

 1

The HOOPS 3D Graphics System:
A Technical Overview

1 What is the HOOPS 3D Graphics System?....................................2

1.1 SUPPORTED PLATFORMS..2
1.2 DEVICE SUPPORT ..3

2 The HOOPS/3dGS Architecture ...4
2.1 RETAINED-MODE GRAPHICS SYSTEM ..5
2.2 THE OBJECT DATABASE ...6

2.2.1 Coordinates and Coordinate Systems...................................6
2.2.2 Inserting Geometry By Reference ...7

2.3 DATABASE TRAVERSAL...7
2.4 RENDERING PIPELINE: THE HOOPS/3DGS STRUCTURED DEVICE

I NTERFACE
®

 (HDI) ..8
2.5 FLOW OF CONTROL..9

3 HOOPS as an Object-Oriented System..10
3.1 ENCAPSULATION AND DATA HIDING WITH SEGMENTS10

3.1.1 Segment Pathnames and Handles......................................11
3.1.2 Instancing and Reuse with Include Segments12
3.1.3 Driver Segments...12

3.2 MESSAGING AND METHODS ..13
3.3 ATTRIBUTE INHERITANCE ..13

3.3.1 Default Attribute Values ..13
3.3.2 Nonstandard Attribute Inheritance.......................................14
3.3.3 Attribute Lock ...14
3.3.4 Style Segments ..15
3.3.5 Attribute Inheritance Summary..15

4 Geometry and Attributes..16
4.1 GEOMETRY PROVIDED IN HOOPS/3DGS.......................................16
4.2 ATTRIBUTES..20

4.2.1 Display Attributes..20
4.2.2 Modeling & Viewing ..21
4.2.3 Rendering Attributes ...23
4.2.4 Selection ..24
4.2.5 Driver Options ..24
4.2.6 System Options ..24
4.2.7 Heuristics ...25

5 Input and Hit-testing...26
6 Integrating HOOPS/3dGS with a GUI Toolkit...............................28

6.1 WINDOW SYSTEM INTEGRATION ..28
6.2 DRAWING INTO NATIVE APPLICATION WINDOWS..............................28
6.3 COLORMAP SHARING ...28

7 HOOPS/3dGS Intermediate Mode ..29
7.1 WHY USE HOOPS/3DGS INTERMEDIATE MODE?31

8 Appendix A: Immediate Versus Retained Mode Graphics
Systems ..32

 2

1 What is the HOOPS 3D Graphics System?
HOOPS 3D Graphics System (HOOPS/3dGS) is a high performance 3D
rendering toolkit for developers building applications for the Windows and
UNIX operating systems and the Internet. HOOPS/3dGS' highly optimized
data structures and algorithms dramatically simplify the development of 2D
and 3D, interactive, vector and raster graphics-based CAD/CAM/CAE,
Scientific Visualization, and Geographical Information System (GIS)
applications.

HOOPS/3dGS contains:
• A subroutine library that provides for the creation, management,

querying and editing of an application’s graphical information and is
linked with an application’s object code. The libraries can be
dynamically or statically linked.

• A large suite of supporting demonstration and integration code to
assist developers in learning about HOOPS/3dGS and incorporating it
into their application.

Application developers combine their core application logic with
HOOPS/3dGS and the user interface to develop interactive graphics
applications.

HOOPS/3dGS is just one of the modules contained within Tech Soft
America’s HOOPS 3D Application Framework (HOOPS/3dAF).
HOOPS/3dAF consists of a highly optimized, integrated suite of industry
leading software components. This framework provides an extensible,
modular base architecture that enables the rapid development of world-
class 3D CAD/CAM/CAE applications for the Windows and UNIX
operating systems.

For more information on how HOOPS/3dGS and other modules of the
HOOPS 3D Application Framework integrate into a customer’s interactive
graphics application, refer to the HOOPS/3dAF technical overview at
http://www.techsoftamerica.com.

1.1 Supported Platforms

Windows Operating System
Windows 95/98
Windows NT 4.0 Intel

Unix Operating System
IBM RS6000: AIX
DEC Alpha OSF/1
SGI: IRIX
HP: HP-UX
Sun: Solaris
Intel: LINUX

 3

Available through obfuscated source (already ported):
Dec Ultrix
Dec Alpha OpenVMS
HP-UX for HP300/400
Intergraph Clipper Unix
IRIX 4.0x for SGI
OpenVMS VAX
XDOS MetaWare / Phar Lap
Windows NT for Intel using WATCOM
Windows NT for MIPS
Windows NT DEC Alpha
SunOS

1.2 Device Support

Display Drivers
GL (AIX, SGI)
OpenGL (AIX, Dec Alpha OSF/1, HP/UX, SGI, Solaris, Windows NT)
HP Starbase
Sun XGL
X11 (for all major Unix platforms)
MS Windows GDI (Screen)
MS Windows GDI (Clipboard)

Hardcopy Drivers
PostScript
CGM
HP-GL
PICT
MS Windows GDI printing
TIFF (raster file)
HOOPS/3dGS Image (raster file)

Graphics File Formats (input only)
HMF – HOOPS/3dGS Metafile
GIF – Graphics Interchange Format
STL – Stereo Lithography

 4

2 The HOOPS/3dGS Architecture
HOOPS/3dGS is a retained mode graphics system with a database
architecture. HOOPS/3dGS provides the algorithms for creating, editing,
manipulating, and querying the graphics information stored in the database.

This encapsulates the graphical data in HOOPS, coupling it with an
interface layer. This coupling of data structures with algorithms is the
fundamental principle of object-oriented design.

Data-encapsulation, messaging, instancing and attribute inheritance are
also fundamental design elements of HOOPS/3dGS. While HOOPS/3dGS
is not implemented as a class library, its architecture employs these
fundamental aspects of object-oriented design.

The HOOPS/3dGS libraries are incorporated directly into the application’s
build process, i.e., linked with the application’s other object code to produce
the executable image. The developer uses the HOOPS/3dGS API, (a.k.a.,
subroutines or object methods), to create and manage geometrical objects
from within the other components of their application.

The HOOPS/3dGS Graphics System, illustrated in Figure 1, consists of 2
major subcomponents: a graphical object database called the
HOOPS/3dGS Segment Tree, and a rendering pipeline called the
HOOPS/3dGS Structured Device Interface.

Callbacks

Database Traversal

HC Interface

Segment Tree

Image

3D

2D

Native Device
Interface

OpenGL

Starbase

XGL
PEX

HPGL
PostScript

Xlib
GDI

CGM
PICT

Raster

Structured Device
Interface

Tiff

H
IC

 In
te

rf
ac

e

HOOPS 3D Graphics System

Figure 1: Architecture of the HOOPS 3D Graphics System

 5

2.1 Retained-Mode Graphics System
Graphics systems that render primitives immediately, without storing them
in a display list, are called immediate mode systems. Systems that store
graphics information in data structures specifically designed for the display
of graphics are called retained mode graphics libraries. (For more
information on immediate-mode versus retained-mode graphics systems,
see Appendix A.)

HOOPS/3dGS is a retained-mode graphics library. Retaining the graphics
primitives in a retained mode system provides significant benefits:

• Performance If the graphics system (rather than the application)

retains a copy of all the primitives, it can perform faster modification
and traversal of the graphics information as well as optimizations to
make rendering the scene faster. For example, the graphics system
can calculate bounding volumes that store the location and a rough
measure of the extent of a set of primitives. During rendering, many
primitives may not be visible on the screen. Bounding volumes allow
the system to quickly determine whether a group of primitives is on-
screen so that only those graphics primitives that are actually visible
are sent to the display hardware to be rendered.

• Selection An important function of a graphics system is performing

selections (also called “picking”), where the graphics system
determines which graphic primitive the user is pointing at with the
cursor. Without a display list, the only way for the graphics system to
perform a selection is to have the application resend all the primitives
since they were not retained by the graphics system. A display list
allows the graphics system to perform selection much faster, typically
an order of magnitude faster.

• Window system support If a window containing a scene is partially

obscured by another window and then it is brought to the front, the
newly-exposed areas of the window need to be redrawn. If the
graphics system stores the primitives in a display list, then the window
can be redrawn without going back to the application. (The window’s
image can also be stored as a bitmap, allowing instant redraws of
damaged areas. HOOPS/3dGS supports this method as well.)

• Global rendering algorithms Many kinds of renderers require a
copy of all the graphics primitives. For example, for ray tracing and
radiosity, the color of an object is affected by other objects, so the
renderer requires data on all the primitives before it can start drawing
any of them. Such advanced rendering algorithms require the use of a
display list to store the primitives.

 6

2.2 The Object Database

The HOOPS/3dGS database stores graphical data in objects called
“segments”. Think of a segment as a container for geometry and attributes
that describe how the geometry is to be drawn. Segment-to-segment
relationships are hierarchical and are described as “parent-child” pairings
or, as one segment “owning” others (its children). The mapping is one to
many; that is, one parent segment may have many child segments but
every child segment has one unique parent segment.

Segments may be instanced several times and inserted into the tree in
multiple places. This process is called inclusion, as in “one segment
includes another”. Often, only the attribute set of segment need be
instanced and used by other segments; this process is called styling.
Inclusion and styling are discussed in more detail below in chapter 4.

These segment to segment relationships result in a hierarchical tree
structure, or more specifically, a directed acyclic graph. This structure
enables attribute inheritance. Child segments have the same attribute
values as their parent segment, unless they specifically have their own local
settings for certain attributes.

The HOOPS/3dGS database structure ensures optimal speed by
partitioning the geometric data into objects with homogeneous attributes.
This minimizes the need to change hardware display context during drawing
of the graphical information and optimizes display-list throughput.

2.2.1 Coordinates and Coordinate Systems
In HOOPS/3dGS, as in most graphics systems, points in space are
specified using Cartesian coordinates. HOOPS/3dGS routines always take
three x, y, and z coordinates; this means all points in HOOPS/3dGS are
three-dimensional. However, a z-value of zero indicates a two-dimensional
object, so HOOPS/3dGS uses more optimized two-dimensional rendering
routines as appropriate.

Coordinates in HOOPS/3dGS are specified using single-precision floating
point numbers. By default, however, C and C++ perform floating point
arithmetic using double-precision (64 bit) numbers. These double-precision
numbers are converted to single-precision when passed to a HOOPS/3dGS
call.

Version 5.0 of HOOPS/3dGS includes a double-precision module that
enables double-precision floating point values to be used when creating
and querying geometry. It does this by providing variants of all the HOOPS
routines for geometry creation, editing, and querying, as well as for several
of the coordinate system conversion routines.

 7

2.2.2 Inserting Geometry By Reference
When geometry is inserted into the HOOPS/3dGS database, HOOPS/3dGS
makes a copy of the supplied data; this is normal for a retained-mode
system and necessary for data encapsulation. For some kinds of geometry,
this data can be quite large. Making a copy wastes space and makes the
application bigger and slower than it needs to be.

To avoid this problem, HOOPS/3dGS allows for the insertion of meshes,
shells, and images by reference. Inserting geometry by reference tells
HOOPS/3dGS that it is acceptable not to make a copy of the data. For a
mesh, this data is the point list. For a shell, it is the point list and the face
list. For an image, it is the image data.

2.3 Database Traversal
The information in the database must be examined and formatted for the
specific device interface available on the computer hardware. This
operation is referred to as database traversal. The internal traversal routine
“walks” from segment to segment in the tree and sends the information it
finds to the rendering pipeline.

A single subroutine call, Update_Display, instructs HOOPS/3dGS to walk
the database tree, visiting each node that contains something to be drawn.
To draw a segment, HOOPS/3dGS sends any geometry it contains to the
rendering pipeline along with the segment’s attributes, and recursively
draws any sub-segments. Consequently, drawing a segment draws the
entire branch of the tree with that segment as the root.

Because HOOPS/3dGS is a declarative graphics system, the order in which
HOOPS/3dGS traverses the tree (or even whether it traverses the entire
tree) is not important. This allows HOOPS/3dGS to choose how it walks the
database. There are several types of decisions HOOPS/3dGS can make to
minimize the amount of geometry sent to the rendering pipeline, thereby
enhancing performance. They include:

• Selective Traversal Because HOOPS/3dGS keeps track of portions

of the display that are not changing between updates, unnecessary
redraws are eliminated and damaged portions of the screen can be
either selectively redrawn or instantly re-blitted from the software z-
buffer or software frame buffer.

• Incremental Updates HOOPS/3dGS contains update logic that

allows geometry to be incrementally added to a scene without a full
redraw.

 8

2.4 Rendering Pipeline: The HOOPS/3dGS Structured
Device Interface® (HDI)

Key to the optimized performance of HOOPS/3dGS is its rendering
pipeline, called the HOOPS/3dGS Structured Device Interface (HDI). HDI
accepts information found in the segments, reformats it for the hardware
output device interface, and sends it to the device for drawing. HDI
successively decomposes the information, passing the database
information through software mapping layers until it is in the format the
output device can handle.

If the hardware device interface understands 3D information (as with
OpenGL), HOOPS/3dGS can pass along information without much
change. But if the device interface only understands 2D pixels (as with Xlib
or GDI), several layers of decomposition must be used. This ensures both
optimal rendering throughput on a given device and consistent
functionality of the HOOPS/3dGS API across multiple platforms and
devices. This process is presented in Figure 2, below.

Figure 2: HOOPS/3dGS Structured Device Interface (HDI) Architecture

CAD/CAM/CAE
Scientific Visualization&

GIS Applications

User Interface
Component
MFC/MOTIF

User Events

User Input

Callbacks

Draw Methods

HC Interface

HOOPS Graphical Object
Database

Draw Methods

Image

3D

2D

Native Device
Interface

OpenGL

Starbase

XGL
PEX

HPGL
PostScript

Xlib
GDI

CGM
PICT

Printer

Monitor

Graphics
Accelerator Frame

Buffer

Software
Emulator

Disk File

Raster

Structured Device
Interface

Tiff

H
IC

 In
te

rf
ac

e

Memory

 9

HDI ensures that application performance scales to system capability.
Even on a system with graphics hardware, in some cases HOOPS/3dGS
software can be faster than the hardware due to highly optimized
rendering algorithms.

2.5 Flow of Control
The flow of control in a typical HOOPS-based application proceeds as
follows:

1. The end-user of the application generates events via the user interface

in effort to create new or manipulate existing application data
(graphical or non-graphical).

2. The application code makes some changes to the information stored

in HOOPS/3dGS.

3. HOOPS/3dGS then traverses the segment tree, determines what

should be drawn, and sends this information to the HOOPS/3dGS
Structured Device Interface which reformats it for the output device’s
capabilities and then sends it along to the output device.

4. The output device receives the information from the graphics system

and draws the graphical information on the monitor or printer.

5. The user sees the new picture, decides what they want to do next and

generates new input events with the user interface. (This takes us
back to step 1.)

 10

3 HOOPS as an Object-Oriented System
Object-oriented Design (OOD) is just that: design. Once complete, designs
must be realized or expressed in a medium. In computer science
terminology, the medium is a computer language, like C, C++, FORTRAN,
Cobol, Java, etc. While the syntax of some languages encourages the
developer to design in an OOD fashion, languages with less rigorous
syntactical structure do not hinder the expression of object-oriented
designs. Object-oriented architecture is independent of language and can
be implemented in any language.

The main themes of object-oriented design are:

• Encapsulation of object interfaces (methods)
• Data Hiding
• Attribute Inheritance
• Reuse of objects via instancing

HOOPS/3dGS was designed prior to the presence of stable, mature
implementations of C++. While HOOPS/3dGS is not implemented as a
class library, its design incorporates each of these OOD elements. The
ability for the HOOPS’ development team to continually add functionality to
the library over time and for HOOPS/3dGS to flexibly adapt to emerging
APIs is strong testimony to its object-oriented design.

3.1 Encapsulation and Data Hiding With Segments
The HOOPS/3dGS graphics database stores graphics scenes as a
hierarchy of segments, which lends itself naturally to organizing graphics
information. In terms of object-oriented programming, think of a segment as
an object.

• A segment encapsulates a public interface. Most HOOPS/3dGS

commands modify the state of a segment, or return information about a
segment or its contents.

• A segment uses data hiding to protect the internal details of its
representation from the programmer. This makes life simpler for the
programmer by hiding unnecessary details. It allows HOOPS/3dGS to
modify its internal representation on different platforms for portability, to
take advantage of faster algorithms, or to incorporate improved
rendering techniques.

• A segment has attributes, which act similarly to the member variables of
an object.

• A segment can have one or more sub-segments. The hierarchy formed
by the segments in the database is like the class hierarchy in an object-
oriented language (but more dynamic).

• Just as member variables are inherited by a class’ subclasses,
attributes are inherited by a segment’s sub-segments. This form of
inheritance is called attribute inheritance.

 11

• A segment can be reused through the use of include segments and
style segments.

• A segment contains a single list of the geometry that belongs to the
segment.

Figure 3: A segment contains geometry, attributes, and sub-
segments.

3.1.1 Segment Pathnames and Handles
The entire segment tree is rooted under one segment, the root-segment,
denoted with a forward-slash “/”, and each segment occupies a unique
spot in the segment tree, called its pathname.

There are several different ways to identify and subsequently reference a
segment:

• Implicitly Calls to HOOPS/3dGS attribute and geometry commands

reference the currently open (active) segment, or more specifically, the
most recently opened segment.

• Explicitly, by name You can refer to a segment by its full pathname
by using an ASCII string with the ‘/’ denoting sub-segments. For
example “/driver/msw/window0” would refer to the “window0” segment
which is a sub-segment of “msw”, etc.

• By Key Accessing a segment by key is often more convenient and
significantly faster than by name because keys don’t require a name
lookup. A key is a long integer and is returned by HOOPS/3dGS when
a segment is initially created. Keys are commonly used to associate
HOOPS/3dGS segments and geometry with application data (such as
a data structure pointer).

Geomtry
Attributes

Subsegments

Segment

G A SG A S

 12

3.1.2 Instancing and Reuse with Include Segments
HOOPS/3dGS has two kinds of sub-segments: regular segments and
include segments. Include segments support a form of reuse. Include
segments are similar to symbolic (soft) links in the UNIX file system
because they allow multiple links to the same object. An included segment
(also called an instance of a segment) behaves like a regular sub-segment,
except that the parent of an included segment is always its real parent, not
the segment that includes it.

A segment to be included actually lives as a normal segment (with its own
geometry, attributes, and even sub-segments) in another part of the
graphics database; for convenience, HOOPS/3dGS provides a place called
“?Include Library”.

3.1.3 Driver Segments
HOOPS/3dGS automatically defines a segment named “/driver”.
Underneath this segment are a dozen or more pre-created sub-segments
one segment for each kind of device for which HOOPS/3dGS has a device
driver. These sub-segments of “/driver” are called driver segments. These
are abstract classes and are not to be used directly, but rather instanced
and built upon.

Each sub-segment of a particular driver segment is an instance of that
driver, or more specifically, a unique connection to an output device. For a
display driver on a window system like X11 or Windows, each instance
corresponds to a connection to a window on the display. For a hardcopy
driver like PostScript, each instance corresponds to a file to be printed. For
example, “/driver/msw/window0” refers to a window on the MSW (Microsoft
Windows) display device.

Figure 4 provides a graphical representation of segment hierarchy in
HOOPS/3dGS.

driver

postscript x11 msw

Microsoft Windows
windows

X11 windowsPostScript
output files

/

include
library

style
library

other drivers…

Figure 4: Default Segment Hierarchy

 13

Multiple connections can exist simultaneously, and the use of include
segments facilitates the rendering of a scene on disparate devices.

3.2 Messaging and Methods
Interface layers for communicating with graphics information in a database
typically are either declarative or procedural. With declarative interfaces, the
programmer declares what is to be displayed. With procedural interfaces,
the programmer declares details of how to display the information.
HOOPS/3dGS provides a declarative interface.

Procedural graphics systems have been found to be more difficult to use
than declarative graphics systems. Because a segment can contain more
than one value for an attribute in a procedural graphics system, it is much
harder to find the value of any particular attribute, and harder still to
change the value of an attribute and know to what geometry the attribute
will apply. In addition, such systems cannot support attribute inheritance
(in the object-oriented sense) like HOOPS/3dGS does.

In object-oriented programming, data is encapsulated in the object and
hidden from external users of the object. An interface layer of methods is
presented for creating and manipulating the internal state of the objects’
data. HOOPS/3dGS declarative interface provides just such a mechanism
for external manipulation of the internal information.

3.3 Attribute Inheritance
Attribute inheritance in HOOPS/3dGS works just like inheritance in an
object-oriented language. If an attribute value is not set locally on a
segment, it is inherited from a parent segment. Attribute values that are set
explicitly on a segment are called local attributes. These are attributes set
with any HOOPS/3dGS Set command, such as Set_Color or
Set_Line_Weight.

When HOOPS/3dGS renders the database, it needs to know the attribute
values for all the geometry in the database. To determine the values of
attributes, HOOPS/3dGSfirst looks at local attributes set on the current
segment. If any required attributes have not been set on the local segment,
HOOPS/3dGS looks in the parent of this segment to see if a local attribute
was set on it, and then its parent, and so on, until it finds a value for the
attribute.

3.3.1 Default Attribute Values
When you start HOOPS/3dGS, it sets a local value for every attribute on the
root segment of the database tree. When looking for the value of an
attribute, HOOPS/3dGS eventually finds its way up to the root of the tree,
and then uses the value found there. So the local attribute value set on the
root segment of the database acts as a default value for the attribute value.
The default value assigned by HOOPS/3dGS can be changed by changing
the local attribute value on the root segment of the tree.

 14

Another way to look at this is that any time a local attribute is set on a
segment, a default value is established for all segments below that one in
the tree. Thus, in a scene with multiple complex graphical objects, each one
represented by its own sub-tree, you can have different default values for
each object by setting local attributes on the root segments of their sub-
trees.

3.3.2 Nonstandard Attribute Inheritance
Most attributes inherit their values from their parent segment. However, a
few attributes inherit their values in a nonstandard manner.

Consider a modeling transform: a translation, rotation, or scale. Modeling
transformations are always performed with respect to the parent segment.
When an object is rotated, for example, it is useful for all of its children to
rotate as well (even if they have their own local modeling transformations).

A segment’s local modeling transformation is concatenated (using matrix
multiplication) onto the modeling transformation of its parent— it doesn’t
simply replace it. If a segment has no local modeling transformations, the
net transformation for the segment is the same as its parent’s net modeling
transformation. But if a segment does have a local modeling transformation,
it is concatenated onto the net modeling transformation of the parent
segment.

There are also a few attributes that inherit up the tree; for example,
bounding volumes. The bounding volume of a parent segment is the union
of the bounding volumes of its children segments, plus the bounding
volume of the parent segment’s geometry.

A few attributes, such as normal vectors, do not inherit at all.
The HOOPS/3dGS reference manual entry for each type of attribute
includes a discussion of any non-standard inheritance characteristics for
that attribute.

3.3.3 Attribute Lock
It is possible to override local attributes temporarily, using attribute lock.
When a specific attribute is locked in a segment, that attribute’s value
applies to all sub-segments, regardless of whether those sub-segments
have local attribute values set for that same attribute. For example, attribute
lock can be used to highlight a part of the database by changing the color of
everything to red, temporarily ignoring any local color attributes.

 15

3.3.4 Style Segments
HOOPS/3dGS provides a convenient way to take a set of attributes and
make them apply to a large number of segments. You can create a
segment called a style segment. Then, you can make other segments
reference the style segment, thereby causing the other segments to take on
the attributes of the style segment. Attributes that are “styled” act like local
attributes.

3.3.5 Attribute Inheritance Summary

Rendering the database consists of walking the database (segment tree),
constructing primitives, and rendering these primitives. From the viewpoint
of the renderer, a segment consists of geometry and net attributes. “Net
attribute” refers to the fact that an attribute’s value is determined based on
(in order of priority, from 1 to 3) its local value, its style segment value, or its
inherited value.

geometry net attributes

graphics primitives, sent to renderer

Figure 5: A segment From the Viewpoint of the Renderer

The geometry along with the values of the net attributes are drawn by the
renderer.
From the viewpoint of the database tree walker, the net attributes of a
segment come from three places: locally set attributes, style segments, and
parent segments. (Note: This discussion applies only to attributes that
inherit normally.)

segment
local attribute values

style segment attribute values

inherited net attribute values (from parent)

net attribute
values

Figure 6: A Segment From the Viewpoint of the Database Tree Walker

In this diagram, local attribute values are attributes that are explicitly set on
a segment using one of the HOOPS/3dGS Set routines. Style segment
attribute values come from the local attributes of a segment that is used to
“style” the current segment using the Style_Segment routine. Inherited net
attribute values (typically) come from the net attributes of the parent
segment of this segment.

 16

4 Geometry and Attributes
In HOOPS/3dGS, geometry is the raw geometric information (such as
points or lines) that defines the visual components of the picture.
Segments are containers for geometry and attributes. Attributes are used
to specify how the geometry stored in the database should be rendered
and queried.

4.1 Geometry Provided in HOOPS/3dGS
The HOOPS/3dGS interface contains entry points for each geometric
primitive in the form: Insert_XXX, where XXX is the name of the primitive
(for example, Insert_Line, Insert_Mesh, or Insert_Distant_Light.) The
geometric entities supported by HOOPS/3dGS have been specifically
tailored for the needs of the MCAD/CAM/CAE software industry.

All geometric entities in HOOPS/3dGS are represented as flat, infinitely thin
surfaces— i.e., there are no solid objects in HOOPS. In order to create an
object that appears to be solid, you define the collection of its infinitely thin
surfaces. Markers, text, and images differ slightly in that markers and text
are defined by one 3D point and have no real surfaces, while images have
a 3D anchor point and a 2D pixel array defined in screen space, which is
mapped to the pixels of an output device.

HOOPS/3dGS provides the following geometry:

Circles
Circular Arcs
Circular Wedge
Circular Chord
Ellipses
Elliptical Arc
Grids
Images
Lines

Markers
Meshes
Polygons
Polylines
Shells

Once geometry has been inserted into HOOPS/3dGS segments, it can be
copied, deleted, modified, or manipulated. The position of geometry in the
world coordinate system is governed by the information given on insertion
and the net modeling matrix in effect on the geometry’s containing segment.

The following entities, while not traditional geometric entities, behave
similarly in that their initial positions are transformed by their segment’s net
modeling transformation.

Cutting Planes
Lights

 17

Everything that is inserted into the HOOPS/3dGS database (for example,
the segment tree, all geometric primitives, all attribute settings) may be
queried. Segment level attributes are available for controlling a geometric
entities visual rendition and its selectability. Each polygonal entity (circles,
ellipses, grids, meshes, polygons, and shells) is composed of a face and
an edge. Finer granularity of visual and selection attributes is available for
all the components of these entities. Thus, the color of a meshes’ faces
can be different from its edges.

Circles
A circle is defined by any three points on its circumference. Circles are
grouped with ellipses, polygons, shells, and meshes for rendering
purposes. Their rendition may be adjusted with the attributes for faces and
edges.

Circular Arcs
A circular arc is defined by three points on the circumference of a circle.
The order of the points is important. The arc begins at the first point, draws
through the second, and continues to the third. Circular arcs are grouped
with lines, polylines, and elliptical arcs for rendering purposes.

Circular Chords
A circular chord is defined by three points on the circumference of a circle.
The order of the points is important. The wedge begins at the first point,
draws through the second point, and continues through the third point. The
center of a circle defined by the three points is computed and lines are
drawn from the first point to the center and from the third point to the
center.

Circular Wedges
A circular wedge is defined by three points on the circumference of a
circle. The order of the points is important. The chord begins at the first
point, draws through the second point, and continues through the third
point. A line connects the first and third points.

Cutting Planes
A cutting plane “cuts away” part of the scene. In particular, if you consider
the [a,b,c] portion of a plane equation as the normal vector for the plane,
then that half-space by convention is left open, i.e., it is not cut away.
Multiple cuttings planes can be inserted in the segment tree.

Ellipses
An ellipse is defined by three points: its center point, and intersection
points with its major and minor axes. It is grouped with the set of polygonal
entities for rendering purposes.

Elliptical Arcs
An elliptical arc is defined by the same information for an ellipse, plus two
floating point numbers between 0 and 1 which indicate the normalized

 18

parametric angle along the perimeter of the ellipse where the arc begins
and ends.

Grids
A grid is a flat array of faces, edges, and markers. It can be quadrilateral
or radial, finite or infinite.

Images
An image is intended for the display of raster arrays of pixels. An image is
unique in that it is laid out in terms of screen space; once the center has
been located in 3D space, all other parameters (format, height and width)
are defined in terms of pixels on the screen of the current display device.
HOOPS/3dGS supports the following image formats:

• RGB - 24 bit truecolor
• Mapped 16 - 16 bit indices into a HOOPS/3dGS colormap
• Mapped 8 – 8 bit indices into a HOOPS/3dGS colormap

Lights
HOOPS/3dGS supports distant, spot, and point sources of light. Multiple
lights can be inserted, and each light can have a unique color.

HOOPS/3dGS performs lighting calculations for all the objects in the
scene that contain a light. The positions of each type of light can be
manipulated with modeling transformations; spot lights can be configured
to follow a camera as it is manipulated.

Lines
A line is a segment with two endpoints.

Markers
A marker is a single location in space. The location is drawn with a symbol
such as an X, a dot, or a circle. Markers are commonly used to mark data
points in a graph, or locations on a map. HOOPS/3dGS directly supports
over 30 marker symbols commonly used in the MCAD and AEC industries,
and has mechanisms for adding user-defined symbols via HOOPS/3dGS
Intermediate Mode.

Meshes
A mesh is a two-dimensional array of 3D points with fixed topology. A
mesh is like a rectangular wire screen— it can be bent into an arbitrary
curved surface but the points in the mesh are connected into
quadrilaterals. Meshes and shells are the only primitives in HOOPS/3dGS
with the connectivity information for adjoining faces enabling the phong
and gouraud lighting interpolation methods to be used. For more
information on these properties, see page 20.

 19

Polygons
A polygon is a flat, infinitely thin surface in space and is defined by the
vertices along its perimeter. A polygon consists of two separate parts: the
edge and the face. Attributes such as face pattern, edge weight, edge
pattern, visibility and color can be set on these parts independently.

Polylines
A polyline is a sequence of connected line segments and is defined by its
set of vertices.

Shells
A shell is an arbitrary collection of polygons that forms a three-dimensional
object. A shell can represent 1) points (like a scatter plot), 2) edges (a
series of lines), or 3) polygons. A shell that represents a polygon would be
an array of points and a connectivity list that describes the polygonal
faces. A useful way to visualize these two components is as a point cloud
and a collection of “connect-the-dots” sequences in the point cloud.

A shell consists of one or more polygonal faces and is typically used to
represent a wide range of geometric objects such as cubes, spheres and
parametric surfaces. The advantage of using a shell, rather than multiple
independent polygons, is that the shell takes up less memory in the
database, is faster to render, and can be smoothly shaded.

Shell and mesh faces and have the same attributes as polygons. They
also have several features that go beyond the capabilities of polygons:

• Vertex markers The vertices of a shell/mesh are represented as

markers which are subject to normal marker attributes. You can
change the marker symbol and size for these markers, and you can
turn the markers off with HC_Set_Visibility(“markers=off”). For most
uses of shells, it is common to turn the visibility of markers off.

• Attributes on subparts Unlike other kinds geometry, attributes can
be set on individual faces, edges, and vertices within a shell or mesh.
This allows individual faces (and edges and vertices) to have
completely different attributes from each other. This is useful when
visualizing data sets with more than four dimensions.

• Smooth shading Because vertices can be shared between shell
and mesh faces, these primitives can be smooth shaded using
Gouraud and Phong lighting interpolation algorithms. Lighting
interpolation requires HOOPS/3dGS to have a normal vector for each
vertex in the shell or mesh. HOOPS/3dGS can automatically compute
normal vectors for each vertex, or they can be defined by the user.

• Data mapping In addition to performing lighting interpolation
(smooth shading), colors can be interpolated across a shell or mesh.
This is used to visualize data associated with the surface. For
example, color may be used to indicate temperature distribution
across a surface. The method for achieving this consists of associating
either floating point or integer scalar values with the vertices of a mesh
or shell then using these values to determine color values for the

 20

surface at the vertices by using them as indices into a colormap. Color
values can be interpolated so that the color changes smoothly across
a face, or color indices can be interpolated with the result being
contour bands.

Text
Text is inserted as a string with a 3D coordinate as a reference point. Text
can be rendered in screen space or as fully transformable strokes. Font,
size, slant, rotation and alignment can be individually controlled.

HOOPS/3dGS provides direct support for the Japanese Kanji and ISO-
Latin character sets.

HOOPS/3dGS includes an embedded font engine and routines that enable
standard fonts to be converted to 3D surfaces. The font engine enables
HOOPS/3dGS-based applications to incorporate Adobe Type I
(PostScript), TrueType and BitStream’s Speedo fonts in a scene by simply
setting the text font name attribute. This conversion also enables
HOOPS/3dGS rendering techniques such as texture mapping and lighting
to be applied to the geometry generated from the fonts.

4.2 Attributes
Attributes in HOOPS/3dGS are used to specify how the geometry stored in
the database should be rendered and queried. There are some non-
graphical attributes as well, most of which help the system attach to and
configure output and input devices. The main types of attributes in
HOOPS/3dGS are:

• Display
• Modeling and Viewing
• Rendering
• Selection
• Driver Options
• System Options
• Heuristics

Note: This is by no means a complete listing. For a complete list of all
attributes, see the HOOPS/3dGS Reference Manual or the book, 3D with
HOOPS, from Addison-Wesley.

4.2.1 Display Attributes

Display attributes specify how different types of geometry should be drawn;
what color to use for polygons, what edge pattern to use on lines, face
patterns for meshes, symbols for markers, and so on. They are segment
level attributes. Each geometric type in the same segment can, and often
does, have its own setting in the same segment. For example, the lines in a
same segment may have a different color attribute from the text.

 21

4.2.1.1 Color and Colormaps
The color of geometry in HOOPS/3dGS may be specified with one of four
color space models: RGB, HLS, HIC, and HSV. With regards to the HIC
color space model, HOOPS/3dGS also defines the color names of the
Crayola® 64 color set, so textual names such as ‘orange’ and ‘bright blue’
may be used.

A colormap attribute may be defined and color values given as indices into
the colormap. Colormaps may be defined in any of the 4 color space
formats, or as Crayola names. The user may elect to define his own set of
color names defined in any of the available color space models.

HOOPS/3dGS supports monochrome, mapped (i.e. 8-bit) and true color
(i.e. 24-bit) devices by using a 24-bit color model internally and
automatically dithering colors for mapped devices via a dither cube. The
size and shape of the dither cube HOOPS/3dGSuses are configurable.

4.2.1.2 Visibility
Often, it is useful to control whether geometry and/or segments are drawn
without affecting the overall structure of the segment hierarchy. The visibility
attribute provides this level of control. Segments and geometry whose
visibility attribute is set to “off” are not drawn during an update cycle. You
can control many elements independently, such as interior silhouettes
(edges), perimeters, and mesh quads.

4.2.1.3 Edge Pattern and Weight
There are separate attributes for controlling the width and pattern of the
edges of polygons, circles, ellipses, shells, and meshes.

4.2.1.4 Face Pattern
Face pattern enables patterns to be applied to the faces of polygons,
circles, ellipses, meshes and shells.

4.2.2 Modeling & Viewing
The Modeling and Viewing attributes in HOOPS/3dGS define what
geometry is being viewed in the segment tree and how it is mapped to a
windowing system window. HOOPS/3dGS employs the paradigm of
cameras and windows for the viewing and modeling transformations.

Cameras exist in the same world space as the geometry and can ‘see’ the
geometry in the segment tree. The contents of their field of view is then
mapped into a HOOPS/3dGS window. HOOPS/3dGS windows are
subregions of a root window corresponding to an instance of a driver
segment which is attached to an output device. Thus, all windows below the
driver segment are subregions of the output device window or printer page,
and their contents are mapped to the output device.

 22

4.2.2.1 Modeling
Modeling attributes provide for the scaling, rotating and translating of the
geometry contained in a segment and, due to attribute inheritance, its sub-
segments. If the order in which successive modeling transformations are
applied to geometry is changed, the resulting net transformations will be
different. (Modeling transformations are non-commutative operands.) Thus,
these attributes are the only ones in HOOPS/3dGS that are order-
dependent.

Each segment in HOOPS/3dGS has a local 3D space and geometry
inserted into a segment is said to be in that segment’s object space
coordinate system. Any transformation attributes set on the segment will
modify the position of the geometry in the segment. Since modeling
transformations are attributes, the final position of the geometry depends on
the modeling transforms set locally in its containing segment and of all the
modeling attributes set in the line of segments owning it.

HOOPS/3dGS provides for either right or left-handed coordinate systems to
be used on a per-segment basis. The same segment hierarchy may have
multiple instances with different handedness settings.

4.2.2.2 Viewing with Cameras
HOOPS/3dGS uses the paradigm of cameras to define views into a scene.
Cameras have a position, target, up vector, field of view and a projection.
Supported camera projections include perspective, orthographic, and
oblique. These values are defined with 3D coordinates in world space.

HOOPS/3dGS cameras may be manipulated in the same way as their real-
world counterparts with routines that dolly, roll, zoom, pan, rotate and orbit.
As cameras are segment-level attributes, it is quite possible to have multiple
cameras defined under the same driver level segment. The geometry visible
in each camera’s view will then be projected into the containing (net)
window. This may be an attribute of the same segment as the camera or a
parent segment. This is a useful technique for generating stereo effects for
added depth perception.

The needs of most applications are met by relying on the default camera
associated with a driver instance segment and its associated HOOPS/3dGS
window.

4.2.2.3 Windows
Window attributes are segment-level attributes and therefore inherit. The
visual effect is that of nested sub-regions. Window attributes of child
segments are defined as sub-regions of the first window found above them
in the hierarchy. The top level window is the one at the driver instance
segment and it maps to the extents of the output device. While infinite levels
of window nesting are possible, the needs of most applications are met with
two levels of window nesting.

 23

4.2.3 Rendering Attributes
Rendering attributes are used to select algorithms for calculating hidden
surfaces, lighting effects, the mapping of associated data to geometry (e.g.,
stress-strain analysis results mapped to a mechanical parts geometry) as
well as the level of detail (LOD) to be used when displaying shells and
meshes

HOOPS/3dGS’ rendering functionality supports transparency, texture
mapping, atmospheric attenuation (depth-cueing), color contouring, and
dynamic LOD switching.

4.2.3.1 Hidden Surface Removal Algorithms
HOOPS/3dGS supports the following: hardware z-buffer, software z-buffer,
extended painter’s algorithm, quick painter’s algorithm, object-space hidden
line removal and wireframe.

4.2.3.2 Lighting Models
HOOPS/3dGS provides flat (faceted), gouraud (smooth), phong lighting
techniques; and both diffuse and specular reflections. Gouraud and phong
shading are only applicable to shells and meshes.

4.2.3.3 Data Mapping
Often, it is desirable to map data associated with a surface directly on to
that surface, particularly in the CAE areas of Finite Element Analysis (FEA)
and Computational Fluid Dynamics (CFD). HOOPS/3dGS provides the
capability of mapping scalar information (integer or floating values) directly
onto surface topology and then using this information to calculate color
contours across the surface.

Figure 8: Mapping Analysis Data onto the Surface of a Model

4.2.3.4 Level of Detail (LOD)

The rendering performance of large models can be improved by
generating multiple versions of the model’s geometry, each with smaller
amounts of data or levels of detail (LOD), and then dynamically choosing
which version to render based on different criteria. For example, multiple
LODs for a shell or mesh can be generated each with a smaller number of
triangles using a vertex decimation technique and then those LODs can be
chosen for rendering as the user manipulates the camera viewing the

 24

model; LODs with more detail are rendered when closer to the model and
LODs with less detail used when further away.

The HOOPS/3dGS LOD module provides for the calculation of LODs for
shells and meshes as well as enabling the user to supply their own LODs.
It also provides for dynamic selection of these LODs based on several
different types of threshold calculations.

4.2.4 Selection
The selection attribute enables control over how the objects in the
HOOPS/3dGS database respond to a selection query or hit-test. The
application will often need to request that HOOPS/3dGS find the drawing
primitive or segment currently being pointed at by an input device, usually a
mouse or pen.

Selection settings may be given for the entire contents of a segment or set
specifically for certain geometric types within the same segment. For
example, to implement “snap-to-grid” behavior, one could insert a grid into a
segment and then set the selection attribute for everything except markers
to be ‘off’.

4.2.5 Driver Options

These attributes are used to provide information to the HOOPS/3dGS
graphics system of special device-specific display options such as

• Double-buffering
• Input event queue control
• Number of colors on the device
• Configure the dither cube for lighting calculations
• Landscape or Portrait orientation
• Pen Speed (printers)
• Physical Size
• Hardware Colormap to use, if desired
• Window Handle to use, if desired

4.2.6 System Options

System Options are used to configure aspects of the entire HOOPS 3D
Graphics System. For example, you can set the length of a C string, or
configure the error reporting in HOOPS/3dGS.

 25

4.2.7 Heuristics

Heuristics are hints to give to HOOPS/3dGS to help it make traversal time
decisions about how to optimally render the segment tree. By telling
HOOPS/3dGS whether or not to use the following information or
techniques, the performance of the system may be tuned to a given
applications graphics data.

• Backplane culling
• Clipping
• Concave Polygons
• Hidden Surfaces
• Incremental Updates
• Intersecting Polygons
• Memory Purge
• Polygon Handedness
• Quick Moves

 26

5 Input and Hit-testing

The HOOPS/3dGS architecture includes a mechanism for monitoring input
devices for user-generated events. This can be used to build a user
interface with HOOPS/3dGS and can be quite useful in the area of rapid-
prototyping. More often than not, in commercial applications, this feature is
disabled and the application directly controls the event loop, processing all
the messages and dispatching them to the appropriate component sub-
systems. In this case, events associated with geometry selection (hit-
testing) need to be passed to HOOPS/3dGS.

When the application needs to know what geometry the end-user is
selecting, HOOPS/3dGS performs a “hit-test” of the input events
coordinates against the geometry in the HOOPS/3dGS database.

HOOPS/3dGS provides a routine called Compute_Selection which, given
a window location, performs a 3D object space intersection test and
returns any selected objects. Figure 9 shows the path of a selection event
as it starts out as a location event from the window system. The
application receives the location event and calls Compute_Selection with
the location, which does a hit test against the 3D objects in the database
and creates a selection event.

Figure 9: Flow of selection event from window system to HOOPS

Application Window System

HOOPS

#1 Location Event

#3 Selection Items

#2 Location

 27

HOOPS/3dGS supports the following selection methods:

• Aperture A point location. Aperture is defined by a radial distance

from the selection point.
• Area A rectangular region
• Polygon (lasso)  A polygonal region
• Polyline (fence)  A series of points connected by line segments
• Volume A 3D object space volume

HOOPS/3dGS also supports a range of picking granularity within
selected objects:

• Vertex closest definition point
• Edge closest polygonal border
• Face closest polygonal facet
• Object segment containing the selected geometry

HOOPS/3dGS will also compute the analytical point of intersection with
the selected geometry in object, world and camera spaces.

 28

6 Integrating HOOPS/3dGS with a GUI Toolkit

Just as HOOPS/3dGS is a component for graphics, there are several
components that provide graphical user interface (GUI) technology.
Typically, developers want to use HOOPS/3dGS with such GUI
components as MFC on Windows, MOTIF on UNIX, or Qt and JAVA for
cross-platform GUI.

6.1 Window System Integration
When writing a 3D HOOPS-based graphics application, the developer has
a choice of writing the user interface in HOOPS/3dGS or in the target
platform’s native window system. In most cases, it is desirable to write the
user interface using a window system. This allows the application to have
a native ‘look and feel’ and allows the graphics system to remain
independent of the event queue and user interface. HOOPS/3dGS has
been successfully and seamlessly integrated with MFC, MOTIF, QT, Java,
and ActiveX GUI tools. This work is encapsulated into the HOOPS/GUI
modules and included as part of the HOOPS 3D Application Framework.

6.2 Drawing into Native Application Windows
Normally, HOOPS/3dGS creates its own output window for each driver
instance. When the user interface is written using a window system, the
window system is in charge of creating the output window. To address this
need, HOOPS/3dGS is able to accept a pre-created window to draw into.
The application simply passes the window handle to an instance of a
HOOPS/3dGS driver level segment.

6.3 Colormap Sharing
HOOPS/3dGS provides mechanisms that allow you to share colormaps
among multiple driver instances and applications.

 29

7 HOOPS/3dGS Intermediate Mode

HOOPS/3dGS Intermediate Mode is a secondary interface layer in the
library and provides access to the immediate mode routines used in the
HOOPS/3dGS Structured Device Interface layer. HOOPS/3dGS
Intermediate Mode complements the classic HOOPS/3dGS library and
provides for traversal-time modifications of the object hierarchy (segment
tree). The diagram below illustrates the relationship between
HOOPS/3dGS’ database API, the HC interface, and the immediate mode
API, the HIC Interface.

Callbacks

Database Traversal

HC Interface

Segment Tree

Image

3D

2D

Native Device
Interface

OpenGL

Starbase

XGL
PEX

HPGL
PostScript

Xlib
GDI

CGM
PICT

Raster

Structured Device
Interface

Tiff

H
IC

 In
te

rf
ac

e

HOOPS 3D Graphics System

Figure 10: The Relationship between HOOPS/3dGS’ HC and HIC APIs.

HOOPS/3dGS is a retained graphics database system. You create a scene
by inserting geometry and setting attributes in a segment tree maintained by
HOOPS/3dGS. When you call Update_Display (or you request input), the
system traverses the segment tree and draws the picture on the display
device.

 30

With the classic HOOPS/3dGS library, additions and modifications to the
segment tree cannot be made while HOOPS/3dGS is traversing the tree.
The Intermediate Mode library provides a means for the application to trap
the HOOPS/3dGS update cycle at certain points in the rendering pipeline
by means of a callback mechanism. When the traversal is trapped at a
callback point, decisions can be made about what and how something is
drawn, or even the traversal process itself can be aborted. In addition to the
callback mechanism, the HOOPS/3dGS Intermediate Mode library provides
a set of functions that can be called from the callback functions to draw to
the display in an “immediate mode” style and to query the graphics
database and the device characteristics.

The HOOPS/3dGS selection feature also involves a traversal of the
graphics database contained in the segment tree. However, the selection
traversal does not draw on the display. Rather, it computes the screen
positions of objects in the database to determine which objects have been
hit by selection events. HOOPS/3dGS Intermediate Mode provides callback
points at which the selection traversal as well as the update traversal can
be trapped.

 31

7.1 Why use HOOPS/3dGS Intermediate Mode?
HOOPS/3dGS Intermediate Mode is useful when it is necessary for the
application to be able to make traversal-time decisions about the rendering
or selection process, or to accomplish special processing that is not
provided by the built-in HOOPS/3dGS traversal process.
Some examples of situations in which to use HOOPS/3dGS Intermediate
Mode are:

• You may want the graphical representation of your data, i.e. the actual
primitives and attribute values used, to depend on the viewing
parameters or the screen transformation. In particular, if your model
has a hierarchy of scale and the view is zoomed out sufficiently far,
then you may want to skip the rendering of entire subtrees that would
appear very small on the display.

• You may want to define your own version of a HOOPS primitive. For
example, you could implement a spline drawing algorithm through the
HOOPS polyline primitive, using the polyline vertices as spline control
points. In this case, you would intercept at one of the callback points in
the polyline drawing pipeline, and substitute your own spline drawing
routine for the HOOPS polyline drawing routine.

• Custom marker symbols or line styles are required, and need to be
stroked out at traversal-time drawing. In addition, the rendering style
may need to be dependent on actual screen size. For example, in a
cartographic application railway tracks could be stored as polylines in
the database, but be drawn, for certain map scales, as parallel lines
with cross ties.

• If the graphics database is voluminous, it may be useful for the
application to avoid spending the memory needed for HOOPS/3dGS
to duplicate in its database some of the same information already
contained in the application’s private data structures. Using
HOOPS/3dGS Intermediate Mode in an “immediate mode” style allows
primitives to be passed to HOOPS/3dGS one at a time in Intermediate
Mode callbacks, rather than storing them in HOOPS/3dGS segments.
However, since HOOPS/3dGS no longer “knows about” such
primitives, it cannot be used to manage and select them.

• In a real-time application, it may be necessary to be able to modify the
picture being displayed according to input received during traversal.

 32

8 Appendix A: Immediate Versus Retained
Mode Graphics Systems

Software applications are run on computer hardware. Hardware provides
input and output mechanisms for the user of the software application. It is
through these input and output mechanisms that the user submits
information and requests the application to perform operations on this
information.

Input mechanisms can include the keyboard, mouse, data gloves, body
suits, or head-mounted displays. The application supplies information on
the state of data via various output devices. Output devices may include
monitors, printers, haptic display systems, or CAVE immersive projection
systems. Interactive computer applications are concerned with the
relationship between the mouse as input and monitor as output.

In order for the application to display information on the monitor, there must
be a way for the application to communicate with the monitor. For instance,
if the application wants to draw a line on the screen, there must be some
mechanism that enables the application to ask that a line be drawn. This
mechanism is the graphics system. Figure A-1 shows the relationship
between an application and a graphics system.

Figure A-1: Relationship Between an Application and a Graphics System

Application

Renderer

Frame Buffer

Display

User

Instances of Primitives
(Geometry & Attributes)

Pixels (x,y location & color)

Rasters (Sequences of
color values)

Photons (images)

Graphics System

 33

Graphics systems that render primitives immediately, without storing them
in a display list, are called immediate mode systems. Graphics systems
that retain the primitives in a display list or graphics database are called
retained mode systems.

Figure A-2: Immediate Mode versus Retained Mode Graphics Systems

Immediate Mode Systems
Each hardware platform supplies rendering or device interface libraries for
displaying graphics on the monitor. These libraries retain no information
about what they have drawn and are often called immediate mode libraries
because they attempt to display requested information immediately upon
receipt of a drawing request. Examples are Xlib on Unix machines and GDI
on Intel PC’s running MS Windows. Specific hardware vendors often
provide their own proprietary interfaces tuned specifically for their platform.
Examples include OpenGL on Silicon Graphics workstations, Starbase on
Hewlett-Packard machines, and XGL on Sun Microsystem computers.

Because the immediate mode libraries retain no information about what
they have drawn, the application programmer must create data structures
for storing graphical information and develop algorithms for deciding what to
draw and how to draw the desired scene. Ideally, the data structures used
by the rest of the application would be used to drive the immediate mode
graphics library. However, the application’s primary focus is something
other than the display of graphics, and the data structures employed for the
core application logic often are not sufficient for the optimal display of
graphics information.

Retained Mode Systems
Systems that store graphics information in data structures specifically
designed for the display of graphics are called retained mode graphics
libraries. There are two types of retained mode systems: display lists and
databases. The difference between a display list and a graphics database is
that a graphics database is a display list that can be modified in place. For
example, for a scene containing several dozen primitives, a graphics
database allows you to change the primitives individually (either their
geometry or attributes), while a simple display list would require you to
resend the entire display list (that is, redraw the entire scene) in order to
change one primitive.

Renderer Frame
Buffer

stores graphics
primitives

stores images
(pixels)

Application

RendererDisplay
List

Frame
BufferApplication

RendererGraphics
Database

Frame
BufferApplication

 34

Systems that group the algorithms necessary to create and manipulate the
graphical information along with the data structures for storing this
information are called graphics systems or graphical object stores.
HOOPS/3dGS is a retained-mode graphics library. Retaining the graphics
primitives in a retained mode system provides significant benefits:

• Performance If the graphics system (rather than the application)

retains a copy of all the primitives, it can perform faster modification
and traversal of the graphics information as well as optimizations to
make rendering the scene faster. For example, the graphics system
can calculate bounding volumes that store the location and a rough
measure of the extent of a set of primitives. During rendering, many
primitives may not be visible on the screen. Bounding volumes allow
the system to quickly determine whether a group of primitives is on-
screen so that only those graphics primitives that are actually visible
are sent to the display hardware to be rendered.

• Selection An important function of a graphics system is performing

selections (also called “picking”), where the graphics system
determines which graphic primitive the user is pointing at with the
cursor. Without a display list, the only way for the graphics system to
perform a selection is to have the application resend all the primitives
since they were not retained by the graphics system. A display list
allows the graphics system to perform selection much faster, typically
an order of magnitude faster.

• Window system support If a window containing a scene is partially

obscured by another window and then it is brought to the front, the
newly-exposed areas of the window need to be redrawn. If the
graphics system stores the primitives in a display list, then the window
can be redrawn without going back to the application. (The window’s
image can also be stored as a bitmap, allowing instant redraws of
damaged areas. HOOPS/3dGS supports this method as well.)

• Global rendering algorithms Many kinds of renderers require a

copy of all the graphics primitives. For example, for ray tracing and
radiosity, the color of an object is affected by other objects, so the
renderer requires data on all the primitives before it can start drawing
any of them. Such advanced rendering algorithms require the use of a
display list to store the primitives.

Which Mode to Use?
Whether or not a graphics system has a graphics database (retained mode)
greatly affects how the application interacts with the graphics system.
Recall that OpenGL, Starbase and GDI are examples of “immediate mode”
rendering pipelines; as such, they provide routines for an application to
communicate what should be drawn on the screen, but they do not
remember what has been drawn. The application needs to store this
information itself, compute the effects of user interaction (e.g. mouse

 35

movement) on the data and then procedurally communicate the new set of
information that represents the current state of the 3D information. Use of
such an immediate mode system requires the application developer to
create data structures for storage and implement algorithms for traversal,
rendering and selection of the graphics objects.

Which technique is preferable depends on how much of the data model
changes at a time. If the entire data model changes often, then it might be
just as easy to resend the entire view each time the data model changes. If
the data model is normally changed incrementally, then a retained graphics
system can be much faster. Using a graphics database such as
HOOPS/3dGS to store the primitives can save time and effort for the
application developer. Like any component, however, using a graphics
database will only save time if it matches the needs of the application and is
easy to use.

