Results 1 - 10
of
104
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract
-
Cited by 3252 (70 self)
- Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
NUSMV: a new symbolic model checker
- International Journal on Software Tools for Technology Transfer
, 2000
"... This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed de ..."
Abstract
-
Cited by 169 (22 self)
- Add to MetaCart
This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed description of the NUSMV functionalities, architecture, and implementation.
Verification Tools for Finite-State Concurrent Systems
"... Temporal logic model checking is an automatic technique for verifying finite-state concurrent systems. Specifications are expressed in a propositional temporal logic, and the concurrent system is modeled as a state-transition graph. An efficient search procedure is used to determine whether or not t ..."
Abstract
-
Cited by 130 (3 self)
- Add to MetaCart
(Show Context)
Temporal logic model checking is an automatic technique for verifying finite-state concurrent systems. Specifications are expressed in a propositional temporal logic, and the concurrent system is modeled as a state-transition graph. An efficient search procedure is used to determine whether or not the state-transition graph satisfies the specification. When the technique was first developed ten years ago, it was only possible to handle concurrent systems with a few thousand states. In the last few years, however, the size of the concurrent systems that can be handled has increased dramatically. By representing transition relations and sets of states implicitly using binary decision diagrams, it is now possible to check concurrent systems with more than 10 120 states. In this paper we describe in detail how the new implementation works and
Another Look at LTL Model Checking
- FORMAL METHODS IN SYSTEM DESIGN
, 1994
"... We show how LTL model checking can be reduced to CTL model checking with fairness constraints. Using this reduction, we also describe how to construct a symbolic LTL model checker that appears to be quite efficient in practice. In particular, we show how the SMV model checking system developed by Mc ..."
Abstract
-
Cited by 121 (11 self)
- Add to MetaCart
(Show Context)
We show how LTL model checking can be reduced to CTL model checking with fairness constraints. Using this reduction, we also describe how to construct a symbolic LTL model checker that appears to be quite efficient in practice. In particular, we show how the SMV model checking system developed by McMillan [16] can be extended to permit LTL specifications. The results that we have obtained are quite surprising. For the examples we considered, the LTL model checker required at most twice as much time and space as the CTL model checker. Although additional examples still need to be tried, it appears that efficient LTL model checking is possible when the specifications are not excessively complicated.
Formal verification in hardware design: A survey
, 1997
"... In recent years, formal methods have emerged as an alternative approach to ensuring the quality and correctness of hardware designs, overcoming some of the limitations of traditional validation techniques such as simulation and testing. There are two main aspects to the application of formal methods ..."
Abstract
-
Cited by 113 (0 self)
- Add to MetaCart
In recent years, formal methods have emerged as an alternative approach to ensuring the quality and correctness of hardware designs, overcoming some of the limitations of traditional validation techniques such as simulation and testing. There are two main aspects to the application of formal methods in a design process: The formal framework used to specify desired properties of a design, and the verification techniques and tools used to reason about the relationship between a specification and a corresponding implementation. We survey a variety of frameworks and techniques which have been proposed in the literature and applied to actual designs. The specification frameworks we describe include temporal logics, predicate logic, abstraction and refinement, as well as containment between!-regular languages. The verification techniques presented include model checking, automata-theoretic techniques, automated theorem proving, and approaches that integrate the above methods.
Thread-modular model checking
- In SPIN
, 2003
"... SRC’s charter is to advance the state of the art in computer systems by doing basic and applied research in support of our company’s business objectives. Our interests and projects span scalable systems (including hardware, networking, distributed systems, and programming-language technology), the I ..."
Abstract
-
Cited by 91 (7 self)
- Add to MetaCart
SRC’s charter is to advance the state of the art in computer systems by doing basic and applied research in support of our company’s business objectives. Our interests and projects span scalable systems (including hardware, networking, distributed systems, and programming-language technology), the Internet (including the Web, e-commerce, and information retrieval), and human/computer interaction (including user-interface technology, computer-based appliances, and mobile computing). SRC was established in 1984 by Digital Equipment Corporation. We test the value of our ideas by building hardware and software prototypes and assessing their utility in realistic settings. Interesting systems are too complex to be evaluated solely in the abstract; practical use enables us to investigate their properties in depth. This experience is useful in the short term in refining our designs and invaluable in the long term in advancing our knowledge. Most of the major advances in information systems have come through this approach, including personal computing, distributed systems, and the Internet. We also perform complementary work of a more mathematical character. Some
Implementation of Symbolic Model Checking for Probabilistic Systems
, 2002
"... In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, fault-tolerant processes and communication networks. A probabilistic model checker inputs a probabilist ..."
Abstract
-
Cited by 72 (21 self)
- Add to MetaCart
In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, fault-tolerant processes and communication networks. A probabilistic model checker inputs a probabilistic model and a speci cation, such as \the message will be delivered with probability 1", \the probability of shutdown occurring is at most 0.02" or \the probability of a leader being elected within 5 rounds is at least 0.98", and can automatically verify if the speci cation is true in the model.
Multi-Valued Symbolic Model-Checking
- ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY
, 2003
"... This paper introduces the concept and the general theory of multi-valued model checking, and describes a multi-valued symbolic model-checker \Chi Chek. Multi-valued ..."
Abstract
-
Cited by 68 (17 self)
- Add to MetaCart
This paper introduces the concept and the general theory of multi-valued model checking, and describes a multi-valued symbolic model-checker \Chi Chek. Multi-valued