
ar
X

iv
:1

20
3.

44
22

v1
  [

st
at

.M
L]

  2
0 

M
ar

 2
01

2

Information and Inference: A Journal of the IMA(2014) Page 1 of 24
doi:10.1093/imaiai/drn000

Semi-Supervised Single- and Multi-Domain Regression with
Multi-Domain Training

TOMER M ICHAELI∗,

Technion–Israel Institute of Technology
∗tomermic@tx.technion.ac.il∗

YONINA C. ELDAR

Technion–Israel Institute of Technology
yonina@ee.technion.ac.il

AND

GUILLERMO SAPIRO

University of Minnesota
guille@umn.edu

[Received on 5 May 2014]

We address the problems of multi-domain and single-domain regression based on distinct and unpaired
labeled training sets for each of the domains and a large unlabeled training set from all domains. We
formulate these problems as a Bayesian estimation with partial knowledge of statistical relations. We
propose a worst-case design strategy and study the resulting estimators. Our analysis explicitly accounts
for the cardinality of the labeled sets and includes the special cases in which one of the labeled sets is
very large or, in the other extreme, completely missing. We demonstrate our estimators in the context
of removing expressions from facial images and in the context of audio-visual word recognition, and
provide comparisons to several recently proposed multi-modal learning algorithms.

Keywords: Bayesian estimation, partial knowledge, multi and singledomain regression, learning, hidden
relationships, Bayesian networks, minimum mean squared error.

1. Introduction

There are many applications in which one can access data frommultiple domains in order to perform a
task. For example, word recognition can greatly benefit fromthe availability of joint audio-visual mea-
surements [17]. Person recognition and verification can be performed much more accurately by fusing
information from several modalities such as facial images,iris scans, voice recordings, and handwrit-
ings.

A major difficulty in fusing multiple sources is that one can often access only distinct labeled training
sets for the different domains and does not have paired labeled examples from all domains. Suppose, for
instance, we wish to perform audio-visual gender recognition. There are numerous existing data-sets
of labeled voice recordings as well as labeled data-sets of facial images. However, there are only a few
jointly labeled audio-visual data-sets, with a limited number of different subjects each. Thus, although it
is straight forward to train a classifier based on audio or image data alone, it is not clear how to best fuse
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the two modalities, in particular when they are unpaired. While paired multi-domain labeled examples
are typically scarce, paired unlabeled examples are often abundant. For instance, enormous amounts of
speaker video sequences (together with audio) can be easilycollected. These videos, though, often do
not come with labels. Nonetheless, they can be used to unveilthe statistical relations between audio
and video. An important question is how to best fuse audio- and image-based predictors, given these
relations.

An even more interesting and practical question is whether the availability of multiple data sources
can aid a machine learning algorithm during training, even if not all are measured during testing. For
example, suppose we want to predict the age of a person based on an audio recording of him/her. Assume
we have a labeled audio training set, a labeled image training set, and a large amount of unlabeled audio-
visual examples. Can the visual examples help construct a predictor, which is solely based on audio?

In this paper we address the problem of multi-domain as well as single-domain regression based on
distinct (unpaired) labeled training sets for each of the domains and an unlabeled multi-domain training
set. Specifically, focusing on two domains for simplicity, we consider the situation in which we have at
our disposal a very large unlabeled training set{xxxi

1,xxx
i
2} as well as two labeled sets{xxxi

1,yyy
i} and{xxxi

2,yyy
i}.

Using this multi-domain training data, we treat the problems of designing a predictor ofyyy based on
(xxx1,xxx2) (multi-domain regression) and a predictor ofyyy based onxxx1 alone (single-domain regression).
Our analysis is general in that it explicitly accounts for the cardinality of the labeled sets. In particular,
it includes the special cases in which one or both labeled sets are very large as well as the cases in which
one of the labeled sets is completely missing.

Several problems of similar nature have been treated in the literature. Perhaps the most widely stud-
ied of these ismulti-view learning[2] in general and multi-view regression [10] in particular. These
techniques make use of a large training set of data from multiple domains (views), containing only a
few labeled examples. It has been shown that if the views tendto agree in some sense, then the unla-
beled examples are useful in constructing a single-view estimator [2, 10]. In our setting, however, we
do not observe even a single multi-domain labeled example{xxxi

1,xxx
i
2,yyy

i} and also make no assumptions
on the underlying distribution. A multi-view framework fordistinct labeled training sets, recently pro-
posed in [1], assumes the availability of a mapping functionwhich can generate a good estimate of
the unobserved view from the observed one. In our setting, wedo not assume that such a mapping is
known or even exists. These distinctions have profound implications. In particular, the lack of labeled
multi-domain samples in our scenario implies that, even if our single-domain sets are infinite, we may
only be able to deduce the joint distribution of(xxx1,xxx2), of (xxx1,yyy), and of(xxx2,yyy). This, however, does
not suffice, in general, to determine the conditional distribution of yyy given (xxx1,xxx2), and therefore, for
instance, the minimum mean-square error (MMSE) estimatorρ(xxx1,xxx2) = E[Y|X1 = xxx1,X2 = xxx2] cannot
be constructed.

Situations in which labeled samples{xxxi
2,yyy

i} from a source domain are used to construct a predictor
of yyy from a target domainxxx1 fall under the category oftransfer learning[18]. In some cases, unlabeled
examples, as well as a few labeled examples{xxxi

1,yyy
i} from the target domain are also available. Tradi-

tional transfer learning algorithms are suited for domainsadmitting a common feature representation.
For example, the different domains may be images of an objecttaken from different views, in which
case the extracted features are of the same type. Extension to different representations may be handled
via themultiple-outlook learningframework [9]. Nevertheless, in both these settings pairedunlabeled
examples{xxxi

1,xxx
i
2} from the two domains are not accessible. In this sense, our setting allows learning

via supervised-transfer of knowledge.
More related to our problem are thecross-modalityandshared-representationlearning scenarios

recently studied in [17] in the context of multi-modal learning. In both settings, unlabeled training data
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{xxxi
1,xxx

i
2} from multiple modalities, such as audio and video, are used to perform afeature learningstage.

In cross-modality learning, one constructs a predictor based onxxx1 alone using a labeled training set
{xxxi

1,yyy
i}. For example, we may want to build a classifier operating on audio features by observing labeled

audio examples in addition to unlabeled audio-visual instances. In shared-representation learning, one
constructs a predictor based onxxx1 alone using a labeled training set{xxxi

2,yyy
i}. For instance, we may want

to train an audio classifier by observing only labeled visualexamples in addition to unlabeled audio-
visual instances. Cross-modality regression was recentlystudied from a Bayesian estimation perspective
in [15], in which a link to instrumental variable regression[3] was also highlighted. As we show, both
cross-modality and shared-representation learning are special cases of our approach, corresponding to
the situation in which there are zero examples in one of the labeled sets.

In this paper we formulate regression from unpaired data sets as a Bayesian estimation problem
with partial knowledge of statistical relations. Specifically, we assume that, for each domain, we can
determine the predictor that minimizes the mean square error (MSE) among some class of estimators.
This can be done using the labeled training examples from theassociated domain. Furthermore, we
assume that we can determine the joint probability distribution of the data from the two domains using
the unlabeled examples. Now, every joint distribution of labels and (multi-domain) data which is con-
sistent with this knowledge is considered valid. The performance of any estimator depends, of course,
on the unknown distribution. Thus, our approach in this paper is to seek estimators whose worst-case
MSE over the set of valid distributions is the smallest possible.

We show that the minimax problems we obtain have simple, yet nontrivial, closed form solutions
which can be easily approximated from the available training examples. These expressions also provide
insight into how data from multiple domains should be taken into account. In particular, we show that,
from a worst-case standpoint, a domain with no labeled examples cannot help. Thus, it is impossible
to perform cross-modality regression without making any assumptions on the underlying distributions.
We illustrate our approach in the contexts of face normalization and audio-visual word recognition. In
the former application, we demonstrate how an image of a smiling face can be converted into one with a
neutral expression, without observing paired examples of neutral and smiling faces. In the latter setting,
we show how spoken digits can be recognized from silent video(lipreading) when only labeled audio
examples are available. We also show how they can be recognized from audio, when there is access
only to labeled video examples. The experiments indicate that our approach is preferable to that of [17].

The remainder of this paper is organized as follows. In Section 2 we present the setting of interest in
detail and discuss several special cases. We provide a mathematical formulation of our regression prob-
lems in Section 3. The minimax multi-domain and single-domain estimators are derived in sections 4
and 5, respectively. Finally, experimental results are provided in Section 6.

2. Problem Formulation

We denote random variables (RVs) by capital letters (e.g., X1,X2,Y) and the values that they take by bold
lower-case letters (e.g., xxx1,xxx2,yyy). The pseudo-inverse of a matrixAAA is denoted byAAA†. The second-order
moment matrix of an RVX is denoted byΓ XX = E[XXT ], whereE[·] is the mathematical expectation
operator. Similarly, the cross second-order moment matrixof two RVs X andY is denoted byΓ XY =
E[XYT ]. The joint cumulative distribution function of the RVsX andY is writtenFXY(xxx,yyy) = P(X 6

xxx,Y 6 yyy), where the inequalities are element-wise. By definition, the marginal distribution ofX is
FX(xxx) = FXY(xxx,∞). In our setting,Y is the quantity to be estimated, andX1 andX2 are two sets of
measurements (features). The RVsX1, X2, andY take values inRM1, RM2, andRN, respectively.

Our goal in this paper is to propose an estimation theoretic approach for solving certain regression



4 of 24 MICHAELI, ELDAR AND SAPIRO

X1 X2

Y

(a)

X1 X2

Y

(b)

X1 X2

Y

(c)

X1 X2

Y

(d)

FIG. 1: Multi-domain regression. (a),(b) Single-domain training with many/few labeled examples (Sec-
tion 4.1). (c) Multi-domain training with few labeled examples (sections 4.2 and 4.3). (d) Multi-domain
training with many unpaired labeled examples from one domain and few from the other domain (sec-
tions 4.4 and 4.5).

problems in which several distinct training sets are available during training. More specifically, we
assume we are given access to three possible data-sets as follows:

1. labeled examples{(xxxℓ1,yyy
ℓ)}L1

ℓ=1 from domain 1;

2. labeled examples{(xxxℓ2,yyy
ℓ)}L1+L2

ℓ=L1+1 from domain 2;

3. paired unlabeled examples{(xxxu
1,xxx

u
2)}

L1+L2+U
u=L1+L2+1.

These training sets correspond to independent draws from the distributionsFX1Y, FX2Y, andFX1X2, respec-
tively. Our focus is on situations in whichU is very large, so that the joint distributionFX1X2 can be
assumed known (or very well approximated, for example, by nonparametric methods). The cardinalities
L1 andL2 of the labeled sets are arbitrary. In particular, one of themcan be zero. In in this case no knowl-
edge whatsoever is available regarding the statistical relation betweenY and the associated domain. On
the other extreme, one (or both) of the labeled sets may be very large, in which case the associated
single-domain MMSE estimator, sayE[Y|X1], can be assumed known (or accurately approximated).

In terms of testing, we treat two tasks. The first ismulti-domain regression, in which the algorithm is
asked to predictyyy based on an observation ofxxx1 andxxx2. The second issingle-domain regression, where
prediction should be based solely onxxx1 (including the case where noxxx1 labeled data is available for
training, that is,L1 = 0). Several archetypical situations are depicted in figs. 1 and 2. Here, single- and
double-lined circles correspond, respectively, to RVs that are unobserved and observed during testing.
A continuous line, a dashed line, and lack of a line between circles corresponds, respectively, to many,
few and zero training examples.

3. Estimation Theoretic Formulation

In this paper we adopt and generalize the framework proposedin [15] by posing our problem as one of
estimation with partial knowledge of statistical relations. Before formalizing our multi-domain semi-
supervised problem in estimation theoretic terms, we first recall the common practice for regression
from one domain with a limited number of examples.

3.1 Single-Domain Regression

Suppose we are given a sample{xxxℓ,yyyℓ}L
ℓ=1, xxx ∈ R

M, independently drawn from the joint distribution
of X andY. If L is very large, then nonparametric methods can be used to approximate the conditional
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FIG. 2: Single-domain regression. (a),(b) Cross-domain learning [17] with many/few labeled examples
(Section 5.1). (c),(d) Shared-representation regression[17], also referred to as estimation with partial
knowledge [15], with many/few labeled examples (Section 5.2). (e),(f) Multi-domain training with
many/few labeled examples from the unobserved domain (Section 5.3).

expectation estimatorϕ(xxx) = E[Y|X = xxx] with great accuracy at anyxxx. Such estimates, however, are
often far from accurate whenL is small. Common practice in such situations is to use parametric or
semi-parametric methods that impose some structure on the sought predictor. In other words, rather
than trying to approximate the regression functionϕ(xxx) = E[Y|X = xxx], which minimizes the mean
square error among all functions ofX, we settle for approximating the optimal predictor among some
family A of functions:

ϕA = argmin
ϕ∈A

E
[

‖Y−ϕ(X)‖2] . (3.1)

The less rich the classA is, the more accurate we can typically approximateϕA (X) from the training
data. This comes, of course, at the cost that the (theoretical) MSE that ϕA (X) achieves is higher.
This is the well known bias-variance tradeoff. In the sequel, we term the functionϕA (X) of (3.1) the
A -optimal estimator ofY from X.

One of the simplest structural restrictions corresponds tolinear estimation, so thatA is the set of all
linear functions fromRM toR

N. In this case,

ϕA (X) = Γ YXΓ †
XXX. (3.2)

The second-order moment matricesΓ YX,Γ XX can be estimated from the training set, for example, by
using sample moments. A more general model corresponds to functions of the form

ϕ(X) =
K

∑
k=1

akϕk(X), (3.3)
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where{ϕk}
K
k=1 is a predefined set of functions and the coefficients{ak}

K
k=1 are arbitrary. The optimal

set of coefficientsaaa=
(

a1 · · ·aK
)T is given in this case by

aaa= Γ †
ΦΦΓ ΦY, (3.4)

whereΓ ΦΦ denotes theK×K matrix whose(i, j)-th entry isE[ϕT
i (X)ϕ j(X)] andΓ ΦY is aK×1 vector

whoseith component isE[ϕT
i (X)Y]. These quantities can be estimated from the training data similar to

the linear setting.
In both examples above,A forms a linear subspace of functions: for everyϕ1,ϕ2 ∈A andα,β ∈R,

the functionαϕ1+β ϕ2 also belongs toA . For future reference, we note that this claim is also trivially
true whenA is taken to be the set of all (Borel-measurable) functions, in which caseϕA (X) = E[Y|X],
and whenA contains only the zero function, in which caseϕA (X) = 0.

3.2 Statistical Knowledge Deduced from Separate Training Sets

In our setting we have access to two sperate unpaired sets of labeled examples, one for each domain.
Consequently, besides the standard uncertainty in statistics, which has to do with the fact that the under-
lying distributions are not known but rather only samples are observed, here there is another degree of
uncertainty. Specifically, even if the number of training examples is taken to infinity in all three sets, we
can only hope to be able to determine the joint distributionsFX1Y, FX2Y andFX1X2. These do not suffice in
general for computing the MMSE estimateE[Y|X1,X2]. To focus only on the second type of uncertainty,
we assume that we are able to perform single domain regression from each of the training sets with very
small variance (at the expense of possible bias). Specifically, we assume that we can determine the
A -optimal predictor ofY givenX1 as well as theB-optimal predictor ofY from X2, whereA andB

are classes of functions chosen in accordance with the cardinality of the two sets. Note that each of the
single-domain predictors may be very poor. In particular, if there are no labeled training examples from
one of the domains then we choose the corresponding class of valid predictors to contain only the zero
function. Therefore, if, for instance, we haveL1 = 0 labeled examples from domainX1, then we set
A = {0} so that theA -optimal predictor ofY givenX1 is simplyϕA (X1) = 0.

We further assume that the existence of many unlabeled examples(X1,X2) allows accurately deter-
mining the joint distribution ofX1 and X2, for example, using nonparametric methods. Finally, we
assume that there are enough labeled examples from at least one of the domains such that the second-
order moment ofY can be accurately estimated. The statistical relationships assumed known are
depicted in Fig. 3.

In a more mathematical language, assume we are given two functionsϕA : RM1 → R
N andψB :

R
M2 → R

N, a cumulative probability functionFX1X2 overRM1×M2 and a scalarc > 0. Then, what we
know regarding the RVsX1, X2 andY is that their distributionFX1X2Y belongs to the setF of distributions
satisfying

ϕA = argmin
ϕ∈A

E[‖Y−φ(X1)‖
2], ψB = argmin

ψ∈B

E[‖Y−ψ(X2)‖
2],

FX1X2Y(xxx1,xxx2,∞) = FX1X2(xxx1,xxx2), E[‖Y‖2] = c. (3.5)

We assume throughout the paper thatA andB form linear subspaces of functions, as discussed in
Section 3.1.
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Y

X1 X2

ψB(X2)

FX1X2

ϕA(X1)

E[‖Y ‖2]

FIG. 3: Known statistical relationships. Each of the single-domain predictors may perform arbitrarily
poorly (in particular, it is possible thatϕA (X1) = 0 or ψB(X2) = 0).

As an illustrative example, suppose thatX1, X2 andY are scalar RVs, and thatA andB are the sets
of all linear functions fromR to R. Assume further that we know that the best linear estimator of Y
from X1 is ϕA (X1) = 0.1X1, the best linear estimator ofY from X2 is ψB(X2) = 0.2X2, the probability
density function (pdf) of(X1,X2) is fX1X2(x1,x2) ∝ exp{−(x2

1+ x2
2)/2}, and thatE[Y2] = 1. Then the

normal density

fX1X2Y(x1,x2,y) ∝ exp











−
1
2

(

x1 x2 y
)





1 0 0.1
0 1 0.2

0.1 0.2 1





−1



x1

x2

y















(3.6)

qualifies with all these restrictions and is thus valid. In fact, there is an infinite number (a continuum) of
other feasible densities. For instance, it can be easily verified that the Gaussian mixture pdf

fX1X2Y(x1,x2,y) ∝ exp











−
1
2

(

x1 x2 y
)





1 0 0.2
0 1 0

0.2 0 1





−1



x1

x2

y















+exp











−
1
2

(

x1 x2 y
)





1 0 0
0 1 0.4
0 0.4 1





−1



x1

x2

y















(3.7)

is also consistent with all the restrictions, making it a valid candidate as well. By contrast, the density

fX1X2Y(x1,x2,y) ∝ exp











−
1
2

(

x1 x2 y
)





2 0 0.2
0 1 0.2

0.2 0.2 1





−1



x1

x2

y















(3.8)

satisfies all requirements except for the demand that it be consistent with the given marginal distribution
fX1X2(x1,x2). Therefore, it is not feasible.

3.3 Goals

The first problem we address in this paper is multi-domain regression. In this context, we would like to
construct a predictor ofY from the two domainsX1 andX2, where the only knowledge we have is that
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FX1X2Y ∈ F . The second problem we tackle is single-domain regression.Here, the goal is to construct
an estimator ofY givenX1 alone based, again, only on the knowledge thatFX1X2Y ∈F . The special case
of shared-representation learning, in which no labeled examples from the first domain are available,
corresponds to settingA = {0}. The setting ofcross modality learning, in which there is no access to
training examples from the second domain, can be addressed by settingB = {0}. The general case we
treat here can account for a wide spectrum of possibilities,including these two extremes.

Any predictor ofY, whether a function ofX1 andX2 or of X1 alone, may perform well under certain
distributionsFX1X2Y ∈ F and worse under others. Our goal is therefore to uniformly minimize the MSE
overF . As we will see, this minimax approach leads to simple closedform solutions, which can be
easily applied to the various settings discussed in Section2.

4. Multi-Domain Regression

Assume that the joint distribution of the triplet(X1,X2,Y) is known to belong to the familyF of (3.5),
whereA andB are linear subspaces of prediction functions. For any distribution FX1X2Y, the MSE
attained by an estimatorŶ = ρ(X1,X2) is defined as

MSE(FX1X2Y,ρ) = E
[

‖Y−ρ(X1,X2)‖
2] , (4.1)

where the expectation is with respect toFX1X2Y. Since the MSE depends onFX1X2Y, which is unknown,
our approach is to seek the estimator whose worst-case MSE over F is minimal. This minimax con-
cept is widely practiced in deterministic parameter estimation [5, 6] as well as in random parameter
estimation [7, 8]. More concretely, we are interested in1

ρM = argmin
ρ

sup
FX1X2Y∈F

MSE(FX1X2Y,ρ). (4.2)

The next theorem, whose proof can be found in Appendix A, provides a means for solving this problem.

THEOREM4.1 (Multi-domain minimax-MSE prediction) Choose any distributionFX1X2Y ∈F and con-
sider the estimator

ρC = argmin
ρ∈C

MSE(FX1X2Y,ρ), (4.3)

whereC = A +B, namely

C = {ρ : ρ(xxx1,xxx2) = φ(xxx1)+ψ(xxx2), φ ∈ A , ψ ∈ B} . (4.4)

Then

1. the functionρC does not depend on the choice ofFX1X2Y ∈ F ;

2. the value MSE(FX1X2Y,ρC ) does not depend on the choice ofFX1X2Y ∈ F ;

3. the estimatorρC of (4.3) is also the solutionρM to (4.2).

Theorem 4.1 shows that instead of solving the minimax problem (4.3), we can equivalently solve the
minimization problem (4.2). Namely, all we need to do is determine the MMSE estimator ofY among

1The subscript ‘M’ stands for ‘multi-domain.’
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all functions of the formφ(X1)+ψ(X2) with φ ∈ A andψ ∈ B. The importance of this observation
follows from the fact that, as we show below, for many practical cases, the latter possesses a simple
closed form solution.

Before demonstrating the utility of the minimax MSE approach, we note that optimizing the worst-
case performance of an estimator is very conservative and may sometimes lead to over-pessimistic
solutions. As an alternative, researchers in many application areas have proposed minimizing the worst-
caseregret [6, 7, 14, 15]. The regret of an estimatorρ(X1,X2) is defined as the difference between the
MSE it achieves and the MSE of the MMSE solution, namely

REG(FX1X2Y,ρ) = E
[

‖Y−ρ(X1,X2)‖
2]−E

[

‖Y−E[Y|X1,X2]‖
2] . (4.5)

In this expression, both terms depend onFX1X2Y, so that minimization of the worst-case regret is gen-
erally not equivalent to minimization of the worst-case MSE. Additional insight into the regret can
be obtained from its equivalent characterization [15] as the MSE betweenρ(X1,X2) andE[Y|X1,X2],
namely

REG(FX1X2Y,ρ) = E
[

‖ρ(X1,X2)−E[Y|X1,X2]‖
2] . (4.6)

As we show in the following theorem, however, in the multi-domain prediction setting, the minimax-
regret estimator coincides with the minimax-MSE solution.The proof of the theorem is provided in
Appendix B.

THEOREM 4.2 (Multi-domain minimax-regret prediction) Consider the problem

ρR = argmin
ρ

sup
FX1X2Y∈F

REG(FX1X2Y,ρ), (4.7)

where minimization is performed over all functionsρ of X1 andX2. Then its solutionρR coincides with
ρM of (4.2).

We now apply Theorem 4.1 in several scenarios.

4.1 Single-Domain Training

Consider the situation of figs. 1(a) and 1(b), where we have atour disposal only labeled examples from
one domain, sayX1. In this caseB = {0} so thatC = A . Consequently, the solution to (4.3) is simply

ρC (X1,X2) = ϕA (X1). (4.8)

This shows that in coming to label unseen examples, there is no gain in basing the prediction on the
domainX2 for which we have no labeled training examples. Furthermore, at least from a worst-case
perspective, there is no better strategy than using our initial predictor based onX1 alone. More con-
cretely, for any estimator that differs fromϕA (X1) (and in particular one that is a function ofX2),
there exist distributionsFX1X2Y ∈F (one maybe being the true underlying distribution) under which the
predictorϕA (X1) performs better.

This result does not stand in contrast to the basic observation in multi-view learning that unlabeled
data helps [2]. This is because in our setting, we do not assume that the two views are “coherent” or
tend to agree in any sense, as done, for instance, in [10] in the context of multi-view regression.
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4.2 Multi-Domain Linear Regression

Suppose, as in Fig. 1(c), that we have a limited amount of labeled examples from both domains, which
only suffice for identifying (with very high precision) the optimal linear predictor from each view. In
this caseA andB correspond to the collection of all linear functions fromRM1 toR

N and fromR
M2 to

R
N, respectively. Consequently,C is the set of all linear functions fromRM1 ×R

M2 toR
N. This implies

that the solution to (4.3) is simply the best linear predictor of Y based onX1 andX2, namely

ρC (X1,X2) =
(

Γ YX1 Γ YX2

)

(

Γ X1X1 Γ X1X2

Γ X2X1 Γ X2X2

)†(
X1

X2

)

. (4.9)

The second-order momentsΓ XiXj , i, j ∈ {1,2}, can be estimated from the unlabeled training set. Simi-
larly, the matricesΓ YXj , i, j ∈ {1,2}, can be determined from the labeled sets.

The dependence of the multi-domain predictorρC on the single-domain estimatorsφA andψB is not
apparent at first sight. However, recall that the orthogonality principle states thatE[(Y−φA (X1))XT

1 ] =
0 andE[(Y − ψB(X2))XT

2 ] = 0. Therefore, the termsΓ YX1 and Γ YX2 in (4.9) can be replaced by
E[φA (X1)XT

1 ] andE[ψB(X2)XT
2 ], respectively. As these expectations are with respect toFX1 andFX2,

their computation can be carried out based only on the knowledge of FX1X2, φA and ψB , which is
available according to our problem formulation.

4.3 Multi-Domain Parametric Regression

The above observation naturally extends to the case in whichthe training sets suffice for identifying the
optimal parametric predictors of the forms

ϕ(X1) =
K1

∑
k=1

a1
kϕk(X1), ψ(X2) =

K2

∑
k=1

a2
kψk(X2), (4.10)

where{ϕk}
K1
k=1 and{ψk}

K2
k=1 are given functions and{a1

k}
K1
k=1 and{a2

k}
K2
k=1 are arbitrary parameters. In

this situation,C corresponds to the family of functions having the form

ρ(X1,X2) =
K1

∑
k=1

a1
kϕk(X1)+

K2

∑
k=1

a2
kψk(X2). (4.11)

Thus, the optimal set of parametersaaa=
(

a1
1 · · · a1

K1
a2

1 · · · a2
K2

)T
is given by

aaa∗ =

(

Γ ΦΦ Γ ΦΨ
ΓΨΦ ΓΨΨ

)†(Γ ΦY

ΓΨY

)

, (4.12)

with Γ ΦΦ , ΓΨΨ , Γ ΦY andΓΨY being as in (3.4) andΓ ΦΨ being aK1×K2 matrix whose(i, j)-th entry
is E[ϕi(Y)Tψ j(Z)]. Similar to linear regression, the vectorsΓ ΦY andΓΨY can be replaced, due to the
orthogonality principle, by vectors whosej-th entries areE[ϕT

j (X1)ϕA (X1)] andE[ψT
j (X1)ψB(X2)],

respectively.

4.4 Multi-Domain Partially Linear Regression

Suppose, as in Fig. 1(d), that we have numerous labeled examples from the first domain, allowing us to
determineE[Y|X1], and only a limited amount of examples from the second domain, so that we can only
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determine the best linear predictor ofY from X2. In this setting, Theorem 4.1 implies that the minimax-
optimal predictor based onX1 andX2 is the estimator minimizing the MSE among all functions of the
form

ρ(X1,X2) = aaa(X1)+BBBX2, (4.13)

whereaaa : RM1 → R
N is an arbitrary function andBBB∈ R

N×M2 is some matrix. It was shown in [16] that
the solution to this particular case is given by

ρM(X1,X2) = E[Y|X1]+ΓYWΓ †
WWW, (4.14)

whereW = X2−E[X2|X1].
The intuition here is that we need to make sure we do not account for variations inY twice when

fusing information fromX1 andX2. Thus, we start with the estimateϕA (X1) =E[Y|X1], and then update
it with the LMMSE estimate ofY based on theinnovation X2−E[X2|X1] of X2 with respect toϕA (X1).

In practice, the termE[Y|X1] can be approximated from the labeled training examples of the first
domain,e.g.,using nonparametric methods. The second term in (4.14) can be obtained via a three-stage
procedure. Specifically, we first employ a nonparametric technique to approximateξ (xxx1) = E[X2|X1 =

xxx1] from the unlabeled set. Next, we use the unlabeled samples toform the set{ξ (xxxu
1),xxx

u
2}

L1+L2+U
u=L1+L2+1,

from which we approximate the covariance matrixΓ WW of W = X2−E[X2|X1]. Lastly, we approximate
Γ YX2 from the labeled examples{xxxℓ2,yyy

ℓ}L1+L2
ℓ=L1+1 andΓ Yξ (X1) from the labeled examples{ξ (xxxℓ1),yyy

ℓ}L1
ℓ=1

in order to computeΓ YW = Γ YX2 −Γ Yξ (X1).

4.5 Multi-Domain Semi-Parametric Regression

Suppose as above, that we knowE[Y|X1], however we can also determine the best estimator ofY from
X2 among the parametric family

ψ(X2) =
K

∑
k=1

akψk(X2). (4.15)

In this case, according to Theorem 4.1, the minimax-optimalestimator ofY based onX1 andX2 is the
one minimizing the MSE among all functions of the form

ρ(X1,X2) = aaa(X1)+
K

∑
k=1

akψk(X2). (4.16)

The solution to this problem can be deduced by relying on the concept of(A ,B)-innovation, as we
now define.

DEFINITION 4.3 The(A ,B) innovation ofX2 with respect toX1, which we denote byρA ,B(X1,X2),
is the MMSE estimator ofY among all functions of the form

ψ(X2)−ηψ(X1), (4.17)

with ψ being some function inB andηψ (X1) denoting theA -optimal estimator ofψ(X2) from X1.

Using this definition, we make the following observation regarding the structure of the minimax
estimator, the proof of which is given in Appendix C.
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THEOREM 4.4 The solution to problem (4.3) can be expressed as

ρC (X1,X2) = ϕA (X1)+ρA ,B(X1,X2), (4.18)

whereρA ,B(X1,X2) is the(A ,B)-innovation ofX2 with respect toX1.

In our setting,A corresponds to the set of all functions fromRM1 toR
N so thatϕA (X1) = E[Y|X1].

Furthermore,B is the family of functions fromRM2 to R
N having the form (4.15). Therefore, for any

ψ ∈ B, theA -optimal estimator ofψ(X2) based onX1 is given by

ηψ (X1) = E[ψ(X2)|X1] = E

[

K

∑
k=1

akψk(X2)

∣

∣

∣

∣

∣

X1

]

=
K

∑
k=1

akE[ψk(X2)|X1]. (4.19)

Consequently,ρA ,B(X1,X2) in (4.18) is of the form

ψ(X2)−ηψ(X1) =
K

∑
k=1

akψk(X2)−
K

∑
k=1

akE[ψk(X2)|X1] =
K

∑
k=1

akρk(X1,X2), (4.20)

where we denotedρk(X1,X2) = ψk(X2)−E[ψk(X2)|X1]. The optimal set of coefficients is given by

aaa∗ = Γ ρρΓ ρY (4.21)

whereΓ ρρ andΓ ρY are as in (3.4) withϕi(X1) replaced byρi(X1,X2).
To conclude, the optimal estimator of the form (4.16) is

ρM(X1,X2) = E[Y|X1]+
K

∑
k=1

ak (ψk(X2)−E[ψk(X2)|X1]) , (4.22)

with coefficients{ak} given by (4.21). The first term in this expression can be approximated via non-
parametric regression techniques from the labeled training examples of the first domain. The second
term can be computed in two stages. First, each of the functions{ψk(X2)}

K
k=1 is regressed onX1 using

the unlabeled data set, to obtain an approximation ofE[ψk(X2)|X1]. Then,Y is linearly regressed against
{ψk(X2)−E[ψk(X2)|X1]}

K
k=1, using the two labeled sets, as discussed in Section 4.4.

5. Single-Domain Regression with Multi-Domain Training

Next, we address the setting in which at the testing stage ourpredictor is only supplied with one type of
features, sayX1. The interesting question in this context is how to take intoaccount the training sets of
both domains in order to design an improved estimator ofY based onX1 alone.

Since our estimator operates onX1 and is judged by the proximity of its output toY, its performance
is only affected by the joint distribution ofY andX1. It may thus seem at first that the second set of
featuresX2 cannot be of help in improving estimation accuracy. However, note thatFX1Y is not fully
known in our setting. Thus, being told the statistical relations betweenY andX2 and betweenX1 and
X2, might help to narrow down the set of candidate distributions FX1Y for which we need to design an
estimator.

The statistical relations known to us are the same as in Section 4. Namely, we know thatFX1X2Y

belongs to the classF of (3.5). Therefore, as in Section 4, our goal is to optimize the worst case
performance of our estimator overF . As it turns out, in contrast with the multi-domain problem,in
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the single-domain setting the minimax MSE and minimax regret solutions no longer coincide. Here, we
focus on minimizing the worst-case regret. As will be clear from the proof provided in Appendix 5.1,
determining the minimax-MSE estimator in the single-domain setting is much harder than minimizing
the worst-case regret. The former remains an open problem.

In single domain regression, whatever we do, our estimator will not achieve lower MSE than the
conditional expectationE[Y|X1]. Therefore, theregretof interest is now

REG(FX1X2Y,ρ) = E
[

‖Y−ρ(X1)‖
2]−E

[

‖Y−E[Y|X1]‖
2] . (5.1)

As in the multi-domain setting, this regret here can be written as [15]

REG(FX1X2Y,ρ) = E
[

‖ρ(X1)−E[Y|X1]‖
2] . (5.2)

Our goal is to determine the minimax-regret estimator2

ρS = argmin
ρ

sup
FX1X2Y∈F

REG(FX1X2Y,ρ), (5.3)

where now minimization is performed only over functionsρ of X1.
The next theorem, whose proof may be found in Appendix B, describes the single-domain minimax-

regret estimator in terms of the multi-domain minimax-MSE solution.

THEOREM 5.1 (Single-domain minimax-regret prediction) The solution to problem (5.3) is given by

ρS(X1) = E[ρM(X1,X2)|X1], (5.4)

whereρM(X1,X2) is the multi-domain minimax estimator (4.2).

This result has a very simple and intuitive explanation. We know thatFX1X2Y belongs to the setF ,
and thereforeρM(X1,X2) is the optimal estimate ofY in a minimax-MSE sense. However, we cannot
use this estimate as it is a function ofX2, which is not measured in our setting. What Theorem 5.1 shows
is that the optimal strategy is to estimateρM(X1,X2) based on the available measurements, which are
X1 alone. Computation of the conditional expectationE[ρM(X1,X2)|X1] only requires knowledge of the
marginal distributionFX1X2, which is available in our setting.

We now apply this result to two interesting special cases.

5.1 Cross Domain Regression

In cross-modality learning [17], we only have labeled examples from domainX1 and not fromX2, as
illustrated in figs. 2(a) and 2(b). The basic intuition here,as presented in [17], is that the unlabeled data
may be used to boost the performance of the best single-domain estimatorϕA (X1) that can be designed
based solely on labeled examples from the domainX1.

This setting can be treated within our framework by settingψB(X2) = 0. As we have seen in Sec-
tion 4.1, in this situationρM(X1,X2) = ϕA (X1). Therefore, the single-domain minimax-regret predictor
of Y from X1 is given by

ρS(X1) = E[ϕA (X1)|X1] = ϕA (X1). (5.5)

2The subscript ‘S’ stands for ‘single-domain.’
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We see that despite the fact that we knowFX1X2, there is no better strategy than using the estimator
ϕA (X1) here. This implies that cross-modality learning is not useful unless additional knowledge on the
underlying distributions is available.

The authors of [17] used cross-modality learning to classify isolated words from either audio or
video (lipreading). It was reported that unlabeled audio-visual examples helped improve visual recog-
nition but failed to boost the performance of an audio classifier. This empirical result aligns with our
theoretical analysis, which states that, in the worst-casescenario, there is nothing better to do than
disregarding the modality for which no labeled examples areavailable.

5.2 Shared Representation Regression

In shared-representation learning [17], also referred to as estimation with partial knowledge [15], we
have no labeled examples from domainX1 but rather only fromX2. This is illustrated in figs. 2(c)
and 2(d). Since we can learn a predictorψB(X2) from the second domain, and only measure an instance
X1 from the first domain, a naive approach would be to feed the predictor ψB with an estimate ofX2,
which is based onX1, rather than withX2 itself. For example, the MMSE estimateE[X2|X1] can be
approximated by nonparametric methods from the unlabeled training set. However, as we now show,
this strategy is generallynot minimax-optimal.

Recall from Section 4.1 that the multi-domain predictor corresponding to the setting in whichA =
{0} is ρM(X1,X2) = ψB(X2). Therefore, the single-domain minimax-regret predictor of Y from X1 is
given by

ρS(X1) = E[ψB(X2)|X1] (5.6)

in this case. This solution generalizes the estimator of [15, Thm. 8], which was developed for the case
in which B is the set of all functions. In the latter scenario,ψB(X2) = E[Y|X2], and the two methods
coincide.

As an example, consider the setting in which we have a limitednumber of labeled examples from
domainX2, which only allows to determine the best linear predictor ofY fromX2. In this case,ψB(X2) =

Γ YX2Γ †
X2X2

X2, implying thatρS(X1) = E[Γ YX2Γ †
X2X2

X2|X1] = Γ YX2Γ †
X2X2

E[X2|X1]. Namely, minimax-
regret estimation does boil down, in this setting, to the naive strategy of applyingψB on E[X2|X1].
This, however, is not always the case. Suppose, for instance, that we have numerous examples from
domainX2, so thatB is the set of all functions fromRM2 to R

N. In this situation,ψB(X2) = E[Y|X2],
so thatρS(X1) = E[E[Y|X2]|X1]. This solution does not generally coincide with the naive estimator
E[Y|E[X2|X1]].

The estimator (5.6) can be approximated from the available training data by first determining the
functionψB(xxx2) from the labeled set of the second domain and then using nonparametric regression on
the set{xxxu

1,ψB(xxxu
2)}

L1+L2+U
u=L1+L2+1.

5.3 Regression with Side Information

The general setting in which we have training data from both domains can be treated by employing
Theorem 4.4. Specifically, whenA andB are two arbitrary spaces of prediction functions,ρM(X1,X2)
is given by (4.18), and therefore

ρS(X1) = ϕA (X1)+E[ρA ,B(X1,X2)|X1], (5.7)

whereρA ,B(X1,X2) is the(A ,B) innovation ofX2 with respect toX1. This representation highlights
the fact that the second labeled set and the unlabeled set come into play in the termE[ρA ,B(X1,X2)|X1].
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To understand when training data from an unobserved domain cannot help, we recall from Defini-
tion 4.3 thatρA ,B(X1,X2) is of the formψ(X2)−ηψ(X1), with ψ ∈B andηψ (X1) being theA -optimal
estimate ofψ(X2) from X1. Therefore, the second term in (5.7) vanishes if, for example,

E[ψ(X2)|X1] = ηψ(X1) (5.8)

for everyψ ∈ B. Intuitively, this can happen if the classA of functions is very rich and/or the class
B is not. As an example, ifA is the set of all functions fromRM1 to R

N thenηψ(X1) = E[ψ(X2)|X1],
so that (5.8) is satisfied, indicating that the training set from the second domain is not needed. Indeed,
in this situationϕA (X1) = E[Y|X1], meaning that we can already determine the MMSE predictor ofY
from X1 using the first training set so that no potential improvementcan be obtained using the second
set.

As a more interesting example, suppose that the RVsX1 andX2 are jointly Gaussian, thatB is the
set of all linear functions fromRM2 to R

N, and thatA contains the set of all linear functions fromRM1

to R
N. In this case, everyψ ∈ B corresponds to some matrixAAA such thatψ(X2) = AAAX2. Consequently,

using the fact that the MMSE estimate is linear in the Gaussian setting,

E[ψ(X2)|X1] = E[AAAX2|X1] = AAAE[X2|X1] = AAAΓ X2X1Γ †
X1X1

X1. (5.9)

Moreover,X1 andψ(X2) are jointly Gaussian, implying that

ηψ(X1) = Γ ψ(X2)X1
Γ †

X1X1
X1 = AAAΓ X2X1Γ †

X1X1
X1. (5.10)

Thus, (5.9) and (5.10) coincide and (5.8) is satisfied, indicating that the second training set is not required
here as well.

Another interesting viewpoint can be obtained by switchingthe roles ofX1 andX2 in the represen-
tation (4.18) ofρM(X1,X2). This leads to the expression

ρS(X1) = E[ψB(X2)|X1]+E[ρB,A (X2,X1)|X1]. (5.11)

Here, we recognize the first term as being the shared-representation estimator (5.6) ofY from X1,
which does not use labeled examples from the domainX1. Therefore, we see that the training set
from the first (observed) domain is not needed if the second term in (5.11) vanishes. Using the fact that
ρB,A (X2,X1) = ϕ(X1)−ηϕ(X2) with ϕ ∈ A andηϕ(X2) being theB-optimal estimate ofϕ(X1) from
X2, we conclude that this happens if, for example,

ϕ(X1) = E[ηϕ (X2)|X1] (5.12)

for everyϕ ∈ A . As a concrete example, consider again the setting in which the RVsX1 andX2 are
jointly Gaussian andA andB are classes of linear functions. In this situation,ϕ(X1) = AAAX1 for some
matrixAAA, so thatηϕ(X2) = Γ ϕ(X1)X2

Γ †
X2X2

X2 = AAAΓ X1X2Γ †
X2X2

X2 and, consequently,

E[ηϕ (X2)|X1] = AAAΓ X1X2Γ †
X2X2

E[X2|X1] = AAAΓ X1X2Γ †
X2X2

Γ X2X1Γ †
X1X1

X1. (5.13)

Therefore, (5.12) is satisfied ifΓ X1X2Γ †
X2X2

Γ X2X1Γ †
X1X1

= III , or, equivalently ifΓ X1X1−Γ X1X2Γ †
X2X2

Γ X2X1 =
0. The latter expression is no other than the error covariance of the MMSE estimate ofX1 from X2.
Therefore, condition (5.12) is satisfied in this setting ifX1 can be estimated fromX2 with no error.
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Indeed, in this scenario, we do not need to observe training examples from the domainX1, as these can
be synthetically generated from the examples of the second domain.

To approximate the resulting estimators from sets of points, it is often more convenient to use the
form (5.11) rather than (5.7). As a concrete example, consider linear regression with nonlinear side
information, namely whereA is the set of all linear functions andB is the family of all (not necessarily
linear) functions. Then, from Theorem 5.1 and (4.14) we conclude that

ρS(X1) = E[E[Y|X2]|X1]+ΓYWΓ †
WW(X1−E[E[X1|X2]|X1]), (5.14)

where hereW =X1−E[X1|X2]. The termsE[E[Y|X2]|X1] andE[E[X1|X2]|X1] can be approximated using
nonparametric methods, similar to the discussion in Section 5.2, and the covariance matricesΓ YW and
Γ WW can be approximated as in Section 4.4.

6. Experimental Results

We now demonstrate our regression approach, that derives from the theoretical results just presented, in
two illustrative applications.

6.1 Face Normalization

Many facial recognition methods rely on a preprocessing stage, coinednormalization, which is aimed at
removing variations that were not observed in the training database. These may include variations due
to illumination, pose, facial expressions, and more. To demonstrate the utility of our approach, we now
focus on the problem of producing a neutral expression face from a smiling one.

A straight forward way of tackling this problem is to learn a regression function from pairs of
training images. This requires a database in which each subject appears at least twice, one time with
a neutral expression and one time with a smile. Unfortunately, large data sets of this sort are hard to
collect. In many practical situations one only has access toa database in which each subject appears only
once. While different subjects may be wearing different expressions, direct inference of the statistical
relation between a smiling and a neutral face is virtually impossible in such scenarios. To bypass this
obstacle, we can use a second domain, or view, for which it is easy to obtain examples that are paired
with the images in the database. This can be done, for example, by manually marking a set of points in
several predefined locations on all images in the database. Thus, denoting by(X1,X2,Y) a triplet of a
smiling face, its point annotations, and the correspondingneutral expression image, we may construct an
unlabeled set of annotated smiling faces{xxxu

1,xxx
u
2} and a set of annotated neutral expression faces{xxxℓ2,yyy

ℓ}.
This allows employing our shared-representation regression technique for designing a predictor ofY
based onX1. If, in addition, several subjects were photographed more than once, then we may construct
a third set{xxxℓ1,yyy

ℓ}, containing pairs of images of smiling and neutral-expression faces. In this case, we
can apply regression with side information, as discussed inSection 5.3.

Figure 4 depicts several manually annotated neutral and smiling facial images taken from the AR
database [12]. The point annotations were taken fromhttp://www-prima.inrialpes.fr/
FGnet/data/05-ARFace/tarfd_markup.html. The images were scaled, rotated and cropped
into an ellipsoidal template such that the eyes appear at predefined locations. In practice, this can be
performed automatically [13, 20]. To apply our methods, we normalized the images to be of zero mean
and unity norm and reduced them to 86 dimensions using PCA. The nonlinear regression scheme we
used as a building block in our methods was first-order polynomial regression with a Gaussian kernel.
The bandwidth of the kernel was adaptively tuned to be a constant times the root of the average squared
distance between the query and the training data points.
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FIG. 4: Annotated images from the AR database.

FIG. 5: Neutral expression synthesis from smiling images. Fromleft to right: query, ground truth, direct
nonlinear regression, shared-representation nonlinear regression (Section 5.2), linear regression with
nonlinear side information (Section 5.3).

Figure 5 demonstrates the results obtained with our approach in several settings. The two left-
most columns correspond to the query smiling face and the corresponding desired (unobserved) neutral
expression image. The third column shows the result of directly performing regression using 118 pairs
of smile/neutral images. The fourth column is the result of performing shared representation regression
via (5.6), using a training set of 38 annotated smiling facesand a set of 40 annotated neutral images (of
different subjects). The rightmost column uses, in addition to these two sets, a training set comprising
40 pairs of images of neutral and smiling expressions to perform linear regression with nonlinear side
information (equation (5.14)).

Table 1 shows the root MSE (RMSE),(E[‖Y−Ŷ‖2])
1
2 , attained in each of the settings. As expected,

using direct training with 118 examples yields the best results (lowest RMSE). It can be seen that
employing two sets with roughly 40 examples each, instead ofdirect training, leads to an increase in
the RMSE by 41%. This gap is reduced to 32% with the aid of an additional set of 40 direct training
pairs. Perceptually, the images produced by the indirect methods do not seem to be much worse than
those obtained with direct training. Note that the spatial smoothing apparent in all methods is due to
the fact that any regression methods boils down at the end to some sort of averaging of many images
from the training set. It is also important to note that the vague traces of glasses in the last two columns
are no coincidence. Specifically, when there are no (or very few) joint examples of smile/neutral faces,
no method can ever be able to determine whether the person wears glasses or not. This is because we
only know how the smiling images (pixel values) relate to thegeometry (point annotations) and how the
geometry relates to the neutral images. Now, for every possible geometry, roughly half the people in the
neutral database wear glasses and half not.
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Table 1: Performance of Neutral Expression Synthesis Methods

Setting RMSE

Direct nonlinear regression 0.193
Shared-representation nonlinear regression 0.263

Linear regression with nonlinear side information 0.247

FIG. 6: Processing of the video and audio of a speaker saying the word ‘nine’. From left to right: lip
detection, spectogram, extracted lip region.

6.2 Audio-Visual Word Recognition

Although the entire discussion in this paper has focused on regression, similar methods can be developed
for classification tasks. To support our claim, we now illustrate that this can even be achieved by
using the naive approach of performing regression and then quantizing the output in order to obtain a
classification rule.

Specifically, we now consider the tasks of spoken digit classification from audio-only and video-
only measurements. To study this task, we used the Grid Corpus [4], which consists of speakers saying
simple-structured sentences. Every sentence contains onedigit, which we isolated using the supplied
transcriptions. We constructed three distinct training sets: one of labeled audio examples (4 males, 4
females), one of visual examples (4 males, 4 females), and one of unlabeled audio-visual examples (6
males, 4 females). Six speakers were used for testing (3 males, 3 females).

To process the video, we converted the images to gray scale, used the face detection method of
[11], and then applied several mean-shift iterations on thegradient image map in order to extract the lip
region in the first image of each frame-bunch. Segments of duration 320msec were used for recognition.
This corresponded to 8 consecutive video frames (at a rate of25 frames per second) and 1600 audio
samples (at a sampling rate of 5KHz). The image frames were reduced to 10 dimensions using PCA,
resulting in an 80-dimensional video feature-vector. The processing of the audio was performed by
computing spectograms with windows of duration 10msec and an overlap of 2.5msec. The dimension
of the spectogram was reduced to 180 to constitute the audio features. In all experimentsY was a 10-
dimensional vector with 1 at the location corresponding to the spoken digit and 0 elsewhere. Figure 6
visualizes the basic audio-visual preprocessing.

As mentioned above, our approach is designed for regression, so that the predicted̂Y is a continuous
variable. To perform classification, we chose the maximal element inŶ. For simplicity,A andB were
taken as the sets of all linear functions (linear regression). This choice yields rather poor classification
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Table 2: Audio-Visual Digit Classification Performance

Features Accuracy

Training Testing
Minimax Deep RBM

(Grid corpus) (CUAVE)

Audio Audio 69.3% 95.8%
Video Video 52.0% 69.7%
Video Audio 50.1% 27.5%
Audio Video 44.6% 29.4%

results based solely on audio or solely on video. Our goal, though, is to demonstrate that even with such
naive single-domain predictors, we can attain good recognition accuracy by using our approach, which
cleverly fuses the two domains.

Table 2 shows the accuracy of the our approach and for reference also presents the results obtained
with the deep restricted Boltzmann machine (RBM) of [17] on the CUAVE dataset [19]. The Grid
corpus used here is more challenging in that the digits appear within sentences, rather than individually.
As can be seen, the single-domain predictors we start with perform relatively poorly (rows 1 and 2).
Nevertheless, in the shared-representation settings (rows 3 and 4), our predictors perform much better
than the RBM method, even for a harder dataset. Their accuracy is only between 7% and 20% worse
than the corresponding single domain estimators (rows 1 and2, respectively). By contrast, the difference
in success rates for the RBM predictor is between 30% and 70%.

7. Conclusion

In this paper, we analyzed the problems of multi-domain and single-domain regression in settings involv-
ing distinct unpaired labeled training sets for the different domains and a large unlabeled set of paired
examples from all domains. We derived minimax-optimal results and obtained closed form solutions for
many practical scenarios. We used the resulting expressions to study when training data from a domain,
which is not available during testing, can help. In particular, we showed that in the setting of cross-
modality learning, originally presented in [17], there is no advantage in using the training data from
the unobserved domain, at least from a worst-case perspective. We demonstrated our methods in the
context of synthesis of a neutral expression face from an image of a smiling subject and in the context
of audio-visual spoken digit recognition. In the latter setting, we demonstrated that our approach may
be more effective than that proposed in [17]. This is despitethe fact that our method is designed for
regression rather than classification and even though we applied it on a more challenging audio-visual
sentence corpus.

A. Proof of Theorem 4.1

We begin by proving claim 1. SinceA is a linear subspace, the orthogonality principle implies that
ϕA (X1) is the unique estimator satisfying

E
[

(Y−ϕA (X1))
Tϕ(X1)

]

= 0 (A.1)

for everyϕ ∈ A . Consequently, for everyϕ ∈ A we have that

E
[

YTϕ(X1)
]

= E
[

ϕA (X1)
T ϕ(X1)

]

. (A.2)
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Similarly, for everyψ ∈ B we have that

E
[

YTψ(X2)
]

= E
[

ψB(X2)
Tψ(X2)

]

. (A.3)

Finally, asC = A +B, the setC is a subspace as well. Therefore,ρC of (4.3) is the unique estimator
satisfying

E
[

YT(ϕ(X1)+ψ(X2))
]

= E
[

ρC (X1,X2)
T(ϕ(X1)+ψ(X2))

]

(A.4)

for everyϕ ∈ A andψ ∈ B. Substituting (A.2) and (A.3), condition (A.4) reduces to the requirement
that

E
[

ϕA (X1)
Tϕ(X1)

]

+E
[

ψB(X2)
Tψ(X2)

]

= E
[

ρC (X1,X2)
T(ϕ(X1)+ψ(X2))

]

(A.5)

for everyϕ ∈ A andψ ∈ B. Now, theA - andB-optimal estimators ofY from X1 andX2 are fixed
overF (given byϕA andψB, respectively). Furthermore, all expectations in (A.5) are with respect to
FX1X2, which is also fixed overF . This implies that the functionρC does not depend on the choice of
FX1X2Y ∈ F , completing the proof of claim 1.

To prove claim 2, we note that from the orthogonality principle (A.4) follows the Pythagorean rela-
tion

E
[

‖Y−ρC (X1,X2)‖
2]= E

[

‖Y‖2]−E
[

‖ρC (X1,X2)‖
2] . (A.6)

The first term on the right-hand side equalsc for everyFX1X2Y ∈F . We have also seen thatρC (X1,X2) is
fixed overF . Moreover, the expectation in the second term is with respect to FX1X2, which is fixed over
F . Therefore, the second term, as well, does not depend on the choice ofFX1X2Y ∈ F . This completes
the proof of claim 2.

Lastly, we prove claim 3. To do so, we first note thatϕA (X1) andψB(X2) are not only theA -
andB-optimal estimators ofY based onX1 andX2, respectively; they are also theA - andB-optimal
estimators ofρC (X1,X2). To see this, note that bothA andB are contained inC . Consequently, the
orthogonality principle implies that for everyϕ ∈ A (which is also inC ), we have

E[‖Y−ϕ(X1)‖
2] = E[‖Y−ρC (X1,X2)‖

2]+E[‖ρC (X1,X2)−ϕ(X1)‖
2]. (A.7)

As the first term does not depend onϕ , we see that minimization of the MSE overϕ ∈ A is equivalent
to minimization of the second term alone. Thus,ϕA (X1) is theA -optimal estimate ofρC (X1,X2) given
X1. The same argument can be invoked to deduce thatψB(X2) is theB-optimal estimate ofρC (X1,X2)
from X2.

A second observation we need for proving claim 3 follows fromthe fact thatA andB are linear
subspaces. Specifically, this implies that ifϕ∗

1(V) andϕ∗
2(V) are theA -optimal estimates of the two RVs

W1 andW2, respectively, based on the RVV, then theA -optimal estimate ofW1+W2 is ϕ∗
1(V)+ϕ∗

2(V).
This can be seen by noting that the estimatorϕ∗

1(V)+ϕ∗
2(V) satisfies the orthogonality principle, namely

for anyϕ ∈ A we have that

E[(W1+W2−ϕ∗
1(W1)−ϕ∗

2(W1))
Tϕ(W1)] = E[(W1−ϕ∗

1(W1))
Tϕ(W1)]+E[(W2−ϕ∗

2(W1))
T ϕ(W1)]

= 0. (A.8)

The statement also holds, of course, with respect toB-optimal estimates.
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Following these two observations, for anyFX1X2Y ∈ F , settingỸ = 2ρC (X1,X2)−Y results in a
distributionFX1X2Ỹ that also belongs toF . This is because theA -optimal estimate of̃Y from X1 equals
twice theA -optimal estimate ofρC (X1,X2) from X1 (which isϕA (X1)) minus theA -optimal estimate
of Y from X1 (which is alsoϕA (X1)). Namely, theA -optimal estimate of̃Y from X1 is ϕA (X1).
Similarly, theB-optimal estimate of̃Y from X2 is ψB(X2). Finally, due to the orthogonality principle,
the second-order moment ofỸ is given by

E[‖Ỹ‖2] = E[‖ρC (X1,X2)‖
2]+E[‖Y−ρC (X1,X2)‖

2]

= E[‖ρC (X1,X2)‖
2]+E[‖Y‖2]−E[ρC (X1,X2)‖

2]

= c. (A.9)

We now use this fact to prove claim 3. The orthogonality principle (A.4) implies that the MSE
attained by any estimatorρ satisfies

E
[

‖Y−ρ(X1,X2)‖
2]= E

[

‖Y−ρC (X1,X2)‖
2]+E

[

‖ρC (X1,X2)−ρ(X1,X2)‖
2]

+2E
[

(Y−ρC (X1,X2))
T(ρC (X1,X2)−ρ(X1,X2))

]

= E
[

‖Y−ρC (X1,X2)‖
2]+E

[

‖ρC (X1,X2)−ρ(X1,X2)‖
2]

+2E
[

(ρC (X1,X2)−Y)Tρ(X1,X2)
]

. (A.10)

The first term in this expression is not a function ofρ and, as we have seen in (A.6), is constant as a
function ofFX1X2Y overF . The second term is a function ofρ , but since the expectation is with respect
to FX1X2, it is constant as a function ofFX1X2Y overF . Therefore,

min
ρ

sup
FX1X2Y∈F

MSE(FX1X2Y,ρ) = E
[

‖Y−ρC (X1,X2)‖
2]+min

ρ

{

E
[

‖ρC (X1,X2)−ρ(X1,X2)‖
2]

+ sup
FX1X2Y∈F

2E
[

(ρC (X1,X2)−Y)Tρ(X1,X2)
]

}

.

(A.11)

We saw that for everyFX1X2Y ∈ F settingỸ = 2ρC (X1,X2)−Y results in a distributionFX1X2Ỹ that also
belongs toF . Now, withFX1X2Ỹ, the expression 2E[(ρC (X1,X2)−Ỹ)Tρ(X1,X2)] equals−2E[(ρC (X1,X2)−

Y)Tρ(X1,X2)]. Consequently, the maximum of this term overFX1X2Y ∈ F is necessarily nonnegative.
We thus have that

min
ρ

sup
FX1X2Y∈F

MSE(FX1X2Y,ρ)> E
[

‖Y−ρC (X1,X2)‖
2]+min

ρ
E
[

‖ρC (X1,X2)−ρ(X1,X2)‖
2]

= E
[

‖Y−ρC (X1,X2)‖
2] , (A.12)

where we used the fact that the minimal value of 0 is attained with ρ(X1,X2) = ρC (X1,X2).
We have established a lower bound on the worst-case MSE of anyestimator. Next, we show that the

estimatorρ(X1,X2) = ρC (X1,X2) attains this bound, which proves that it is minimax-optimal. Indeed,
substituting this solution into (A.10), we find that

sup
FX1X2Y∈F

MSE(FX1X2Y,ρC ) = E
[

‖Y−ρC (X1,X2)‖
2] , (A.13)

completing the proof.
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B. Proof of Theorems 4.2 and 5.1

We simultaneously prove Theorems 4.2 and 5.1 by using an auxiliary RV Z, which can be any (fixed)
function ofX1 andX2. Therewith, we will study the solution to

argmin
ρ

sup
FX1X2Y∈F

REG(FX1X2Y,ρ), (A.1)

where minimization is performed over all functionsρ of Z and the regret is with respect toE[Y|Z].
Specifically, we will show that the solution to this problem is given byE[ρM(X1,X2)|Z]. Setting,Z =
(XT

1 ,X
T
2 )

T , we getE[ρM(X1,X2)|Z] = ρM(X1,X2), proving Theorem 4.2. SettingZ = X1, the solution
becomesE[ρM(X1,X2)|X1], proving Theorem 5.1.

ExpressingY = ρM(X1,X2)+ (Y−ρM(X1,X2)), the regret of any estimatorρ(Z) can be written as

E
[

‖E[Y|Z]−ρ(Z)‖2]= E
[

‖E[ρM(X1,X2)|Z]−ρ(Z)‖2]+E
[

‖E[Y−ρM(X1,X2)|Z]‖
2]

+2E
[

E[Y−ρM(X1,X2)|Z]
T(E[ρM(X1,X2)|Z]−ρ(Z))

]

. (A.2)

Since the marginal distributionFX1X2 is fixed overF , the first term in the above expression does not
depend on the choice ofFX1X2Y ∈ F . Consequently,

sup
FX1X2Y∈F

REG(FX1X2Y,ρ) = E[‖E[ρM(X1,X2)|Z]−ρ(Z)‖2]+ sup
FX1X2Y∈F

{

E[‖E[Y−ρM(X1,X2)|Z]‖
2]

+2E
[

E[Y−ρM(X1,X2)|Z]
T(E[ρM(X1,X2)|Z]−ρ(Z))

]

}

.

(A.3)

As we have seen in Appendix A, for everyFX1X2Y ∈F settingỸ = 2ρM(X1,X2)−Y results in a distribu-
tion FX1X2Ỹ that also belongs toF . Now,Ỹ−ρM(X1,X2) =−(Y−ρM(X1,X2)), implying that ifFX1X2Y

maximizes the first term within the braces, then eitherFX1X2Y or FX1X2Ỹ yields at least the same value for
the objective comprising both terms. Therefore,

min
ρ

sup
FX1X2Y∈F

REG(FX1X2Y,ρ)> min
ρ

E
[

‖E[ρM(X1,X2)|Z]−ρ(Z)‖2]

+ sup
FX1X2Y∈F

E
[

‖E[Y−ρM(X1,X2)|Z]‖
2]

= sup
FX1X2Y∈F

E
[

‖E[Y−ρM(X1,X2)|Z]‖
2] , (A.4)

where the last equality is due to the fact thatρ(Z) = E[ρM(X1,X2)|Z] achieves the minimal value of 0
in the first term.

We established a lower bound on the worst-case regret of any estimator. Next, we show that the
estimatorρ∗(Z) = E[ρM(X1,X2)|Z] attains this bound, which proves that it is minimax-optimal. Indeed,
substituting this solution into (A.3), we find that

sup
FX1X2Y∈F

REG(FX1X2Y,ρM) = sup
FX1X2Y∈F

E
[

‖E[Y−ρM(X1,X2)|Z]‖
2] , (A.5)

completing the proof.
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C. Proof of Theorem 4.4

To prove the claim, we show that the estimation error corresponding toρC (X1,X2) of (4.18) is uncorre-
lated with every RV of the formϕ(X1)+ψ(X2) with ϕ ∈ A andψ ∈ B. Indeed, for everyϕ ∈ A , the
estimatorρC (X1,X2) of (4.18) satisfies

E
[

(Y−ρC (X1,X2))
Tϕ(X1)

]

= E
[

(Y−ϕ∗(X1))
T ϕ(X1)

]

−E
[

ρT
A ,B(X1,X2)ϕ(X1)

]

= E

[

(

ψ(X2)−ηψ(X1)
)T ϕ(X1)

]

= 0, (A.1)

where we used the orthogonality principle. To prove orthogonality with respect to RVs of the form
ψ(X2), with ψ ∈B, we writeψ(X2) =ψ(X2)−ηψ (X1)+ηψ (X1), whereηψ (X1) is theA -optimal esti-
mate ofψ(X2) based onX1. By the orthogonality principle, the errorsY−ϕA (X1) andρA ,B(X1,X2) =
ψ(X2)−ηψ(X1) are uncorrelated with any RVη(X1), whereη ∈A , and thus in particular with the term
ηψ (X1). Therefore, we have that

E
[

(Y− Ŷ)Tψ(X2)
]

= E

[

(

Y−ϕA (X1)−ρA ,B(X1,X2)
)T (ψ(X2)−ηψ(X1)

)

]

= E

[

(

Y−ρA ,B(X1,X2)
)T (ψ(X2)−ηψ(X1)

)

]

= 0. (A.2)

Here, the second equality results from the fact that the termψ(X2)−ηψ(X1) is orthogonal to every
RV ϕ(X1), whereϕ ∈ A and, in particular, toϕA (X1). The third equality follows from the fact that
ρA ,B(X1,X2) is the MMSE estimate ofY among all functions of the formψ(X2)−ηψ(X1), with ψ
being some function inB andηψ(X1) being theA -optimal estimator ofψ(X2) from X1. Consequently,
the errorY−ρA ,B(X1,X2) is orthogonal to every RV of the formψ(X2)−ηψ(X1), and, in particular, to
ψ(X2)−ηψ(X1).
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