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Abstract

We propose a novel, local feature-based face representation method based on two-
stage subset selection where the first stage finds the informative regions and the
second stage finds the discriminative features in those locations. The key motivation
is to learn the most discriminative regions of a human face and the features in there
for person identification, instead of assuming a priori any regions of saliency. We
use the subset selection-based formulation and compare three variants of feature
selection and genetic algorithms for this purpose. Experiments on frontal face images
taken from the FERET dataset confirm the advantage of the proposed approach in
terms of high accuracy and significantly reduced dimensionality.
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1 Introduction

Face recognition has proved to be a difficult problem in computer vision. The
main reason for this is that intra-personal variations caused by facial expres-
sions, view point changes, and illumination variations are significant when
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compared to inter-personal variations. Many researchers have therefore fo-
cused on face representation techniques that are invariant to some of these
variations [1,2]. These can be grouped into two, as holistic and local feature-
based: In the first type, faces are represented as a whole and statistical tech-
niques are used to extract features from faces [3–6]. The second type depends
on the localization of salient facial features such as the eyes and the mouth
[7–9]. There are also hybrid approaches which incorporate complementary
knowledge from both [10]. Our work in this paper belongs to the second type,
with the distinction that the salient local regions are not predicted but are
learned from data.

The main idea in a feature-based face representation scheme is the extraction
and analysis of local facial features. Salient facial features are first found and
then used to code a face. Coding is generally carried out using geometric rela-
tionships between these points and extracting local image descriptions around
these points. Among different alternatives, 2D Gabor-like filters are found
to be very suitable as local descriptors because of their robustness against
translation, rotation, and scaling [7,11,12]. 2D Gabor wavelets are selective to
different orientations and spatial frequencies. Typically, features extracted by
2D Gabor wavelets have a very large dimensionality. It is therefore essential to
analyze the contribution of each feature component to the recognition perfor-
mance. Important parameters of 2D Gabor wavelets are: 1) spatial location of
the kernel in the image, 2) kernel orientation, and 3) spatial kernel frequency.

Several studies have concentrated on examining the importance of the Gabor
kernel parameters for face analysis. These include: the weighting of Gabor
kernel-based features using the simplex algorithm for face recognition [13],
the extraction of facial subgraph for head pose estimation [14], the analysis of
Gabor kernels using univariate statistical techniques for discriminative region
finding [15], the weighting of elastic graph nodes using quadratic optimization
for authentication [8], the use of Principal Component Analysis (PCA) to
determine the importance of Gabor features [16], boosting Gabor features [17]
and Gabor frequency/orientation selection using genetic algorithms [18].

In almost all previous studies, we see two fundamental assumptions: First, the
contribution of each feature dimension is analyzed independently of others (in-
dependence assumption); and second, Gabor kernel placement over the face
region is strongly affected by prior knowledge (saliency assumption). Placing
the kernel at visually salient facial points, e.g., eyes, mouth, etc. is one of the
frequently used methods. The first assumption of independence of features is
not valid, and one should incorporate more complex methodologies to analyze
the relationship between the features. Moreover, the effectiveness of the fidu-
cial points should also be studied systematically, and a better solution would
be to learn these locations from given training data for a given task. In our
previous work, we have analyzed topographically important facial locations

2



for both pose estimation and identity recognition [19], and used feature selec-
tion methods to extract optimal local image descriptor parameters for frontal
face recognition [20]. We have also used such features to calculate bottom-up
saliency in a selective attention-based face recognizer [21].

In this work, our aim is to relax the independence and saliency assumptions
for face recognition by reformulating the optimal Gabor basis extraction prob-
lem as a feature subset selection problem. Doing this, we allow our approach
to detect more complex relationships and correlations between feature dimen-
sions, thus extracting a near-optimal Gabor basis. For this purpose, we have
devised a two-stage subset selection mechanism: In the first stage, a genetic
algorithm is used to find the most informative facial locations. In the second
stage, a floating search method is used to learn the individual parameters,
that is, frequency and orientation, of Gabor wavelet-based local descriptors.

The remainder of this paper is organized as follows : Section 2 describes the
proposed approach and experimental results, including a sensitivity analysis,
are presented in Section 3. We conclude and discuss future research directions
in Section 4.

2 Proposed Approach: Learning the Best Features

We have designed a local feature-based face representation scheme for recog-
nition. Multi-frequency and multi-orientation 2D Gabor wavelets are used as
local feature extractors [11,7]. In order to find an efficient representation, these
local image descriptors should be placed carefully over the face region. More-
over, depending on the locations of these image descriptors, useful frequencies
and orientations should be found since specific parts of a face contain high
frequency information (e.g., eyes) and some other parts contain low frequency
information (e.g., cheeks). Orientation selectivity also depends on the loca-
tion of the Gabor kernels. Therefore, we consider the problem by dividing it
into two consecutive stages: First, we determine the topographically important
face regions, and then, we determine the optimal frequency and orientation
parameters of 2D Gabor feature extractors at these locations. The order of
selection is not important, and they are expected to converge to the same sub-
set. However, selecting frequencies and orientations (F/O) first in the entire
face region is not a good idea, since some facial regions prefer particular F/Os
and others may prefer completely different F/Os. The overall diagram of the
proposed approach is shown in Figure 1.

Learning discriminative facial locations and obtaining optimal local feature
extractor parameters is formulated as a feature subset selection problem. In
feature selection, the aim is to select a subset from a given set such that
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Fig. 1. Overall diagram of our approach.

the classification accuracy of the selected subset is maximized [22]. We use
sub-optimal sequential and parallel subset selection algorithms in our system.
As sequential selection algorithms, best-individual selection algorithm (BIF),
sequential forward selection (SFS), and sequential floating forward search al-
gorithm (SFFS) are used [22]. BIF approach simply selects the best k features
and performs well only if each local descriptor contributes independently to
the discrimination performance. In order to consider complex feature depen-
dencies, SFS and SFFS algorithms are used in our system. In SFS, at each
step, we add the most significant feature with respect to the previously se-
lected subset. SFFS algorithm takes this idea one step further by backtracking
to remove the least useful features from an existing feature subset to overcome
the nesting effect. As a parallel subset selection method, we use a genetic al-
gorithm where a chromosome represents a subset and a chromosome’s fitness
is calculated according to the classification performance of its subset.

2.1 Kernel Location Selection

We have designed three different methods to learn the important facial loca-
tions: lattice-based sampling, landmark-based sampling, and dense sampling.
In the lattice and landmark-based methods, sparse sampling of Gabor kernels
at several locations were performed. Figures 2a and 2b show these sampling
types, respectively. In lattice-based sampling (Figure 2a), we place a rectangu-
lar lattice of size N ×N over the central part of the face region. At each point
in the lattice, M different Gabor kernel convolutions are carried out composed
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(a) (b) (c)

Fig. 2. Different sampling types shown over the mean image: (a) lattice-based sam-
pling, (b) landmark-based sampling, and (c) dense sampling.

of v different frequencies and u different orientations with M = u×v. The con-
catenation of the magnitudes of the complex outputs of Gabor convolutions
forms a feature vector for the whole face.

In landmark-based sampling, salient facial landmarks are used. We have identi-
fied S = 30 salient locations over the face region commonly used by researchers
as seen in Figure 2b. The aim of constructing such a sampling scheme is to
test our prior information as to whether these points are really discriminative
and to determine whether these points are really important for recognition.
With lattice-based and landmark-based sampling, in order to determine the
important locations among these points, we perform BIF, SFS, and SFFS-
based subset selection. We consider each feature vector of the ith face location
as a single dimension. Thus we have a search dimensionality of size N × N
for lattice-based sampling and S for landmark-based sampling. As a stopping
condition, we have defined the cardinality of the resulting subset to a value d.

Dense sampling uses full convolutions at each pixel as shown in Figure 2c.
This dramatically enlarges the cardinality of the feature set. SFS- and SFFS-
based algorithms become infeasible for this search space. In order to cope
with this problem, we have employed a GA-based subset selection algorithm.
In our GA formulation, each gene in a chromosome represents the position
of a Gabor kernel. We define the dimensionality of the selected subset as d;
so, each chromosome consists of d genes. The fitness function depends on the
classification accuracy of the selected subset.

2.2 Kernel Parameter Selection

Once we find the locations of features, we determine the most useful orien-
tations and frequencies of the Gabor kernels at the selected locations, using
SFFS. The first stage returns a subset Xloc of dimensionality d ×M . In the
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second stage of frequency and orientation selection, we search for a subset
Xfo of Xloc where |Xfo| << |Xloc|. Note that each dimension corresponds to a
specific frequency and orientation pair of the outputs of a previously selected
Gabor kernel at some specific location. Again, the feature selection criterion
in SFFS is the supervised classification accuracy of the selected subset.

3 Experimental Results

In our experiments, we have used a subset of the FERET face database [23]
which contains subjects having four images. The database contains normalized
frontal images of 146 subjects. Each subject has four gray scale images of res-
olution 150× 130. Faces contain facial expression and illumination variations.
Each session contains two training, one validation, and one test image and
therefore there are six possible experimental sessions: {S1, S2, ..., S6}. After
training with two images per person, the validation set is used to determine
when to stop training (that is, adding features) and the test set is used to
report the final accuracy. The classifier is the nearest neighbor classifier. We
use 6-fold paired t-test to compare the accuracies for statistically significant
difference. S2 and S5 are special: in the selected subset of frontal FERET face
images, some subjects have two images with eyeglasses and two images with-
out eyeglasses. In configurations S2 and S5, the training set contains either
two images of a subject with eyeglasses, or without eyeglasses. Therefore the
validation and test sets are different from the training set because of the pres-
ence/absence of the eyeglasses. This property makes these configurations very
challenging since validation and test sets are very different from training sets.

3.1 Kernel Location Selection

3.1.1 Lattice-based Sampling

First experiments on kernel location selection were carried out using the
lattice-based sampling method. A 7 × 7 lattice is positioned over the face.
Gabor kernels are 15× 15 pixels wide, and contain five frequencies and eight
orientations [7]. At each lattice point i, we have extracted the local feature
vector, υi = {m0,0,m0,1,m0,2, ...,mp,q}, p = 0, ..., 4; q = 0, ..., 7 of dimensional-
ity |υi| = 40 using multi-frequency and multi-orientation Gabor kernels where
mi,j denotes Gabor convolution magnitudes. Combining all local feature vec-
tors, we obtain a global feature vector, Φ = {υ1, υ2, ..., υk} where k = 49 for
lattice-based sampling. The cardinality of Φ is |Φ| = 49×40. Let ΦLOC be the
selected subset of dimensionality d, ΦLOC = {υi : i ∈ 1, ..., k}, where d is set
to 15 in our experiments. Notice that we treat each local feature vector υi as a
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Fig. 3. Selected Gabor kernel locations for lattice-based sampling, found by BIF (top
row), SFS (middle row), and SFFS-based (bottom row) subset selection methods
for six different configurations, S1, ..., S6.

single feature dimension in the subset selection formalism. Figure 3 shows the
selected kernel locations in the subset ΦLOC graphically. The top row shows
the 15 selected kernel locations using BIF-based subset selection for each of
the six different configurations. These locations are found using the validation
sets in all experiments. Similarly, the second and third rows show the most
important kernel locations for SFS and SFFS algorithms, respectively.

Looking at the BIF results, we see that most of the kernels are located at the
upper part of the face, and are highly symmetric, except in sessions S2 and S5.
These results comply with the findings of previous works and are expected.
Eyes, eyebrows, and forehead seem to have more discriminating information.
The bias towards the upper facial locations is due to the significant expression
variations around the mouth region in the dataset. The eyeglasses problem in
S2 and S5 leads to the positioning of some kernels around the mouth region.

The symmetry property is not present in SFS and SFFS, since they evaluate
the importance of a new candidate feature with respect to the existing subset,
and take feature dependencies into account. This is an advantage of SFS and
SFFS over BIF: They avoid redundant, symmetric features. As with BIF,
points are largely scattered outside the variable mouth region and we see the
importance of the face outline in sessions S1, S3, S4, and S6. Visual inspection
reveals that kernel locations found by SFS and SFFS approaches are very close.
Though locations vary between configurations, for the same configuration,
locations found by SFS and SFFS tend to coincide.

Classification accuracies of lattice-based sampling approach for each experi-
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Table 1
Classification accuracies of lattice, landmark, and dense sampling methods on six
different sessions. For each method, test set performances are given with their mean,
standard deviation and median statistics. Statistics with number four are calculated
by excluding S2 and S5.

Lattice-based Landmark-based Dense Sampling

BIF SFS SFFS BIF SFS SFFS GA

S1 85.52 84.83 88.28 80.69 84.83 85.52 88.28

S2 52.41 60.00 55.17 51.72 49.66 53.79 74.48

S3 85.62 86.30 85.62 78.77 89.04 86.30 86.30

S4 83.56 86.30 86.99 84.93 78.77 80.82 90.41

S5 45.21 50.00 49.32 34.25 59.59 50.68 57.53

S6 82.19 90.41 86.99 84.25 84.93 84.25 90.41

Mean(6) 72.42 76.31 75.39 69.10 74.47 73.56 81.24

STD(6) 18.47 16.91 18.05 21.09 16.03 16.65 13.05

Median(6) 82.88 85.56 86.30 79.73 81.80 82.53 87.29

Mean(4) 84.22 86.96 86.97 82.16 84.39 84.22 88.85

STD(4) 1.65 2.40 1.09 2.93 4.23 2.42 1.97

Median(4) 84.54 86.30 86.99 82.47 84.88 84.89 89.35

mental session are shown in Table 1. For each subset selection method, test set
results are presented together with their mean, standard deviation and median
statistics. We include the median statistic in order to stress the outlier effect
of sessions S2 and S5, and we also report statistics over four sessions, exclud-
ing S2 and S5. Remember that subset selection is based on classifier accuracy
and selection criterion function is calculated on the validation set. Using the
6-fold paired t-test, SFS and SFFS methods are statistically significantly more
accurate than BIF, while SFS and SFFS are statistically equivalent (with 95
per cent confidence) again proving wrong the independence assumption.

3.1.2 Landmark-based Sampling

The same set of experiments were carried out for landmark-based sampling.
Figure 4 shows the locations of selected kernels in the set ΦLOC for landmark-
based sampling. As in the lattice case, BIF approach favors the upper face
region by selecting symmetric locations around eyes, eyebrows and forehead.
We see that the lower part of the nose also contributes to the subset. With SFS
and SFFS, although the contribution of the nose region and cheeks are more
visible, forehead, eyes, and eyebrows are generally found to be informative.
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Fig. 4. Selected Gabor kernel locations for landmark-based sampling, found by BIF
(top row), SFS (middle row), and SFFS-based (bottom row) subset selection meth-
ods for six different configurations.

The classification performance of landmark-based sampling is shown in Table
1. Again, we see that SFS and SFFS are significantly more accurate than BIF
and that SFS and SFFS are statistically equivalent. An important observation
is that lattice-based sampling is more accurate than landmark-based sampling.
This indicates that our prior beliefs in saliency regions is not always correct
and that it is better to extract salient locations from data.

3.1.3 Dense Sampling

Parallel search for a subset ΦLOC is done via constructing genetic chromosomes
of size |ΦLOC | where each gene points to a location in the face image. As in
previous experimental settings, |ΦLOC | is set to 15. As the fitness function, we
have used the recognition performance of the subset on the validation set. The
single-point crossover operator was implemented to produce new individuals.
Since we have the (x, y) coordinates in genes, the mutation operator is imple-
mented as a displacement vector, where the gene to be mutated is displaced by
a vector η = {ηx, ηy}. The norm |η| is gradually decreased at each iteration for
better convergence. In both operators, we require that the coordinates of face
points in a single chromosome do not overlap by more than a specified amount
in order to extract independent local information and this distance is selected
to be 20 pixels. The probability of crossover and mutation are selected to be
Pc = 0.5 and Pm = 0.05, respectively. The selection of a new population is
based on the probability distribution of fitness values. For quick convergence,
elitism is employed, where the elitism ratio is 0.05. The initial population size
is 1600. GA terminates when there is no improvement on the accuracy of the
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Fig. 5. Selected kernel positions found by GA for six different sessions.

best individuals for a specified time interval.

In Figure 5, the 15 feature points found by the best individuals of GAs are
shown. From the figures, it is clear that the outline of the face, the outline of
the nose region, and eyes and eyebrows contribute to the most discriminative
subset ΦLOC . Almost in all configurations except S2 and S5, cheeks, mouth
region and the center area of the forehead are absent. In S1 and S2, there is a
feature point outside the face area. This may happen because of two reasons:
i) the sub-optimal convergence of the GA algorithm, ii) the selected point
does not positively or negatively contribute to the recognition performance
(i.e., effectively there are 14 useful points.) This explanation is verified in
Section 3.2.

The recognition performances of GA-based location selection are also shown
in Table 1. Although the second and fifth configurations again perform poorly,
the recognition accuracies are quite high.

3.1.4 Comparison of three methods

The comparison of classification accuracies of lattice, landmark and dense
sampling methods using 6-fold paired t-test shows that dense sampling using
GA performs the best. Lattice-based sampling is found to be statistically
more accurate than landmark-based sampling, and between lattice-based and
landmark-based sampling, SFS or SFFS on lattice-based sampling is the most
accurate. These results indicate that our prior beliefs as to the saliency of
certain regions for discrimination (as in landmark-based sampling) are not
true and that it is better to allow a general sampling from a grid (as in
lattice-based sampling) and it is even better to allow a more general sampling
from the whole image (as in dense sampling).

3.2 Kernel Frequency and Orientation Selection

In the previous section, we have identified the discriminative facial positions
and represent them as ΦLOC in subset selection formalism. Now, our aim is
to select the useful frequency and orientation pairs from ΦLOC to construct
the subset ΦFO, where ΦFO ⊂ ΦLOC . Since dense sampling method is the top
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performer in the previous part, we will continue our experiments using its out-
put as our input set in this section. Recall that ΦLOC consists of local feature
vectors υi, each υi contains magnitudes from Gabor kernel convolutions, mp,q,
and |ΦLOC | is 15× 40 = 600.

Frequency and orientation (F/O) selection is carried out using the SFFS algo-
rithm since our experiments have shown that it has the best trade-off between
complexity and accuracy. The termination condition is determined empirically
by observing the behavior of the classification rate on the validation set, and
the dimensionality of the subset ΦFO is set to a value where the classification
performance does not improve significantly for a specified time. Our experi-
ments have shown that the target dimensionality of 200 is sufficient for best
accuracy on the validation set, which implies a decrease of complexity to one-
third Figure 6 shows the selected F/O pairs at their specific facial locations
for each of the six sessions. In general, we see that the selected kernel ori-
entations are correlated with the underlying characteristics of facial texture.
This is more obvious in locations where non-complex local facial directions
are present, i.e., at the outline of faces. In terms of frequencies, some positions
favor low frequencies, some high frequencies, and in some places, both of them
are used together. In S1 and S5, there were selected points outside of the face
area. In the F/O selection phase, none of the F/O’s in S1 were selected (see
Figure 6.a). However, in S5 in Figure 6.e, all of the F/O were selected which
is due to the problematic training/validation sets in S5

The recognition performances of each subset ΦFO are shown in Table 2. Com-
paring these with the bottom part of Table 1, using the 6-fold paired t-test,
ΦFO and ΦLOC are found to be statistically equivalent. Although the average
test set performances do not illustrate this equivalence due to the problem-
atic sessions S2 and S5, median statistics with recognition accuracies, 87.29
and 86.26 percent for ΦLOC and ΦFO, respectively, indicate the similar perfor-
mance. This indicates that the dimensionality can be decreased from 600 to
200 without losing from accuracy. As mentioned previously, S2 and S5 lead to
a performance degradation due to the eyeglasses. Figure 7 shows some mis-
classified faces from sessions S2, S3, S4, and S5. Notice that in addition to
the eyeglasses, expression variations that cause high texture variations in the
mouth region, especially teeth, are the other sources for the misclassifications.

3.3 Learning the Number of Important Locations

In our system, we have fixed the number of local image descriptors to a con-
stant value, d = 15. In order to investigate the effect of d, a different method-
ology is used where the number of Gabor kernels is variable. This variability
is introduced into the system by adding an additional penalty term to the
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(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

Fig. 6. Selected frequency and orientation pairs at the selected kernel locations.
Filled circles on each oriented line represent the selected kernel frequency where
innermost circles are for low frequencies and outermost frequencies are for high
frequencies. Oriented lines represent the kernel orientations.
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Table 2
Classification accuracies for SFFS-based frequency/orientation selection.

S1 86.90

S2 55.17

S3 86.99

S4 85.62

S5 47.26

S6 89.73

Mean± SD(6) 75.28± 18.85

Median(6) 86.26

Mean± SD(4) 87.31± 1.73

Median(4) 86.95

S2 S3 S4 S5

Fig. 7. Examples of misclassified face images. In each set, first two columns display
the training set images, third column is the probe image, and last column shows
the nearest face image found by the algorithm

fitness function of the GA-based subset selection algorithm that penalizes the
cardinality. Therefore, among different chromosomes having the same clas-
sification accuracy, the one with the least cardinality will be favored. Table
3 shows classification accuracies and the found cardinalities of the selected
subsets for dense and lattice-based sampling. The results show that the classi-
fication accuracy of the variable-size extension of a kernel selection module is
statistically similar to its fixed (d = 15) version while using subsets of cardi-
nality d ∼ 8− 11. However, as in the previous section, dense sampling-based
selection outperforms lattice-based selection, and with S2 and S5, the problem
gets more difficult and we need more locations because of the outliers. These
results indicate that sampling 15 points from the face is sufficient.
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Table 3
Classification accuracies for variable-size kernel location selection on the test set.
#Locs denotes the number of selected points over the face image

Dense Sampling-based Location Sel. Lattice-based Location Sel.

Accuracy #Locs Accuracy #Locs

S1 85.60 8 83.00 10

S2 64.39 15 50.00 15

S3 85.00 9 83.00 8

S4 88.00 11 81.50 10

S5 66.50 18 47.30 11

S6 88.40 8 89.70 10

Mean± SD(6) 79.65± 11.10 72.42± 18.65

Median(6) 85.30 82.25

Mean± SD(4) 86.75± 1.70 84.30± 3.67

Median(4) 86.80 83.00

3.4 Joint-Learning of Location, Frequency, and Orientation

In the proposed architecture, the topographical locations of Gabor kernels,
and their F/O parameters are learned consecutively in a two-stage subset se-
lection methodology. The separation of these two tasks allows us to find near
optimal solutions in a significantly faster way. However, one may consider the
application of subset selection directly on the whole feature variables, thus
learning the locations together with frequency and orientation parameters in
one step. Although such an approach is infeasible by using sequential selec-
tion methods, GA-based parallel search can be a viable solution. However,
it should be noted that even GA-based selection from all feature variables
has significant time complexity when compared to the two-stage selection. We
have performed a joint-learning of location, frequency, and orientation using a
dense sampling-based GA algorithm where the dimensionality of the selected
subset is allowed to vary by introducing a penalty term as in Section 3.3. Clas-
sification accuracies and the cardinalities of the found subsets are shown in
Table 4. The joint subset selection search performed statistically worse than
the two-stage selection scheme. This is to be expected, since it is very diffi-
cult to find the optimal parameters in such a large search space. The mean
classification accuracy of the four experimental sessions (excluding S2 and S5)
decrease from 87.31 percent to 76.37 percent on the test set.
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Table 4
Classification accuracies for variable-size joint kernel location, frequency and orien-
tation selection. Dim. denotes the overall cardinality of the selected subset.

Session Test Set Dim.

S1 77.40 139

S2 47.26 138

S3 80.14 110

S4 73.29 116

S5 43.15 115

S6 74.66 101

Mean± SD(6) 65.98± 16.32

Median(6) 73.98

Mean± SD(4) 76.37± 3.04

Median(4) 76.03

3.5 Sensitivity Analysis

The proposed architecture learns the discriminative facial locations and the
parameters of the local Gabor feature extractors on perfectly aligned faces
at the enrollment stage. Although accurate alignment can be performed at
the enrollment phase, it is not guaranteed to have perfectly aligned faces at
the identification phase. Depending on the accuracy of the face detection and
facial landmark localization module, test faces may have some scale and rota-
tion variations. In order to study the effect of face alignment and registration
process on the recognition accuracy, we have performed sensitivity analysis by
simulating possible variations at the preprocessing stage.

In the pre-processing stage, faces in the FERET database are aligned according
the coordinates of eyes and mouth. Left eye, right eye and the mouth center
coordinates are used to find the in-plane rotation angle and the scale of the
face. Once these two parameters are found, the input face is transformed to
a canonical position. In the sensitivity analysis, we assume that the landmark
localization module which detects eye and mouth coordinates is not accurate.
Then, we can have inaccurately registered faces at the identification phase.

In our tests, we add Gaussian noise to the groundtruth fiducial positions to
simulate the behavior of the inaccurate localization module. For each test face,
we have generated 10 different badly registered faces, each having different
localization errors. Localization errors were produced by adding zero mean
Gaussian noise with standard deviations (σ) starting from one pixel up to 10
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Fig. 8. Inaccurately registered faces of two subjects in the FERET database. At each
row, the standard deviations (σ) of the Gaussian noise added to the groundtruth
are 1, 3, 5, 7, and 10 pixels.

Table 5
The recognition accuracies for various localization error levels (σ). Average recogni-
tion accuracies and their standard deviations are reported both for location (second
row), and for frequency/orientation selection module (third row).

σ = 0 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

LOC 88.8± 1.9 88.0± 2.6 86.5± 3.0 85.5± 2.7 83.9± 4.3 83.6± 3.3

FO 87.3± 1.7 85.1± 2.8 82.1± 3.4 80.7± 4.1 78.58± 4.4 78.7± 4.1

pixels in both x and y directions. Figure 8 shows sample images which are
inaccurately registered with increasing σ error levels to the right. Note that
although we have included errors with standard deviations up to 10 pixels,
errors this high are highly unlikely.

Table 5 shows the recognition rates for five σ levels. For each σ, ten synthetic
test sets are formed. In these experiments, only the configurations S1, S3, S4,
and S6 are used. The recognition rates are reported for the location selection
module and for the F/O selection module. If the test images are registered
without any localization error (σ = 0), the identification rates are 88.85 and
87.31 per cent, respectively. If the feature localization algorithm performs an
inaccurate localization with three pixel standard deviation (σ = 3), the iden-
tification rate for location selection and F/O selection modules drop to 85.53
and 80.70 per cent, respectively. The performance degradation for all error
levels is plotted in Figure 9. We see that performance degradation for small
standard deviations is tolerable. Comparing the performance figures of Ta-
ble 5 with Table 1, we observe that the benefits of learning discriminative
facial locations over fixed landmark-based selection remain even with erro-
neous alignment up to σ = 3. Furthermore, we expect the performance figures
of Table 1 to also degrade in the presence of alignment errors.
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Fig. 9. The recognition rates for various localization error levels (σ). Average recog-
nition accuracies and their standard deviations are plotted both for location selec-
tion module and for frequency/orientation selection module.

4 Conclusion and Discussion

We present a new form of local feature-based face representation technique
which is able to consider local feature dependencies present in faces and al-
lows better feature extraction. Our main contribution is to reformulate the
representation task as a subset selection problem. We have shown that it is
possible to reach an accurate and simple facial feature set by learning infor-
mative locations from training data instead of assuming regions of saliency
a priori, and by taking the dependencies of local features into account. To
confirm this idea, we assume a perfect facial feature localization module by
finding these points manually, and show that using these facial feature points
(i.e., landmark-based sampling), one can get only sub-optimal identification
performance.

Feature selection in high dimensions has proved to be very difficult and time
consuming. In order to overcome this problem, we have devised a two-stage
subset selection scheme. In the first stage, we use a GA-based selection tech-
nique to find the topographically discriminative facial locations. In the second
stage, the best set of frequencies and orientations of Gabor filters at these
locations are chosen using the SFFS algorithm. Frontal face recognition ex-
periments on the FERET dataset show that topographical feature distribution
around face outline, upper part of the face covering forehead, eyebrows and
eye corners, and points in the periphery of nose have high recognition power.
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However, it is essential to employ a mechanism which takes the dependencies
of features into account. Since our approach uses floating search and GA al-
gorithms, time complexity of the training phase is high. This is due to our use
of a fitness function based on classification accuracy; this increases complexity
but finds the best features for high accuracy.

Our proposed method focuses only on the face coding and assumes that face
images are normalized with respect to eye coordinates previously. However,
robustness of the algorithm has been studied when some variations such as
rotation and scale are present in the data. We have shown that location and
parameter selection are not highly sensitive to correct alignment and that the
benefits our feature selection remain even when small errors are present.
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