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We address the problems of multi-domain and single-domairession based on distinct and unpaired
labeled training sets for each of the domains and a largebal@d training set from all domains. We
formulate these problems as a Bayesian estimation witliap&riowledge of statistical relations. We
propose a worst-case design strategy and study the regafitimators. Our analysis explicitly accounts
for the cardinality of the labeled sets and includes the igpeases in which one of the labeled sets is
very large or, in the other extreme, completely missing. \Wmadnstrate our estimators in the context
of removing expressions from facial images and in the card&audio-visual word recognition, and
provide comparisons to several recently proposed multiahlearning algorithms.
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1. Introduction

There are many applications in which one can access datanfiatiple domains in order to perform a
task. For example, word recognition can greatly benefit floenavailability of joint audio-visual mea-
surements [17]. Person recognition and verification candotopned much more accurately by fusing
information from several modalities such as facial imag@s scans, voice recordings, and handwrit-
ings.

A major difficulty in fusing multiple sources is that one cétem access only distinct labeled training
sets for the different domains and does not have pairedddlzadlamples from all domains. Suppose, for
instance, we wish to perform audio-visual gender recogmitiThere are numerous existing data-sets
of labeled voice recordings as well as labeled data-se@oidifimages. However, there are only a few
jointly labeled audio-visual data-sets, with a limited renof different subjects each. Thus, although it
is straight forward to train a classifier based on audio ogiedata alone, it is not clear how to best fuse
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the two modalities, in particular when they are unpaired.ilévbaired multi-domain labeled examples
are typically scarce, paired unlabeled examples are ofiendant. For instance, enormous amounts of
speaker video sequences (together with audio) can be eadlibgted. These videos, though, often do
not come with labels. Nonetheless, they can be used to uleegtatistical relations between audio
and video. An important question is how to best fuse audid-iarage-based predictors, given these
relations.

An even more interesting and practical question is wheteatailability of multiple data sources
can aid a machine learning algorithm during training, efarot all are measured during testing. For
example, suppose we want to predict the age of a person basedamdio recording of him/her. Assume
we have a labeled audio training set, a labeled image tigset) and a large amount of unlabeled audio-
visual examples. Can the visual examples help constru@digtor, which is solely based on audio?

In this paper we address the problem of multi-domain as veediggle-domain regression based on
distinct (unpaired) labeled training sets for each of themdims and an unlabeled multi-domain training
set. Specifically, focusing on two domains for simplicitye wonsider the situation in which we have at
our disposal a very large unlabeled training 6t X, } as well as two labeled sef),y'} and{x,,y'}.
Using this multi-domain training data, we treat the probdemh designing a predictor of based on
(X1,X2) (multi-domain regression) and a predictoryobased orx; alone (single-domain regression).
Our analysis is general in that it explicitly accounts fog tardinality of the labeled sets. In particular,
itincludes the special cases in which one or both labeledessetvery large as well as the cases in which
one of the labeled sets is completely missing.

Several problems of similar nature have been treated iritdrature. Perhaps the most widely stud-
ied of these ignulti-view learning[2] in general and multi-view regression [10] in particuldthese
techniques make use of a large training set of data from phelldomains (views), containing only a
few labeled examples. It has been shown that if the views temgree in some sense, then the unla-
beled examples are useful in constructing a single-viewnasor [2, 10]. In our setting, however, we
do not observe even a single multi-domain labeled exar{x&le(iz,yi} and also make no assumptions
on the underlying distribution. A multi-view framework fdistinct labeled training sets, recently pro-
posed in [1], assumes the availability of a mapping functidrich can generate a good estimate of
the unobserved view from the observed one. In our settingdaveot assume that such a mapping is
known or even exists. These distinctions have profoundigapbns. In particular, the lack of labeled
multi-domain samples in our scenario implies that, evenifgingle-domain sets are infinite, we may
only be able to deduce the joint distribution (06, X>), of (X1,Y), and of(Xz,y). This, however, does
not suffice, in general, to determine the conditional distiibn ofy given (X1,X2), and therefore, for
instance, the minimum mean-square error (MMSE) estimat®y, X,) = E[Y|X; = X1, X2 = Xp] cannot
be constructed.

Situations in which labeled sampléxiz,yi} from a source domain are used to construct a predictor
of y from a target domaiw; fall under the category dfansfer learning18]. In some cases, unlabeled
examples, as well as a few labeled examﬁbélsy‘} from the target domain are also available. Tradi-
tional transfer learning algorithms are suited for domaidmiitting a common feature representation.
For example, the different domains may be images of an okla&en from different views, in which
case the extracted features are of the same type. Exteosilifferent representations may be handled
via themultiple-outlook learningramework [9]. Nevertheless, in both these settings pairddbeled
examples{xil,xiz} from the two domains are not accessible. In this sense, dumgeallows learning
via supervised-transfer of knowledge.

More related to our problem are tleeoss-modalityand shared-representatiolearning scenarios
recently studied in [17] in the context of multi-modal legugy In both settings, unlabeled training data
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{xil, xiz} from multiple modalities, such as audio and video, are ugg@etform aeature learningstage.

In cross-modality learning, one constructs a predictoetamx; alone using a labeled training set
{xily }. For example, we may want to build a classifier operating alicsfieatures by observing labeled
audio examples in addition to unlabeled audio-visual msta. In shared-representation learning, one
constructs a predictor based »nalone using a labeled training s{efé,yi}. For instance, we may want
to train an audio classifier by observing only labeled visxamples in addition to unlabeled audio-
visual instances. Cross-modality regression was recstuttiied from a Bayesian estimation perspective
in [15], in which a link to instrumental variable regressi@hwas also highlighted. As we show, both
cross-modality and shared-representation learning areiapases of our approach, corresponding to
the situation in which there are zero examples in one of theléal sets.

In this paper we formulate regression from unpaired dats @gta Bayesian estimation problem
with partial knowledge of statistical relations. Speciliigave assume that, for each domain, we can
determine the predictor that minimizes the mean square @vi8E) among some class of estimators.
This can be done using the labeled training examples fronagiseciated domain. Furthermore, we
assume that we can determine the joint probability distidiouof the data from the two domains using
the unlabeled examples. Now, every joint distribution &fels and (multi-domain) data which is con-
sistent with this knowledge is considered valid. The penfance of any estimator depends, of course,
on the unknown distribution. Thus, our approach in this papé& seek estimators whose worst-case
MSE over the set of valid distributions is the smallest passi

We show that the minimax problems we obtain have simple, getrivial, closed form solutions
which can be easily approximated from the available trgmixamples. These expressions also provide
insight into how data from multiple domains should be taken account. In particular, we show that,
from a worst-case standpoint, a domain with no labeled e@srgannot help. Thus, it is impossible
to perform cross-modality regression without making arsuagptions on the underlying distributions.
We illustrate our approach in the contexts of face normtatimeand audio-visual word recognition. In
the former application, we demonstrate how an image of drsgrfiice can be converted into one with a
neutral expression, without observing paired examplegofral and smiling faces. In the latter setting,
we show how spoken digits can be recognized from silent v{tipreading) when only labeled audio
examples are available. We also show how they can be readjfiam audio, when there is access
only to labeled video examples. The experiments indicatedtr approach is preferable to that of [17].

The remainder of this paper is organized as follows. In $acH# we present the setting of interestin
detail and discuss several special cases. We provide a matical formulation of our regression prob-
lems in Section 3. The minimax multi-domain and single-donestimators are derived in sections 4
and 5, respectively. Finally, experimental results arevioied in Section 6.

2. Problem Formulation

We denote random variables (RVs) by capital letterg.( %, X2,Y) and the values that they take by bold
lower-case letterse(g., %, X2,¥). The pseudo-inverse of a matis denoted b)AT. The second-order
moment matrix of an R\ is denoted by xx = E[XXT], whereE[] is the mathematical expectation
operator. Similarly, the cross second-order moment mafrivo RVs X andY is denoted by xy =
E[XYT]. The joint cumulative distribution function of the R¥andY is written Fxy(X,y) = P(X <
x,Y <Y), where the inequalities are element-wise. By definitior, tharginal distribution oK is
Fx(X) = Fxy(X,2). In our setting,Y is the quantity to be estimated, aXg and X, are two sets of
measurements (features). The R¥s X, andY take values iRM:, RM2, andRN, respectively.

Our goal in this paper is to propose an estimation theorgfcaach for solving certain regression
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FiG. 1: Multi-domain regression. (a),(b) Single-domain tiagnwith many/few labeled examples (Sec-
tion 4.1). (c) Multi-domain training with few labeled exafap (sections 4.2 and 4.3). (d) Multi-domain
training with many unpaired labeled examples from one daraad few from the other domain (sec-
tions 4.4 and 4.5).

problems in which several distinct training sets are ablaluring training. More specifically, we
assume we are given access to three possible data-setkasfol

1. labeled example§(x;,y’)}:2, from domain 1;

2. labeled example@(xﬁ,yf)}'git'lﬁl from domain 2;

3. paired unlabeled exampléed, xi) 1121 .
These training sets correspond to independent draws frediskributiong=,v, Fx,y, andFx,x,, respec-
tively. Our focus is on situations in whidh is very large, so that the joint distributidfx,x, can be
assumed known (or very well approximated, for example, bypaoametric methods). The cardinalities
L1 andL, of the labeled sets are arbitrary. In particular, one of tbambe zero. Inin this case no knowl-
edge whatsoever is available regarding the statisticaliogl betweerY and the associated domain. On
the other extreme, one (or both) of the labeled sets may belarge, in which case the associated
single-domain MMSE estimator, s@[Y|X;], can be assumed known (or accurately approximated).

In terms of testing, we treat two tasks. The firgtnislti-domain regressiarin which the algorithm is
asked to predicy based on an observationxf andx,. The second isingle-domain regressiomhere
prediction should be based solely gn(including the case where nq labeled data is available for
training, that isL; = 0). Several archetypical situations are depicted in figndlZa Here, single- and
double-lined circles correspond, respectively, to RV4 #ra unobserved and observed during testing.
A continuous line, a dashed line, and lack of a line betwesries corresponds, respectively, to many,
few and zero training examples.

3. Estimation Theor etic Formulation

In this paper we adopt and generalize the framework propios@d] by posing our problem as one of

estimation with partial knowledge of statistical relasorBefore formalizing our multi-domain semi-

supervised problem in estimation theoretic terms, we fasall the common practice for regression
from one domain with a limited number of examples.

3.1 Single-Domain Regression

Suppose we are given a samghé, ¥’ }-_;, x € RM, independently drawn from the joint distribution
of X andY. If L is very large, then nonparametric methods can be used toxpmate the conditional
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FIG. 2: Single-domain regression. (a),(b) Cross-domain legrfi7] with many/few labeled examples
(Section 5.1). (c),(d) Shared-representation regreqdidly also referred to as estimation with partial
knowledge [15], with many/few labeled examples (Sectia).5.(e),(f) Multi-domain training with
many/few labeled examples from the unobserved domaini(®est3).

expectation estimatap (x) = E[Y|X = x] with great accuracy at arx Such estimates, however, are
often far from accurate wheln is small. Common practice in such situations is to use patrécre
semi-parametric methods that impose some structure orotinghs predictor. In other words, rather
than trying to approximate the regression functipfx) = E[Y|X = x|, which minimizes the mean
square error among all functions ¥f we settle for approximating the optimal predictor amongeo
family .z of functions:

9., = argmink [[[Y — ¢ (X)[|?]. (3.1)
e

The less rich the clas¢ is, the more accurate we can typically approximfate(X) from the training
data. This comes, of course, at the cost that the (theolleMSE that ¢, (X) achieves is higher.
This is the well known bias-variance tradeoff. In the sequel term the functio ., (X) of (3.1) the
<7 -optimal estimator o¥ from X.

One of the simplest structural restrictions correspondiaéar estimation, so that is the set of all
linear functions fromRM to RN. In this case,

s (X) = Tyxl kX (3.2)

The second-order moment matridegy, I xx can be estimated from the training set, for example, by
using sample moments. A more general model correspondsattidas of the form

K
D)= 3 adi(X). (33)
k=1
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where{¢}K_; is a predefined set of functions and the coefficigg}_, are arbitrary. The optimal
set of coefficienta = (a; aK)T is given in this case by

a=rllol v, (3.4)

wherel” p denotes th& x K matrix whose(i, j)-th entry isE[¢;" (X)$;(X)] andl” gy is aK x 1 vector
whoseith componenti€[¢," (X)Y]. These quantities can be estimated from the training datiesito
the linear setting.

In both examples abovey forms a linear subspace of functions: for evéty ¢ c o7 anda, B € R,
the functiona ¢ + B¢ also belongs te7. For future reference, we note that this claim is also tliyia
true wheng is taken to be the set of all (Borel-measurable) functianshich casep,, (X) = E[Y|X],
and whene/ contains only the zero function, in which cagg (X) = 0.

3.2 Statistical Knowledge Deduced from Separate Training Sets

In our setting we have access to two sperate unpaired seabeied examples, one for each domain.
Consequently, besides the standard uncertainty in &tatisthich has to do with the fact that the under-
lying distributions are not known but rather only samples aloserved, here there is another degree of
uncertainty. Specifically, even if the number of trainingesples is taken to infinity in all three sets, we
can only hope to be able to determine the joint distributi®gs, Fx,vy andFx,x,. These do not suffice in
general for computing the MMSE estimdgY | X1, X»]. To focus only on the second type of uncertainty,
we assume that we are able to perform single domain regressim each of the training sets with very
small variance (at the expense of possible bias). Spedyfiead assume that we can determine the
o7 -optimal predictor ofY givenX; as well as thez-optimal predictor ofY from Xp, wheres/ and %
are classes of functions chosen in accordance with theraitgli of the two sets. Note that each of the
single-domain predictors may be very poor. In particufahere are no labeled training examples from
one of the domains then we choose the corresponding clasgdidfpredictors to contain only the zero
function. Therefore, if, for instance, we halke = 0 labeled examples from domaX, then we set
o« = {0} so that thee7-optimal predictor off givenX; is simply ¢, (X;) = 0.

We further assume that the existence of many unlabeled dgaiXa, X2) allows accurately deter-
mining the joint distribution ofX; and Xy, for example, using nonparametric methods. Finally, we
assume that there are enough labeled examples from at leasf the domains such that the second-
order moment ofY can be accurately estimated. The statistical relatiosshgsumed known are
depicted in Fig. 3.

In a more mathematical language, assume we are given twéidoag,, : RM — RN and @ :
RM2 — RN, a cumulative probability functiofix,x, over RM*M2 and a scalac > 0. Then, what we
know regarding the RVX;, X, andY is that their distributiofirx, x,y belongs to the se# of distributions
satisfying

¢ = argminE[|Y — o(X1)[|?], @z = argminE[[[Y — y(X2)|?],
peo ye#h
ooy (X1, X2, ) = Py, (X1,%2),  E[[[Y[[] =c. (3.5)

We assume throughout the paper thdtand 2 form linear subspaces of functions, as discussed in
Section 3.1.
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FiG. 3: Known statistical relationships. Each of the singleadin predictors may perform arbitrarily
poorly (in particular, it is possible that., (X;1) = 0 or gz (X2) = 0).

As an illustrative example, suppose tiat X, andY are scalar RVs, and that and % are the sets
of all linear functions fromR to R. Assume further that we know that the best linear estimataf o
from Xy is ¢/ (X1) = 0.1X3, the best linear estimator &ffrom X; is Wz (X2) = 0.2X,, the probability
density function (pdf) of Xq,X2) is fx,x,(X1,%2) O exp{—(x? +x3)/2}, and thatE[Y?] = 1. Then the
normal density

1 1 0 01\ '/x
fX1X2Y (Xl,Xz,y) O exp _é (Xj_ X2 y) 0 1 02 X2 (3.6)
01 02 1 y

qualifies with all these restrictions and is thus valid. Ictféhere is an infinite number (a continuum) of
other feasible densities. For instance, it can be easilfiegthat the Gaussian mixture pdf

1 1 0 02\ " /x
Poey (e, y) Dexpd =5 (% y){ 01 0 Xo
02 0 1 y

1 1 0 0\ '/x
+exp _E(Xl 2 y)[{0 1 04 X2 (3.7)
0 04 1 y

is also consistent with all the restrictions, making it dad/@hndidate as well. By contrast, the density
1 2 0 02\ '/x
fx oy (X1, X2,y) O €xp -3 (xx x y)| 0 1 02 X2 (3.8)
02 02 1 y

satisfies all requirements except for the demand that it bsisnt with the given marginal distribution
fx,x, (X1,%2). Therefore, it is not feasible.

3.3 Goals

The first problem we address in this paper is multi-domainagsgjon. In this context, we would like to
construct a predictor of from the two domain¥; andX,, where the only knowledge we have is that
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Fx,x,v € #. The second problem we tackle is single-domain regressiere, the goal is to construct
an estimator o givenX; alone based, again, only on the knowledge Esat,y € .-#. The special case
of shared-representation learningn which no labeled examples from the first domain are abkela
corresponds to setting = {0}. The setting otross modality learningin which there is no access to
training examples from the second domain, can be addreyssettng% = {0}. The general case we
treat here can account for a wide spectrum of possibilitedding these two extremes.

Any predictor ofY, whether a function oX; andX; or of X; alone, may perform well under certain
distributionsFx,x,y € % and worse under others. Our goal is therefore to uniformtyimize the MSE
over.#. As we will see, this minimax approach leads to simple cldseoh solutions, which can be
easily applied to the various settings discussed in Se2tion

4. Multi-Domain Regression

Assume that the joint distribution of the tripl€X1, X2,Y) is known to belong to the family# of (3.5),
where.w and % are Iingar subspaces of prediction functions. For anyidigion Fx x,y, the MSE
attained by an estimator= p(Xy, X2) is defined as

MSE(Fx,x,v,0) =E [[|Y — p(X1, X2)|1%] , (4.1)

where the expectation is with respectRgx,y. Since the MSE depends &), x,y, which is unknown,
our approach is to seek the estimator whose worst-case M8E\VSs minimal. This minimax con-
cept is widely practiced in deterministic parameter estioma[5, 6] as well as in random parameter
estimation [7, 8]. More concretely, we are interested in

pm =argmin  sup MSE(Fx,x,y,P). (4.2)

P Fxy ¥ eF

The next theorem, whose proof can be found in Appendix A, iples/a means for solving this problem.

THEOREMA4.1 (Multi-domain minimax-MSE prediction) Choose any digition Fx,x,y € :# and con-
sider the estimator

Pz = argminMSE(Fx x,v,0), (4.3)
pe?
where% = o/ + %, namely
C={p: p(X1,%X2) = P(X1) + Y(%), 9 € o, Y € A} . (4.4)

Then
1. the functionp, does not depend on the choiceFgfx,y € .7;
2. the value MSHx, x,v, p«) does not depend on the choiceFix,y € -7,
3. the estimatopy of (4.3) is also the solutiopy to (4.2).

Theorem 4.1 shows that instead of solving the minimax pralt§ie 3), we can equivalently solve the
minimization problem (4.2). Namely, all we need to do is deiee the MMSE estimator of among

1The subscript ‘M’ stands for ‘multi-domain.’
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all functions of the formp(X1) + Y(X;) with ¢ € & andy € 9. The importance of this observation
follows from the fact that, as we show below, for many pradtizases, the latter possesses a simple
closed form solution.

Before demonstrating the utility of the minimax MSE apptoage note that optimizing the worst-
case performance of an estimator is very conservative andsoimetimes lead to over-pessimistic
solutions. As an alternative, researchers in many appitareas have proposed minimizing the worst-
caseregret[6, 7, 14, 15]. The regret of an estimaio(X;, X;) is defined as the difference between the
MSE it achieves and the MSE of the MMSE solution, namely

REG(Fx,xov:P) = E[[[Y — p(X1, X2) 2] —=E [|[Y — E[Y|Xq, Xo]||?] - (4.5)

In this expression, both terms dependFx,y, so that minimization of the worst-case regret is gen-
erally not equivalent to minimization of the worst-case M2¥ditional insight into the regret can
be obtained from its equivalent characterization [15] &sMSE betweem (X1, X2) andE[Y X1, Xz],
namely

REG(Fx,x,v.0) = E [[|p(X1, X2) — E[Y[X1, X2] ] - (4.6)

As we show in the following theorem, however, in the multiatain prediction setting, the minimax-
regret estimator coincides with the minimax-MSE solutidrhe proof of the theorem is provided in
Appendix B.

THEOREM4.2 (Multi-domain minimax-regret prediction) Considee ghroblem

pr=argmin sup REG(Fxx,v;p), (4.7)

p FX1><2Y €T

where minimization is performed over all functiop®f X; andX,. Then its solutiorpr coincides with
pwm of (4.2).

We now apply Theorem 4.1 in several scenarios.

4.1 Single-Domain Training

Consider the situation of figs. 1(a) and 1(b), where we haeaiatlisposal only labeled examples from
one domain, sa). In this caseZ = {0} so that¢ = . Consequently, the solution to (4.3) is simply

Pz (X1, X2) = @r (X1). (4.8)

This shows that in coming to label unseen examples, there gain in basing the prediction on the
domainX; for which we have no labeled training examples. Furthermairéeast from a worst-case
perspective, there is no better strategy than using oualipitedictor based oiX; alone. More con-
cretely, for any estimator that differs frog, (X;) (and in particular one that is a function %5),
there exist distributionByx, x,vy € % (one maybe being the true underlying distribution) undeictvithe
predictor¢ ., (X1) performs better.

This result does not stand in contrast to the basic observatimulti-view learning that unlabeled
data helps [2]. This is because in our setting, we do not asghat the two views are “coherent” or
tend to agree in any sense, as done, for instance, in [10indhtext of multi-view regression.
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4.2 Multi-Domain Linear Regression

Suppose, as in Fig. 1(c), that we have a limited amount oldéabexamples from both domains, which
only suffice for identifying (with very high precision) thetimal linear predictor from each view. In
this caseZ and % correspond to the collection of all linear functions fréM: to RN and fromRMz to
RN, respectively. Consequently, is the set of all linear functions from™: x RM2 to RN. This implies
that the solution to (4.3) is simply the best linear predicfoy based orX; andX,, namely

,_X]_Xl r X1Xo f xl
p%ﬁ(XLXZ):(rYXl I_YXZ) rX2X1 erXz X2) " (4.9)

The second-order momenfsy;, i, j € {1,2}, can be estimated from the unlabeled training set. Simi-
larly, the matrices vx;, i, j € {1,2}, can be determined from the labeled sets.

The dependence of the multi-domain prediggron the single-domain estimataps andy/ is not
apparent at first sight. However, recall that the orthoggnptinciple states thak[(Y — @., (X1))X{ ] =
0 andE[(Y — @5(X2))XJ] = 0. Therefore, the termEyx, and Myx, in (4.9) can be replaced by
E[g, (X1)X] ] andE [ (X2)X] |, respectively. As these expectations are with respeEt@and Fx,,
their computation can be carried out based only on the krdydeof Fx,x,, @, and )z, which is
available according to our problem formulation.

4.3 Multi-Domain Parametric Regression

The above observation naturally extends to the case in whetraining sets suffice for identifying the
optimal parametric predictors of the forms

K1 Ko
040 = 5 qdk(%a),  W(Xo) = 2 (%), (4.10)
=1 =1

Where{qbk}ti1 and{wk}fil are given functions an(ka%}til and{aﬁ}&l are arbitrary parameters. In
this situation@ corresponds to the family of functions having the form

Ky Ko
PX1 %) = 5 ad(Xe) + 5 auk(Xe). (4.11)
=1 K=1
Thus, the optimal set of parametars- (a; - ag, a - aﬁz)T is given by
T
«_(Too Toy) (Tov

a = 4.12
(rwaa rww) (rwv)’ (4.12)

with I g, wy, I oy andlr gy being as in (3.4) anfl »y being aKj x Ky matrix whose(i, j)-th entry
isE[¢i(Y)Tj(Z)]. Similar to linear regression, the vectdigy andl yy can be replaced, due to the
orthogonality principle, by vectors whogeth entries ard‘z[¢ir(x:|_)¢ﬂ/()(1)] and IE[(,UJ-T (X)) Pz (X2)],
respectively.

4.4 Multi-Domain Partially Linear Regression

Suppose, as in Fig. 1(d), that we have numerous labeled dearfinpm the first domain, allowing us to
determineéE[Y|X1], and only a limited amount of examples from the second doysaithat we can only
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determine the best linear predictonofrom X5. In this setting, Theorem 4.1 implies that the minimax-
optimal predictor based oy andX; is the estimator minimizing the MSE among all functions & th
form

P (X1, X2) = a(X1) + BX, (4.13)

wherea: RM: — RN is an arbitrary function anB € RN*Mz is some matrix. It was shown in [16] that
the solution to this particular case is given by

o (Xa, X2) = E[Y|Xa] + Mywl ynW, (4.14)

whereW = X, — E[Xp|Xq].

The intuition here is that we need to make sure we do not acdoumariations inY twice when
fusing information fromX; andX,. Thus, we start with the estimage, (X;) = E[Y|X1], and then update
it with the LMMSE estimate oY based on thénovation % — E[X,|X;] of X, with respect tap,., (X1 ).

In practice, the ternE[Y|X;] can be approximated from the labeled training examplesefitht
domain,e.qg.,using nonparametric methods. The second term in (4.14)eabtained via a three-stage
procedure. Specifically, we first employ a nonparametribniépe to approximaté&(x;) = E[Xp|X; =
x;] from the unlabeled set. Next, we use the unlabeled samplesrtothe set{E(xﬁ),xg}tj_tﬂ_gﬂ,
from which we approximate the covariance maffiyw of W = X, — E[Xy|X3]. Lastly, we approximate
Iy, from the labeled example{xg,y[}'git'ﬁl andlyg (x,) from the labeled examples (xD),y' )L,
in order to computé yw =Ny x, — Fyex)-

4.5 Multi-Domain Semi-Parametric Regression

Suppose as above, that we knBfY |X;], however we can also determine the best estimatdrfodm
X, among the parametric family

K
W(Xo) = ali(Xz). (4.15)
&1

In this case, according to Theorem 4.1, the minimax-optieséimator ofY based orX; andX; is the
one minimizing the MSE among all functions of the form

K
P(X1,X2) = a(X1) + 5 ak(X2). (4.16)
&

The solution to this problem can be deduced by relying on treept of(</, %)-innovation, as we
now define.

DEFINITION 4.3 The(«/, %) innovation ofX, with respect taX;, which we denote by, #(X1,X2),
is the MMSE estimator of among all functions of the form

W(X2) — Ny (X), (4.17)

with (¢ being some function it andny (X;) denoting thees-optimal estimator ofy(Xz) from X;.

Using this definition, we make the following observationaedjng the structure of the minimax
estimator, the proof of which is given in Appendix C.
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THEOREM4.4 The solution to problem (4.3) can be expressed as

Pz (X1,X2) = §or (X1) + Par (X1, X2), (4.18)
wherep,, z(X1,Xo) is the (o7, #)-innovation ofX, with respect toX;.

In our setting,e corresponds to the set of all functions fr@f1 to RN so thatg,, (X;) = E[Y|Xy].
FurthermoreZ is the family of functions fronRM2 to RN having the form (4.15). Therefore, for any
Y € A, theo/-optimal estimator ofy(X,) based orX; is given by

Ny(X1) = E[P(Xz)[X1] = z ai(X2)

K
Xl] = > al[P(X2)[X]. (4.19)
=

Consequentlyp,, #(X1,X2) in (4.18) is of the form

K
P(X2) —ny(Xy) = z ai(X2) — z E[(Xo)|X1] = z aPk (X1, X2), (4.20)

where we denotedy(X1,X2) = Yk(X2) — E[Uk(X2)|X1]. The optimal set of coefficients is given by

wherel™ 5, andl” py are as in (3.4) withp; (X1) replaced byp; (X1, X2).
To conclude, the optimal estimator of the form (4.16) is

K

P (X1, X2) = E[Y[Xa] + 3 ax (yk(X2) — E[yr(X2) [Xa]) , (4.22)
&

with coefficients{ay} given by (4.21). The first term in this expression can be agprated via non-
parametric regression techniques from the labeled trgiekamples of the first domain. The second
term can be computed in two stages. First, each of the fum:{imk(xz)}ﬁzl is regressed oK; using
the unlabeled data set, to obtain an approximatidg| gk (X2)|X1]. Then.Y is linearly regressed against
{(X2) — E[gn(X2) [Xa] }K_;, using the two labeled sets, as discussed in Section 4.4.

5. Single-Domain Regression with Multi-Domain Training

Next, we address the setting in which at the testing stageradictor is only supplied with one type of
features, sayi. The interesting question in this context is how to take axtoount the training sets of
both domains in order to design an improved estimatof béased ork; alone.

Since our estimator operates ¥pand is judged by the proximity of its outputYq its performance
is only affected by the joint distribution of andX;. It may thus seem at first that the second set of
featuresX, cannot be of help in improving estimation accuracy. Howgemete thatFx,y is not fully
known in our setting. Thus, being told the statistical lielag betweery and X, and betweerxX; and
X2, might help to narrow down the set of candidate distributiBgy for which we need to design an
estimator.

The statistical relations known to us are the same as in@eéti Namely, we know thafx, x,y
belongs to the class# of (3.5). Therefore, as in Section 4, our goal is to optimize worst case
performance of our estimator ovef. As it turns out, in contrast with the multi-domain probleim,
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the single-domain setting the minimax MSE and minimax regputions no longer coincide. Here, we
focus on minimizing the worst-case regret. As will be cleant the proof provided in Appendix 5.1,
determining the minimax-MSE estimator in the single-damsstting is much harder than minimizing
the worst-case regret. The former remains an open problem.

In single domain regression, whatever we do, our estimatibmat achieve lower MSE than the
conditional expectatiofi[Y|X;]. Therefore, theegretof interest is now

REG(Fxyx,v, ) =E [[Y —p(X) 7] —E [ —E[Y[Xa]|?] - (5.1)
As in the multi-domain setting, this regret here can be emitis [15]
REG(Fxyx,v;p) = E [|l(X1) — E[Y|Xq][|] . (5.2)
Our goal is to determine the minimax-regret estimator

ps=argmin sup REG(Fxx,v,p), (5.3)
P FxYEF

where now minimization is performed only over functignsf X;.
The next theorem, whose proof may be found in Appendix B, ril@ss the single-domain minimax-
regret estimator in terms of the multi-domain minimax-MS#igon.

THEOREMS.1 (Single-domain minimax-regret prediction) The saatio problem (5.3) is given by

ps(X1) = E[pm (X1, X2)[Xa], (5.4)

wherepy (X1, X2) is the multi-domain minimax estimator (4.2).

This result has a very simple and intuitive explanation. \Wevk thatFy, x,y belongs to the sef,
and thereforgpy (X1, X2) is the optimal estimate of in a minimax-MSE sense. However, we cannot
use this estimate as it is a functionXy, which is not measured in our setting. What Theorem 5.1 shows
is that the optimal strategy is to estimaig (X1, X2) based on the available measurements, which are
X alone. Computation of the conditional expectafiipy (X1, X2)|X1] only requires knowledge of the
marginal distributiorFy, x,, which is available in our setting.

We now apply this result to two interesting special cases.

5.1 Cross Domain Regression

In cross-modality learning [17], we only have labeled exbsfrom domainX; and not fromX,, as
illustrated in figs. 2(a) and 2(b). The basic intuition he®presented in [17], is that the unlabeled data
may be used to boost the performance of the best single-dastimatonp ., (X;) that can be designed
based solely on labeled examples from the donxain

This setting can be treated within our framework by setting(X;) = 0. As we have seen in Sec-
tion 4.1, in this situatiomwm (X1, X2) = ¢.(X1). Therefore, the single-domain minimax-regret predictor
of Y from X; is given by

ps(X1) = E[@. (X1)[X1] = s (X1). (5.5)

2The subscript ‘S’ stands for ‘single-domain.’
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We see that despite the fact that we knByyx,, there is no better strategy than using the estimator
¢.7(X1) here. This implies that cross-modality learning is not ukefiless additional knowledge on the
underlying distributions is available.

The authors of [17] used cross-modality learning to clgsisiblated words from either audio or
video (lipreading). It was reported that unlabeled audsual examples helped improve visual recog-
nition but failed to boost the performance of an audio cfassiThis empirical result aligns with our
theoretical analysis, which states that, in the worst-casmario, there is nothing better to do than
disregarding the modality for which no labeled examplesaaeglable.

5.2 Shared Representation Regression

In shared-representation learning [17], also referredstestimation with partial knowledge [15], we
have no labeled examples from domaén but rather only fromX,. This is illustrated in figs. 2(c)
and 2(d). Since we can learn a predialos(Xz) from the second domain, and only measure an instance
X, from the first domain, a naive approach would be to feed thdigia @ with an estimate oK,
which is based oiXy, rather than withX; itself. For example, the MMSE estimaR{X,|X;] can be
approximated by nonparametric methods from the unlabeteéding set. However, as we now show,
this strategy is generallyot minimax-optimal.

Recall from Section 4.1 that the multi-domain predictorresponding to the setting in which' =
{0} is pm(X1,X2) = Wz (X2). Therefore, the single-domain minimax-regret predictfoy drom X; is
given by

ps(X1) = E[Pz(X2)[X4] (5.6)

in this case. This solution generalizes the estimator of Tt#n. 8], which was developed for the case
in which 2 is the set of all functions. In the latter scenanjog (X2) = E[Y|Xz], and the two methods
coincide.

As an example, consider the setting in which we have a limitetiber of labeled examples from
domainXy, which only allows to determine the best linear predicto¥ éfom X,. In this caseyz(Xz2) =
Iyl Yox,Xe, implying thatps(Xe) = E[Iyxl  x,XelX1] = Iyl ¥ x, E[X2|Xa]. Namely, minimax-
regret estimation does boil down, in this setting, to thev@aitrategy of applyingsz on E[Xz|X].
This, however, is not always the case. Suppose, for instahaewe have numerous examples from
domainXy, so thatZ is the set of all functions frori®M2 to RN. In this situation @z (Xz) = E[Y|Xz],
so thatps(X1) = E[E[Y|Xg]|X1]. This solution does not generally coincide with the naivénestor
E[Y|E[Xz[X]].

The estimator (5.6) can be approximated from the availablaeihg data by first determining the
functionz(x2) from the labeled set of the second domain and then using namgdric regression on

L1+Lo+U
the set(x, Y (x3) )1 1210, ..

5.3 Regression with Side Information

The general setting in which we have training data from batinains can be treated by employing
Theorem 4.4. Specifically, whew and.Z are two arbitrary spaces of prediction functiopg,(X1, X2)
is given by (4.18), and therefore

Ps(X1) = 7 (X1) + E[por (X1, X2) [Xa], (5.7)

wherep,, 5(X1,X2) is the (<7, %) innovation ofX; with respect toX;. This representation highlights
the fact that the second labeled set and the unlabeled setiotarplay in the tern[p, (X1, X2) | X1].
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To understand when training data from an unobserved donaainat help, we recall from Defini-
tion 4.3 thafo., »(X1, X2) is of the formy (Xz) — ny(X1), with ¢ € 2 andny (X;) being theer-optimal
estimate ofy(Xz) from X;. Therefore, the second term in (5.7) vanishes if, for exampl

Elg(X2)[X1] = ny(X1) (5.8)

for everyy € . Intuitively, this can happen if the clasg of functions is very rich and/or the class
% is not. As an example, if7 is the set of all functions fro®M: to RN thenny (X1) = E[¢(X2)[Xa],
so that (5.8) is satisfied, indicating that the training seirfthe second domain is not needed. Indeed,
in this situationg., (X1) = E[Y|X1], meaning that we can already determine the MMSE predictdt of
from Xy using the first training set so that no potential improvenoamt be obtained using the second
set.

As a more interesting example, suppose that the RvVandX; are jointly Gaussian, tha# is the
set of all linear functions fromkM2 to RN, and thate7 contains the set of all linear functions fraki'z
to RN. In this case, every € 4 corresponds to some matuxsuch thaty(X,) = AX. Consequently,
using the fact that the MMSE estimate is linear in the Ganssédting,

E[(Xo)|X1] = E[AX|X1] = AE[Xa|Xe] = Al %, % x, X1. (5.9)
MoreoverX; and(Xy) are jointly Gaussian, implying that

M%) = I yxo)xa ko X1 = A xx T ko X (5.10)

Thus, (5.9) and (5.10) coincide and (5.8) is satisfied, iatitig) that the second training set is not required
here as well.

Another interesting viewpoint can be obtained by switchimgroles ofX; andX; in the represen-
tation (4.18) ofpom (X1, X2). This leads to the expression

ps(X1) = E[Pz(X2) [ X1] + E[pz, o (X2, X1) [X4]. (5.11)

Here, we recognize the first term as being the shared-repetgm estimator (5.6) of from Xq,
which does not use labeled examples from the dorXain Therefore, we see that the training set
from the first (observed) domain is not needed if the secomd ite (5.11) vanishes. Using the fact that
P2, (X2, X1) = ¢ (X1) — Ny (X2) with ¢ € o7 andny (X2) being theZ-optimal estimate 0 (X;) from

X2, we conclude that this happens if, for example,

¢ (X1) = E[ng (X2)[X4] (5.12)

for every¢ € o7/. As a concrete example, consider again the setting in whietRvsX; and X, are
jointly Gaussian and7 and % are classes of linear functions. In this situatigiiX;) = AX; for some

matrix A, so thatng (X2) = I g (x, )%, ;r<2x2X2:A’_ XX I I(ZXZXZ and, consequently,
E[Ng (X2)|X1] = Al xS EXa|Xa] = AT x0x 1 Yoo M xoxa I x, X (5.13)
Therefore, (5.12) is satisfiedl'l‘fxlle'I(zle'xlel';lxl:I,or, equivalentlyiﬂ'xlxl—I'xlle';zle'xle:

0. The latter expression is no other than the error covagiafiche MMSE estimate aX; from X5.
Therefore, condition (5.12) is satisfied in this setting(if can be estimated fro, with no error.
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Indeed, in this scenario, we do not need to observe trainiagples from the domaiX;, as these can
be synthetically generated from the examples of the seconthah.

To approximate the resulting estimators from sets of ppihts often more convenient to use the
form (5.11) rather than (5.7). As a concrete example, cendidear regression with nonlinear side
information, namely wherg? is the set of all linear functions an# is the family of all (not necessarily
linear) functions. Then, from Theorem 5.1 and (4.14) we toethat

ps(X1) = E[E[Y [Xo][Xe] + Mywl (X1 — E[E[Xy [Xe][X1]), (5.14)

where her&V = X; —E[X1|Xz]. The termE[E[Y|Xz]|X1] andE[E[X;|X]|X1] can be approximated using
nonparametric methods, similar to the discussion in Se&id, and the covariance matridegy and
I'ww can be approximated as in Section 4.4.

6. Experimental Results

We now demonstrate our regression approach, that derivestfre theoretical results just presented, in
two illustrative applications.

6.1 Face Normalization

Many facial recognition methods rely on a preprocessinggsteoinedhormalization which is aimed at
removing variations that were not observed in the trainiagdase. These may include variations due
to illumination, pose, facial expressions, and more. Toa®strate the utility of our approach, we now
focus on the problem of producing a neutral expression fiama & smiling one.

A straight forward way of tackling this problem is to learn egression function from pairs of
training images. This requires a database in which eaclesu@ppears at least twice, one time with
a neutral expression and one time with a smile. Unfortugaletge data sets of this sort are hard to
collect. In many practical situations one only has acceagiatabase in which each subject appears only
once. While different subjects may be wearing differentregpions, direct inference of the statistical
relation between a smiling and a neutral face is virtuallpassible in such scenarios. To bypass this
obstacle, we can use a second domain, or view, for which #s$y € obtain examples that are paired
with the images in the database. This can be done, for exatmplaanually marking a set of points in
several predefined locations on all images in the databdses, Henoting byX;, X2,Y) a triplet of a
smiling face, its point annotations, and the correspondegral expression image, we may construct an
unlabeled set of annotated smiling fage$, x4} and a set of annotated neutral expression féxgy’ }.
This allows employing our shared-representation reguassichnique for designing a predictor 6f
based orX;. If, in addition, several subjects were photographed nwaa bnce, then we may construct
a third set{x{,yg}, containing pairs of images of smiling and neutral-expoestaces. In this case, we
can apply regression with side information, as discuss&gation 5.3.

Figure 4 depicts several manually annotated neutral anlingnfécial images taken from the AR
database [12]. The point annotations were taken fragmp: / / ww pri ma. i nri al pes. fr/
FGnet / dat a/ 05- ARFace/ t arfd_mar kup. ht ml . The images were scaled, rotated and cropped
into an ellipsoidal template such that the eyes appear defired locations. In practice, this can be
performed automatically [13, 20]. To apply our methods, wamalized the images to be of zero mean
and unity norm and reduced them to 86 dimensions using PCA.nbinlinear regression scheme we
used as a building block in our methods was first-order potyinbregression with a Gaussian kernel.
The bandwidth of the kernel was adaptively tuned to be a eobhsimes the root of the average squared
distance between the query and the training data points.
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FiG. 4: Annotated images from the AR database.

BB
okl

FiG. 5: Neutral expression synthesis from smiling images. Hedhto right: query, ground truth, direct
nonlinear regression, shared-representation nonliregaession (Section 5.2), linear regression with
nonlinear side information (Section 5.3).

Figure 5 demonstrates the results obtained with our approaseveral settings. The two left-
most columns correspond to the query smiling face and thesgponding desired (unobserved) neutral
expression image. The third column shows the result of hir@erforming regression using 118 pairs
of smile/neutral images. The fourth column is the resulterfgrming shared representation regression
via (5.6), using a training set of 38 annotated smiling farada set of 40 annotated neutral images (of
different subjects). The rightmost column uses, in additmthese two sets, a training set comprising
40 pairs of images of neutral and smiling expressions tooperfinear regression with nonlinear side
information (equation (5.14)).

Table 1 shows the root MSE (RMSEE[||Y —\?||2])%, attained in each of the settings. As expected,
using direct training with 118 examples vyields the best lteglowest RMSE). It can be seen that
employing two sets with roughly 40 examples each, insteatirett training, leads to an increase in
the RMSE by 41%. This gap is reduced to 32% with the aid of artiaddl set of 40 direct training
pairs. Perceptually, the images produced by the indirethotks do not seem to be much worse than
those obtained with direct training. Note that the spatiabsthing apparent in all methods is due to
the fact that any regression methods boils down at the endni@ sort of averaging of many images
from the training set. It is also important to note that thguetraces of glasses in the last two columns
are no coincidence. Specifically, when there are no (or vamy foint examples of smile/neutral faces,
no method can ever be able to determine whether the persas gl@ases or not. This is because we
only know how the smiling images (pixel values) relate togeemetry (point annotations) and how the
geometry relates to the neutral images. Now, for every ptesgeometry, roughly half the people in the
neutral database wear glasses and half not.
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Table 1: Performance of Neutral Expression Synthesis Mitho

| Setting | RMSE |
Direct nonlinear regression 0.193
Shared-representation nonlinear regression 0.263
Linear regression with nonlinear side information  0.247

FiIG. 6: Processing of the video and audio of a speaker saying dné \wine’. From left to right: lip
detection, spectogram, extracted lip region.

6.2 Audio-Visual Word Recognition

Although the entire discussion in this paper has focuseé@gression, similar methods can be developed
for classification tasks. To support our claim, we now iltatg that this can even be achieved by
using the naive approach of performing regression and thantiging the output in order to obtain a
classification rule.

Specifically, we now consider the tasks of spoken digit diassion from audio-only and video-
only measurements. To study this task, we used the Grid Gd#puwhich consists of speakers saying
simple-structured sentences. Every sentence containdigitewhich we isolated using the supplied
transcriptions. We constructed three distinct training:sene of labeled audio examples (4 males, 4
females), one of visual examples (4 males, 4 females), aadbuanlabeled audio-visual examples (6
males, 4 females). Six speakers were used for testing (Bp&females).

To process the video, we converted the images to gray scedel the face detection method of
[11], and then applied several mean-shift iterations orgtiadient image map in order to extract the lip
region in the firstimage of each frame-bunch. Segments attdur320msec were used for recognition.
This corresponded to 8 consecutive video frames (at a ra?® dfames per second) and 1600 audio
samples (at a sampling rate of 5KHz). The image frames wehgcesl to 10 dimensions using PCA,
resulting in an 80-dimensional video feature-vector. Thacpssing of the audio was performed by
computing spectograms with windows of duration 10msec anovarlap of 2msec. The dimension
of the spectogram was reduced to 180 to constitute the aadtares. In all experimen¥was a 10-
dimensional vector with 1 at the location correspondingh®spoken digit and 0 elsewhere. Figure 6
visualizes the basic audio-visual preprocessing.

As mentioned above, our approach is designed for regressidhat the predictedis a continuous
variable. To perform classification, we chose the maxinetheint inY. For simplicity,.«# and.% were
taken as the sets of all linear functions (linear regregsidhis choice yields rather poor classification
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Table 2: Audio-Visual Digit Classification Performance

Features Accuracy
Training Testing M.lnlmax Deep RBM
(Grid corpus) (CUAVE)
Audio Audio 69.3% 95.8%
Video Video 52.0% 69.7%
Video Audio 50.1% 27.5%
Audio Video 44.6% 29.4%

results based solely on audio or solely on video. Our goaugh, is to demonstrate that even with such
naive single-domain predictors, we can attain good rec¢imgréiccuracy by using our approach, which
cleverly fuses the two domains.

Table 2 shows the accuracy of the our approach and for refer@so presents the results obtained
with the deep restricted Boltzmann machine (RBM) of [17] be CUAVE dataset [19]. The Grid
corpus used here is more challenging in that the digits appigain sentences, rather than individually.
As can be seen, the single-domain predictors we start witfoyme relatively poorly (rows 1 and 2).
Nevertheless, in the shared-representation settings (Boand 4), our predictors perform much better
than the RBM method, even for a harder dataset. Their acgisamly between 7% and 20% worse
than the corresponding single domain estimators (rows Rarespectively). By contrast, the difference
in success rates for the RBM predictor is between 30% and 70%.

7. Conclusion

In this paper, we analyzed the problems of multi-domain amgls-domain regression in settings involv-
ing distinct unpaired labeled training sets for the difféardomains and a large unlabeled set of paired
examples from all domains. We derived minimax-optimal issand obtained closed form solutions for
many practical scenarios. We used the resulting expressicstudy when training data from a domain,
which is not available during testing, can help. In paréepive showed that in the setting of cross-
modality learning, originally presented in [17], there © advantage in using the training data from
the unobserved domain, at least from a worst-case perepedtie demonstrated our methods in the
context of synthesis of a neutral expression face from ag@md a smiling subject and in the context
of audio-visual spoken digit recognition. In the lattertisgf, we demonstrated that our approach may
be more effective than that proposed in [17]. This is dedpiéefact that our method is designed for
regression rather than classification and even though wigedgpon a more challenging audio-visual
sentence corpus.

A. Proof of Theorem 4.1

We begin by proving claim 1. Since’ is a linear subspace, the orthogonality principle implfeest t
¢.7(X1) is the unique estimator satisfying

E[(Y =0 (X1)) ¢(X2)] =0 (A1)

for every¢ € o/. Consequently, for every € o7 we have that

EYTo(X)] =E ¢ (%) ¢ (X1)] - (A.2)
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Similarly, for everyy € 2 we have that

E[YTY(Xo)] =E [¢z(X2) " Y(X2)] - (A.3)

Finally, as¢ = o/ + %, the set¢ is a subspace as well. Therefope; of (4.3) is the unique estimator
satisfying

E[YT(9(X1)+ (X2)] =E [pr (X2, %X2) T (¢ (X2) + Y (X2))] (A.4)

for everyg € o andy € 4. Substituting (A.2) and (A.3), condition (A.4) reduceshe requirement
that

E (¢ (X)"¢(X)] +E [Ws(Xe)T¢(X)] = E [pr (X1, X2) T (¢ (X1) + Y(Xa))] (A.5)

for every¢ € of andy € A. Now, theo/- and #-optimal estimators of from X; andX; are fixed
over.Z (given by¢, andy, respectively). Furthermore, all expectations in (A.%) aith respect to
Fx,x,, which is also fixed ovegZ. This implies that the functiop, does not depend on the choice of
Fx,x,v € &, completing the proof of claim 1.

To prove claim 2, we note that from the orthogonality prineifA.4) follows the Pythagorean rela-
tion

E[[IY — pe (X1, X2) 7] = E[|IY]|] = E [|| p% (X1, X2)[|7] - (A.6)

The first term on the right-hand side equafsr everyFx, x,y € .#. We have also seen thag (Xq,Xp) is
fixed over.#. Moreover, the expectation in the second term is with reidpeZx, x,, which is fixed over
Z# . Therefore, the second term, as well, does not depend omthescofFy,x,y € #. This completes
the proof of claim 2.

Lastly, we prove claim 3. To do so, we first note tifay (X1) and gz(X;) are not only thee -
and Z-optimal estimators oY based orX; andX;, respectively; they are also th&- and #-optimal
estimators o, (X1,X2). To see this, note that botty and % are contained ir¥’. Consequently, the
orthogonality principle implies that for evetly € o7 (which is also in&’), we have

E[Y = ¢ (X0)|1?] = E[[[Y — pe (X1, X2)[I?] + E[[| o (Xa, X2) — ¢ (X0)]|?]. (A7)

As the first term does not depend ¢gnwe see that minimization of the MSE ouwgre o7 is equivalent
to minimization of the second term alone. Thii;(X;) is thee/-optimal estimate opy (X1, X2) given
X1. The same argument can be invoked to deduceyihalXy) is the.Z-optimal estimate opy (X1, X2)
from X,.

A second observation we need for proving claim 3 follows fritva fact thates and % are linear
subspaces. Specifically, this implies thagjf(\V) and¢; (V) are thees -optimal estimates of the two RVs
W, andWs, respectively, based on the RX/ then thes/-optimal estimate oV, +Ws is ¢ (V) + ¢5 (V).
This can be seen by noting that the estimattiV ) + ¢ (V) satisfies the orthogonality principle, namely
for any¢ € o we have that

E[(W1 +Wa — ¢1(Wo) — 3 (Wa))T ¢ (Wa)] = E[(Wa — 5 (Wa))T @ (Wa)] + E[(Wa — 5 (Wa))T o (Wa)]
-0 (A.8)

The statement also holds, of course, with respeggioptimal estimates.
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Following these two observations, for afy,x,y € 7, setting¥ = 2p4(X1,X2) — Y results in a
distributionFy x ¢ that also belongs t&”. This is because the’-optimal estimate of from X; equals
twice theo/-optimal estimate opy (X1, X2) from X; (which is¢.,(X;)) minus thee/-optimal estimate
of Y from X; (which is alsog,,(X;)). Namely, thes/-optimal estimate o¥ from Xy is ¢, (X1).

Similarly, the -optimal estimate o¥ from Xz is () (X2). Finally, due to the orthogonality principle,
the second-order moment¥fis given by
E[[IY%] = E[llpe (X0, %) 1] + E[[Y = Py (X1, %2) %]
= E[|lps (X1, %) %] + E[|[Y[1?] - E[pe (X1, X2)[|?]
=CcC. (A.9)
We now use this fact to prove claim 3. The orthogonality gptec (A.4) implies that the MSE
attained by any estimatgr satisfies
E[[IY = p(X1,X2)1] = E[[|Y — pe (X1, X2)17] +E [||pg (X1, X2) — p (X1, X2) |?]
+2E [(Y = P (X1, X)) " (P (X1, X2) — p(%1,X2)) ]
=E[|[Y — ps (X1, %) |I?] +E [|| P (X1, X2) — p (X1, X2) |?]
+2E (P (X1, X2) = Y) T p (X1, %) (A.10)
The first term in this expression is not a functiongménd, as we have seen in (A.6), is constant as a

function of Fx,x,y over.#. The second term is a function pf but since the expectation is with respect
to Fx,x,, it is constant as a function &%, x,y over.#. Therefore,

min  sup MSE(Fx,x,v,P) = E[||Y — pz (X1, %) ||?] + ”}jn{E[H%/(Xl’Xz) — p (X, %2)|?]

p Fxyxov €7
+sup2E[(pe(¥a, %) — V) P(Xa,Xe)] }.
Fx %oy €7

(A.11)

We saw that for everx, x,y € F setting\? = 2p4(X1,X2) — Y results in a distributioﬁX1X2\~( that also
belongsto#. Now, withFy y ¢, the expressioni2|(py (X1, X2) —Y)Tp(X1,X%2)] equals—2E[(pg Xy, X2) —
Y)Tp(X1,X2)]. Consequently, the maximum of this term oWix,y € .7 is necessarily nonnegative.
We thus have that

min = sup MSE(Fx,x,y,P) = E[||Y — pg(X1, Xo)[[%] + minE [[| oy (X1, X2) — p (X1, X2)[1?]
P Byxye? p

=E[|IY — pe (X, %) 7], (A.12)
where we used the fact that the minimal value of 0 is attainiéu p(X1, X2) = pg (X1, X2).
We have established a lower bound on the worst-case MSE adstimgator. Next, we show that the

estimatorp (Xg, X2) = px (X1, X2) attains this bound, which proves that it is minimax-optimabeed,
substituting this solution into (A.10), we find that

sup  MSE(Fxx,v.0¢) = E[|IY — py (X1, X2)[|7] , (A.13)
FX].XZYE'?

completing the proof.
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B. Proof of Theorems 4.2 and 5.1

We simultaneously prove Theorems 4.2 and 5.1 by using adiayxkV Z, which can be any (fixed)
function ofX; andX,. Therewith, we will study the solution to

argmin  sup REG(Fx;x,v,P), (A1)
P Fxlxzye?

where minimization is performed over all functiopsof Z and the regret is with respect B[Y|Z].
Specifically, we will show that the solution to this problesngiven byE[py (X1, X2)|Z]. Setting,Z =
(X[, XI)T, we getE[pm (X1,%2)|Z] = pm (X1, X2), proving Theorem 4.2. Setting = X1, the solution
become®|pwm (X1, X2)|X1], proving Theorem 5.1.

Expressing’ = pm (X1, X2) + (Y — pm (X1, X2)), the regret of any estimat@(Z) can be written as

E [|[E[Y|Z] - p(2)[?] = E [|[Elom (X1, %2)1Z] — p(2)|IP] + E [|[E[Y — om (X1, X2)|Z][|?]
+2E [E[Y — pv (X1, %2)|Z] " (E[om (%1, %2)[Z] - p(Z))] - (A.2)

Since the marginal distributioRx, x, is fixed over.#, the first term in the above expression does not
depend on the choice &%, x,vy € .#. Consequently,

sup REG(Fx,x,v,P) = E[||E[om (X1, X2)|Z] — p(Z)|[?] + sup {]E[|]E[Y—PM(X1,X2)|Z]|2]

Fxy oY =2 Fxyxo¥ eF

+ 2B |E[Y — pm (X1, X2)|Z] T (E[om (X1, X2)[Z] — P(Z))} }
(A.3)

As we have seen in Appendix A, for evefy, x,y € # settingY = 2pu (X1,X%2) —Y results in a distribu-
tion Fro¥ that also belongs t&#. Now, Y — Pm (X1, X2) = —(Y — pm(X1, X2)), implying that if Fx, x,y
maximizes the first term within the braces, then eiffgk,y or Fy x.¢ yields at least the same value for
the objective comprising both terms. Therefore,

min  sup REG(Fxxv,p) = MinE [||E[pm(X1,%2)[Z] — p(2)|1?]
p Fxyxov €7 p
+ sup E[|[E[Y —pw (X1, X2)|Z]|%]
Fx %Y €7
= sup E[|E[Y —pu(X1,%)|Z]|7], (A.4)
FX].XZYE'?

where the last equality is due to the fact tpp@Z) = E[om (X1, X2)|Z] achieves the minimal value of 0
in the first term.

We established a lower bound on the worst-case regret of stimagor. Next, we show that the
estimatop*(Z) = E[pm (X1, X2)|Z] attains this bound, which proves that it is minimax-optintatieed,
substituting this solution into (A.3), we find that

sup REG(Fxyxy,om) = sup E[|EY —pw (X, %e)|Z]|], (A.5)

Fx %y €7 Fx %y €F

completing the proof.
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C. Proof of Theorem 4.4

To prove the claim, we show that the estimation error coordmg top, (X1, X2) of (4.18) is uncorre-
lated with every RV of the forng (X;) + ¢(X2) with ¢ € o7 andy € £. Indeed, for every € o7, the
estimatorpy (X1, Xp) of (4.18) satisfies

E [(Y = pyr (X1, %)) ¢ (X0)] =E [(Y = ¢* (%)) "¢ (X1)] —E [P (X1, %2) $ (X1)]
—E | ($00) — 1y (2)T (%)
=0, (A1)

where we used the orthogonality principle. To prove orthradity with respect to RVs of the form
Y(Xo), with ¢ € B, we write(X2) = W(X2) — Ny (X1) + Ny (X1), whereny (X1 ) is thee/ -optimal esti-
mate ofy(X2) based orX;. By the orthogonality principle, the erroYs— ¢, (X1) andp z(X1,X2) =
Y(X2) —ny(X1) are uncorrelated with any Ry(X;), wheren € <7, and thus in particular with the term
Ny (X1). Therefore, we have that

E[(Y-Y) y(X)] =E {(Y — 0 (X1) — pd,%(xlaXZ))T (P(X2) — ﬂw(xl))}

=~ E[(Y =P s (0.X) (W0%) ~ 1400
=0. (A.2)

Here, the second equality results from the fact that the W) — ny(X1) is orthogonal to every
RV ¢ (X1), where¢ € &7 and, in particular, tap.,(X;). The third equality follows from the fact that
Pwr.2(X1,X2) is the MMSE estimate of among all functions of the forngs(Xz) — ny(X1), with ¢
being some function i andny(X1) being thee -optimal estimator ofyy(X) from X;. Consequently,
the errorY — p, (X1, X2) is orthogonal to every RV of the formr(X2) — ny(X1), and, in particular, to
P(X2) = Ny(Xa).
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