Results 1  10
of
325
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
, 2010
"... ..."
(Show Context)
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
(Show Context)
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues of random Wishart matrices.
Proximal Splitting Methods in Signal Processing
"... The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems ..."
Abstract

Cited by 264 (32 self)
 Add to MetaCart
(Show Context)
The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems and, especially, in signal processing, where it has become increasingly important. In this paper, we review the basic properties of proximity operators which are relevant to signal processing and present optimization methods based on these operators. These proximal splitting methods are shown to capture and extend several wellknown algorithms in a unifying framework. Applications of proximal methods in signal recovery and synthesis are discussed.
Solving monotone inclusions via compositions of nonexpansive averaged operators
 Optimization
, 2004
"... A unified fixed point theoretic framework is proposed to investigate the asymptotic behavior of algorithms for finding solutions to monotone inclusion problems. The basic iterative scheme under consideration involves nonstationary compositions of perturbed averaged nonexpansive operators. The analys ..."
Abstract

Cited by 145 (31 self)
 Add to MetaCart
(Show Context)
A unified fixed point theoretic framework is proposed to investigate the asymptotic behavior of algorithms for finding solutions to monotone inclusion problems. The basic iterative scheme under consideration involves nonstationary compositions of perturbed averaged nonexpansive operators. The analysis covers proximal methods for common zero problems as well as various splitting methods for finding a zero of the sum of monotone operators.
Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization
, 2002
"... ..."
A douglasRachford splitting approach to nonsmooth convex variational signal recovery
 IEEE Journal of Selected Topics in Signal Processing
, 2007
"... Abstract — Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is propo ..."
Abstract

Cited by 89 (23 self)
 Add to MetaCart
(Show Context)
Abstract — Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the DouglasRachford algorithm for monotone operatorsplitting, is obtained under general conditions. Applications to nonGaussian image denoising in a tight frame are also demonstrated. Index Terms — Convex optimization, denoising, DouglasRachford, frame, nondifferentiable optimization, Poisson noise,
Designing Structured Tight Frames via an Alternating Projection Method
, 2003
"... Tight frames, also known as general WelchBoundEquality sequences, generalize orthonormal systems. Numerous applicationsincluding communications, coding and sparse approximationrequire finitedimensional tight frames that possess additional structural properties. This paper proposes an alterna ..."
Abstract

Cited by 84 (10 self)
 Add to MetaCart
Tight frames, also known as general WelchBoundEquality sequences, generalize orthonormal systems. Numerous applicationsincluding communications, coding and sparse approximationrequire finitedimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems, which includes the frame design problem. To apply this method, one only needs to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate
A WEAKTOSTRONGCONVERGENCE PRINCIPLE FOR FEJÉRMONOTONE METHODS IN HILBERT SPACES
, 2001
"... We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assump ..."
Abstract

Cited by 81 (13 self)
 Add to MetaCart
We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed.
A PROXIMAL DECOMPOSITION METHOD FOR SOLVING CONVEX VARIATIONAL INVERSE PROBLEMS ∗
"... A broad range of inverse problems can be abstracted into the problem of minimizing the sum of several convex functions in a Hilbert space. We propose a proximal decomposition algorithm for solving this problem with an arbitrary number of nonsmooth functions and establish its weak convergence. The al ..."
Abstract

Cited by 79 (24 self)
 Add to MetaCart
A broad range of inverse problems can be abstracted into the problem of minimizing the sum of several convex functions in a Hilbert space. We propose a proximal decomposition algorithm for solving this problem with an arbitrary number of nonsmooth functions and establish its weak convergence. The algorithm fully decomposes the problem in that it involves each function individually via its own proximity operator. A significant improvement over the methods currently in use in the area of inverse problems is that it is not limited to two nonsmooth functions. Numerical applications to signal and image processing problems are demonstrated.