Results 1  10
of
110
Faster and simpler algorithms for multicommodity flow and other fractional packing problems
"... This paper considers the problem of designing fast, approximate, combinatorial algorithms for multicommodity flows and other fractional packing problems. We present new faster and much simpler algorithms for these problems. ..."
Abstract

Cited by 325 (5 self)
 Add to MetaCart
This paper considers the problem of designing fast, approximate, combinatorial algorithms for multicommodity flows and other fractional packing problems. We present new faster and much simpler algorithms for these problems.
Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice
, 2001
"... After several decades of sustained research and testing, linear programming has evolved into a remarkably reliable, accurate and useful tool for handling industrial optimization problems. Yet, large problems arising from several concrete applications routinely defeat the very best linear programming ..."
Abstract

Cited by 155 (4 self)
 Add to MetaCart
After several decades of sustained research and testing, linear programming has evolved into a remarkably reliable, accurate and useful tool for handling industrial optimization problems. Yet, large problems arising from several concrete applications routinely defeat the very best linear programming codes, running on the fastest computing hardware. Moreover, this is a trend that may well continue and intensify, as problem sizes escalate and the need for fast algorithms becomes more stringent. Traditionally, the focus in optimization algorithms, and in particular, in algorithms for linear programming, has been to solve problems "to optimality." In concrete implementations, this has always meant the solution ofproblems to some finite accuracy (for example, eight digits). An alternative approach would be to explicitly, and rigorously, trade o# accuracy for speed. One motivating factor is that in many practical applications, quickly obtaining a partially accurate solution is much preferable to obtaining a very accurate solution very slowly. A secondary (and independent) consideration is that the input data in many practical applications has limited accuracy to begin with. During the last ten years, a new body ofresearch has emerged, which seeks to develop provably good approximation algorithms for classes of linear programming problems. This work both has roots in fundamental areas of mathematical programming and is also framed in the context ofthe modern theory ofalgorithms. The result ofthis work has been a family ofalgorithms with solid theoretical foundations and with growing experimental success. In this manuscript we will study these algorithms, starting with some ofthe very earliest examples, and through the latest theoretical and computational developments.
The multiplicative weights update method: a meta algorithm and applications
, 2005
"... Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies ..."
Abstract

Cited by 147 (13 self)
 Add to MetaCart
Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple instantiations of the meta algorithm. 1
A Combinatorial, PrimalDual approach to Semidefinite Programs
"... Semidefinite programs (SDP) have been used in many recent approximation algorithms. We develop a general primaldual approach to solve SDPs using a generalization of the wellknown multiplicative weights update rule to symmetric matrices. For a number of problems, such as Sparsest Cut and Balanced ..."
Abstract

Cited by 94 (10 self)
 Add to MetaCart
(Show Context)
Semidefinite programs (SDP) have been used in many recent approximation algorithms. We develop a general primaldual approach to solve SDPs using a generalization of the wellknown multiplicative weights update rule to symmetric matrices. For a number of problems, such as Sparsest Cut and Balanced Separator in undirected and directed weighted graphs, and the Min UnCut problem, this yields combinatorial approximation algorithms that are significantly more efficient than interior point methods. The design of our primaldual algorithms is guided by a robust analysis of rounding algorithms used to obtain integer solutions from fractional ones.
The price of being nearsighted
 In SODA ’06: Proceedings of the seventeenth annual ACMSIAM symposium on Discrete algorithm
, 2006
"... Achieving a global goal based on local information is challenging, especially in complex and largescale networks such as the Internet or even the human brain. In this paper, we provide an almost tight classification of the possible tradeoff between the amount of local information and the quality o ..."
Abstract

Cited by 84 (12 self)
 Add to MetaCart
(Show Context)
Achieving a global goal based on local information is challenging, especially in complex and largescale networks such as the Internet or even the human brain. In this paper, we provide an almost tight classification of the possible tradeoff between the amount of local information and the quality of the global solution for general covering and packing problems. Specifically, we give a distributed algorithm using only small messages which obtains an (ρ∆) 1/kapproximation for general covering and packing problems in time O(k 2), where ρ depends on the LP’s coefficients. If message size is unbounded, we present a second algorithm that achieves an O(n 1/k) approximation in O(k) rounds. Finally, we prove that these algorithms are close to optimal by giving a lower bound on the approximability of packing problems given that each node has to base its decision on information from its kneighborhood. 1
Sequential and parallel algorithms for mixed packing and covering
 IN 42ND ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2001
"... We describe sequential and parallel algorithms that approximately solve linear programs with no negative coefficients (a.k.a. mixed packing and covering problems). For explicitly given problems, our fastest sequential algorithm returns a solution satisfying all constraints within a ¦ ¯ factor in Ç ..."
Abstract

Cited by 67 (6 self)
 Add to MetaCart
(Show Context)
We describe sequential and parallel algorithms that approximately solve linear programs with no negative coefficients (a.k.a. mixed packing and covering problems). For explicitly given problems, our fastest sequential algorithm returns a solution satisfying all constraints within a ¦ ¯ factor in Ç Ñ � ÐÓ � Ñ � ¯ time, where Ñ is the number of constraints and � is the maximum number of constraints any variable appears in. Our parallel algorithm runs in time polylogarithmic in the input size times ¯ � and uses a total number of operations comparable to the sequential algorithm. The main contribution is that the algorithms solve mixed packing and covering problems (in contrast to pure packing or pure covering problems, which have only “� ” or only “� ” inequalities, but not both) and run in time independent of the socalled width of the problem.
Routing Using Potentials: A Dynamic TrafficAware Routing Algorithm,”
 Proc. ACM SIGCOMM,
, 2003
"... ..."
(Show Context)
Fast Algorithms for Approximate Semidefinite Programming using the Multiplicative Weights Update Method
"... Semidefinite programming (SDP) relaxations appear inmany recent approximation algorithms but the only general technique for solving such SDP relaxations is via interior point methods. We use a Lagrangianrelaxation based technique (modified from the papers of Plotkin, Shmoys,and Tardos (PST), and ..."
Abstract

Cited by 41 (6 self)
 Add to MetaCart
(Show Context)
Semidefinite programming (SDP) relaxations appear inmany recent approximation algorithms but the only general technique for solving such SDP relaxations is via interior point methods. We use a Lagrangianrelaxation based technique (modified from the papers of Plotkin, Shmoys,and Tardos (PST), and Klein and Lu) to derive faster algorithms for approximately solving several families of SDPrelaxations. The algorithms are based upon some improvements to the PST ideas which lead to new results even fortheir framework as well as improvements in approximate eigenvalue computations by using random sampling.
Electrical Flows, Laplacian Systems, and Faster Approximation of Maximum Flow in Undirected Graphs
, 2010
"... We introduce a new approach to computing an approximately maximum st flow in a capacitated, undirected graph. This flow is computed by solving a sequence of electrical flow problems. Each electrical flow is given by the solution of a system of linear equations in a Laplacian matrix, and thus may be ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
(Show Context)
We introduce a new approach to computing an approximately maximum st flow in a capacitated, undirected graph. This flow is computed by solving a sequence of electrical flow problems. Each electrical flow is given by the solution of a system of linear equations in a Laplacian matrix, and thus may be approximately computed in nearlylinear time. Using this approach, we develop the fastest known algorithm for computing approximately maximum st flows. For a graph having n vertices and m edges, our algorithm computes a (1−ɛ)approximately maximum st flow in time 1 Õ ( mn 1/3 ɛ −11/3). A dual version of our approach computes a (1 + ɛ)approximately minimum st cut in time Õ ( m + n 4/3 ɛ −16/3) , which is the fastest known algorithm for this problem as well. Previously, the best dependence on m and n was achieved by the algorithm of Goldberg and Rao (J. ACM 1998), which can be used to compute approximately maximum st flows in time Õ ( m √ nɛ −1) , and approximately minimum st cuts in time Õ ( m + n 3/2 ɛ −3). Research partially supported by NSF grant CCF0843915.
Near Optimal Online Algorithms and Fast Approximation Algorithms for Resource Allocation Problems
, 2011
"... We present algorithms for a class of resource allocation problems both in the online setting with stochastic input and in the offline setting. This class of problems contains many interesting special cases such as the Adwords problem. In the online setting we introduce a new distributional model cal ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
(Show Context)
We present algorithms for a class of resource allocation problems both in the online setting with stochastic input and in the offline setting. This class of problems contains many interesting special cases such as the Adwords problem. In the online setting we introduce a new distributional model called the adversarial stochastic input model, which is a generalization of the i.i.d model with unknown distributions, where the distributions can change over time. In this model we give a 1 − O(ǫ) approximation algorithm for the resource allocation problem, with almost the weakest possible assumption: the ratio of the maximum amount of resource consumed by any single request to the total capacity of the resource, and the ratio of the profit contributed by any single request to the optimal profit is at most ǫ 2 /log(1/ǫ) 2 where n is the number of resources log n+log(1/ǫ) available. There are instances where this ratio is ǫ 2 /log n such that no randomized algorithm can have a competitive ratio of 1 − o(ǫ) even in the i.i.d model. The upper bound on ratio that we require improves on the previous upperbound for the i.i.d case by a factor of n. Our proof technique also gives a very simple proof that the greedy algorithm has a competitive ratio of 1 −1/e for the Adwords problem in the i.i.d model with unknown distributions, and more generally in the adversarial stochastic input model, when there is no bound on the bid to budget ratio. All the previous proofs assume A full version of this paper, with all the proofs, is available at