Results 1 - 10
of
308
High-Rate Codes that are Linear in Space and Time
- IEEE Trans. Inform. Theory
, 2000
"... Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good ..."
Abstract
-
Cited by 422 (13 self)
- Add to MetaCart
Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas---this deficiency is especially important for modern cellular systems where a basestation typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously-proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any...
Achieving near-capacity on a multiple-antenna channel
- IEEE Trans. Commun
, 2003
"... Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve nea ..."
Abstract
-
Cited by 402 (2 self)
- Add to MetaCart
(Show Context)
Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve near-capacity on a multiple-antenna system where the receiver knows the channel. Combining iterative processing with multiple-antenna channels is particularly challenging because the channel capacities can be a factor of ten or more higher than their single-antenna counterparts. Using a “list ” version of the sphere decoder, we provide a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called “soft ” inputs and outputs. We exemplify our technique by directly transmitting symbols that are coded with a channel code; we show that iterative processing with even this simple scheme can achieve near-capacity. We consider both simple convolutional and powerful turbo channel codes and show that excellent performance at very high data rates can be attained with either. We compare our simulation results with Shannon capacity limits for ergodic multiple-antenna channel. Index Terms—Wireless communications, BLAST, turbo codes, transmit diversity, receive diversity, fading channels, sphere decoding, soft-in/soft-out, concatenated codes 1
Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel
- IEEE TRANS. INFORM. THEORY
, 2002
"... In this paper, we study the capacity of multiple-antenna fading channels. We focus on the scenario where the fading coefficients vary quickly; thus an accurate estimation of the coefficients is generally not available to either the transmitter or the receiver. We use a noncoherent block fading model ..."
Abstract
-
Cited by 273 (7 self)
- Add to MetaCart
In this paper, we study the capacity of multiple-antenna fading channels. We focus on the scenario where the fading coefficients vary quickly; thus an accurate estimation of the coefficients is generally not available to either the transmitter or the receiver. We use a noncoherent block fading model proposed by Marzetta and Hochwald. The model does not assume any channel side information at the receiver or at the transmitter, but assumes that the coefficients remain constant for a coherence interval of length symbol periods. We compute the asymptotic capacity of this channel at high signal-to-noise ratio (SNR) in terms of the coherence time , the number of transmit antennas , and the number of receive antennas . While the capacity gain of the coherent multiple antenna channel is min bits per second per hertz for every 3-dB increase in SNR, the corresponding gain for the noncoherent channel turns out to be (1 ) bits per second per herz, where = min 2 . The capacity expression has a geometric interpretation as sphere packing in the Grassmann manifold.
On Beamforming with Finite Rate Feedback in Multiple Antenna Systems
, 2003
"... In this paper, we study a multiple antenna system where the transmitter is equipped with quantized information about instantaneous channel realizations. Assuming that the transmitter uses the quantized information for beamforming, we derive a universal lower bound on the outage probability for any f ..."
Abstract
-
Cited by 272 (14 self)
- Add to MetaCart
(Show Context)
In this paper, we study a multiple antenna system where the transmitter is equipped with quantized information about instantaneous channel realizations. Assuming that the transmitter uses the quantized information for beamforming, we derive a universal lower bound on the outage probability for any finite set of beamformers. The universal lower bound provides a concise characterization of the gain with each additional bit of feedback information regarding the channel. Using the bound, it is shown that finite information systems approach the perfect information case as (t 1)2 , where B is the number of feedback bits and t is the number of transmit antennas. The geometrical bounding technique, used in the proof of the lower bound, also leads to a design criterion for good beamformers, whose outage performance approaches the lower bound. The design criterion minimizes the maximum inner product between any two beamforming vectors in the beamformer codebook, and is equivalent to the problem of designing unitary space time codes under certain conditions. Finally, we show that good beamformers are good packings of 2-dimensional subspaces in a 2t-dimensional real Grassmannian manifold with chordal distance as the metric.
Differential space-time modulation
- IEEE Trans. Inform. Theory
, 2000
"... Abstract—Space–time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath radio channels. Thus far, most work on space–time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may b ..."
Abstract
-
Cited by 269 (1 self)
- Add to MetaCart
(Show Context)
Abstract—Space–time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath radio channels. Thus far, most work on space–time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may be difficult or costly to estimate the channel accurately, in which case it is natural to consider the design of modulation techniques that do not require channel estimates at the transmitter or receiver. We propose a general approach to differential modulation for multiple transmit antennas based on group codes. This approach can be applied to any number of transmit and receive antennas, and any signal constellation. We also derive low-complexity dif-ferential receivers, error bounds, and modulator design criteria, which we use to construct optimal differential modulation schemes for two transmit antennas. These schemes can be demodulated with or without channel estimates. This permits the receiver to exploit channel estimates when they are available. Performance degrades by approximately 3 dB when estimates are not available. Index Terms—Differential modulation, group codes, multi-path channels, noncoherent communication, space–time coding, transmit diversity. I.
Distributed space-time coding in wireless relay networks,”IEEE Trans.
- on Wireless Communications,
, 2006
"... Abstract In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver or relays. The coding scheme uses distributed space-time coding, that is, the relay nodes cooperate to encode the transmitted signal ..."
Abstract
-
Cited by 225 (16 self)
- Add to MetaCart
(Show Context)
Abstract In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver or relays. The coding scheme uses distributed space-time coding, that is, the relay nodes cooperate to encode the transmitted signal so that the receiver senses a space-time codeword. It is inspired by noncoherent differential techniques. The proposed strategy is available for any number of relays nodes. It is analyzed, and shown to yield a diversity linear in the number of relays. We also study the resistance of the scheme to relay node failures, and show that a network with R relay nodes and d of them down behaves, as far as diversity is concerned, as a network with R − d nodes. Finally, our construction can be easily generalized to the case where the transmitter and receiver nodes have several antennas.
A differential detection scheme for transmit diversity
- IEEE J. Select. Areas Commun
, 2000
"... Abstract—We present a transmission scheme for exploiting diversity given by two transmit antennas when neither the transmitter nor the receiver has access to channel state information. The new detection scheme can use equal energy constellations and encoding is simple. At the receiver, decoding is a ..."
Abstract
-
Cited by 215 (7 self)
- Add to MetaCart
(Show Context)
Abstract—We present a transmission scheme for exploiting diversity given by two transmit antennas when neither the transmitter nor the receiver has access to channel state information. The new detection scheme can use equal energy constellations and encoding is simple. At the receiver, decoding is achieved with low decoding complexity. The transmission provides full spatial diversity and requires no channel state side information at the receiver. The scheme can be considered as the extension of differential detection schemes to two transmit antennas. Index Terms—Antenna arrays, differential detection, space-time codes, transmitter diversity. I.
Systematic design of unitary space-time constellations
- IEEE TRANS. INFORM. THEORY
, 2000
"... We propose a systematic method for creating constellations of unitary space–time signals for multiple-antenna communication links. Unitary space–time signals, which are orthonormal in time across the antennas, have been shown to be well-tailored to a Rayleigh fading channel where neither the transm ..."
Abstract
-
Cited by 201 (10 self)
- Add to MetaCart
We propose a systematic method for creating constellations of unitary space–time signals for multiple-antenna communication links. Unitary space–time signals, which are orthonormal in time across the antennas, have been shown to be well-tailored to a Rayleigh fading channel where neither the transmitter nor the receiver knows the fading coefficients. The signals can achieve low probability of error by exploiting multiple-antenna diversity. Because the fading coefficients are not known, the criterion for creating and evaluating the constellation is nonstandard and differs markedly from the familiar maximum-Euclidean-distance norm. Our construction begins with the first signal in the constellation—an oblong complex-valued matrix whose columns are orthonormal—and systematically produces the remaining signals by successively rotating this signal in a high-dimensional complex space. This construction easily produces large constellations of high-dimensional signals. We demonstrate its efficacy through examples involving one, two, and three transmitter antennas.
On the sphere-decoding algorithm I. Expected complexity
- IEEE Trans. Sig. Proc
, 2005
"... Abstract—The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The ..."
Abstract
-
Cited by 135 (7 self)
- Add to MetaCart
(Show Context)
Abstract—The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The problem is equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In communications applications, however, the given vector is not arbitrary but rather is an unknown lattice point that has been perturbed by an additive noise vector whose statistical properties are known. Therefore, in this paper, rather than dwell on the worst-case complexity of the integer least-squares problem, we study its expected complexity, averaged over the noise and over the lattice. For the “sphere decoding” algorithm of Fincke and Pohst, we find a closed-form expression for the expected complexity, both for the infinite and finite lattice.