), it holds that �C(e)=�C′ (e)=2. With this we arrive at a
final contradiction. �

3. COCYCLES

In this section, we prove that a “dual” result to Theorem 1.5 holds for cocycles.
For a graph G, let r∗(G)= �(G)−n(G)+k(G), which is the rank of the cocircuit

matroidM∗(G). We say that two cocycles C∗
i = [Xi,Yi], i=1,2 cross if X1∩X2 
=∅,Y1∩

Y2 
=∅, and Xi∩Yj 
=∅ for all i, j∈{1,2} where i 
= j. We write C∗
i �C∗

j . For edges e and
f , we say that a cocycle C∗ = [X,Y] separates e and f if e is an edge of G[X] and f is
an edge of G[Y], or vice versa. Similarly, for vertices u and v we say that C∗ separates
u and v if u∈X and v∈Y , or vice versa.

For edges e=u1v1 and f =u2v2 and cocycles C∗
1 = [X1,V(G)\X1] and C∗

2 =
[X2,V(G)\X2] containing e, f , we say that the pair (C∗

1,C
∗
2) crosses (e, f ) if u1 and u2

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 5. Pair of cocycles crossing (e,f).

are separated by exactly one of C∗
1 or C∗

2. See Figure 5. Observe that if e and f are
incident, then no pair of cocycles can cross (e, f ).

For a ≥2-cocycle cover C∗, we say that (e, f ) is a bad pair for C∗ if

(i) no cocycle of C∗ separates e and f ,
and

(ii) for some C∗
1, C

∗
2 ∈C∗, it holds that C∗(e)=C∗(f )={C∗

1,C
∗
2} and (C∗

1,C
∗
2) crosses

(e, f ).

For edges e and f and cocycles C∗
1,C

∗
2 satisfying (ii), we write (e, f )↔ (C∗

1,C
∗
2) and

refer to (C∗
1,C

∗
2) as a bad pair of cocyles. We observe that if (e, f )↔ (C∗

1 ,C
∗
2), then

C∗
1�C∗

2. If C
∗ is a ≥2-cocycle cover with no bad pairs of cocycles, then we say that

C∗ is good.

Lemma 3.1. Let C∗ = [X,Y] be a cocycle in a 2-connected graph G and let
e∈E(G)\C∗. Then there exist cocycles C∗

1,C
∗
2 where e∈C∗

i , i=1,2, and C∗ ⊂C∗
1∪C∗

2 .

Proof. Let e∈E(G) where e=u1u2 and u1,u2∈X. Since G is 2-connected, there
exist two internally disjoint paths Pi=vi1ei1vi2ei2 . . .ei(ki−1)viki , i=1,2, from {u1,u2} to
Y , where ui=vi1 and viki ∈Yi, for i=1,2 and vij∈V(G), eij∈E(G), i=1,2; j=1, . . . ,ki.
Let P′

i=vi1ei1vi2ei2 . . .ei(ki−2)vi(ki−1), i=1,2, be the portion of the path Pi lying inG[X].
Let T be a spanning tree of G[X] containing P′

1, P
′
2, and e, and let T1, T2 be the

components of T\e, where Ti contains P′
i, i=1,2. Let C∗

i =�(V(Ti)), i=1,2. Then e∈
C∗
i , i=1,2. Furthermore, G[V(G)\V(T1)] is connected since V(G)\V(T1)=V(T2)∪Y ,

and G[V(T2)] is connected to G[Y] by the edge e2(k2−1). Likewise, G[V(G)\V(T2)] is
also connected. Thus C∗

i , i=1,2, are cocycles and C∗ ⊂C∗
1∪C∗

2 . �

We refer to the pair of cocycles (C∗
1,C

∗
2) in the above lemma as an e-splitting of C∗.

We now present the second of the main results in this article.

Theorem 3.2. Let G be a loopless graph on n vertices having cogirth g∗ ≥3. Then
there exists a good ≥2-cocycle cover C∗ of G where |C∗|≤r∗(G).

Journal of Graph Theory DOI 10.1002/jgt
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Proof. By induction on �(G). Suppose �(G)=3. Then n(G)=2 and G is a multiple
3-edge. In this case, C∗ =E(G) is itself a cocycle, and C∗ ={C∗,C∗} is seen to be a
good ≥2-cocycle cover with r∗(G)=2 cocycles. We shall assume that G is a loopless
graph on n vertices where �(G)>3, g∗(G)≥3, and the theorem is true for all loopless
having cogirth at least 3 and less edges than G. We shall make some reductions (A)–(E)
below on G.

(A) G is connected.

Proof. If G is not connected, then by assumption, the theorem would hold for each
of its components. Taking C∗ to be the union of the good ≥2-cocycle covers over the
components over G would yield a good ≥2-cocycle cover of G with |C∗|≤r∗(G). Thus
we may assume that G is connected. �

(B) G is 2-connected.

Proof. Suppose G is not 2-connected. Then we can express G as the union G=
G1∪G2 where G1 and G2 have exactly one vertex in common. Then Gi, i=1,2, is
loopless, and g∗(Gi)≥3, i=1,2. By assumption, Gi has a good ≥2-cocycle cover C∗

i
where |C∗

i |≤r∗(Gi), i=1,2. Let C∗ =C∗
1∪C∗

2. Then

|C∗|≤r∗(G1)+r∗(G2)=
2∑

i=1
(�(Gi)−n(Gi)+1)= �(G)−(n(G1)+n(G2))+2.

We also have n(G)=n(G1)+n(G2)−1. Thus we obtain

|C∗|≤�(G)−(n(G)+1)+2= r∗(G).

Since each of the collections C∗
i , i=1,2, is a good ≥2-cocycle cover of Gi, one

sees that C∗ is a good ≥2-cocycle cover of G. Thus we may assume that G is
2-connected. �

(C) There is an edge e∈E(G) which belongs to no non-trivial 3-cocycle.

Proof. Suppose this assertion is false, and assume that every edge of G belongs to
a non-trivial 3-cocycle. Among all non-trivial 3-cocycles, let C∗ ={e1,e2,e3}= [X,Y],
where ei=uivi, ui∈X, vi∈Y , i=1,2,3, and C∗ is chosen so that |X| is minimum. Let
e′
1∈E(G[X]), and let C′∗ = [X′,Y ′]={e′

1,e
′
2,e

′
3} be a non-trivial 3-cocycle containing e′

1.
By the minimality of |X|, it holds that X′ 
⊂X and Y ′ 
⊂X. In particular, this means that
X′ ∩Y 
=∅, and Y ′∩Y 
=∅. We also observe that since e′

1∈E(G[X]), it must hold that
X′ ∩X 
=∅ and Y ′∩X 
=∅. Thus C∗�C′∗. Given that |C∗|=|C′∗|=3 and g∗(G)≥3, it
follows by elementary counting arguments that

|�(X∩X′)|=|�(X∩Y ′)|=|�(Y∩X′)|=|�(Y∩Y ′)|=3.

Now if |X∩X′|>1, then �(X∩X′) is a non-trivial 3-cocyle where X∩X′ ⊂X. This
contradicts thus choice of X. Thus |X∩X′|=1, and similarly, |X∩Y ′|=1. Now it is
readily seen that |C∗|=|�(X)| 
=3, a contradiction. We conclude that at least one edge
belongs to no non-trivial 3-cocycle. �

Let e=uv be an edge of G which belongs to no non-trivial 3-cocycle of G, where
3≤dG(u)≤dG(v). Let A∗

u =�({u}), A∗
v =�({v}), and A∗

uv=�({u,v}).
(D) dG(u)=3.

Journal of Graph Theory DOI 10.1002/jgt
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Proof. Suppose dG(u)≥4. Let H=G\e. Since e belongs to no non-trivial
3-cocycle and 4≤dG(u)≤dG(v), it follows that e belongs to no 3-cocycle. Consequently,
g∗(H)≥3. By assumption, there exists a good ≥2-cocycle cover B∗ ={B∗

i |i=1, . . . ,k},
of H where B∗

i = [Xi,Yi], u∈Xi, i=1, . . . ,k. Define cocycles C∗
i , i=1, . . . ,k, of G in the

following way: if v∈Xi, let C∗
i =B∗

i ; otherwise, let C
∗
i =B∗

i ∪{e}. Then C∗
i , i=1, . . . ,k,

are seen to be cocycles of G. If e∈C∗
i for some 1≤ i≤k, then let C∗

k+1=A∗
u. Then

C∗ ={C∗
1, . . . ,C

∗
k+1} is seen to be a ≥2-cocycle cover with k+1≤r∗(H)+1= r∗(G)

cocycles. To show that C∗ is good, we suppose that (e1,e2) is a bad pair of edges
for C∗, and (e1,e2)↔ (C∗

i ,C
∗
j ). Given that C∗

i �C∗
j , it holds that i, j 
=k+1. Since

e∈C∗
k+1, it follows that e 
=e1,e2. Now it is seen that (e1,e2) is a bad pair for B∗, a

contradiction. Thus C∗ is good.
On the other hand, if e 
∈C∗

i for i=1, . . . ,k, then let (C∗
k1,C

∗
k2) be an e-splitting for

C∗
k and define C∗ = ({C∗

1, . . . ,C
∗
k−1}∪{C∗

k1,C
∗
k2}. Then C∗ is seen to be a ≥2-cocycle

cover of G where |C∗|=k+1≤r∗(G). We observe that e∈C∗
kj, j=1,2, and C∗

k1C
∗
k2,

and as such e belongs to no bad pair for C∗. Since B∗ is good, there is no bad pair of
edges (e1,e2) for C∗ where e1,e2∈E(H). Consequently, C∗ is good. �

(E) dG(u)=3 and dG(v)=3.

Proof. By (D), we may assume that dG(u)=3. Suppose dG(v)≥4. Let Eu(G)=
{e1,e2,e3} where e1=uu1 and e2=uu2. Since G is 2-connected (by (B)), we may
assume that u1 
=v. If u2=v, let H= (G\{u})∪{f } where f =u1v. Then r∗(H)= r∗(G)−1
and g∗(G)≥3 (since e belongs to no non-trivial 3-cocycle). By assumption, there exists
a good ≥2-cocycle cover B∗ ={B∗

1, . . . ,B
∗
k} of H. Now the cocycles of B∗ can be

modified slightly so as to obtain cocycles C∗
1, . . . ,C

∗
k of G which cover all the edges of

E(G)\Eu(G) at least twice, and the edges of Eu(G) at least once. Then {C∗
1, . . . ,C

∗
k ,A

∗
u}

is seen to be a good ≥2-cocycle cover of G. Thus we may assume that u2 
=v, and
similarly, u1 
=u2.

Let H= (G\{u})∪{f } where f =u1u2. Then r∗(H)= r∗(G)−1, and g∗(H)≥3 (since
e belongs to no non-trivial 3-cocycle of G). By assumption, there exists a good ≥2-
cocycle cover B∗ ={B∗

1, . . . ,B
∗
k} of H where k≤r∗(H). Assume that B∗

i = [Xi,Yi], i=
1, . . . ,k. Since e1 belongs to at least two cocycles of B∗, we may assume that e1∈B∗

1
and e1∈B∗

2. We shall define cocycles C∗
i , i=1,2, . . . ,k+1, as follows: let

(C∗
1,C

∗
2)=

{
([X1∪{u},Y1], [X2,Y2∪{u}]), if v∈X2∩Y1;

([X1,Y1∪{u}], [X2∪{u},Y2]), otherwise.

For i=3, . . . ,k, let

C∗
i =

{
[Xi∪{u},Y], if u2∈Xi;

[Xi,Yi∪{u}], if u2∈Yi.

Let C∗
k+1=A∗

u and C∗ ={C∗
i |i=1, . . . ,k+1}. Then C∗ is seen to be a ≥2-cocycle cover

of G with k+1≤r∗(G) cocycles. Suppose that C∗ is not good, and let (f1, f2) be a bad
pair for C∗ where (f1, f2)↔ (C∗

i ,C
∗
j ). We have that C∗

i �C∗
j , and hence C∗

k+1 
=C∗
i , C

∗
j ,

and consequently f1, f2∈E(G)\Eu(G). However, this means that (f1, f2) is a bad pair for
B∗, contradicting the fact that B∗ is good. Thus C∗ is good. �
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u1

u2

u3

u4

vu

e1

e2

e3

e4

e

u1

u2

u3

u4

f1 f2

G H

FIGURE 6. Deleting e to form H.

By (E), we may assume that dG(u)=dG(v)=3 for the remainder of the proof. Let
Eu(G)={e1,e2,e} and Ev(G)={e3,e4,e}. Let ei=uui, i=1,2, and ei=vui, i=3,4. We
may assume that u1, u2, v are distinct vertices; otherwise, we can use the same arguments
as in the proof of (E) to show that G has a good ≥2-cocycle cover. Likewise, we
may assume that u3, u4, and v are distinct vertices. Let H= (G\{u,v})∪{f1, f2} where
f1=u1u2 and f2=u3u4. See Figure 6. Since e belongs to no non-trivial 3-cocycle of
G, it follows that g∗(H)≥3. It is also seen that r∗(H)= r∗(G)−1. Thus by assumption,
there is a good ≥2-cocycle coverB∗ ={B∗

1, . . . ,B
∗
k} of H where Bi= [Xi,Yi], i=1, . . . ,k.

We may assume that u1∈Xi, i=1, . . . ,k.
We define the following cutsets of G:

B∗
i,· = [Xi,Yi∪{u,v}],

B∗
i,u = [Xi∪{u},Yi∪{v}],

B∗
i,v = [Xi∪{v},Yi∪{u}],

B∗
i,uv = [Xi∪{u,v},Yi].

For i=1, . . . ,k, let ai= (ai1,ai2,ai3)∈Z3
2, where for j=1,2,3

aij=
{
1, if uj+1∈Xi;

0, if uj+1∈Yi.

For i=1, . . . ,k let

A∗
i =

⎧⎪⎪⎨
⎪⎪⎩
B∗
i,u, if ai 
= (0,1,1), (1,1,1);

B∗
i,v, if ai= (0,1,1);

B∗
i,uv, if ai= (1,1,1).

See Figure 7.
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u2 u4

u1 u3

α i = ( 0, 0, 0)

u2 u4

u1 u3

α i = ( 0, 0, 1)

u2 u4

u1 u3

α i = ( 0, 1, 0)

u2 u4

u1 u3

α i = ( 0, 1, 1)

u2 u4

u1 u3

α i = ( 1, 0, 0)

u2 u4

u1 u3

α i = ( 1, 0, 1)

u2 u4

u1 u3

α i = ( 1, 1, 0)

u2 u4

u1 u3

u v

u v

u v

u v

u v

u v

u v

u v

α i = ( 1, 1, 1)

α i B i,.
*

B i,u
*

B i,v
*

B i,uv
*

X i

Y i

A i
*

A i
*

A i
*

A i
*

A i
*

A i
*

A i
*

A i
*

FIGURE 7. Table of cocycles.

Let A∗
k+1=A∗

uv={e1,e2,e3,e4}. We shall show that, with one exception, the cocycles
of B∗ which contain f1 and f2 can be transformed into cocycles of G in such a way
that e1, e2, e3, e4 are covered at least once, and e is covered at least twice. We shall
consider three cases:

Case 1: {f1, f2} 
⊂B∗
i , i=1, . . . ,k.

Given that B∗ is a ≥2 cover for H, we may assume that f1∈B∗
1, B

∗
2 and f2∈B∗

3, B
∗
4.

Then

a1,a2∈{(0,0,0), (0,1,1)}, a3,a4∈{(1,0,1), (1,1,0)}.

Journal of Graph Theory DOI 10.1002/jgt



CYCLE AND COCYCLE COVERINGS OF GRAPHS 13

We define C∗
1, C

∗
2 in the following way:

(C∗
1,C

∗
2)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B∗
1,u,B

∗
2,·), if �1= (0,0,0), �2= (0,0,0);

(B∗
1,u,B

∗
2,v), if �1= (0,0,0), �2= (0,1,1);

(B∗
1,v,B

∗
2,u), if �1= (0,1,1), �2= (0,0,0);

(B∗
1,v,B

∗
2,uv), if �1= (0,1,1), �2= (0,1,1).

Similarly, we define C∗
3 and C∗

4 where

(C∗
3,C

∗
4)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B∗
3,uv,B

∗
4,u), if �3= (1,1,0), �4= (1,1,0);

(B∗
3,u,B

∗
4,u), if �3= (1,1,0), �4= (1,0,1);

(B∗
3,u,B

∗
4,u), if �3= (1,0,1), �4= (1,1,0);

(B∗
3,uv,B

∗
4,u), if �3= (1,0,1), �4= (1,0,1).

For i=5, . . . ,k+1, let C∗
i =A∗

i . Then C∗ ={C∗
1, . . . ,C

∗
k+1} is seen to be a ≥2-cocycle

cover of G with k+1≤r∗(G) cocycles. Suppose C∗ is not good and let (g,h) be a
bad pair of edges where (g,h)↔ (C∗

i ,C
∗
j ), for some i<j. Since B∗ is good, at least

one of g or h belongs to Eu(G)∪Ev(G), and we may assume that this holds for g.
Since C∗

k+1=C∗
uv, it separates e from any edge in E(G)\{e1,e2,e3,e4}. Thus (e,e′) is

not a bad pair for all e′ ∈E(G)\{e1,e2,e3,e4}. Moreover, (e,ei), i=1,2,3,4, is not a
bad pair since e 
∈C∗

k+1. Thus g 
=e, and hence g∈{e1,e2,e3,e4}=C∗
k+1. Consequently,

C∗
j =C∗

k+1, and hence h∈{e1,e2,e3,e4}. Noting that g and h cannot be incident, we
may assume that g∈{e1,e2} and h∈{e3,e4}. It must hold that C∗

i ∈{C∗
1,C

∗
2,C

∗
3,C

∗
4}.

However, by construction, none of the cocycles C∗
1, C

∗
2, C

∗
3,C

∗
4 contain edges from both

{e1,e2} and {e3,e4}. Thus (g,h) cannot be a bad pair. We conclude that C∗ is good.
Case 2: There exists exactly one B∗

i ∈B∗ such that {f1, f2}⊆B∗
i .

We may assume that {f1, f2}⊆B∗
1, f1∈B∗

2, and f2∈B∗
3. Furthermore, we may assume

without loss of generality that a1= (0,1,0). We observe that a2∈{(0,0,0), (0,1,1)} and
a3∈{(1,0,1), (1,1,0)}. We shall define C∗

1,C
∗
2,C

∗
3 in the following way:

(C∗
1 ,C

∗
2,C

∗
3)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B∗
1,·,B

∗
2,u,B

∗
3,u), if a2= (0,0,0), a3= (1,0,1);

(B∗
1,v,B

∗
2,u,B

∗
3,u), if a2= (0,0,0), a3= (1,1,0);

(B∗
1,u,B

∗
2,v,B

∗
3,u), if a2= (0,1,1), a3= (1,0,1);

(B∗
1,uv, B

∗
2,v,B

∗
3,u), if a2= (0,1,1), a3= (1,1,0).

For i=4, . . . ,k+1, let C∗
i =A∗

i . Now C∗ ={C∗
1, . . . ,C

∗
k+1} is seen to be a ≥2-cocycle

cover of G with k+1≤r∗(G) cocycles. Suppose C∗ is not good, and (g,h) is a bad pair
where (g,h)↔ (C∗

i ,C
∗
j ), for some i<j. Similar to Case 1, we have that C∗

j =C∗
k+1, C

∗
i ∈

{C∗
1,C

∗
2,C

∗
3} and g,h∈{e1,e2,e3,e4}. We may assume that g∈{e1,e2} and h∈{e3,e4}.

Since there are only two cocycles in C∗ which contain edges from both {e1,e2} and
{e3,e4}, namely C∗

1 and C
∗
k+1, it holds that (g,h)↔ (C∗

1,C
∗
k+1). Observe that in all cases,
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C∗
3 separates g and h. Thus (g,h) cannot be a bad pair, a contradiction. We conclude

that C∗ is good.
Case 3: At least two cocycles of B∗ contain both f1 and f2.
We may assume that {f1, f2}⊆B∗

i , i=1,2, and a1= (0,1,0). We have that a2∈
{(0,1,0), (0,0,1)}. Suppose first that a2= (0,1,0). Let C∗

1 =B∗
1,u, C

∗
2 =B∗

2,v, and for
i=3, . . . ,k+1, let C∗

i =A∗
i . Then C∗ ={C∗

1, . . . ,C
∗
k+1} is seen to be a ≥2-cocycle cover

of G with k+1≤r∗(G) cocycles. If C∗ is not good, then there is a bad pair of
edges (g,h). As in Cases 1 and 2, we have that g,h∈{e1,e2,e3,e4}, and we may
assume that g∈{e1,e2} and h∈{e3,e4}. Since g,h∈C∗

k+1=A∗
uv={e1,e2,e3,e4}, and

{e1,e2,e3,e4}⊂C∗
1∪C∗

2 , it follows that either (g,h)↔ (C∗
1,C

∗
k+1) and (g,h)= (e2,e3),

or (g,h)↔ (C∗
2,C

∗
k+1) and (g,h)= (e1,e4). However, (e2,e3) is not a bad pair since C∗

2
separates e2 and e3. Similarly, (e1,e4) is not a bad pair since C∗

1 separates e1 and e4.
This yields a contradiction, and consequently C∗ is good.

If a2= (0,0,1), let C∗
1 =B∗

1,·, and C∗
2 =B∗

2,u. Let C
∗
i =A∗

i , i=3, . . . ,k+1, and C∗ =
{C∗

1, . . . ,C
∗
k+1}. To show that C∗ is a ≥2-cocycle cover, we first note that the cocycles

C∗
1,C

∗
2,C

∗
k+1 cover the edges e1, e2, e3, e4 twice, but cover e only once. Note that

(B∗
1,B

∗
2) crosses (f1, f2). If B∗

i separates f1 from f2 for some i≥3, then ai= (1,0,0)
and Ai=B∗

i,u. In this case, e∈B∗
i,u and C∗ is seen to be a ≥2-cocycle cover. If C∗ is

not good and (g,h) is a bad pair, then as before, g∈{e1,e2}, h∈{e3,e4}, and (g,h)↔
(C∗

j ,C
∗
k+1) where j∈{1,2}. Then (e1,e3)↔ (C∗

1,C
∗
k+1) or (e2,e4)↔ (C∗

2,C
∗
k+1). However,

C∗
i separates e1 and e3, and it also separates e2 and e4. Thus in this case C∗ is a good

≥2-cocycle cover. Henceforth, we may assume that no cocycle of B∗ separates f1
and f2.

Since B∗ is good, (f1, f2) cannot be a bad pair. Thus, either f1∈B∗
j∗ or f2∈B∗

j∗ for
some 3≤ j∗ ≤k. In particular, j∗ 
= (1,1,1). By construction,

C∗
j∗ =A∗

j∗ =
{
B∗
j∗ ,u, if aj∗ 
= (0,1,1);

B∗
j∗ ,v, if �j∗ = (0,1,1).

Hence e∈Cj∗ and e belongs to at least two cocyles of C∗. Consequently, C∗ is a ≥2
cocycle cover of G with at most k+1≤r∗(G) cocycles. If C∗ is not good then as before,
there is a bad pair (g,h) where we may assume g∈{e1,e2} and h∈{e3,e4}. Thus either
(g,h)↔ (C∗

1,C
∗
k+1) and (g,h)= (e1,e3), or (g,h)↔ (C∗

2,C
∗
k+1) and (g,h)= (e2,e4). Now

(C∗
1 ,C

∗
k+1) can not be a bad pair of cocycles since C∗

1C
∗
k+1. Suppose (C∗

2,C
∗
k+1) is a

bad pair and (e2,e4)↔ (C∗
2,C

∗
k+1). Then e2,e4 
∈C∗

j∗ , and by definition of Aj∗ , it must
hold that �j∗ ∈{(0,1,1), (1,1,0), (1,0,0)}. However, for each choice of �j∗ , it is seen that
C∗
j =Aj∗ separates e2 and e4. Thus (C∗

2 ,C
∗
k+1) cannot be a bad pair, and consequently

C∗ is good.
The proof of the theorem now follows from the consideration of Cases 1–3

above.
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[10] L. Pyber, An Erdős—Gallai conjecture, Combinatorica 5 (1985), 67–79.

Journal of Graph Theory DOI 10.1002/jgt


