

REACTIVE (RE) PLANNING AGENTS IN A
DYNAMIC ENVIRONMENT

Debdeep Banerjee, Jeffrey Tweedale

KES Centre, University of South Australia, Mawson Lakes, Australia,
Debdeep.Banerjee@unisa.edu.au. Airborne Mission Systems Baranch, Defence Science and
Technology Organisation Edinburgh, South Australia, Australia,
Jeffrey.Tweedale@dsto.defence.gov.au .

Abstract: Intelligent agents are powerful tools for complex and dynamic problems.
Belief Desire Intension (BDI) is one of the most popular agent architectures
for reactive goal directed agents. Planning is intrinsic for intelligent
behaviour. But planning from first principle is costly in terms of computation
time and resources. BDI agents retain their reactive property by avoiding
planning from real-time planning by using predefined plan library designed by
agent designers. BDI agents look for a plan in the library to achieve their
goals. If the agent could find a plan it fails to achieve the goal. It would be
useful to have some real-time look ahead planning capability within BDI
framework. In this paper we have proposed an architecture that includes (re)
planning in BDI agents. The proposed architecture describes how to integrate a
real-time planner with replanning capability in the current BDI architecture.
Replanning capability is important for reactive behaviour.

Key words: BDI agent, AI planning

1. INTRODUCTION

Intelligent software agents are powerful tools in today’s modern software
systems. They have been deployed in complex and dynamic hostile
environment and even in unknown environments. Research in intelligent
agents is very active and progressive. According to Russell and Norvig [14]

2 Debdeep Banerjee, Jeffrey Tweedale

“An agent can be anything that perceives its environment through sensors
prior to acting upon the environment through actuators”. Wooldridge defines
an agent as “a computer system capable of autonomous action in a given
environment in order to meet its design objectives” [1]. Jennings adds four
main properties to these definitions which are: autonomy, reactivity, pro-
activity and social ability [2]. Another important aspect to consider is its
environment that an agent operates [14]. The agent’s characteristics and
capabilities also depend on the environment, because agent has to interact
with its environment. Agent’s environment has been divided between Static
and Dynamic environment, fully Observable and partially Observable
environment, Continuous and Discrete environment, Deterministic and Non-
deterministic environment. There are mainly three common categories of
architectures used to design intelligent agents: the Brooks subsumption
architecture [17], Bratmans’ Belief-Desires-Intension (BDI) architecture [4]
and the layered model [18]. The BDI model was derived from the model of
human practical reasoning system [4] based on rational agents that conduct
actions that will help it achieve its goals. Practical reasoning is used to
decide what to do (deliberation) and how to do it (means-end-analysis) [1].

Planning is intrinsic for any intelligent behaviour. Humans tend to plan
most events they contribute to in the real world. The planning process may
not always be visible, especially when those actions require routine skills,
rule based tasks and procedures performed by subject matter experts.
Humans’ (re) use the rules, skills and knowledge stored in memory (plans
that need to be embodied into agents) to achieve tasks they may have
previously encountered [16]. We tend to plan for situations that are new,
complex or critical. Planning is a costly process in the terms of time and
computation. The motivation for Intelligent Agents is to personify human
capabilities, so they can be used in place of humans and how they achieve
the given goal by acting rationally in their environment. The main part of a
rational act is that of practical reasoning. So the planning is the part of the
practical reasoning as it describes a set of actions to achieve a goal [4].

This paper is organized in four parts. Section two describes the problems
relating to planning in BDI architecture and the motivation of the proposed
architecture. Next section describes the proposed architecture and section
four contains the research methodology. Section five concludes the paper
with the future directions.

2. MOTIVATION

BDI agents use a plan library or predefined set of plans, instead of
planning from first principle [3]. When an agent commits to an intension, it

Reactive (Re) Planning Agents in a Dynamic Environment 3

looks through its plan library for feasible plan, which is executed in order to
achieve the goal. If the plan fails and a suitable alternative can’t be identified
then the agent fails to achieve the goal [3]. The main bottleneck of most BDI
architectures is the plan library. Library agents are predominantly
deterministic in nature, because all of its behaviour is hard coded into the
library. The knowledge about how to achieve a specific task must be
explicitly captured as plans in the library by the designer, prior to run-time.
If the agent’s environment is static, or partially dynamic and deterministic,
then the above approach is efficient. In most cases the real environment is
dynamic and non-deterministic. In this case it becomes extremely
challenging for agent designer to write task specific plans for every possible
situation. In this case a generic approach must be to guide the agent towards
a possible solution.

Bratman used practical reasoning to construct his BDI architecture [4]
when computer hardware had primitive capabilities with limited
computational power. Modern computers enable designers to write larger
and more complex agents. It also allows designers to relax some of the
original resource constraint. Ideally an intelligent rational agent should be
able do decide what to do and how to do it in a particular situation. The
agent is designed to do a specific task (such as monitoring the
communication network and fault diagnosis). Artificial Intelligent agents
only need to decide how to achieve its goals by using knowledge about the
environment and knowledge about its capabilities and measures. Within this
process the agent should identify any sub-tasks to be achieved given the goal
and suitable plans to achieve them. To succeed, autonomous agents must
have a planning component capable of synthesizing its own course of actions
from within the environment it resides.

There are agent architectures (such as RETSINA [19], PROPICE [20],
CYPRESS [21], INTERRAP [22], TAIPE [23] etc.) that incorporate a
planning component as part of the agent architecture. These systems
implement different architecture to incorporate the planning module. Our
proposed architecture extends the BDI agent architecture with online
planning capabilities which will be handled within main BDI loop rather
than accessed as an external component.

3. A FLEXIBLE PLANNING ARCHITECTURE FOR
BDI AGENTS

To provide reactive behaviour to the BDI agents a new architecture has
been proposed (Fig 2). This architecture is an extension of the BDI

4 Debdeep Banerjee, Jeffrey Tweedale

architecture (Fig 1) as Wooldridge described in [3]. Two main modifications
have been made in this architecture compare to the previous architecture.

Figure 1. BDI Agent Architecture

The agent interpreter module has been extended by introducing a new
State Change Monitor and a Sub Goal Deliberation module. The plan library
of the previous architecture has been replaced by the Planning module. The
purpose of these changes is to provide an agent means to react in a dynamic
environment by reacting to the changes that occurs dynamically within that
environment.

Reactive (Re) Planning Agents in a Dynamic Environment 5

Figure 2. (Re) Planning Agent Architecture

3.1 The Planning module

To overcome the problems of the restricted plan library an online
planning module has been introduced in the place of the plan library. The
planning module consists of three sub-modules.

3.1.1 Action Library

It contains the actions that an agent can perform. Every action has
preconditions and effects. These actions can be modeled as plans without
any sub-plans. The practical implementation of the actions can be in
different abstraction levels. This level of abstraction depends on the
problem.

3.1.2 Planner

This can be any planner that will take the initial state, goal state and a set
of action and synthesis a sequence of executable actions. Type of planner
can depend on the problem domain.

6 Debdeep Banerjee, Jeffrey Tweedale

3.1.3 Replanning Module

It is responsible for repairing or refining a failed plan. The output of the
replanning module can be an abstract plan or a partial plan or even a total
plan depends on the particular replanning strategy chosen.

3.2 The Extensions of the Agent Interpreter

To be reactive an agent should identify the changes in the environment
that has an effect on its behavior. Then agent should decide what it should do
to deal with the changes and how it can still achieve its goal. To provide this
reactive deliberation capability Sate Change Monitor and Sub-goal
Deliberation Module has been proposed as an extension of the agent
interpreter.

3.2.1 Sate Change Monitor

It monitors the state of the world. It checks that if environment changes
in such a way that it would make the some goal state true or assumptions of
planning (conjunction of the preconditions of the actions) false. There can be
two types of reactions from the state change monitor. Firstly it needs to
identify when the goal is already been achieved or goal can not be achieved,
then it stops the planning process and notify the Sub-goal Deliberation
Module. Secondly when it identifies that some action preconditions of the
plan become false it invokes the replanning module. Then the replanning
module tries to repair the current plan. Using the State Change Monitor, we
can separate the situation where we would need a new plan and where we
need to repair the plan. Until the goal state is achieved or goal state become
unachievable agent should try to achieve the goal.

3.2.2 Sub-goal Deliberation

It defines a goal sate for the agent by considering the current environment
and agent’s desires. It would take current world state and agent’s desires as
input and produce a desired goal state for the agent. It forwards the goal state
to the planner. The Sub-goal Deliberation module can be implemented
differently for different domains and can contain domain knowledge. Sub-
goal Deliberation Module provides the goal state for planning. For goal state
synthesis different approaches, such as decision theoretic approach, case-
based approach, knowledge base, hierarchical task network approach etc,
can be incorporated. The Sub-goal Deliberation module can be designed as

Reactive (Re) Planning Agents in a Dynamic Environment 7

per the type of the environment and the problem. The level of the granularity
of the goals is proportional to the dynamic nature of the problem.

This architecture will provide reactivity to the agent situated in a

dynamic environment. Agent can handle the changes in the environment by
monitoring the state of the world. This architecture is flexible and extensible.
Different types of reactive domains (for example robot soccer, UAV, UT
etc.) can be encoded by choosing different sub goal formulation methods in
Sub-goal Deliberation module. Next section discusses the methodologies
involved in developing the architecture discussed above.

4. METHODOLOGY

In the proposed agent architecture the extension of the agent interpreter
would provide the method of Sub-goal Deliberation and the planning module
would provide the means-end analysis. We divide the problem in three main
parts. The first is designing the Sate Change Monitor module. The second is
to provide a real-time planning module with replanning capability and third
will be the modeling the Sub-goal Deliberation process.

For the first problem we need to design a module that will identify when
a plan fails. There are two possibilities, the goal state has already been
achieved by other agents or the goal state become unachievable and some
precondition become false due to some changes in the environment. In the
first case the State Change Monitor should send a notification to the Sub-
goal Deliberation module for new goal deliberation and for the latter case it
invokes the replanning sub module of the planning module. To implement a
State Change Monitor we need to implement an execution monitoring
module that checks if the plan is still consistent with the current world after
execution of each action. To check consistency it will check if all the
preconditions of the actions that are still to be executed at the next step are
true and the goal is still achievable but not achieved yet [14].

For the planning module we assume the environment is fully observable.
To incorporate the planning module we need to find a common
representation of the actions between the chosen planner and the agent
architecture. There are similarities between the BDI architecture and HTN
(Hierarchical Task Network) based planning [5]. A wrapper can be created
that maps the BDI agent syntax to the HTN based planner syntax similar to
[6]. For replanning capabilities we can implement a replanning module on
top of the planner. There are different options exist for replanning. First
option would be introducing replanning algorithm [8, 9] which can start
replanning by backtracking from the point where the plan fails and choose

8 Debdeep Banerjee, Jeffrey Tweedale

alternative path. Replanning can also be done by plan refinement technique
where in the case of a failed plan refinement technique replaces the failed
actions with the alternate actions [10, 11]. In the dynamic environment the
environment changes very fast. An agent situated in this dynamic
environment needs to react to these changes. For this highly reactive
behaviour agent may not need to synthesis a full plan for achieving goal.
This reactivity can be achieved by incorporating anytime algorithm based
planner [7]. In anytime based planner a planner can be interrupted at anytime
and planner always have some executable plan as the result [7, 8]. The main
problem in this kind of planner is to guarantee the quality of the resultant
plan. On the other hand genetic algorithm [12, 13] can also be implemented
so at any point of time agent can have an executable plan.

The Sub-goal Deliberation module can be compared to the plan library of
the BDI agent architecture. It can contain the domain specific knowledge in
the form of predefined task decomposition. Only difference would be instead
of producing an executable plan it will produce abstract level tasks as sub
goals. We can incorporate different strategies, such as decision theoretic
approach, case-based approach, knowledge-based approach, for Sub-goal
Deliberation. Sub-goal Deliberation process can be modeled as planning
problem that will generate abstract sequence of tasks and the planning
module can be seen as action scheduling problem for instantiating those
tasks.

5. CONCLUSION

The current BDI model’s main bottleneck is the plan library. If the agent
fails to find a plan in its plan library it fails to achieve the goal. This is not
desirable in most real world situations. The agent must adapt to the current
situation. Since most of the real world environment is complex and highly
dynamic it is nearly impossible for an agent designer to write predefined
plan for every possible situations. The proposed architecture introduced
online planning with replanning capability in BDI agent architecture. This
architecture can use the domain knowledge for Sub-goal Deliberation and
provide flexibility for different types of dynamic domains. This architecture
can also be extent in the cases where the environment is not fully observable
and changes frequently in random manner.

The implementation phase has four main steps. The first step is to find a
common representation of the planning problem between the planner and the
agent architecture. We will use JACK as our BDI implementation. JACK
[15] is a BDI based commercial strength multi-agent based software
development framework based on JAVA. It is developed by the Agent

Reactive (Re) Planning Agents in a Dynamic Environment 9

Oriented Software. JACK provides a high performance, lightweight
implementation of BDI architecture. It is an agent oriented programming
extension of JAVA. The second step would be interfacing a external planner
with the JACK agent or incorporating an planning algorithm within JACK.
The next step would be implementing a State Change Monitor in context of
JACK system. Last step would be to extend the planner with some
replanning or anytime algorithm for reactivity. Different replanning
algorithm can implemented and compared based on the performance.

REFERENCE

1. M. Wooldridge: Reasoning about Rational Agents, The MIT Press, London (2000)
2. M. Wooldridge, N.R. Jennings: Intelligent agents- theory and practice, Knowledge

Engineering Review, 10 (2), (1995)
3. Wooldridge, M: Practical Reasoning with Procedural Knowledge- A Logic of BDI Agents

with Know-How, in Proceedings of the International Conference on Formal and Applied
Practical Reasoning, Springer-Verlag, Berlin (1996)

4. Bratman ME: Intentions, Plans and Practical Reason, Harvard University Press:
Cambridge, MA (1987)

5. Lavindra de Silva and Lin Padgham: A Comparison of BDI Based Real-Time Reasoning
and HTN Based Planning. In Proceedings of the 17th Australian Joint Conference on
Artificial Intelligence, Cairns, Australia, (Dec 2004)

6. Lavindra de Silva, Lin Padgham: Planning on Demand in BDI Systems. International
Conference on Automated Planning and Scheduling, Monterey, California, (June 2005)

7. N. Hawes: Anytime planning for agent behaviour, In Proceedings of the 12th Workshop of
PLANSIG, (2001)157-166

8. Hawes. N: An anytime planning agent for computer game worlds. In Workshop on Agents
in Computer Games at The 3rd International Conference on Computers and Games
(CG'02), Edmonton, Canada, (2002) 1-14

9. G. Boella, R. Damiano: A replanning algorithm for a reactive agent architecture. In
D. Scott, editor, Artificial Intelligence: Methodology, Systems, and Applications, LNCS
2443, Springer Verlag, (2002) 183-192

10. Roman van der Krogt and Mathijs de Weerdt: Plan Repair using a Plan Library, BNAIC,
(2005) 284-259

11. Roman van der Krogt, Mathijs de Weerdt: Plan Repair as an Extension of Planning.
ICAPS,(2005) 161-170

12. C. H. Westerberg, J. Levine: GenPlan- Combining genetic programming and planning. In
Proc. of the 19th Workshop of the UK Planning and Scheduling Special Interest Group
(PLANSIG), (2000)

13. L. Spector: Genetic programming and AI planning systems, Proceedings of the twelfth
national conference on Artificial intelligence, Seattle, Washington, United States, (1994)

14. S. J. Russell, P. Norvig: Artificial Intelligence- A Modern Approach. Prentice Hall, 2nd
edition, (2003)

15. A. Hodgson, N. Howden, R. Rönnquist and A. Lucas: Jack intelligent agents -- summary
of an agent infrastructure. In 5th International Conference on Autonomous Agents (2001)

16. Rasmussen, J: Information processing and human machine interaction: An approach to
cognitive engineering, New York, North Holland (1986).

10 Debdeep Banerjee, Jeffrey Tweedale

17. R. A. Brooks: How to build complete creatures rather than isolated cognitive simulators.

In K. VanLehn (ed.), Architectures for Intelligence, Lawrence Erlbaum Assosiates,
Hillsdale, NJ (1991) 225-239

18. J. P. Mller and M. Pischel: The Agent Architecture InteRRaP: Concept and Application.
Technical Report RR-93-26, DFKI Saarbrucken, (1993)

19. M. Paolucci, D. Kalp, A. Pannu, O. Shehory and K. Sycara: .A planning component for
RETSINA agents"; Lecture Notes in Artitcial Intelligence, Intelligent Agents VI, Springer
(2000).

20. O. Despouys and F. F. IngrandF: Propice-Plan: Toward a Unified Framework for
Planning and Execution. In European Conference on Planning (ECP), 278-293, 1999[1]

21. D. Wilkins, K. Myers, J. Lowrance, and L. Wesley: Planning and reacting in uncertain
and dynamic environments, Journal of Experimental and Theoretical Artificial Intelligence
(7) (1995) 972-978.

22. K. Fischer, J.P. Muller and M. Pisschel. Unifying control in a layered agent architecture,
Agent Theory, Architecture and Language Workshop, Montreal (1995)

23. E. H. Durfee, M. Huber, M. Kurnow and J. Lee, TAIPE: Tactical Assistants for
Interaction Planning and Execution, First International Conference on Autonomous
Agents (Agents'97) (1997).

