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1. Introduction

Let X := {x; ,} ¢ [-1,1] and
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Letw, (x) := (1-x*)*""?and P, , be the ultraspherical polynomials with respect to w, (x). Then, we denote the Stieltjes polynomials
E, .., with respect to w, (x) satisfying j_ll w) (x)Py ,(X)E) ;1 (x)x"dx (= 0,0 < m < n+1;#0,m = n+ 1). In this paper, we
consider the higher-order Hermite-Fejér interpolation operator H,,, ,, based on the zeros of E, ,,, and the higher order extended
Hermite-Fejér interpolation operator #,,,, ,,, based on the zeros of E, ,,, P, ,. When m is even, we show that Lebesgue constants
of these interpolation operators are O™ -Dm=20yy « )} < 1) and O™ 1=2Vm=20hyg <« )\ < 1/2), respectively; that is,
1 spsrll = OE™XO2Vm200 < )} < 1) and |H,,,,,| = O™ V"2 < A < 1/2). In the case of the Hermite-Fejér
interpolation polynomials 7., ,[-] for 1/2 < A < 1, we can prove the weighted uniform convergence. In addition, when m is
odd, we will show that these interpolations diverge for a certain continuous function on [-1, 1], proving that Lebesgue constants
of these interpolation operators are similar or greater than log n.

We note that, by definition, H, ; is the Lagrange, H,,, is
the Hermite-Fejér, and H, , is the Krylov-Stayermann inter-
polatory polynomial. By (2), we may write

—1<x, <xp, < <X, <x, <L
M n
n= 1) 2> Hn,m (f’ X’ X) = Zf (xk,n) hk,n,m (X,X) >
= ©)
For any real-valued function f on [-1,1] and an integer n=1,2,....
m > 1, we recall that there exist unique Hermite and Hermite-
Fejér interpolatory polynomials of higher order denoted by
H, ,.(f, X), and of degree < nm — 1, defined as follows: The polynomials
Hn,m (f’ X’ xk,n) = f (xk,n) > l<k< n, .
m— .
h X, x)=I" (X,x) ) e X=X ,) s
HO (fiX%,) =0, 1<t<m-1, (2) ko (302) = hi (302) ; {2~ i) @)
l<k<n l<k<n



are unique, of degree exactly nm — 1 and satisty the relations

WY (Xoxp,) =800 1<k I<n,
©)
0<st<m-1,
where for nonnegative integers u and v
1, u=w
8,,=1" ’ 6
wy {0, utv. ©

Here, [ ,,(X, x) are the well-known fundamental Lagrange
polynomials of degree n — 1 given by

w, (x)
w:z (xk,n) (x - xk,n) ’

n

w, (x) = H (% = Xp)

k=1

lk,n (X, X) =

7)

and the coefficients e;;, may be obtained from the relations

i (X X1,) = 8ps 1<k, <
WO (Xx,) =0, 1<t<m-1, 8)
1<k I<n.

If f e C("‘"l)[—l, 1], then the Hermite interpolation polyno-

mial H,,(f, X, x) of degree < nm — 1 with respect to X is
defined by
ﬁr(len (f’ X, xk,n) = f(t) (xk,n) > (9)
I<k<n 0<t<m-1
We may express H,,,(f, X, x) as
m— n ¢
nm (f X x = Z Zf( ) (xk,n) ht,k,n,m (X’ X) >
t=0 k=1 (10)
m=12,...,
wherefor0 <t <m -1
tknm (X X)
(x - Em-1-t (11)
(X ) Z etlknm(x xkn)
is the unique polynomial of degree nm — 1 satisfying
W am (5 %jn) =00, 0<i, t<m-1,
.k, ( ) ti%k,j (12)

1<j, k<n

Then, we easily see from the relations (5) and (12) that
hO,k,n,m(x) = hk,n,m(x)’ €0,ik,nm € knm> and tik,nm
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€oiknmforl <k <mand0 <i, t <m~ 1 (see [1]). Now, we
have for any polynomial P of degree < nm — 1,

P(x) = H,,, (P, X, x)

m—-1 n
m (P Xox)+ D Y PO () Bygyn (X ).
t=1 k=1
(13)

In what follows, we abbreviate several notations as /i (x) :=
Pmm(X)s €% = €ppm and e = e, if there is
no confusion. Here, we are interested in Hermite-Fejér and
Hermite interpolations with respect to X whose elements are
the zeros of a sequence of Stieltjes polynomials and the prod-
uct polynomials of Stieltjes polynomials and the ultraspheri-
cal polynomials, respectively. To be precise, we first consider
the generalized Stieltjes polynomials E ,,,(x) defined (up to
a multiplicative constant) by

Jl w) (x) Py, (x) E) .y, (x) xfdx =0
-1 (14)

k=0,1,2,...,n, n>1,

where w) (x) = (1 - M2 A s —1/2,and P, ,(x) is the nth
ultraspherical polynomial for the weight function w, (x). In
1935, Szegd [2] showed that the zeros of the generalized
Stieltjes polynomials E, ,,,(x) are real and inside [~1, 1] and
interlace with the zeros of P, , (x) whenever 0 < A < 2.

For the properties of interpolation operators based at
the zeros of E, ,,, and the zeros of P, ,E, ., Ehrich and
Mastroianni [3, 4] proved that Lagrange interpolation
operators L, ., based on the zeros of E, ., and extended
Lagrange interpolation operators &,, ., based on the zeros
of E, .., P, have Lebesgue constants L[, (0 < A < 1)
and [Z,,1ll, (0 < A < 1/2) of optimal order, that is,
O(logn). For the Hermite-Fejér interpolation operator
H,,, based on the zeros of E,,,, and the extended
Hermite-Fejér interpolation operator 7%,,,, based on the
zeros of E, . P, it is proved that Lebesgue constants
1H, 1l (0 < A < 1) and |# 5,11, (0 < A < 1/2) are of
optimal order, that is, O(1), in [5]. In this paper, we consider
the higher-order Hermite-Fejér interpolation operator
H,,,, based on the zeros of E,,,, and the higher-order
extended Hermite-Fejér interpolation operator #,,,,,,
based on the zeros of E, ,,, P, ,. When m is even, we show
that Lebesgue constants of these interpolation operators are
O™ (1-Im=2.01y apg O(pma{(1-20m-2.01 respectively; that
i, [|Hppy 1 pll = O™=0m=200 (0 < A < 1) and |7 5,41,

= O(™U=2Mm 20y (0 < A < 1/2). In the case of the
Hermite-Fejér interpolation polynomials 7, ,,,[] for
1/2 < A < 1, we can prove the weighted uniformconvergence.
In addition, when m is odd, we will show that these
interpolations diverge for a certain continuous function
on [-1,1], proving that Lebesgue constants of these
interpolation operators are similar or greater than log n.
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This paper is organized as follows. In Section 2, we will
introduce the main results. In Section 3, we will show
the auxiliary propositions and estimate the coefficients of
Hermite-Fejér interpolation polynomials in order to prove
the main results. Finally, we will prove the results in Section 4.

2. Main Results

We first introduce some notations, which we use in the
following. For the ultraspherical polynomials P, ,,, A #0, we

use the normalization Py (1) = ("™21) = O@**™). We
(D)

N , 1, and the zeros

denote the zeros of Py, by x,7, v = 1,...

of Stieltjes polynomials E, ,,, by 5}(4)’“2”1, u=1...,n+ 1L

We denote the zeros of F, ,,,, = Py ,E, ., by yffz)n V=
1,...,2n+ 1. All nodes are ordered by increasing magnitude.
We set ¢(x) := V1 — x2, and for any two sequences {b,},, and
{¢,},, of nonzero real numbers (or functions), we write b, ~ ¢,
ith, < Cc, and ¢, < Cb,. We denote the space of polynomials
of degree at most n by &,,.

For the Chebyshev polynomial T,,(x), note that for A = 0
andA =1

Eopr () = 22 (T, () = T,y (),
(15)

2
E i (x) = ;Tn+1 (x).

In this paper, we let Py(lo)(x) := T,(x)/n. In these cases, the
results are well known or can easily be deduced. Therefore,
we will consider the cases for 0 < A < 1andlet0 < A < 1in
the following.

Let H,,,,,[f] be the Hermite-Fejér interpolation poly-
nomials of f with respect to the zeros of E, ,,,(x). Also let
Z 3p1,m| f] be the Hermite-Fejér interpolation polynomials
of f with respect to the zeros of F ,,,, (x). The fundamental
Lagrange interpolation polynomials [ ,,,,(x) and I*,,,,;(x)
with respect to H, [[] and %,,1,.[], respectively, are

n+l,m
given by
I (x) = Ejni1 (%)
un+1 - ) ) >
Ej\,nﬂ (Ey,nﬂ) (x - Eﬂ,n+1)
u=12,....,n+1,
(16)
l* (x) _ F/\,2n+1 (X)
v,2n+1 - \) ) >
F)’L2n+1 (yv,2n+1) (X - yv,2n+1)
v=12,...,2n+1.
We let |H,, 1, and | 5,1, be the Lebesgue constants

based on the zeros of E; ,,,(x) and F, ,,,,(x), respectively.

That is, the Lebesgue constants [|H,,, | and [|7Z,,, | are
defined as follows:

"Hn+1,m"
n+l m-1 . (17)
— m )\
= sup Z Z ei,yly,nﬂ (x) (x_f;x.,nﬂ) >
x€[-L1]y=1 i=0
"%2n+l,mn
241 m-1 N (18)
* 1¥%m
= sup Z Z ei,vlv,2n+1 (x) (x _yv,2n+1)
x€[-11] y=1 =0
and for a nonnegative real function u(x),
"%Zrﬁl,m”u
2n+1m-1 P 19)
* 1%m
= sup M(X) Z Z ei,vlv,2n+1 (X) (x_yv,2n+l) >
x€[-1,1] v=1 i=0
where ¢;, and e;, are the coefficients of the higher-order

Hermite-Fejér interpolation polynomials defined in (4), with
respectto H,,, ,,[-] and 75, ,,,[-], respectively.

2.1. Uniform Convergence of Hermite-Fejér Interpolation
Polynomials of Higher Order

Theorem 1. Let0 < A < landm =2,4,6,....
(a)

[ il = O (nm07072), (20)

(b) Suppose that (1 — A\)ym < 2. Then, for a continuous
function f on [-1, 1] one has uniformly for x € [-1,1],

lim |H,,y, [£] ()~ f ()] =o0. ()

n— 00

Theorem 2. Let0 < A< landm = 2,4,6,....

(a) Then one has for0 < A < 1/2

|% 21l = © (nmax{(l—2)\)m—2,0}) (22)

and for1/2 <A <1

“%2n+1,m”¢m—1>m =0(1). (23)

(b) For a continuous function f on [-1,1], if 0 < (1 -
2A)m < 2, then one has uniformly for x € [-1,1],

i [# 1. [f] ()~ £ ()] = 0 (24)

n— oo
and if 1/2 < A < 1, then

N (7 i1 [£] () = ()% () = 0. (29)



2.2. Divergence of Hermite-Fejér Interpolation Polynomials of
Higher Order

Theorem 3. Let0 < A < landm = 1,3,5,.... Then,
|Hsnll ~ Inm. (26)
Theorem 4. Let 0 < A < landm = 2,4,6,.... Lete > 0.
Suppose that
| Em- 1I4| ~ (gwﬁl) (27)
If(1-A)m > 2, then
[Hpi ]l ~ 0772, (28)
Theorem 5. Let0 < A < landm =1,3,5,.... Then,
7 21| ~ Inn. (29)
Theorem 6. Let 0 < A < landm = 2,4,6,.... Let ¢ > 0.
Suppose that
erio| ~ M (9 - (30)
If (1 =2A\)m > 2, then
1% sl ~ maxl(1-20)m-2,0} (31)

If the Lebesgue constant is not bounded, then we know
from Helley’s theorem that Hermite-Fejér interpolation does
not converge for a certain continuous function on [-1, 1].

3. Estimation of the Coefficients
of Higher-Order Hermite-Fejér
Interpolation Polynomials

Proposition 7. Let0 < A < 1.

(1) See [4, Theorem 2.1], forn > 0,

By @] <C(n' 9™ () +1)  -1<x<1. (32)

Furthermore, E) ,,,(1) = C.
(2) See [4, Theorem 2.1] and [6, 7.33.5], forn > 0,

1-22
(

C C
|F) i1 ()] < Cop x), -l+—=<x<l-—. (33)
n n

Proposition 8 (see [4, Lemma 5.5]). Let 0 < A < 1. Then, for
u=12,...,n+1,

'E; n+1 ({unﬂ). ~ 1’127

and forv=1,2,...

)Lgoﬂl( 1) ) (34)

un+1

,2n+ 1,

|F/{,2n+1 (yi))»z)n+1)| ~ n(p_u (yn(/,AZ)yﬁl) . (35)
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Proposition 9 (see [7, Theorem 2.1]). Let0 < A < landr > 1
a positive integer. Then, for all x € [El nﬂ,f(

+1, n+1]
|Exp” )] s o (). (36)

Moreover, one has for x € [-1, fl Y U [EW 1],

n+ln+1>
|Epp” ()] ~ . (37)

Proposition 10 (see [7, Theorem 2.2]). Let 0 < A < 1 and

r > 1 a positive integer. Then, for all x € [Eij\rz+1’£r(1/-\i—)l,n+l]’
A-
Frann ™ ()] < Cn'e" 47 (x). (38)

Moreover, one has for x € [—I,Egj\zﬂ] U [Enﬂ w1

|FA,2n+1(T) (x)| - n2A+21’—1' (39)

Proposition 11 (see [7, Theorems 2.3, 2.4]). Let 0 < A < 1
and v > 2 an even integer.

(@ Forl<u<n+1,
[ED s (Bmn)| < C'9 (§0n) - (40)

(b) Forl1<v<2n+1,
FO )| s e M (5h,) . @D

Proposition 12 (see [7, Lemma 4.9]). For1 < v < 2n+1, one
has

|Ever (esi)| ~ 170" (30)) (42)

Proposition 13 (see [7, Theorems 2.6, 2.7]). Let 0 < A < 1

and 0 < e < 1.

(a) For |£ 1| £ 1—eand a positive integer € > 0, one has

wn+

ECC) (80 ) = (D (n+ 1) g7

(E,u n+1) An+l (E‘u n+1) + O (1’12€+1) N
(43)

1 — € and a positive integer £ > 0, one

“ (1onn)

X F)’l,2n+1 (yf/jlz)ml) +0 (n/1+2€) >

=21 4 440,

A
(b) For [y\),,.1 <
has

20+1 A 4 20 -
Fiz%i (yq(»,z)nﬂ) =q(-1)'(n+1)"¢

(44)
where c,

Theorem14. Let0 <A< 1,r>0andn,m> 1.

(a) Uniformly for1 <p<n+1

] (E2.0)
and if r is odd,

| [l::inﬂ ] ’) E/SABHI )

<Cn'gp~ (E;%ﬂ) (45)

/1+T—1(P—r—1+/\ (E[(,‘/}V)H—l) . (46)
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(b) Uniformly for0 <s <m—1,

Jecu] < Crio™ (8in) (47)
and if s is odd,
'ew| < Cnh+s—1(P—s—1+A (ELAZH) (48)

Theorem 15. Let0 < A< 1,r>0andn,m> 1.

(a) Uniformly for 1 <v <2n+1,

[l:,rznnﬂ ] v ()’iznﬂ)

and if r is odd, one has

[l:,g;“](r) (J’:},znﬂ)

(b) Uniformly for0 <s <m—1,

<CHo" (Vo) (49)

< Cn)Hr—lgo—r—lJr/\ (y/\ ) ) (50)

v,2n+1

sv < CI’l (P (yi)},anLl) (51)
and if s is odd,
e:)v < CnA+S_1(P_S_1+A (yizn"-l) ) (52)

Theorem 16. Let 0 < A < 1 and 0 < ¢ < 1. Suppose that
E( w1l < 1 — & Then, there exists a constant ¢,(m) > 0
dependzng only on m and € such that

(2¢)
()™ (&) = (1) e (m) (n+ 1) o
X @ -2 (EMH) (1 + O(n)H)).

Theorem 17. Let 0 < A < 1 and 0 < ¢ < 1. Suppose that

E( n+1|
‘"Ijg( —m) > 0 depending only on m and € such that

1 — &. Then, there exists a constant Y,(—m) with

er, = (-1)° M%( m) (n+1)*¢ > (E0).))

X (1 +O(n)H)).

Theorem 18. Let 0 < A < 1 and 0 < e < 1. Suppose that

Iyif\z)nﬂ < 1 — & Then, there exists a constant o,(m) > 0

depending only on m and € such that

(54)

(Z:,rznnﬂ)(ze) (yn(//lz)nﬂ) = (_l)e‘xg (m) (n+ 1)2€
X ()’i/lz)nﬂ) (1+0 (”A_l))-
(55)

Theorem 19. Let 0 < A < 1and 0 < € < 1. Suppose that

I)/VZHJrl < 1 — & Then, there exists a constant ®,(—m) with
®,(-m) > 0 depending only on m and € such that

L’L _ 20 =20 ( (1)
1) (ZE)ICDZ( m) (n+1)*¢ (yunﬂ) ”

X (1 +O(n)H)).

*
€y, = (=

5
Proof of Theorem 14. We prove by induction on m. Since
(r+1)
[E/\ n+1( n+1)(x E‘u n+1)ly n+1( )] x=& )
wontl (57)
_ gr+1) ()
- E/lr,n+1 (Ey,nJrl) >
we know that
ECHD (50
(r) 1) An+l \Opn+l
lyrn+1 (Ey,rﬁl) = (58)

( + 1)E/ln+1 (Eyr)tH)

So, it holds for m = 1 by (34) and (36). Now, assume that it
holds for 1,2,...,m— 1. Then, using Leibnitz’s rule for differ-
entiation, we obtain

21" ()] = €3 () s (852.1)

i=0

l[l;nnil " l) ,93&1) 9)
<Cn'g’ (EM n+1)
Suppose that  is odd. Then,
,
|[llr4nn+1:|( ( wﬁ—l Z( > 'l/(;)nﬂ /(4/17)1+1 |
i=0
||:l[4 n+1 [(4/\1’)!+1) (60)

Since r — i is odd for an even i and r — i is even for an odd i,
we have by the mathematical induction on m, (34), (36), (40),
and (58),

(1) (/\) m-1 10—
Z lﬂn+1 usn+1 | |[l;4n+1 yn+1)
i=even or odd (61)

< CnA+r lq) r+A— 1(£Mn+1)

These complete the proofs of (45) and (46). To prove (47) and
(48), we proceed by induction on s. Firstly, for s = 0, (47) is
trivial since €y = 1. Fors > 1, we have by [8, (3.3)] and [8,
(34)]

0= K (50) = Y () 1) €)@

so that

Csu Tl Zezy< ) [l n+1] " 1)( LA3,+1). (63)

Thus, if we assume that (47) holds fors = 0, 1,.. .,
then by (45), we have

t—-1,t>1,

t

( )
Iewl<Clel o ”(ﬁiﬂ)scm- (64)

u,n+1



Suppose that t is odd. Then,

2o 5+ 5 Yol ). o

i=even  i=od

Since t — i is odd for an even i and t — i is even for an odd i,
we have by the mathematical induction, (45), (46), and (47)

Z |ei,#' [l n+1](t ! (E;(:}r)wl)

i=even or odd (66)
< Cn)Ht—l(P/\—t—l ( E[(J/,\r)ﬁ—l)'
These complete the proofs of (47) and (48). O

Proof of Theorem 15. Using (35), (38), and (41), this is proved
by the same method as the proof of Theorem 14. O

For j=0,1,...define ¢;(1) := (2j + 1) and for k > 2

Sy 1 (2
¢j (k) = ;m <27’> ¢r (k - 1) . (67)

We rewrite the relation (67) in the form forv =1,2,3...,

¢o(v) =1 (68)
andfor j =1,2,3,...,v=2,3,4,..,

1 2j+1
¢; (M) —¢;(v-1) 2]+1Z<J >¢r<—1> (69)

Now, for every j, we will introduce an auxiliary polynomial
determined by {¥( y)};?:1 as the following lemma.

Lemma 20 (see [9, Lemma 11]).

(i) For j = 0,1,2,..., there exists a unique polynomial
¥;(y) of degree j such that

= ¢j ™)
(ii) ¥o(y) = Land ¥;(0) =0, j = 1,2,....

¥; () v=1,23,.... (70)

Lemma 21 (see [9, Lemma 13]
0,1,2,...,

)- If y < 0, then for j =

-1)’¥; (y) > 0. (71)

Lemma 22 (see [9, Proof of Lemma 14]). For positive integers
s andm,

> (3) % cmgom=o 72
r=0

Proof of Theorem 16. Similarly to Theorem 14, we use math-
ematical induction with respect to m. From (58), (43), and
(34), we know that

100 (Bumer) = C1 (1) (4 197 (6.
X (1 + O(n’\_l)) , (73)

20 () £ O,
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Then, from the following relations:

()™ (B

20 @n L
) 0<2Z:<2£ <21’) (l:l”il) (6”’”“) l!(zﬁ+f : (Eﬂ,ﬂﬂ)

e —
+ o) <2r2—1>(l;nni1)(2r !
1<2r-1<2¢

X (Ep.,rﬁl) ZL2ﬁ+ff+1) (Ey,nJrl)

= (-1)'¢, (m) (n+ 1)* (£ ) (1+0(n 7)),
m (2¢-1)
(lyn+1) ! (E‘u,nJrl)

282; 1 ) (l;nnil )(Zr) (EM’,,HI ) lLZﬁ+fr 1) (5"””1 )

20 -1 m—1 \(2r-1)
(5ror) )
1<2r-1<2¢6-1

X (Eﬂ,rﬁl) l‘l(125+fr) (g.“’”*l )

=0 (n2€—2+l) ,

0<2r<26-1 <

+

(74)

we have the results by induction with respect to m. O

Proof of Theorem 17. We prove (54) by induction on s. Since
eou = 1 and ¥,(y) = 1, (54) holds for s = 0. From (63), we
write e, , in the form of

= 1 m (2s-2r) %)
€5 = _ZO(ZS 21’)' 2”4(1!4 "+1) (Eﬂ ”+1)
r=

. m (2s—2r+1) )
Z 2s —2r + 1), 2r ly(lyn+l) (E,“Hl)

= I+1I
(75)

Then, by (46) and (48), |II| is O(n*****%). For 0 < r < s — 1,
we suppose (54). Then, since we know from (53)

(l”r:l”+1)(25727) (514 n+1) = (_I)S_r¢s—r (m) (7’1 + 1)2(s—r)

(P—Z(s ) (EWH) (1 + O(n)t—l))’

1 2r
m‘l’r (-m)(n+1)

xg " (§ma) (1O (7)),
(76)

le,y, = (_1)1’
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we have for I
s—1 (_ )s+1

> = o e D (8

r=0

(77)
s—1
X ;) (;i) ¥, (-m) ¢,_, (m) (1 +0 (n)t—1)) ‘

Then, using Lemma 22 and ¢, () = 1, we have the following
form:

(GO
€ = 29! ¥ (-m) (n+1)" ¢ (Eunﬂ) .
X (1 + O(n’\_l)) .
Therefore, we proved the result. O

Proof of Theorems 18 and 19. These theorems are proved by
the same method as the above theorems. O

4. The Proofs of Theorems

4.1. Proof of Theorems 1 and 2. From now on, we assume
that 0 < A < 1. We first state some known results for the

Stieltjes polynomials. Let xm = Cos </>,ln, n = 1..,mn
) (1) _ (1)

Ey ni1 = COS 9,4 mpd=1..,n+1and yv,2n+1 = COSY, it

v = 1,2,...,2n + 1. Ehrich and Mastroianni [4] proved that

foruy=0,1,...,n+landv=0,1,...,2n+1
) _ (/\) (1) L)
'¢ 11+1n |0(4n+1 _6y+1 n+1)
(79)
) -1
|V’v2n+1 l//v+1,2n+1| ~no,
— W e 4N o) —
where 1!’0 2n+1 Opprr = o = mand Yy ,0,,, =
n+2n+1 = ¢n+1n := 0. It implies that for y = 0,1,...,n+ 2
andv=0,1,...,2n+ 2,
W o) Loy .
Eﬂ+1,n+1 - §u,n+l ~ ;q) (Ey,n+1) >
) L
Y. -y P AVZ
v+1,2n+1 v,2n+1 n ( v2n+1) (80)
(E//&l n+1) (5# n+1) ;
1) A)
¢ (J’v+1 2n+1) ~ e ()’v 2n+1) >
(CONN )
where J’o 2n+1 ons1 = —land y2n+2 ontl En+2 a1 = L

Lemma 23. Let k be a positive integer and 0 < x < 1 — C/n’.
Then,

(a) fora > 0,
- k—
NOLANOM
0<t<1-C/ _
|x—t|>(p(x)n/n |x tl

< Cg™® (x) k10 (=201 (81)

1, k=2
Inn, k=1;

7
(b) fora; > 0 and g, > 0,
—061 £ (t) (Pk 1 (t)
0<t<1-C/n?, _
lx~tl>g(x)/n e =t (82)

< C(P—oc1 (x) nk—1+elo (nmax{ocl—Zk,O}) ;

(c) for e > 0,

OLAOY k1 [L k22
0<t<1-C/r?, _ t<Cn' Inn, k=1; (83)
et X t* ’ ’

d) fora; > 0ande; >0,

AR OO

k—1+¢;
0<t<1-C/n?, Ix — tlk dt <Cn : (84)
lx=t[>p(x)/n
Proof. (a)
(P—oﬁ-k—l (t) dt
0<t<1-C/n?, |x — t|k
[x—t[>p(x)/n
x, (1+x%)/2 1-C/n? atk=1 (85)
~ J + J + J (P—() t
0 x* (1+x")/2  |x — l’|
=1L+ +1,
where x, := x — ¢(x)/nand x* := x + p(x)/n.

I,: Suppose that 0 < ¢ < x,. Then, since ¢™“(¢) < ¢ *(x),
we have

—at+k-1 k-1

Xy t X t

| P O <oy | Qg 6
0 |x — ¢ 0 |x—t|

Since we know for 0 < t < x,,

o)~ (x-0"+9(x), (87)
we have
k 1
J (t) gt
0 |x-— t|
N J § : dt+ ¢ (x)
0 |x—t*V2|x -t

Xy 1
X J Tdt
0 |x—t|"" |x—t

c {|x - x*|_(k_l)/2 1 (x) |x = x| ks

IA

Inn, k=1

C {nk—l’ k
Inn, k=

IA
IV

(88)



Therefore, we have for I;

nk_l, k>2;

Li<Cp™ (0 {lnn k=1.

L: Since ¢(t) ~ (x) for x* <t < (1 +x%)/2,

J,(1+x*)/2 (P—(X+k—l (t)d
—_— t
x* |x - tl
(1+x7)/2
~ ¢ (x) J ! -dt
x* [x —t|
k-1
_ n k>2;
<C¢p* ’ -
9 () {lnn, k=1.

Therefore, we have
nk_l, k>2;

L<Cp™ (0 {lnn k=1.

I:Since |x —t| > C|1 —t| for 1 + x™)/2 <t < 1- C/n?, we

have for I

J'I—C/n2 (Pfoc+k—1 (t)d
— t
(1+x*)/2  |x —t]
_ J»l—C/nZ (P—oc+k71 t)
(1+x)/2 |x =t |x — ¢|?
1
<C 7
[(1+x*)/2 - x|*

1-C/n? 1 —a+2k ¢
X J 1)z ? Ez)k :
(a2 (1 — £) K2 | g 7of2t

Since for (1 +x*)/2 <t <1-C/n*,

(P_‘X+2k (t)

|x _ t|*lx/2+k
<C 1, if—a+2k > 0;
T if-a+2k<0

-0 (nmax{oc—Zk,O}) ,
with [(1 +x%)/2-x|~1-x ~ (pz(x),we have

1-C/n* —a+k-1 ¢
L= J Oy
(1+x*)/2  |x —t

<0 (nmax{tx—Zk,O}) q)—oc (X)

l—C/I’l2 1
X —dt
J(1+x*)/2 (1 -k
1, k>2;

- nk—l(P—oc (x) 0O (nmax{ot—Zk,O}) {ln ]

Therefore, we have the result (a).
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(b) Similarly to (a), we let

(89) —o —&+k—1 ¢
X 0,
0<t<1-C/n?, |x — tlk
[x—t[>@(x)/n
x, (1+x™)/2 1-C/n* jmo+k=l-e (4 (95)
[ e,
0 x* (14x%)/2 |x — ¢
=1+ +1.
(90)
Then, for I;, we have using (87)
X, o0 tk=1-¢ t
J (P—k()dt
0 [x —¢|
_ X —€ (t)
D <Cop™ (X)J ( q(Dk—l)/z
0 |x — ¢ |x —t]

k-1 —€

(t

L9 (9214) ())dt
[x =t |x —¢]

- g (e ()
< Co ™ (x)n*! J LAONA
<Cp = Lon 0o x—t
(96)

X o (t Xy
(92) J IO cj S S
0 x—t 0 (x_t)€1/2+1

n €/2
< C(—) < Cn®
@(x)

by the use of ¢(t) > Clx — t|'/2. Therefore, we have for I

(97)

Il < Cngal (x) nk71+sl‘ (98)

(93) L: Since 1 —t > C(t - x) and ¢(t) ~ ¢(x) for x* < ¢ <
(1+x7)/2,

J'(ler*)/z (P—ocl+k—l—€1 (t)

dt
X x — t[k

(1+x")/2 =€ t
N (p—(xl (x) nk—l j ¢ ( )
x* (t - x) (99)
(1+x%)/2 1
—a k,
<Cp ™ (x)n IJ T

(94) x* (t - x)

< Cp™ (x) nere
Therefore,

I, < Co™ (x)n* 14, (100)
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I;: Since |x — t| > C|(1 + x")/2 — x| for (1 + x*)/2 <t <
1 — C/n* , we have using (93)
¢—0(1+k—1—61 (t)
Jx — 1l

gD*OLl +k—1-¢€; (t)

= |x _ t|k—(xl/2|x _ t|a1/2
1 (P—oclJrk—lfel (t) (101)
I(1+x%)/2 = x|/ |x — ¢/
=Co ™ (X) 1 (P_“1+2k (t)
¢ (1= ) Twe/2 | a2
-« max{a—2k,0} 1
=¢ (x)O(n ) (1 — p)k-tren/ze ’
and we know that
1-Cln 1 k—1+
- £
J(1+x*)/2 —(1 BNV dt <Cn" ™, (102)
Therefore, we see that
JI_C/HZ (p—ocl+k—1—e1 (t)d
— % t
1+x*)/2 |x —t] (103)

< C(P—ocl (x) nk—1+£1o (nmax{txl—Zk,O}) )

Consequently, we have the result (b).
(c) and (d): Since |1 — #*| < C(|1 = x*| + |t — x|), we know
o(t) < Clp(x) + |x — t|1/2). Then, we have

(Poc+k—1 (t)
0<t<1-C/n?, Wdt
|x—t[>p(x)/n
1 1
< C|[ ¥t (x) J dt + J dt)
<(P |x—t|k |X—f|(k+1)/2
k-1 1) k > 2;
<Cn
{lnn k = 1’
(104)
because we see if k = 1, then
1
0<t<1-C/n?, mdt < Clnn,
|x—t|>p(x)/n
] (105)
0st<1-CJi, mdt <Clnn
lx—t>p(x)/n
and if k > 2, then
a+k—1 1
¢ (x) 0<t<1-Cln?, Wdt
[x=t|>¢p(x)/n
ot+k—1 1
x —
SC(P—k(_l)_C(Poc+k 1(x)< n )
e =1l 9 (%)
<cn Y,

1

0<t<1-C/n?, g (k+1)/2
e—tl>pCopm X 1]

dt < an_l;

(106)
that is, we have (c). Similarly,

(P[Xl +k—1-¢€, (t)

dt
|x -t

0<t<1-C/n?,
[x—t[>¢(x)/n

¢ ()
0<t<1-C/n?, Lk
e—tl>gyn X~ 1]

¢ (1)
|x _ tl(k+1)/2 dt

<C <(p“1+k_1 (x) J dt

(107)

0<t<1-C/n?,
[x~t[>@(x)/n

=C(A+B).
Then, for A

¢ ()
0<t<1-C/n?, ik
pe-tl>goym X 1]

A= q)oc1+k—1 (x) dr

k-1 ¢
_ 0
<C o +k—1 <L> J 2 L4 ( dt
(0 (x) o(x) 0st<1-C/n?, | x — ¢t

[x—t[>¢(x)/n

(108)

O]
0st<1-C/n, | x — |
[x=t|>¢(x)/n

< Cn! dt

and for B

B @ (t)
- —C/n? k+1)/2
e

k-1 o (1) at
0st<s1-C/n, |x —t|
[x=t1>p(x)/n

(109)

<Cn

On the other hand, by (97) and (99), we know that

X 7€ (t (1+x")/2 =€ t
J g‘)—()(zlt < Cn, J ¢ ( )dt <Cn®. (110)
0o X- x* (t-x)

Since |x —t| > C|1 —t| for (1 + x*)/2 < t < 1 —C/n*, we have

1-C/n*  —€ ¢ 1-C/r? I
[ 0 [ o
(+x)/2 (E = x) (exty2 (1= £)57/%*
an)
Therefore, we have
—€
¢ l(t) k—1+e
oststcpt, g LS (112)

lx—t|>@(x)/n

So, by (108) and (109) we have (d). O
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Lemma24. Let0 <i <m-—1.Leta > 0 be a fixed, sufficiently
small constant. Let x € [E,(i)l i1’ ,((’yl w) N[0, 1 — a/nz]for
some 1 < k < n+ 1. Then, one has uniformly for n

(1 -A)m ( )(PAm I(EHA,)H_I)

m—i

m—i

ugk-2,k+2],
1<pusn+l

<0 (nmax{(l—)u)m—z(m—i),o}) 1, 9 <i<m-—2;
Inn, i=m-1.

(13)
Proof. For the simplicity, we denote
by
_ (IA ( )goml(fwﬁl)
T nm-i m—i’ (114)
pelk—2k+2]  pelk-2,k+2], | B 1
1<usn+l

Then, we know that

(P(I—A)m (x)

nm—i—l

¢ [k-2k+2]

@ (EL},\V)HI ) (P()L—l)m+m—i—1 (ELA21+1 )

n
pe = Gl

X
uélk—2,k+2]

(115)

Then, for some C > 0 with 1 - C/n* > (1 + £n+1n+1)/2, we
have by (80)

¢ (ELAZLH) (P()L—l)m+m—i—1 (g(/,\y)m)

n
pe = Gl

¢ [k—2,k+2]

(A-1)m+m—i-1
t
NJ gD_ﬂﬁ,“dt.
[14C/ A 1-CIPINED, 50 ) |

k+2,n+1

|x —t
(116)

Therefore, we have the result from Lemma 23 (a) with « =
Q-Amk=m-i. ]

For convenience, we let

n+l ;
Hn+1,m1 (x) - Zel yly n+l (x) (x yn+1) f( ;:Ar)wl) 4

(117)

then
n+1 m (x) - Z n+1,m,i (x) . (118)

Let
n+1 N ;
“Hn+1,m,i|| = sup Z iy ,un+1 (x)( E}(uf)ﬁl) l - (119)
x€[— 11].‘4 1
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Lemma 25. Let m > 2 be a positive integer. Then, one has for
0<i<m-1

" e, || _ (nmax{(l—/\)m—Z(m—i),O})
m,i

(120)

" 1, 0<i<m-2
Inn, i=m-1.

Proof. By [10, (26)], it is sufficient to prove (120) for 0 < x <
1-a/n*, wherea > Oisa ﬁxed sufficiently small constant. In
the following case, let x € [Sk LD’ ) 1n[0,1-a/n?] for

k+1,n+1

some 1 < k < n + 1. Then, we have from (32), (34), and (47)

m W
ei,,ulpl,n+1 (X) (X - 5#,n+1)
e [k=2,k+2]
_ | | E/\,n+1 (x) 1
€ N i m—i
pe[k-2,k+2] E) 1 ( s n+1) 'x 5,4 n+1|
e I’li 17/\ lf/l(x) 1
= -1 —A )
uglk—2k+2] 9" (EM n+1) n- (E 1) |x Eﬂ n+l

(1-A)m
<c? (x)

A
(P " l(£[4n+l)
m—i m—i
n g lk—2k+2] 'x EM+1|
-0 (nmax{(1—A)m—z(m—i),o}) L, 0<i<m-2
Inn, i=m-1.
(121)

The last inequality follows from Lemma 24. On the other
hand, if p € [k -2, k + 2], there exists 6 between x and f
such that we see from (34) and (36) w1th r=1,

u,n+1

E:\,n+1 (6;4)

—— | <C. (122)
o8}
Efl n+1 (Ey,m—l)

o (0] -

Hence, from (47) and (80), we conclude that

. ;
Z ei,;dly,nJrl (X) ( E‘u n+1)
pelk—2k+2] (123)
1<psn+l
Therefore, we have the result. O
Lemma 26. Let m > 2 be an even integer. Then,
x{(1-1)m-2,0}
| Hps s || = O (nmO0m=200), (124)

Proof. First we note that m — 1 is odd. Let x ¢
p)
[ o 10 [0,1-a/n’] (E()ml = -1 £n+2n+1 = 1)

k-1,n+1’ k+1 n+1
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for some 1 < y < n+ 1. Then, considering «,, & as (1 — A)m,
1 — A, we have from (32), (34), (48), and Lemma 23(b)

Z ‘em—l,yl;,:fnﬂ (x) (x - E;(:,\r)tﬂ)m_l'

uélk—2,k+2]
EA n+1(x) 1
= 2 'em—l,u|
pé[k=2,k+2] A,n+1 yn+1 |x 6,4 n+1
Am—m+1-(1-2) ( £(A)
) A ()
= FE) m
iz e Eo|
_ (A) (A-1)m—=(1-1) (£(1)
_ 4’(1 D (x) ¢ (Eﬂ’"ﬂ) ' " (E.Mﬁ*l)
)
n uglk—2k+2) 1 |x E# ,,H'

A=1)m—(1-
A=Dm=(=) (1 d — O(nmax{(l—)t)mflo})

>

o) J ¢
ni-2 |x —t|

(125)

where it is integrated under [-1 + C/n®, 1 — C/n?] \
[ (A)

DT k +2 .+1]- Besides, we have, similarly to (123),

m Wy
€t ylmes () (x = E0 ) | <C. (126)

pelk-2,k+2]
Therefore, we have the result. O
Lemma 27. For any polynomial R € P,,,..._,, one has

R (x) -

n+1 m ] (X)|

© (nmax{(l—A)m—Z(m—t—i),O}) Inn.

(127)

Proof. Let x € | ,(i)l)nﬂ, anH] Nn[0,1 - a/n?]

-1, En+2n+l :=1)forsomel <u<n+l.

(EO ntl -

R(X) n+1m [R] (x)

= Hyp1m [R] () -

m—

> ZR“’ (Sines) P ()

t=1u

Hyyp1m [R] (%)

n+lm—

SS9 (5 8)

u=1t=1 i=0

-y s

uelk—2k+2]  pelk-2,k+2]

(128)

Here, e;;; is the coefficient of the higher-order Hermite
interpolation polynomial H, +1.m[R] based on the zeros of

1

Ej 11> defined in (11). Since e;;; = €5, = €;;, We can see
from (47) that uniformly for0 <i <m -1,

Jetial < Crlg™ (§nin) - (129)

Hence, using (32) and (34), we see for p ¢ [k — 2,k + 2]

ttl * R(t) (Ey, n+1) Uy n+1 ) (x - EL/}V)HI )Hi
. " R® ‘Pt“oo o1 (x) g LAZH) (130)
= nt =+ m—(t+i) °
' S‘u n+1 |

Here, using Lemma 24 with ¢ + i asi for y ¢ [k -2,k + 2],
we have the right formula in the lemma. We also see that for
pelk—2k+2]

: . R(t) t
%R(t) (E;,jr)ﬁl) 1 (%) (x M/’\r)l+1)t+l gC" n‘f “oo
| (131)
Consequently, we have
|R (x) - n+1 m [R] (X)'
< mz; Zl(; ||R(t)(pt|' ( maX{(l—)\)mfZ(m—t—i),o}) Inn.
(132)
O

Proof of Theorem 1. (a) From Lemma 26, the result is trivially
proved.

(b) Since f is continuous on [-1, 1], for given & > 0, there
exists a polynomial R such that for x € [-1,1]

|f () -R(x)| <e (133)

Then, one has from Lemmas 26 and 27

hm | n+1m[f] (X)—f(X)l
<|f () =R+ lim |H,.,, [f - R] ()|

+ Tim_ |H,,,, [R] (x) - R(x)| (134)

< C(1+ [Hyrm) IS = Rl

m=1m=1-t R(t) t
Tl

t=1 i=0

——— ®Inn<Ce.

This implies (21). O

Lemma 28. Let 0 < i < m— 1. Leta > 0 be a fixed,

sufficiently small constant. x € [y](j”1 2n+1,yk+1 i) N[0, 1 =
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)
aln’] (Y1 = =Ly s = 1) for some 1 < k < 2n+ 1.
Then we have uniformly for n

- 2A\m— 1)
¢(1 20)m (x) @ m 1(yv2n+1)
nm—i m—i
yﬂ:szz’ﬁﬁ]’ 'x yv 2n+1
1 (135)
An,i (%) 1f0<)t< E;
N 1
Bn,i(x) ifESA<1,
where
A, (x) = pmel=20m=2(m=0)0}
1,1
L 0<ism-2 (136)
Inn, i=m-1,
B, (x) = @I (x)
L osism-g (137)
Inn, i=m-1.

Proof. When 0 < A < 1/2, we can show the lemma as the
proof of Lemma 24 (see (116)). If 1/2 < A < 1, we have from
Lemma 23 (¢),

vé¢[k—2,k+2],
1<v<2n+1
(1 20)m
< C—(x)
nm-i- 1
A-1)m+m—i—1
t
X J (P—m—i()dt
[_1+a/"2’1_”/”2]\[y19)1 2n+1° yl(c:\r)l 2] lx — 1]
. 1
Ayi(x) ifo<A< >
<
= 1
Bn,i (.X) lfz <A<l
(138)
O]
Let
2n+1
%2n+1 m,i [f (X) Z el vlv 2n+1 (x)
(139)
Ny )
X (x yv2n+1) f(yv2n+l)
then
T i [ £1(0) 1= Z T snirms | ] (). (140)
Let
2n+1 » ;
m
||%2ﬂ+1 mz" = Ssup Z el vlv 2n+1 (X) (x - y%zn*'l) (141)

x€[-1,1] y=1

Journal of Applied Mathematics

and for a nonnegative real function u(x),

"%Zrﬁl,m,i“u sup u(x)

x€[-1,1]
(142)

2n+1 W ;
ez vlv 2n+1 (x) (x - yv,2n+1) .

x 2,

Lemma 29. Let m > 2 be a positive integer. If 0 < A < 1/2,
then one has for0 <i<m-—1

(5 sm = O (20301
n+1,m,1

X{l, 0<ism-2 4
Inn, i=m-1.
If1/2< A < 1, then one has for0 <i<m -1
”%Zrtﬂ,m,i"(p(u—l)m =0(1)
(144)

" 1, 0<i<m-2;
Inn, i=m-1.

Proof. Similarly to the proof of Lemma 25, using (51), we have
from Proposition 7(2), Proposition 8 (35), and Lemma 28

2

- Y
ei,vlv,gqn+1 (X) (x yv 2n+1)

ve[k-2,k+2],
1<v<2n+1
2Am—i (. (A)
<C (1 “2m (x) 97 I(yv2n+l)
R vé[k—zz: o, M |x y 'mii (145)
ISVsin+1 ’ v2n+1
. 1
A,i(x) ifo<A< >
<
= 1
Bn,i (x) le <A<,

where A, ;(x) and B, ;(x) are defined by (136) or (137).
Besides, we easily know from (51), (35), (38), and (80)

- Y
Z e‘,vlv,rznnﬂ (x) (x - yv,2n+1) <C.
ve[k-2,k+2], ' (146)
1<v<2n+1
Therefore, we have the result. ]
Let
2n+1
%Znﬂ i [f (x) Z ezvlvrznnﬂ (x)

(147)

X (x - ygz),,ﬂ)if (yw(/,AZ)nH) >

then
m—1
%2n+1,m [f] (x) = Z %2n+l,m,i [f] (X) . (148)
i=0
Let
2n+1 3 i
”%Zrﬁlml" - Sup Z ez vlv2n+l (X) (.X y1(/2)n+1)

x€[-1,1] y=1
(149)
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Lemma 30. Let m > 2 be an even integer. Then, one has for
0<A<1/2

"'%Zrl-f-l,m,m—l" -0 (nmax{(l—z)t)m—z,o}) (150)
and for1/2 <A <1
||%2n+1,m,m—l ||(P(2/171)m =0 (1) . (151)

Proof. First, we note that m — 1 is odd. Similarly to the proof
of Lemma 26, using Proposition 7(2), Proposition 8 (35), and
(51), we have

Yo Y feh 0 (x58)"]

v¢[k-2,k+2],
1<v<2n+1
21
§ Cq)(l 20)m (.X)
- n2—A
2Am—m+1—(1-7) ( (1) ) (152)
¢ v,2n+1
X
v¢[k-2,k+2], |x ;Vv 2n+1
1<v<2n+1
(1-21)m (2A-1)m—(1-1)
X t
<2 A()pr ()ﬁ,
n'- A [x —¢|
A
where A = [-1 + a/n?,1 — a/n*] \ [y,i )1 2n+1’yk+12n+1] If

0 < A < 1/2, considering «; and ¢, as (1 — 2A)m and (1 - 1),
respectively, we have from Lemma 23(b)

()nl)l

@A-Dm-(1-1)
t
JSD ()dt<C(pm1
A

|lx -t (153)

« O (nmax{(l—ZA)m—Z,O})

and if 1/2 < A < 1, considering «, and & as (2A — 1)m and
(1 — A), respectively, we have from Lemma 23(d)

(154)

(2A-1)m—(1-1)
t _
J&___L@S@w
A

|2 — ¢
Hence, we conclude that

nmax{( 1-21)m-2,0} ,

Y <cC

(155)

— NI»—d

0<A<
m 1
<P(l 21) (x) , Z<A<
2
Besides, we easily know that

2

ve[k—2,k+2],
1<v<2n+1

* * ) m—1
em—l,ylv,rzr:1+l (x) (x y‘ll 2n+1) | < C. (156)

Therefore, we have the result. O
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Lemma 31. For any polynomial R € P,,,,...._1, one has

|R (%) = # ypi1,m [R] (x)|

(157)

1
Ay (x) ifO<A< >

X

1
Buwi(x) if 3 SA<L

Proof. We have using Lemma 28

IR (x) = F ys1,m [R] ()]

s (89 (2h)

<C) ) ;

t=1 i=0 »=1

n

Pt (yw(/AZ)nJrl )

m—(t+i)

¢(1—2/\)m (x) (p

nm—(H—i) )
'x = Vrane1

1
Ai(x), if0<A< >

Bn,t+i (X) > if % < A<,
(158)
O]

Proof of Theorem 2. Using Lemmas 29, 30, and 31, it is similar
to the proof of Theorem 1. O

4.2. Proof of Theorems 3 and 4

Proof of Theorems 3 and 4. Suppose thatm = 1,3,5,..., and
let

n+lm-1

n+1m(x) - ZZ

u=1i=0

zpl y.n+1 (x) (x Ey, n+1)i (159)

From (17), we know that

|5

|| =

sup An+lm( )

x€[-1,1

(160)

Let x,, be the least positive zero of P, ,,(x). Then, we have

A n+l,m (‘xO)

m

Ej (Xo)
(A)
E:\ n+1 (Ey,nﬂ)

\%

-1 /2<£“> <0

o+l =

(161)

m—2
|m1 | el
% M _Z H

5 (x = &)™

E.u n+1
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Since we know from (42), (34), and (47)

2

—1/255,(4)}2‘“3

m
E) ni1(%0) ' Em-— 1l4|

An+1(£y n+1 Eptn+l

11 0 1
~ Z ~ J dt ~Inn,
1250, <0 Ey w1 2%

2

A
-1/2<EP <0

m
m—2 'e

Z "‘| : (162)

= (x - )
m—2 1

1 1
~ Y X a T

% m-i
i=0 1/2<E”’3+1<0 (x() - E.u);/H.l)

~Z m;lJ-

Thus, we have

Ej ni1(x0)

()]
An+l Eﬂ,n+1 )

dt~ 1.
12 (xo = )"

A iim (x0) = Clnn. (163)

Therefore, we have the result from Lemma 29. O

Remark 32. Similarly, if we let x1 be the least zero of P, , (x)
with x; > ¢ and if we consider A, ,,(x) for (=1 +¢)/2 <

fﬁzﬂ <c,thenwehavefor-1<c<d<1

maxA ., , (x) 2 Clnn.

(ed] (164)

Proof of Theorem 4. Suppose that m = 2,4,.... Let x, be the
least positive zero of Py ,(x). Then, similarly to the proof of
Theorem 3, we have using the assumption (27)

An+1,m (xO)
m m—2
EMEDN
i=0

>
S Z ¢ (EL),{;z+l)nA—1(P(A—1)(m+l) (E(A) )

E/\ n+1 (xO)

[\

)
-1t <172 /\n+1 E 1)
u.n+1

—1<£

M"+1< 1/2

-1/2
e J' GODID 4y gy (1-Bm2

—1+1/n?

(165)
Here, we used the followings:
n/\+m—2 c Z n/\+m—2
- (%) 1 - ™y
(P /\+m( y,n+1) ( yn+1) (P /\+m( y,n+1)
BEEe Mm-1-1
J A1 () gy (1-Wm1-

—1+1/n?

(166)

because (A-1)m+A-1)/2 < (-=3+1)/2 < —1. Thus, we have
IH 1]l = Cn""Y™2 and it implies (28) from (20). O
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Proposition 33 (see [6, (8.21.10)]). Fore <0< m—¢,

LA+ l/z)n)t 1 —1/2,2

2Msin~*0
oD sin

Py, (cos) =
o (167)
MNO——1++0
X COS {(n +A) 5 } + ( )
Proposition 34 (see [11, Theorem]). Fore < 0 <m —¢,

1-A_~1/2,2-1_. 1-
E) 41 (cosO) =n A 222 Ain' g

X COS {(n+/\)6 “ 21)71} +o(n1_A).
(168)

Lemma35. Fore <0 <m—¢

T(A+1/2)
FA,2n+1 (COS 0) = - W
x 7 'sin! @ sin 2m+A)0-Ant+0(1).
(169)
Proof. 1t is proved from (167) and (168). O
Proof of Theorem 5. Suppose that m = 1,3,5,..., and let
2n+1m-—1 W i
2n+1 m (x) - z z el vlv 2n+1 (x) (x - yv,2n+1) : (170)
v=1 i=0
From (18), we know that
”%2%1 m" = sup A2n+1 m (x). (171)
x€[-1,1]

Let x, = cos((A + n + 1/2)w/2(n + A)). Then, we know
F,5u1(x9) ~ 1 from (169). Then, similarly to the proof of
Theorem 3, we have from (35), (56), and (51), for x > 0,

K2n+1,m (xo)

m
S Ey i (Xo)
- I (1)
-1/2<y),,,<0 Fan1 0y 2n1
% | :n 1 v| = ezv
(1) \) m—i
yv2n+1 =0 ( X — yv,2n+1)
> Clnn.
(172)

Therefore, we have the result from Lemma 29. O
Proof of Theorem 6. Suppose that m = 2,4,.... Let x, :=

cos((A + n + 1/2) m/2(n + A)). Then, since we know that
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F,.1(x9) ~ 1 as we see above, similarly to the proof of
Theorem 4, we have using the assumption (30)

K 2n+l,m (Xo)

.y

A
‘ISJ’E,z)nHS_l/Z

m—2
x ( e:n—l,v - Z eZv >
i=0
> C Z (gDZA (ng,);)n+l) )
<-1/2 i

_15y§2n+1—
-1 J—I/Z
—1+1/n?
Here, we used the following:
220 m - -
<‘P (Pransn > ( nm _C " )
Y \) Lom—2(, )
n (P o (yv,2n+1) (Pm 2 (yv,2n+l)

> C2< (PZA (y%)nﬂ) >m

m
Fv,2n+1 (xO)

/ (V)
E v,2n+1 ()’ v,2n+1

m
n)t+m—2

o (D)

A-1)m+(A-1) (t) dt ~ ,(1-20m=2

(173)

n)Hm—Z

97" (Vo)

>

n

-1/2
j—1+1/n2 4

2A-1)m+(A-1) (t) dt ~ n(l—ZA)m—l—A

(174)
because (2A — 1)m + A —1)/2 < (=3 + A)/2 < —1. Therefore,
we have the result. O
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