Results 1  10
of
497
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 616 (76 self)
 Add to MetaCart
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over the last ten years and to take a critical view of these developments from several perspectives: logical, epistemological, computational and suitability to application. The paper attempts to expose some of the challenges and prospects for the further development of the field.
Theory and Practice of Constraint Handling Rules
, 1998
"... Constraint Handling Rules (CHR) are our proposal to allow more flexibility and applicationoriented customization of constraint systems. CHR are a declarative language extension especially designed for writing userdefined constraints. CHR are essentially a committedchoice language consisting of mu ..."
Abstract

Cited by 459 (36 self)
 Add to MetaCart
Constraint Handling Rules (CHR) are our proposal to allow more flexibility and applicationoriented customization of constraint systems. CHR are a declarative language extension especially designed for writing userdefined constraints. CHR are essentially a committedchoice language consisting of multiheaded guarded rules that rewrite constraints into simpler ones until they are solved. In this broad survey we aim at covering all aspects of CHR as they currently present themselves. Going from theory to practice, we will define syntax and semantics for CHR, introduce an important decidable property, confluence, of CHR programs and define a tight integration of CHR with constraint logic programming languages. This survey then describes implementations of the language before we review several constraint solvers  both traditional and non standard ones  written in the CHR language. Finally we introduce two innovative applications that benefited from using CHR.
Constraint Programming
, 1995
"... Constraint programming is a paradigm that is tailored to hard search problems. To date the main application areas are those of planning, scheduling, timetabling, routing, placement, investment, configuration, design and insurance. ..."
Abstract

Cited by 318 (9 self)
 Add to MetaCart
Constraint programming is a paradigm that is tailored to hard search problems. To date the main application areas are those of planning, scheduling, timetabling, routing, placement, investment, configuration, design and insurance.
The Oz Programming Model
 COMPUTER SCIENCE TODAY, LECTURE NOTES IN COMPUTER SCIENCE
, 1995
"... The Oz Programming Model (OPM) is a concurrent programming model subsuming higherorder functional and objectoriented programming as facets of a general model. This is particularly interesting for concurrent objectoriented programming, for which no comprehensive formal model existed until now. ..."
Abstract

Cited by 315 (11 self)
 Add to MetaCart
The Oz Programming Model (OPM) is a concurrent programming model subsuming higherorder functional and objectoriented programming as facets of a general model. This is particularly interesting for concurrent objectoriented programming, for which no comprehensive formal model existed until now. The model
Semantic foundations of concurrent constraint programming
, 1990
"... Concurrent constraint programming [Sar89,SR90] is a simple and powerful model of concurrent computation based on the notions of storeasconstraint and process as information transducer. The storeasvaluation conception of von Neumann computing is replaced by the notion that the store is a constr ..."
Abstract

Cited by 282 (27 self)
 Add to MetaCart
(Show Context)
Concurrent constraint programming [Sar89,SR90] is a simple and powerful model of concurrent computation based on the notions of storeasconstraint and process as information transducer. The storeasvaluation conception of von Neumann computing is replaced by the notion that the store is a constraint (a finite representation of a possibly infinite set of valuations) which provides partial information about the possible values that variables can take. Instead of “reading” and “writing ” the values of variables, processes may now ask (check if a constraint is entailed by the store) and tell (augment the store with a new constraint). This is a very general paradigm which subsumes (among others) nondeterminate dataflow and the (concurrent) (constraint) logic programming languages. This paper develops the basic ideas involved in giving a coherent semantic account of these languages. Our first contribution is to give a simple and general formulation of the notion that a constraint system is a system of partial information (a la the information systems of Scott). Parameter passing and hiding is handled by borrowing ideas from the cylindric algebras of Henkin, Monk and Tarski to introduce diagonal elements and “cylindrification ” operations (which mimic the projection of information induced by existential quantifiers). The se;ond contribution is to introduce the notion of determinate concurrent constraint programming languages. The combinators treated are ask, tell, parallel composition, hiding and recursion. We present a simple model for this language based on the specificationoriented methodology of [OH86]. The crucial insight is to focus on observing the resting points of a process—those stores in which the process quiesces without producing more information. It turns out that for the determinate language, the set of resting points of a process completely characterizes its behavior on all inputs, since each process can be identified with a closure operator over the underlying constraint system. Very natural definitions of parallel composition, communication and hiding are given. For example, the parallel composition of two agents can be characterized by just the intersection of the sets of constraints associated with them. We also give a complete axiomatization of equality in this model, present
ConGolog, a concurrent programming language based on the situation calculus: language and implementation
, 2000
"... ..."
Constraint Handling Rules
 Constraint Programming: Basics and Trends, LNCS 910
, 1995
"... . We are investigating the use of a class of logical formulas to define constraint theories and implement constraint solvers at the same time. The representation of constraint evaluation in a declarative formalism greatly facilitates the prototyping, extension, specialization and combination of cons ..."
Abstract

Cited by 232 (31 self)
 Add to MetaCart
. We are investigating the use of a class of logical formulas to define constraint theories and implement constraint solvers at the same time. The representation of constraint evaluation in a declarative formalism greatly facilitates the prototyping, extension, specialization and combination of constraint solvers. In our approach, constraint evaluation is specified using multiheaded guarded clauses called constraint handling rules (CHRs). CHRs define determinate conditional rewrite systems that express how conjunctions of constraints propagate and simplify. In this paper we concentrate on CHRs as an extension for constraint logic programming languages. Into such languages, the CHRs can be tightly integrated. They can make use of any hardwired solvers already built into the host language. Program clauses can be used to specify the nondeterministic behavior of constraints, i.e. to introduce search by constraints. In this way our approach merges the advantages of constraints (eager simp...
DESIGN, IMPLEMENTATION, AND EVALUATION OF THE CONSTRAINT LANGUAGE cc(FD)
 J. LOGIC PROGRAMMING 1994:19, 20:1679
, 1994
"... This paper describes the design, implementation, and applications of the constraint logic language cc(FD). cc(FD) is a declarative nondeterministic constraint logic language over finite domains based on the cc framework [33], an extension of the CLP scheme [21]. Its constraint solver includes (nonl ..."
Abstract

Cited by 188 (11 self)
 Add to MetaCart
This paper describes the design, implementation, and applications of the constraint logic language cc(FD). cc(FD) is a declarative nondeterministic constraint logic language over finite domains based on the cc framework [33], an extension of the CLP scheme [21]. Its constraint solver includes (nonlinear) arithmetic constraints over natural numbers which are approximated using domain and interval consistency. The main novelty of cc(FD) is the inclusion of a number of generalpurpose combinators, in particular cardinality, constructive disjunction, and blocking implication, in conjunction with new constraint operations such as constraint entailment and generalization. These combinators significantly improve the operational expressiveness, extensibility, and flexibility of CLP languages and allow issues such as the definition of nonprimitive constraints and disjunctions to be tackled at the language level. The implementation of cc(FD) (about 40,000 lines of C) includes a WAMbased engine [44], optimal arcconsistency algorithms based on AC5 [40], and incremental implementation of the combinators. Results on numerous problems, including scheduling, resource allocation, sequencing, packing, and hamiltonian paths are reported and indicate that cc(FD) comes close to procedural languages on a number of combinatorial problems. In addition, a small cc(FD) program was able to find the optimal solution and prove optimality to a famous 10/10 disjunctive scheduling problem [29], which was left open for more than 20 years and finally solved in 1986.
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 169 (57 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control
, 2006
"... Permission is hereby granted to make and distribute verbatim copies of this document without royalty or fee. Permission is granted to quote excerpts from this documented provided the original source is properly cited. ii When separately written programs are composed so that they may cooperate, they ..."
Abstract

Cited by 125 (12 self)
 Add to MetaCart
(Show Context)
Permission is hereby granted to make and distribute verbatim copies of this document without royalty or fee. Permission is granted to quote excerpts from this documented provided the original source is properly cited. ii When separately written programs are composed so that they may cooperate, they may instead destructively interfere in unanticipated ways. These hazards limit the scale and functionality of the software systems we can successfully compose. This dissertation presents a framework for enabling those interactions between components needed for the cooperation we intend, while minimizing the hazards of destructive interference. Great progress on the composition problem has been made within the object paradigm, chiefly in the context of sequential, singlemachine programming among benign components. We show how to extend this success to support robust composition of concurrent and potentially malicious components distributed over potentially malicious machines. We present E, a distributed, persistent, secure programming language, and CapDesk, a virussafe desktop built in E, as embodiments of the techniques we explain.