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Computation in Multicast Networks:
Function Alignment and Converse Theorems

Changho Suh, Naveen Goela and Michael Gastpar

Abstract—The classical problem in network coding theory con-
siders communication over multicast networks. Multiple trans-
mitters send independent messages to multiple receivers vech
decode the same set of messages. In this workpmputation
over multicast networks is considered: each receiver deced
an identical function of the original messages. For a countably
infinite class of two-transmitter two-receiver single-hop linear
deterministic networks, the computing capacity is characerized
for a linear function (modulo-2 sum) of Bernoulli sources.
Inspired by the geometric concept of interference alignmen
in networks, a new achievable coding scheme calleflinction

to the classical problem of communication over multicast
networks [5]. As a consequence, it was shown that the cut-set
based bound is tight in the single-receiver case.

Several results over the past decade have contributed to
the understanding of classical communication in multicast
networks in which the task is to transmit raw messages from
transmitters to a set of receivers with identical message de
mands. The celebrated work of Ahlsweeteal. [5] established
that the cut-set bound is tight for multicast communication

alignment is introduced. A new converse theorem is established Subsequent research developed practical linear netwaolik@o

that is tighter than cut-set based and genie-aided bounds. @n-
putation (vs. communication) over multicast networks requres
additional analysis to account for multiple receivers shaing a
network’s computational resources. We also develop aetwork
decomposition theorem which identifies elementary parallel sub-
networks that can constitute an original network without loss of
optimality. The decomposition theorem provides a conceptaily-
simpler algebraic proof of achievability that generalizesto L-
transmitter L-receiver networks.

Index Terms—Computing Capacity, Function Alignment, Net-
work Decomposition Theorem

I. INTRODUCTION

strategies ranging from random linear codes to deterngnist
polynomial-time code constructions][6].][7].1[8].1[9]. The
success of traditional multicast communication motivaie$o
explore the fundamental limits of multicasting a lineardtion
in multi-receivernetworks as a natural next step. For this open
problem, some facts are known based on example networks:
(a) Random codes are insufficient in achieving capacitytéimi
and structured codes achieve higher computation fatés(H)0]
Linear codes are insufficient in general for computationrove
multi-receiver networks (cf. both [11] and [12]) and nondar
codes may achieve higher computation rates.

To make progress on the problem of multicasting a function

Recently coding for computation in networks has receivé@l multi-receiver networks, we consider the simplest two-

considerable attention with applications in sensor nete/{i]

transmitter two-receiver network in which both receiverme

and cloud computing scenarids [2]] [3]. In a sensor networRUte @ linear function (moduld-sum) of two independent
a fusion node may be interested in computing a relevaagrmoulli sources generated at the transmitters. Spelyfica
function of the measurements from various data nodes. V& consider the Avestimehr-Diggavi-Tse (ADT) determinist
cloud computing scenario, a client may download a function §ingle-hop network model [13] which captures superpasitio
part of the original source information that is distribufedg. and broadcast properties of wireless Gaussian networkssand
using a maximum distance separable code) across multipl@eneralization of networks of orthogonal links. We dﬁek’
data nodes. a new achievable coding scheme ternfigaction alignme

The simplest setting for computation in networks consis{dSPired by the concept dhterference alignmenfL5], [16].
of multiple sources transmitting information to single re- We also derive a new converse theorem that is tighter than cut
ceiver which computes a function of the original source§€t based bounds and genie-aided bounds. As a consequence of

Appuswamyet al. study the fundamental limits of computatiorfiS capacity result, we find that unlike the single-receczse,
for linear and general target function classes for singlf1€ cut-set based bound is not achieved due to competition
receiver networks [4]. While limited progress has been maé@y shared network resources that arise in satisfying fanct
for general target functions, the problem of linear functiodeémands at multiple receivers.

computation in single-receiver networks has been solved inAS a byproduct of our analysis, we developnatwork

part due to a duality theorem establishing an equivalendgcomposition theorerto identify elementary parallel sub-
networks that can constitute an original network without

loss of optimality for in-network computation. The network
decomposition approach offers a conceptually simplerfpobo

achievability which we use to establish the linear commutin
capacity of L-transmitter L-receiver single-hop networks. In
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S X1 7y 1 to be linear mappings. In line with the standard network ogdi

~ Ber (3) literature, when referring to the linear computing capaaite

will assume a zero-error framework rather than the framkwor

s, X, of negligible error we use in the context of the regular

~ Ber (3) .—> Tx2 computing capacity.
We classify networks into two classes, depending on a
reconstructability condition that will be specified in tregsiel.

Fig. 1. Two-transmitter two-receiver Avestimehr-Diggd\e (ADT) deter- The reconstructability turns out to be the key property that

ministic network classifies networks. This will be clarified when we prove an
upper bound on the computing capacity in Theofém 1.

addition, the approach has potential for the design of &irad qD_if.inition 1: A network is said to belegeneratef none of
computation codes in larger multi-hop networks. G774 X; can be reconstructed froif¥y, Y3) for all 4, 5. A

Related Work: In [11], [18], the computing capac- network is said to b@on-degeneraté# there exists(7, j) such

ity for multicasting a sum of sources is explored for arbi@G? "7 X; can be reconstructed frofy,Y2).
Lemma 1:A network is degenerate if and only if;; —

trary multiple-source multiple-destination networks.i Rad ) :
Dey [11] proved that there exists a linear solvably equivale’12 = 721 — 722. AS a direct consequence, a network is non-
sum-network for any multiple-unicast network and vicesaer degenerate if and only ity —n1 7# 191 — n9s.

Ramamoorthy and Langberig 18] characterized necessary and Proof: See AppendiXA. =
sufficient conditions for communicating sums of sources of
two-source L-destination (orL-source two-destination) net- I1l. MAIN RESULTS

works, when the entropy of each source is limited IbyOn Theorem 1 (Upper Bound on Computing Capacityhe
the other hand, our work considers sources without entropymputing capacity is upper-bounded by

constraints and establishes the exact capacity of an ADT )

multi-receiver network which is a generalization of tréati@al Ceomp < min {11, m12, n22, N1} - @

network coding models with orthogonal links. For non-degenerate networks wherg — nis # nai — n9s,

II. MODEL Cromp < max(ni1,no1) -::max(nzz,nu)' 3)
_ We focus on a t\_No-transmltter two-receiver ADT det_ermln- Proof: See Sectiof TIEA. -
istic network. Sectiof WI includes our results fbstransmitter . .
. - . . We show the tightness of the above bounds for the following
L receiver networks. As shown in Fifl 1, this network ISy

. . T 0 cases(a) degenerate network$h) symmetric networks
described by four integer parameterg which indicates the . (a) deg &) sy
: . S characterized by two parametersiof= n;; = ngs andm :=
number of signal bit levels from transmittér(: = 1,2) to

. s q . , n12 = N21.
receiver (j=1,2). Let X, € F; be tra!nsmnt_elﬁs encoded Theorem 2 (Degenerate Networkgjor degenerate
signal whereq = max;; n;;. The received signals are thenn

etworks wherei1 — nis = no1 — nao,

given by
Y, = G X, @ GO X, Ceomp = min{nii, niz, n22, o1 }- (4)
Yo =G "2 X ¢ GI "2 X5, @) Proof: The converse proof is immediate from Theofém 1.
See Sectiof 1II-B for the achievability proof. [ |

whereG is theq-by-g shift matrix, i.e.[G];; = 1{i =j+1}  y50rem 3 (Symmetric Networksjor symmetric
1<i<gl <j< g), and operations are performedIis. networks Where == nyy = nay andm = nyy = not,
Each receiver wishes to compute modulo-2 sums of the

two Bernoulli sourcesS and S¥, generated at the two Ceomp _{ min {m, n, § max(m,n)}, m#n; (5)
transmitters, with /N uses of the network. Here we use n, m=n.
shorthand notation to indicate the sequence upktoe.g., Proof: The converse proof is immediate from Theofém 1.
Sf* == (Su1,-+ . Six). We assume thaB{* and SJ* are gee Sectiof IV for the achievability proof. [

independent and identically distributed wimrn(%). Trans- Our results are interpreted with a focus on symmetric

mitter ¢ uses its encoding function to magj* to a length- networks. Specifically, it will be shown that our scheme out-

N codewordX". Receiver( uses a decoding functiody to performs the separation scheme where both receivers decode

estimateS{* & S;° from its received signal;¥. An error gy of the sources and then compute modulo-2 sums of the

occurs wheneved, 7 S @ Si*. The average probabilities of soyrces. It will also be revealed that in contrast to a single

error are given by, = E [P(d, # S{* @ S)] £ = 1,2. receiver function-unicasting case, the cut-set based ddain
We say that the computing racom, = % is achievable not tight when multicasting linear functions.

if there exists a family of codebooks and encoder/decodergoy jjjustrative purpose, consider the normalized conmuti

functions such that the average decoding error probasliticapacity as follows:

of A; and A\, go to zero as code lengtN tends to infinity. ) ) _

We will also need the notion of linear computing capacity Ceomp _ { min {o, 3}, a<1; (6)

Clin_ where we restrict both the encoders and the decoders q L, a=1,

comp?



Ceomp where (a) follows from the fact thatSi is independent of
q SE @ SI; (b) follows from the fact thatX)¥ is a function
of SI; (c) follows from the fact that conditioning reduces
entropy. If R.omp is achievable, thery — 0 as N tends
to infinity. So we getReomp < n11. Similarly we can show
that Rcomp < mln{H(Yg|X2),H(Y1|X1),H(Y2|X1)} <
min{nlg, nai, 7’L22}.
Proof of (@): For non-degenerate networks, by defini-
tion, there exists(i,j) such thatG? "4 X; can be recon-
_ min(m,n) structed from(Y7, Y2). Without loss of generality, assume that
N q G ™2 X, is a function of(Y1, Y).
Starting with Fano’s inequality, we get

—

N[= W

Fig. 2. Normalized computing capacity. Here:= n11 = nao andm := N(3Rcomp —€N)
n12 = n21. The parametery in z-axis captures a signal-strength similarity K K <N K K <N K K <N
betweenm andn. SI(ST @857 Y7 ) +1(S7 @ 833 Y5 ) +1(ST @ .557:Y3)

(@)
< [HYY) - HY{[SF @ 55

+ [H(YS) — HYN|SE @ S5, v + 1(SF @ 55, v3Y)
Remark 1 (Comparison to Sepaqratlon Schemi@)e com- ’ . 2ot ! 2o

N
puting rate of the separation scheme can be derived fromH(Y1 )+}€V(Y?K) X X KON ak
the multicast capacity. Note that the multicast capacitthes ~ — H (Y7, Ys" [ST° @ S5°) + I(ST* ® 555 Y5, 559)
intersection of the two individual MAC capacities: the §gt,; () HYNY + gH(YN
of (Ri, Ry) such thatR; < min(m,n), Ry < min(m,n) and (Vi7) + H(Yy )
Ry + R2 < max(m,n). Therefore, this gives

Rsep o C'sym o min{a l} (7) - H(YIN) +H(}/2N)
q q 2)7 — HYY,Y3"[S1° @ 85°) + H(T1X{'|55)

where Coym = sup{R : (R, R) € Cmui}. While this separa- @ H(YIN) + H(YQN)

tion approach provides the optimal strategy oK a < 5 _ N N N1 oK K N1 oK

it is suboptimal for the other regimg < a < 1. Note that GASERRE "I]‘Vle |97 @ 527) + H(TX1'|S2)

for 1 < a < 1, more-than-half of signal levels at receivers< HYN) + H(YSY)

naturally form the mod-sum function of our interest. It tsirn — H(T 1, XV |SE @ SK) + H(T 1, XV |SE)

out that this natural matching can provide higher computlng) N N Nk

rates. Details will be explained in Sectibnl V] H(Y{) + H(YS") = H(T12X{") + H(T12X{'[S5")
Remark 2 (Comparison to a Single-Receiver Cadr): a

single-receiver case, the computing capacity achieves the Z (Y13) + H (Ya1)]

cut-set based upper bound, which will be formally proverc< 2N[max(n11, n21) + max(niz, nas)]

to be min(m,n) in the next section. On the other hand,

the cut-set bound is not tight when multicasting a functiory.

Notice the non-zero gap between the function-unicasti N .

and function-multicasting capacities wh§n< a < 1 (see of SE%S 2 d( t)h f?l_l[‘ows. frorI'n the Cf;a;ctntl?at)f; f|s”a funfctlon

Fig.[2). This comes from the tension that arises in satigfyiry ﬁ ar;h ath 1éq'_nm)]§ ® functi (d) fOYOV\}'/S from

the same demand at multiple receivers. We will clarify thlgur ypothesis tha 1 s a function of(Y3, ¥2): (e)

. : : e . ollows from the fact thatX{¥ is a function of S¥ that is
while presenting our achievability in Sectipnl IV independent ofS¥ @ SK; (f) follows from the fact that

conditioning reduces entropy. This completes the proof.

min(m,n)

whereq = max(m,n) anda :=

— HYN, Y |SE @ 855) + I(Sf* @ 555 Y5V [S5)
(©)

here (a) follows from the fact that conditioning reduces
tropy; (b) follows from the fact thatS{ is independent of

A. Proof of Theorerll

The proof of the bound{2) is based on the standard cut- £t proof of Theorerfi]2
argument. The main focus is to prove the second boluhd (3).

Proof of (@): Starting with Fano’s inequality, we get Assume thatni; — niz = n21 —ng2 > 0. ThenYz is a

degenerated version af;:

N(Rcomp_eN) SI(SlK@‘S’QKvle) Yo =GI M2 X, ¢ G922 X
2 = 1 2

K K.yN oK
< (Sl ® S2 ’}/1 782 ) — @Q9mitnai— n22 X @y G922 X,
é (SK ©® SQK, Y1N|SK) = Gnany;
® N
= I(S{* ® 53, Y5 |S2 ,X3') This shows an equivalence to a single-receiver case which
B N concerns receiver 2's demand only. Hence, in this case,
= H(Y[S5", ZH (V1] X2;) < Ny Reomp = min{ni2,nas}. Similarly for the other case of



computable bits isV; + No+{m—(N1+N2)} = m. Similarly
receiver 2 can compute: bits. Therefore, we can achieve
Rcomp =m.

Remark 3 (Exploiting Channel Structure J10], [19])n
the regime of; < a < 2, more-than-half of signal levels
at receivers naturally form the mod-sum function. This
enables us to create a shared linear subspace. Note in the
above example that at receiver 2, the symljals b;) share
: ji:;ij: one-dimensional linear subspace spanned|hy, 1,0, 0],
e where[-]* indicates a transpose. This enables us to outperform

the separation scheme where shared subspaces do not exist.
Fig. 3. [Case I:% <a< %]: An achievable scheme fdmm, n) = (3,5) 0
and generalization to arbitrary values (@f, n).

as  |Tx1

N, b3
m— (N, + Ny) b2
N, b1 Tx 2

Remark 4 (Connection to Interference Alignmeritiote
that the linear subspace with respectdp is aligned with
N1 — M2 = N9y — nay < 0, one can show tha¥; is a the subspace w.ri;. In this sense, it is an instance of the

degenerated version df, and therefore a network becomedmportant concept ointerference alignmenfl5], [16] which

equivalent to a single-receiver case w.r.t receiver 1 wheli@s shown great potential for a variety of applications such
Reomp = min{nyy,n1}. as interference channels_[16], cellular networks! [20],][21

distributed storage network$ [22], 123],"[24] and multiple
IV. PROOF OFTHEOREMMVIA GEOMETRICAPPROACH  Unicast networks[[25],[26]. But the distinction w.r.t our
By symmetry, focus on the case of < n. The other case problem comes from_ the purpose of allgnm_ent. In our
8roblem, the aim of alignment is to form a desired function

of m > n is & mirror image in which transmitters 1 and 2 arWhile minimizing the signal subspace occupied by the source
swapped. As mentioned in Remdik 1, the separation scheme 9 9 P P y

can achieve the computing capacity K o < % The case symbols. To highlight this purpose, we call function
o t%I‘LgnmentD

of a« = 1 is a degenerate case where the channel forms

mod-sum function by nature at both receivers. In this case,

uncoded transmission can yieltl,m, = n. Hence, our focus B. [Case I % < a < 1]: Example

is the following two non-degenerate cases. Unlike Case |, our achievability for this regime employs a

vector-coding scheme. We first explain our achievabilityaid

A. Case i <a<3 with the examplém, n) = (3, 4) illustrated in Fig[#. We will

Let us explain achievability with the examplen,n) = then invoke a geometric insight which helps generalizing to
(3,5) illustrated in Fig.[B. We will show that the cut-setarbitrary values ofm,n). The generalization will be explained
bound ofmin(m,n) = 3 can be achieved. First transmitter 1In the next section.
sends the bit$aq, as, a3) on the top3(= m) levels. Observe  Our achievability idea is talternatefunction alignment at
that the 3rd level at receiver 1 marked with a green squaeth receivers. See Figl 4. We first achieve function aligntme
is connected with transmitter 1's uppser levels as well as a; ©b; at receiver 1. We next achiewg @b, at receiver 2. We
transmitter 2’s uppern levels. The idea is to exploit this repeat this until all of the resource levels are fully usliz At
overlapped level. Transmitter 2 sendéls on the top level the end of time 1, receiver 1 can then compute alk.of b;'s
to achieveas @ b3 on the overlapped level at receiver 1(i = 1,2,3). However, receiver 2 can compute only @ by,
In an arbitrary case, the number of overlapped levels ds @ b, andbs. Since we start favoring receiver 1, we end up
N1 := nia+n91 —ni1 = 2m—n. On the other hand, the @i  with this asymmetry.
is cleanly received at receiver 2 without being interferathw  In order to make it symmetric, we invoke the idea of vector
by (a1, as, as), sinceN;+m < n in the regime o% <a< % coding. In time 2, we start by favoring receiver 2 instead and
Similarly let Ny := ny2 +mn21 — nos = 2m —n be the number repeat the same procedure as before. We can then obtain a
of levels at receiver 2 which are connected with transmitteymmetric solution at the end of time 2. However, the sofutio
1's upperm levels as well as transmitter 2's upper levels. is still inefficient. Note thaths is missing at receiver 1, and
In this example, level 3 at receiver 2 is the overlapped levaimilarly a3 is missing at receiver 2. To improve, we use
Transmitter 2 then sends on the 3rd level so as to achieveanother time slot. In time 3, we now have two purposes: (1)
a1 9 by on the level at receiver 2. Thig is cleanly received sending fresh source symbols; (2) delivering theand a3 to
at receiver 1, sincé&V, +m < n in the regime of% <a< % receivers 1 and 2 respectively. We first multicast fresh sylmb

Finally notice that level 2 at transmitter 2 is vacant among; ® by andag @ bg with alternating function alignment. Next
the topm levels. In an arbitrary case, the number of thegeansmitter 1 sendas (wanted by receiver 2) on the third
vacant levels isn — (N7 + N»). Transmitter 2 sends additionallevel. But this transmission causes interferencégonhich
symbols . in this example) on the vacamt — (N; + No) was already received at receiver 1. Fortunately we canvesol
levels. Obviously these symbols are cleanly received &b bdhis conflict. Here the key observation is thai @ b3 is
receivers. In summary, receiver 1 can comput®b, ao P be, already obtained at receiver 1 in time 1. Hence, transmitter
and as @ bs. In an arbitrary case, the total number of thes2 sendingbs on top of bg in time 3, we can achieve the



Time 3 Time 2 Time 1 Time 1 Time 2 Time 3

as Qq as = a2 Q4 as

arPag A5 ap Tx 1 a1 ®b, as Dby a7 ® by Bas

as ag * Rx 1 by byDas  bgDasz @ bs
ag as as ®bs ae be

b? b5 bl bl b5 b7

by ®bs b by |7y 9 Rx 2 | @2 @by a1 Dby ag®bg®bs

be bs @ ®bs  as a7 ®ag ® be
be b3 —0O b3 ag ®bs as

Fig. 4. [Case II: % < a < 1]: Alternating function alignment fofm, n) = (3, 4).

function alignmentz @ b3 at receiver 1. Theis @ b3 already C. [Case II: % < a < 1]: Generalization
received in time 1 can then be exploited saide information
to decodebg from bg @ a3 @ bz. As a result, transmitter 1
can deliver theus to receiver 2 without interfering witlg at
receiver 1. Similarly transmitter 2 can deliver theto receiver
1 without interfering witha; at receiver 2. Both receivers can

We now provide a code construction &f; and V., for
arbitrary values ofm, n). Let M; be the column size oV,
i.e., the number of symbols that form function alignment at
receiver 2. Similarly, lef\/, be the column size oV,. In the
previous(3,4) example M, = M, = 4. Notice thatR.omp =

now computéa; & b;'s fgr ¢=1,---,8 during 3 time slots, MM s achievable if the following matrices are full rank:
thus achievingReomp = 5.
Geometric Interpretation: To aid generalization to B, := [V, T?V, TV, € FS"X(”'“FMZ)

arbitrary values of (m,n), we invoke geometric in-
sights from the (3,4) example. In this exampley =

[1, 0,0,0,0,0,0,0,0,0,0, O]t can be viewed as a beamforming We choose appropriate Va“Jes((]]ﬂl7 MQ) such thatM; +
vector fora;. Beamforming vector designs are closely assockr, = 2n, and thus can yielReomp = %n Considering the
ated with function alignment. To achieve function alignmenotal dimension of the linear subspace at receiver 1, we get
ai @ by at receiver 2, transmitter 2 designs its corresponding/, + M, < 3n. Similarly for receiver 2, we get/; +2M, <
vector asTv, whereT indicates the 3-time-slot equivalents3,,. This motivates us to choosd; = M, = n.
channel:T := Iy ® G** = I3 ® G. With this geometric  we construct{V;, V) such thatB; andB, are full rank.
viewpoint, we can interpret thes, 4) example solution as in The form of V, and V5 in (8) inspires our construction in
Fig.[S. the general case. Note that the first three column¥ pfand

Let a := (as,a4,as,a6)" and a := (ai,as,a7,a3)’; V. arethe same, say. Inspecting more examples, we could
similarly b := (b2, by, bg, bg)t andb := (by, bs, by, b3)t. Let identify the dimension oV as 3n-by-3(n — m):
V1 be a 12-by-4 beamforming matrix w.ri. Let V, be a
12-by-4 beamforming matrix w.r.b. According to the code

B, = [Vy, T?V,, TV,] e Fy < (Mit2Me),

Vi =[V Py] ey

S xn )
construction in Figl}4, we have Vy = [V Py] € F3"*
i} i i i where V € Y3 and P, € FEGm=2m g — )2,
10010 1 000 The form of [8) inspires:
0 0 0]0 0 0 0]0
00 0|0 00 0|1 V=Igoe"™ ... ™ ] (10)
0 0 0]0 0 0 01
01 0]0 0 1 0]0 whereeE") € F% indicates theith coordinate vector in an-
0 0 0]0 0 0 0]0 dimensional space. Note il (8) thR; and P, bear a strong
Vi= 0 0 0|1 Vo = 0 0 0]0 (8) similarity: the (9th-12th) rows are identical; the (1shyjtows
0 0 01 0 0 0|0 of P, are the same as the (5th-8th) rowsBf. Inspecting
0 0 110 0 0 1]0 more examples, we could develop a construction:
0 0 01 0 0 01
_ a3 (n) (n)
00 0|0 00 0|0 Pi=e5 @[e, 41 0 €amonl
3 n n n n
|00 0|0 | L0 0 0]0 ®e§)®{[e§(i_m)+1 em@[eg(i_mm em}’
P, = e @ e e
To achieve function alignmeni® b at receiver 2, transmitter 2= @ e 2m -]
2 sendsb along with TV,. Similarly to achievea @ b @el’ ® {[eg’gjhmm e@]@[eé’fﬁhm)ﬂ - eM]t.
at receiver 1, transmitter 1 sendsalong with TV,. Re- (11)

ceiver 2 then get&/,b and (T?V,)a. One can verify that
rank([V1 TV, T2Vy]) = rank([Vy TV; T2V,]) = 12. The following lemma shows that this code ensures the full

This enables both receivers to compates b anda & b. rank of B; andB,. This completes the proof.



(TVz)El\/Yla Tx 1 Rx1| \ : -
(TVs)(a®b)

— T2V )é —
V2b 2 Vzb
TV;)b
AN AL Rez| N : CERTE

(TVy)(a®b)

V 1 ‘371 V2 ‘371

Fig. 5. Geometric interpretation of an achievable scheme.

Lemma 2: (EL o
rank [V, TV,, T?V;] = 3n,
5 (12)
rank [VQ, TV1, T VQ} = 3n. Tx1 Rx 1 2

Proof: See AppendixB. | ;/"/;

V. PROOF OFTHEOREM[3VIA NETWORK DECOMPOSITION

In this section, we present a network decomposition the-
orem that permits to decompose a network into elementary
subnetworks. The decomposition theorem applies not only#g. 6. A network decomposition example of &m,n) = (2,7) model.
the two-user network discussed so far, but directly extenﬂ@m3ﬂ3),f = 0 anda = 2; hence, the decomposition is given B, 7) =
to the L-user network, which will formally be introduced in (%" * (1:2)%

SectiorV]. Using this theorem for the caselof= 2 users, we

will provide an alternative conceptually-simpler achieNiay
proof of Theorem B by coding separately over each elementary
subnetwork. Interestingly, this coding strategy is suffitito {mm{m’n}J

where

meet the converse bounds, and hence, to establish congputati -
capacity, thus establishing separation principleamong the
building blocks. This observation is somewhat surprisingn—
general interference channel problems, coding separately  The proof is given in AppendiX]C. Here we provide a
parallel channels entails a significant loss in performance proof idea with an(m,n, L) = (2,7,2) example, illustrated
For the general case of users, we will evaluate thein Fig.[8. The idea is to use graph coloring with— m| =5
performance of this coding approach in Secfiolh VI and shovelors, identified by integer$0, 1,2, 3,4}. At transmitter 1,
that it matches the upper bound for linear coding strategiesssign to levell and level6 (= 1 + |[n — m|) the color0
Theorem 4 (Network Decompositiorffor the L- (blue color in this example). Use exactly the same rule to
transmitter L-receiver (m,n) network wherem £ n, color the levels of transmitter 2 and receivers 1 and 2. The
the following network decompositions hdid: blue-colored graph represents an independent graph oflmode
(1) For anyk € Z*, (1,2). Next we assign the color 1 (red color in this e>§ample)
to level 2 and level7 (= 2 + |n — m|), for all transmitters
x (m,n). @nd receivers. We then obtain another independent graph of
model (1,2) and are left with mode(0, 3). Obviously the
model (0,3) is decomposed intq0, 1)3. Therefore, we get
(2,7) = (1,2)% x (0,1)3.
Remark 5:Unlike the L = 2 case, forL > 3, the case

|n — m)| (14)

a =min{m,n} mod |n —m|.

(km, kn) = (m,n)k = (m,n) x (m,n) x ...

(2) Cm+1,2n+1)=(m,n) x (m+1,n+1)
(3) For the arbitrary(m,n) model,

(m,n)

(13)

f (rr+D) X (41,0 +2)Y m<ng
Tl L)l (r 2,7 +1)%, mo>n.

m < n is not symmetric withm > n. Nevertheless, the above
symmetric decomposition holds even wher> 3. [J

Remark 6:The separation principle among these decom-
posed subnetworks is not generally true. It is well known

2We use the symbok for the concatenation of orthogonal models, justhat for parallel interference channels, optimal perfanoea

like in R2 = R x R.

requires joint coding across orthogonal components.



Theoreni¥ suggests that fundamental building blocks are of & bits <
form (r,r + 1) or (r + 1,r), that is, “gap-1” models. Hence,
we focus on the computing rates of the “gap-1" models.
Lemma 3 [ = 2): The following computing rates are
achievable:
(1) For the model0,1), Reomp = 0.
(2) For the model1,2), Reomp = 1.
(3a) For the modelr,r +1) with r > 2, Reomp =
)
)

2

(3b) For the modelr + 1, ) With r > 2, Regmp = 2(r +1).

(4) For the modelr,r), Reomp = T ) .

. . . Fig. 7. Achievable scheme for the — 1, ) model wherer = 2k.

This lemma can be proved via the geometric approach i
Section[IV. We give a short explicit proof in AppendiX D,
showing that explicit (_:odes for thes,4) and (4,5) mod_els The computing capacity is upper-bounded by
(found, for example, via the method from Section 1V) dirgctl
imply the general proof of the lemma. o« { min {m, n, s max(n,m)} . m#n;

Achievability Proof of Theorem[3: By symmetry, we focus comp =
on the case ofn < n. For the case 0f < o < 3,7 =0 . ) .
anda = m in (Id); hence, the decomposition is given by !Droof: See Sectioh VI-A for the achle_vablhty p_roof and
(m,n) = (0,1)"~2™ x (1,2)™. Thus, using Lemml3, theS_ectlodEEB for_ the coverse prom.c under I!near codln.g strat
computing rate iSReomp = 0 - (n — 2m) + 1 - m = m. Next, 9I€s. See Sectiop_VIC for the information-theoretic upper
consider the case of < a < 2. Applying the decomposi- bound. _ . n
tion (I3), we find that in this case,= 1 anda = 2m — n: Remark 8:In general networks, the linear capacity is often
(m,n) = (1,2)27=3m x (2,3)2m="_ Thus, using Lemmf]3, Not equal to the capacity and non-linear codes may achieve
the computing rate i®.omp = 1-(2n—3m)+2-(2m—n) = m. higher rates[l_IZ]..In the limit of — oo, however, linear codes
Finally, consider the case of > % Applying the decompo- show the optimality. Note that our information-theoretuper

sition (I3), we find that in this case,> 2. So we get bound approaches the achievable ratelaends to infinity,
thus establishing the asymptotic computing capacity.

n, m=n.

2 2
Reomp = §(T+ H(n—m-—a)+ g(r+2)a

_ ; (r(n—m) +a+ (n—m)} A. Achievability Proof

The idea is to combine the network decomposition in The-

@ 2 {m+(n—-m)}= %n orem[4 and achievability proof for elementary subnetworks.
3 3 Lemma 4 { > 3): The following computing rates are
where (a) is due to [T#). This completes the proof. achievable:

Remark 7:At first, it might seem that this proof is simpler (1) For the model0,1) or (1,0), Reomp = 0.
than our arguments in Sectibn]lV. However, we point out th a) For the modelr — 1,7) with r > 2p Reomo =
proving Lemma3B is not straightforward, and hence, thatetheiéb) For the model(r, r _’1) with 7 > 2: Rcomp N
is no clear ordering as to which proof is simpler. Both proof (3) For the model(r: ), Reomp = r P

carry different intuitions and insights into the structafethe Proof: The items(1) and(3) are straightforward. For the

problem.[ (2a) model, we consider two cases:= 2k andr = 2k + 1.

V1. I x [, SYMMETRIC NETWORKS Fig.[@ shows an achievable scheme whea 2k = 2 -2 and

L = 3. Each transmitter uses odd-numbered levels to ¢end

ymbols. The special structure of symmetric networks alow
ach receiver to get clean symbols on odd-numbered levels
twhiIe receiving partially-satisfied functions on even-rhered
fevels. For example, receiver 1 g€is, as) on the first and
third levels; (b1 @® c1, ba @ c2) on the second and fourth levels.
Note that two resource levels are consumed to compute one
desired function. Therefore, this givé,mp = %r. Obviously
this can be applied to an arbitrary value bfas well as the

N[ =0
=

3

We consider anL(> 3)-transmitter L-receiver network
where all of theL receivers want to compute a mod-2-sum o
all of the Bernoulli sources generated at the transmitiéfes.
consider a symmetric setting where the two integer parase
of (m,n) describe the network. Here indicates the number
of signal bit levels from transmittef to receiver?; and m
denotes the number of signal bit levels from transmitt¢o
receiver?’ (£ ¢). See Figllr for ar(m,n) = (3,4) example
of the network. The received signal at receivds given by

(2b) model.
Y, = GI"X, & @Gq—ij’ (15) Fig. [ shows an achievable scheme for the case ef
j£L 2k+1=2-241andL = 3. If we followed the same
for/ =12 L. approach as in the case of= 2k, each receiver would end

up with having a resource hole in the last bottom level. In

) . _ this example, receiver 1 would géti;, b1 & c1,a2,be @ c2)

Clin = { min {m, n, g max(n,m)}, m f i on the 1st, 2nd, and 3rd levels, while the last bottom level is
n, m=n. empty. In order to make an efficient resource utilization, we

Theorem 5:The linear computing capacity is



Time 2 Time 1 Time 1 Time 2 Case (A1) | Case (A2) | Case (A3)
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Fig. 9. Infeasible patterns of received signals for= 3. Once perfect
Fig. 8. Achievable scheme for tHe — 1, ) model wherer = 2k + 1. function alignment is achieved at receiver 3, any vectorsioabe aligned at
the other receivers.

again invoke the vector coding idea. At the end of time

each transmitter sends an additional symbol on thedash - K max(mon)

numbered level. This transmission causes a conflict at ea@sfvmp ENS T3

receiver. For exampley; has a conflict withbs & co. However, Our proof relies on a dimensionality argument, evaluated

this can be resolved by using another time slot. In time oM the receivers’ perspective. To formulate our argument

using the first level, each transmitter re-sends the synttaal tWe define the following space:

was sent on the last even-numbered level in time 1. From the

second to last levels, we repeat the same procedure as in tilee = span{Tv1 i, ..., Tve_1:,vei, Tver1i,. .., Tvr i}

1 to send frestk symbols. Note thati; is cleanly received at N o )

receiver 1 in time 2. Thigz can now be used to decodgs c,, Intwuvgly, thls_|s the space taken up by tlmh computed bit

which was interfered with by in time 1. Also theb;@c; that @t receivert. First, we observe the following fact:

was received at receiver 1 in time 1 can be used to deepde Lemma 5:For every receivet (¢ = 1,2,..., L), the sub-

which is interfered with by @ c; on the second level in time SpacesV; ¢, fori = 1,2,..., K, must be linearly independent,

2. Therefore, we can achieV@.om, = 2=+ = £ The same I-€., for everyi, j and/, we haveW;, N W;, = 0, where0

strategy can be applied to arbitrary values(bfr = 2k + 1) is the all-zero vector.

as well as the2b) model. [ Proof: This lemma can be proved by contradiction: sup-
Using Theorenil4 and Lemnid 4, we can now prove thHse there existg # i such thatl; , andW; , are not linearly

achievability. We focus on the case of < n. The other independent subspaces. Then, it is not possible to guarante

case ofm > n similarly follows. For0 < o < i, (I3) that the computed bits andj can be decoded without error.

givesr = 0 anda = m, thus the decomposition is given by u

(m,n) = (0,1)"=2™ x (1,2)™. Therefore, using Lemmd 4, The following lemma relates the dimensionality of the

we can achiev&Romp = 0 (n —2m) + 1 -m = m. Next, variousW;, :

consider the case of < o < 2. Using [I3), we find that Lemma 6:For anyi, if there existe such thatlim (W, ;) =

r =1 anda = 2m —n, hence, the decomposition is given by, then for allm # ¢, we must havelim (W, ,,,) > 2.

(m,n) = (1,2)>"77™ x (2,3)>"~". Using Lemmd}, we can  Proof: See AppenditE. n

achieveReomp = 1+ (20— 3m) + 3 - (2m —n) = 3n. Finally, This lemma says that for any hifor which function alignment

consider the case af > 7. From [I3), we know that > 2. ig perfectly achieved at some receivefi.e., dim(W; ;) = 1),

1, . . o
linear decoding at all receivers, our aim is to prove that

_1 . . :
So we getReomp = 57 then for all other receivers, this same bihust take up at least

3 dimensions. For illustration, Fif] 9 shows some examples of
B. Converse Proof under Linear Coding Strategies these infeasible patterns whén= 3.

Straightforward cut-set arguments giVeRcomp < We can restate this lemma in the following way. For any
min{m, n}; hence, it suffices to prove th&in < max(m,n)  bit 4, one of these two alternatives must apply:
N ; R

Consider any vector linear code ovAr uses gf the network. (B) : There exists/ such thatdim(W,,) = 1. Then,
Denoting the vector ofX successive bits of userby S¥, dim(W; ,,) > 3 for all m # ¢.
this means that the transmitted signals can be written as  (C) : There does not exigtsuch thadim(W; ;) = 1. Then,
K dim(W; ,,,) > 2 for all m.
ZVE,iSl,i = V,5F, For illustration, Fig[ID shows examples. Cases (B1)-(B8) a
i=1 the ones where the dimension for any other receiver (except

where v,; are the “beamforming” vectors of the perfect-alignment receiver) is exactly 3. Cases (CB)(
length N max(m,n) to be chosen optimally, andare the ones where the dimension is exactly 2 for all of the
V, € ]Fév max(m.n)xK s the matrix composed of thereceivers.

K beamforming vectors of transmitter. Assuming Let us introduce the sef of those indiceg for which there
that K computation bits are successfully decoded bgxists¢ such thatdim(W;,) = 1. For everyi € J, we have



Case (B2) Case (B3) Case (C1) Case (C2) Case (C3)
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Fig. 10. Feasible patterns of received signals fo= 3. Cases (B1)-(B3) are the ones where the dimension of tharlisebspace for any other receiver
(except for the perfect-alignment receiver) is exactly 8s€s (C1)-(C3) are the ones where the dimension is exactly @llfof the receivers.

(by case (B) above) C. Proof of Upper Bound

The following upper bound is a generalized version of the
2 x 2 case bound{3). Starting with Fano’s inequality, we get

Zdlm m)>143(L—1)=3L—2.  (16) N((2L — 1)Reomp — €n)

L
<D 1D SV + @ - DIED S
Let us also denote the complement of the gefin the set of ZZL
integers between 1 anil) by 7¢. For everyi € 7¢, we have (Z) Z [H( H(Y/N| @SK YN -1y }
(by case (C) above) o
+ (L -DIEP S

L
S i 22 an Uyn (Yﬁ)—{H(yl@SfHZI(@Sf;KN,&)}
(=2

=1
L
I3 HEY) - {Hm P s+ > H(Tux) |Se>}
. i =1 (=2
Now, sinceK = |J| + |7¢|, and by definition,R'., = I
K/N, we can write @ Z HYN)
(=1
L —
2LN R, = 2L (17| +1T°)) - {H(y, [Ta XMo@ S5 + ) H(Tu X |Se)}
<|JI(BL —2) + |T°|2L e:zL
(e) _
() L L < Ny _ N1L N
< Z Z dim (Wzm) + Z Z dim (Wi,m) = ;H(le ) {H([T“Xl ]222) + ;H(TZIXZ |S€)}
iejm 1 €eJecm=1 I I I
B DS vy {ZH TaXM)+ H(TngjV|Sg)}
o Z Z =1 =2 =2
z i=1 L
(b) <Y HY/N)<NL
< Z N max(m,n) = LN max(m,n), - ; ¥ = max(m, n)
m=1

where(a) follows from the fact that conditioning reduces en-

tropy; (b) follows from non-negativity of mutual information,
where (a) follows from Lemma® (rewritten as in Equations) := [YN]%_,, andS, := [S/]2, \ S/ (¢) follows from the
(18) and[(1lr)), andb) follows because for each receiverthe fact thatS;*’s are mutually independen() follows from the
subspacedV; , must be linearly independent (Lemifnla 5) anfact thatX, is a function ofY (see Clainfll below)e) follows
their total dimensionality cannot exceed the total numter &rom the fact that(S¥,--- , S¥) is independent ofp), SX;
dimensions available at receiveover N' channel uses, which (f) follows from the fact thaiS/’s are mutually independent;
is N max(m,n). Therefore, we geRRln = < w This Claim 1: For m # n, X, is a function of [V;]£ ,, ¢ =

comp

concludes the proof. 1,---, L.



10

Proof: Consider the case ofi < n. From [I5), we get offered through rate-limited bit-piped link§_[29] or thigiu
I I the corresponding backward communication netwdrk| [30].
@Yi —{Ie(1aL)G" ™} @Xi Furthermore, we are interested in extending to more general
! et multi-hop networks|[[31].

L L L
@}/i = (IeG™™) @Xi @ {(L-1)G""} @Xi- VIIl. CONCLUSION
i=2 i=2 i=1 We have established the computing capacity of a two-
Straightforward computation gives transmitter two-receiver ADT symmetric network where each
. receiver wishes to compute a modulo-2-sum function of two
X = Al @Y- Bernoulli sources _generated at_ the two Fransmltters. We als
= ¢ characterized the linear computing capacity of atransmitter

L-receiver symmetric network. We developed a new achiev-

able scheme and derive new upper bounds. Furthermore we
established a network decomposition theorem that provides
an alternative but conceptually-simpler achievabilityoqft

We expect that the network-decomposition-based framework
would play a role in extending to arbitrary multi-hop netksr

L L
BT [Prie{L-ne} {A-l@m} ,

i=2 i=1
where A .= {I¢(1® L)G" ™} andB := I& G" ™),
both of which are invertible since» # n. Hence, X, is a
function of [Y;]% ,. By symmetry, X, is a function of[Y;]~ ,,
¢ = 2,---, L. Similarly we can show this for the case of APPENDIX A
m > n. u PROOF OFLEMMA[T]

A. Direct Part—

) Without loss of generality, assume that; — n1o = no; —
A. Multi-hop Networks nss > 0. We can then get:
In [17], [11], [18], function multicasting has been expldre a1 —nas  g—n11-+n21—nas a—n1s
in the context of multi-hop networks. While some interegtin G oy =(G oG )Xi.
relationship between sum-network and multiple-unicagt nd-or the obvious reason¥; € F% contains nontrivial values
works was found in[[11], determining the computing capacitgnly on the topn; levels:

VIl. DISCUSSION

in general has been open. For two-soulcelestination or X,
L-source two-destination networks, the computing capacity X1 = [ 0 ] € I3,
was established only when the entropy of each source is R e
constrained to be 17118]. where X; € Fy*'. Using this expression, we can rewrite the
While in this work we remove the entropy constraint ofibove as:
sources, the network model we consider here is somewhat 0,
L. A . G_n21 —n22Y EB 1/2 — q—ni1 ~ .
specialized and also restricted to a single-hop network. Bu 1 (Grai—n22 g Grui—mz) X,
11 11

we expect that our results will shed some lights on arbitraWhereG indicates am.--b shift matrix. Sincen
multi-hop networks. One natural next step is exploiting the ~ ~ "1t we ha\;éGZﬁ—l}m G — g lflm_d
insights developed in this work, to characterize necesasady |12 —, 21 — 22, nn DGy, o

. L
sufficient conditions of two-source two-destination rmiltip :)hneer?:g)rrlesr?:v)ﬁhat aj rgg_ggr}?Otc::ngfgznrztézﬁt;?u;ég;Is)rz
networks when the entropy of each source is limited by 2. L 2
1, Y, consideringG™t~"12Y; ¢ Y;. Hence, a networ
Py Y % (Y1, Y3) by consid n-nRY, 6 Yy, H twork

is degenerate.
B. Role of Feedback for Computation
The role of feedback for function computation has initially8. Converse Part—

been studied in[[27] where it is shown that feedback cane will show that ifri; — n1s # 121 — 192, then a network

increase the computing rate. Interestingly the feedbatkiga s non-degenerate. Consider the following four cases:
shown to be significant - qualitatively similar to the gairtle

two-user Gaussian interference chanfel [28], which rexkal Case nip < nii, no1 < nop
an unbounded feedback gain: the gap between nonfeedback Case Il:n12 > ni1, no1 > na2
and feedback capacities can be arbitrarily large as theakign Case lll:njy < nyp, noy > nao

to-noise ratio of each link increases. However, the result

of [27] relies on a separation approach that naturally comes

in the course of characterizing feedback multicast capacit Note that Case | and Case Il are symmetric, so are Case |lI
Our future work is characterizing the feedback compuand Case IV. Hence, we focus on Case | and Ill.

ing capacity of the networks considered herein to exploreCase |(ni2 < ni1,n21 < na2): Consider

whether we can do better than the separation approach. ThisY1 @ Gre2—nay, — (GITM1 @ @GItna—na—niz) )

will provide a deeper understanding of the feedback gain.

Moreover it would be more interesting to explore this feed- — 0g—n1,

. .. . . ni1+nse—no—n % .
back gain under more realistic scenarios where feedback is (In,, ® Gy 227 mh2) X,

Case IV:ing > nii, nNo1 < Noa.



11

Sinceniy — nia # noy — Naa, GQ;%*"”*WP”H #1,,and p = 1,2,... kmax(m,n)) the color(p — 1) mod k. Use

thereforel,,,, @ Gj11T"22~"21=™12 s invertible. This implies exactly the same rule to color the vertices of receiver 1 as
that X; is a function of(Y7,Y>). Hence, a network is non- well as the transmitters and receivers of the remaitiing 1)

degenerate. users. It is seen by inspection that each color represents an
Case Ill (n12 < n11,m21 > n99): First consider the case ofindependent graph. Moreover, each color represents phgcis
n91 — Nag > ny11 — niz. We then get an (m,n) model.

For Part (2), we use graph coloring with 2 colors. At
all transmitters and receivers, assign one color to the-even
0g—nis numbered levels and the other color to the odd-numbered
(G2 g Gt m2) X, levels. By inspection, it can be verified that each color rep-
SiNCenyy —nys # nay —ngs, G121 —132 £ Gru—mz, This im- resents an independent graph. Moreover, one color refgsesen

plies thatGZﬂ*"mf(l is decodable and therefo@e—m2x, N (m,n) model and the other represents @n + 1,n + 1)

is decodable. Hence, the network is non-degenerate. We n'&&del'P (3 h colori i |
consider the other case @fy; — nys < n11 — nio. We then " OF Far ( ) we use graph coloring with — | colors,
identified by integerg0, 1, ...,|n—m|—1}. At transmitter 1,

Gn21 —nzzyl s }/’2 — (Gq—n11+n21—n22 s Gq—nlz)Xl

get assign to levep (for p = 1,2,...,max(m,n)) the color(p —
GMITM2Y] @Yy = (GO gy GIT2) X 1) mod |n—m|. Use exactly the same rule to color the levels
0y 1y, of rec_:e_iver 1 as well as t_he transm_itters a_nd receivers of the
(Gru—mz g Gnai - n22) X, remaining(L—1) users. It is seen by inspection that each color

. o represents an independent graph. A tedious but straigvefdr
Sincenii —niz # na1—nag, GRIITM?2 # G222 Thisim- - calculation shows that of the resulting — m/| independent
plies thatG72: 722 X5 is decodable and therefo@?~">2 X,  graphs, there are number of modelgr + 1,7 +2) andn —

is decodable. Hence, the network is non-degenerate. m — a number of modelgr,» + 1), with the claimed values
for » anda.
APPENDIX B
PROOF OFLEMMA [2 APPENDIXD
Using [9), [10) and[{11), we compute: PROOF OFLEMMA 3
TV=Lx][e EZ) 1 eg’(?hm)] We note that Items (1), (2) and (4) are obvious, and Item
2y — (n) (n) (3b) follows from Item (3a), since without loss of genemalit
T L®[e, 2(n—m)+1 " e3(n7m)] for the multicast problem with, = 2 users considered here,
TP, = e§3) [eé’(?l_m)ﬂ el the casgm, n) and the casén, m) are mirror images of each
3) (n) ) (n) other in which the roles of transmitters 1 and 2 are swapped.
ey’ ® {[eg(n 1 en 1@l 0]} We here provide an explicit proof of Item (3a), split into
2P, —e® o [e(n) o e(”)] three cases. For notation, we will find it convenient to denot
1753 3(n—m)+1 n the vector of (binary) channel inputs used by transmitter 1
@e§3)®[ef£) 1 0] as (X11,X12,...)" and the one used by transmitter 2 as
t
_ .3 (n) . (n) (X271,X272, .. ) .
TPy =e5" ® e, 2(n—m)+1 en’] (i) The caser = 3¢ — 1, for any integer/ > 1. For
@e@@{[ (’(17)1 a1 e%n)]@[efﬁ_m)ﬂ 0]} ¢ = 1 (hence,r = 2), an explicit code is as follows:
X1 = a1, X12 = az, X13 = 0 and Xo 1 = by, Xoo =
2 (3) (n) (n) ' I . ’ e .
TPy =e3” ® [93(n m+1 T ©n ] b1, X253 = 0. It is straightforward to verify that both receivers
3 n can reconstructy b, and b2, hence, a computa-
6995)@[((,)1 o 0] 1D b az @ bo, p

tion rate of 2 is attained. For the general case, we set
With the Gaussian elimination method, we can show that X 5o = ag,—1, X1,3—1 = a2k, X1,3x = 0 and Xo 35,2 =
b2k7X273k71 = bgkfl,ngk = O, for k = 1,2,...,£. Each
span [Vi, TV;, T*V] receiver can reconstruct all sumsay @ b, and thus, the
=span [V, TV, T*V, P;, T?P;, TP;| computation rate i2/ = 2(r + 1).
=span[I3 ®1,]. (i) The caser = 3¢, for any integer/ > 1, derives easily
once we have an explicit code fér= 1, i.e., for the(3,4)
model. For the(3,4) model, consider coding ovey¥ channel
uses, which corresponds (by network decomposition) to the
(9,12) model. An explicit code can be found for example

Hence, rank [V, TV,, T?V;] = 3n. Similarly we can
show thatrank [V, TVy, T2V;] = 3n.

APPENDIXC via the constructior {9)[{10)._(L1) in Sectibnl IV, leadimgst
PROOF OFTHEOREMH] computations. Fof > 2, we consider a vector linear code over
For Part (1), consider the(km,kn) model. The proof 3 channeluses, and thus, t{#¢, 9¢+3) model. For this model,
uses graph coloring witht colors, identified by integers we set X; g9x—s = aek—5,X1,96—7 = Q6k—3,X1,9k—6 =

{0,1,...,k — 1}. At transmitter 1, assign to leved (for agr—1,X106—5 = Gek—a,X1,0k—4 = a6k—2,X1,9k—6 =



Xigh—1 = Xigr = 0 and Xogr_53 =
= aek, X2,9k5
agk—5, X2,9k—3 agk—3, X2,0k—6 = Q6k—1,X2,9k—2 =
Xoor—1 = Xooi 0 for & 1,2,...,0 — 1. It is
easily verified by inspection that each receiver can recover
all 6(¢ — 1) modulo sums. Additionally, we observe that this

code does not involve or affect any of the last 12 positions

agk, X1,0k—2 =
a6k—4, X2,9k—7

a6k—2, X2,9k—6

12

must appear at all receivers. This implies that

dim(span(vy,;))

= dim(span(Tvy,))
= dim(span(T?vy ;)
=1

at transmitters or receivers. These last 12 positions itotest The key observation here is that for 7 n, these subspaces
exactly a(9,12) model, for which we already know that anare linearly independent:

additional 8 computations are achievable. This gives d tfta
6(¢—1)+8 = 2(3¢+1) computations. Thus, per channel use,
the computation rate i§ (3¢ + 1) = 2(r + 1).

dim (span[vu, Tvl,i7 T2V171‘]) = 3.

We can apply the same argument for the other receivers to

(i) The caser = 3¢ + 1, for any integer/ > 1, derives COomplete the proof.

easily once we have an explicit code for= 1, i.e., for the
(4,5) model. For the(4,5) model, consider coding ove}
channel uses, which corresponds (by network decompaopitiofi]
to the (12,15) model. An explicit code can be found for
example via the constructiof](9]. (10, [11) in Section IV,
leading to10 computations. Fof > 2., we consider a vector
linear code oveB channel uses, and thus, tt# + 3,9+ 6)
model. For this model, we seY; gx_s = agr—5, X1,96—7
ak—3, X1,9k—6
agk—2, X1,9k—6

(3]

= 6k-1,X1,9k—5 = G6k—4,X19k—4 =
= ack, X1,9k—2 = X1,9k—1 = X1,k
0 and X3 gx_s A6k—a, X2,9k—7 a6k—2, X2,9k—6
a6k X2,9k—5 agk—5, X2,9k—3 agk—3, X2,9k—6
a6k717X279k72 = X279k71 = X279k =0fork = 1, 2, .. .,é—

1. It is easily verified by inspection that each receiver carg
recover all6(¢ — 1) modulo sums. Additionally, we observe
that this code does not involve or affect any of the last 1%7)
positions at transmitters or receivers. These last 15 ipasit
constitute exactly &12, 15) model, for which we already know [8]
that an additional 10 computations are achievable. Thisggiv
a total of6(¢ — 1) + 10 = 2(3¢ + 2) computations. Thus, per
channel use, the computation rateZig3¢ + 2) = 2(r + 1).

(4]

(5]

El

APPENDIXE
PROOF OFLEMMA [g]

[10]

We focus on the case ofi < n. The other case similarly [11]
follows. By assumption, for the considerédwe have that [12]
there exist such that
To simplify notation, and without loss of generality, let us$14]

suppose that this holds for the last receiver, that isf/fer L.

But this also trivially implies that [15]

span(vy ;) =span(Tvy ;) =--- =span(Tvy_1,), (18)

whereT := Iy ® G"™™. Now, consider the subspad¥; ; [16]
at receiver 1. We have that
[17]
Wi1 =span[vi;, Tva,, -+, Tvr_1,, Tvp,]
= span[vi,;, Tvi;, T?vy] [28]
where the last equality is due tb_{18). Since we assume t|[|l§ﬂ
@D, S« is decodable at all receivers, any individual symbol
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