Results 1 - 10
of
654
Wireless Sensor Network Localization Techniques
"... Wireless sensor network localization is an important area that attracted significant research interest. This interest is expected to grow further with the proliferation of wireless sensor network applications. This paper provides an overview of the measurement techniques in sensor network localizat ..."
Abstract
-
Cited by 209 (5 self)
- Add to MetaCart
Wireless sensor network localization is an important area that attracted significant research interest. This interest is expected to grow further with the proliferation of wireless sensor network applications. This paper provides an overview of the measurement techniques in sensor network localization and the one-hop localization algorithms based on these measurements. A detailed investigation on multihop connectivity-based and distance-based localization algorithms are presented. A list of open research problems in the area of distance-based sensor network localization is provided with discussion on possible approaches to them.
Perspectives on system identification
- In Plenary talk at the proceedings of the 17th IFAC World Congress, Seoul, South Korea
, 2008
"... System identification is the art and science of building mathematical models of dynamic systems from observed input-output data. It can be seen as the interface between the real world of applications and the mathematical world of control theory and model abstractions. As such, it is an ubiquitous ne ..."
Abstract
-
Cited by 167 (3 self)
- Add to MetaCart
System identification is the art and science of building mathematical models of dynamic systems from observed input-output data. It can be seen as the interface between the real world of applications and the mathematical world of control theory and model abstractions. As such, it is an ubiquitous necessity for successful applications. System identification is a very large topic, with different techniques that depend on the character of the models to be estimated: linear, nonlinear, hybrid, nonparametric etc. At the same time, the area can be characterized by a small number of leading principles, e.g. to look for sustainable descriptions by proper decisions in the triangle of model complexity, information contents in the data, and effective validation. The area has many facets and there are many approaches and methods. A tutorial or a survey in a few pages is not quite possible. Instead, this presentation aims at giving an overview of the “science ” side, i.e. basic principles and results and at pointing to open problem areas in the practical, “art”, side of how to approach and solve a real problem. 1.
Gossip algorithms for distributed signal processing
- PROCEEDINGS OF THE IEEE
, 2010
"... Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the co ..."
Abstract
-
Cited by 116 (30 self)
- Add to MetaCart
Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This paper presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmittedmessages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.
Environmental sensor networks: A revolution in the earth system science?
- Earth-Science Reviews,
, 2006
"... Abstract Environmental Sensor Networks (ESNs) facilitate the study of fundamental processes and the development of hazard response systems. They have evolved from passive logging systems that require manual downloading, into 'intelligent' sensor networks that comprise a network of automat ..."
Abstract
-
Cited by 103 (0 self)
- Add to MetaCart
(Show Context)
Abstract Environmental Sensor Networks (ESNs) facilitate the study of fundamental processes and the development of hazard response systems. They have evolved from passive logging systems that require manual downloading, into 'intelligent' sensor networks that comprise a network of automatic sensor nodes and communications systems which actively communicate their data to a Sensor Network Server (SNS) where these data can be integrated with other environmental datasets. The sensor nodes can be fixed or mobile and range in scale appropriate to the environment being sensed. ESNs range in scale and function and we have reviewed over 50 representative examples. Large Scale Single Function Networks tend to use large single purpose nodes to cover a wide geographical area. Localised Multifunction Sensor Networks typically monitor a small area in more detail, often with wireless adhoc systems. Biosensor Networks use emerging biotechnologies to monitor environmental processes as well as developing proxies for immediate use. In the future, sensor networks will integrate these three elements (Heterogeneous Sensor Networks). The communications system and data storage and integration (cyberinfrastructure) aspects of ESNs are discussed, along with current challenges which need to be addressed. We argue that Environmental Sensor Networks will become a standard research tool for future Earth System and Environmental Science. Not only do they provide a 'virtual' connection with the environment, they allow new field and conceptual approaches to the study of environmental processes to be developed. We suggest that although technological advances have facilitated these changes, it is vital that Earth Systems and Environmental Scientists utilise them.
Wireless sensor networks: applications and challenges of ubiquitous sensing
- IEEE Circuits and Systems Magazine
, 2005
"... Sensor networks offer a powerful combination of distributed sensing, computing and communication. They lend themselves to countless applications and, at the same time, offer numerous challenges due to their peculiarities, primarily the stringent energy constraints to which sensing nodes are typicall ..."
Abstract
-
Cited by 79 (0 self)
- Add to MetaCart
(Show Context)
Sensor networks offer a powerful combination of distributed sensing, computing and communication. They lend themselves to countless applications and, at the same time, offer numerous challenges due to their peculiarities, primarily the stringent energy constraints to which sensing nodes are typically subjected. The distinguishing traits of sensor networks have a direct impact on the hardware design of the nodes at at least four levels: power source, processor, communication hardware, and sensors. Various hardware platforms have already been designed to test the many ideas spawned by the research community and to implement applications to virtually all fields of science and technology. We are convinced that CAS will be able to provide a substantial contribution to the development of this exciting field.
On the lifetime of wireless sensor networks
- TOSN
"... Network lifetime has become the key characteristic for evaluating sensor networks in an application-specific way. Especially the availability of nodes, the sensor coverage, and the connectivity have been included in discussions on network lifetime. Even quality of service measures can be reduced to ..."
Abstract
-
Cited by 77 (12 self)
- Add to MetaCart
(Show Context)
Network lifetime has become the key characteristic for evaluating sensor networks in an application-specific way. Especially the availability of nodes, the sensor coverage, and the connectivity have been included in discussions on network lifetime. Even quality of service measures can be reduced to lifetime considerations. A great number of algorithms and methods were proposed to increase the lifetime of a sensor network—while their evaluations were always based on a particular definition of network lifetime. Motivated by the great differences in existing definitions of sensor network lifetime that are used in relevant publications, we reviewed the state of the art in lifetime definitions, their differences, advantages, and limitations. This survey was the starting point for our work towards a generic definition of sensor network lifetime for use in analytic evaluations as well as in simulation models—focusing on a formal and concise definition of accumulated network lifetime and total network lifetime. Our definition incorporates the components of existing lifetime definitions, and introduces some additional measures. One new concept is the ability to express the service disruption tolerance of a network. Another new concept is the notion of time-integration: in many cases, it is sufficient if a requirement is fulfilled over a certain period of time, instead of at every point in time. In addition, we combine coverage and connectivity to
A Survey of Energy-Efficient Hierarchical Cluster-Based Routing
- in Wireless Sensor Networks‖ Int. J. of Advanced Networking and Applications (2010), VOL: 02, Page: 570-580 www.ijmer.com 489 | Page
"... ----------------------------------------------------------------------ABSTRACT---------------------------------------------------------------Recent technological advances in communications and computation have enabled the development of low-cost, low-power, small in size, and multifunctional sensor ..."
Abstract
-
Cited by 54 (5 self)
- Add to MetaCart
(Show Context)
----------------------------------------------------------------------ABSTRACT---------------------------------------------------------------Recent technological advances in communications and computation have enabled the development of low-cost, low-power, small in size, and multifunctional sensor nodes in a wireless sensor network. Since the radio transmission and reception consumes a lot of energy, one of the important issues in wireless sensor network is the inherent limited battery power within network sensor nodes. Therefore, battery power is crucial parameter in the algorithm design to increase lifespan of nodes in the network. In addition to maximizing the lifespan of sensor nodes, it is preferable to distribute the energy dissipated throughout the wireless sensor network in order to maximize overall network performance. Much research has been done in recent years, investigating different aspects like, low power protocols, network establishments, routing protocol, and coverage problems of wireless sensor networks. There are various routing protocols like location-aided, multi-path, datacentric, mobility-based, QoS based, heterogeneity-based, hierarchical routing, hybrid routing, etc., in which optimal routing can be achieved in the context of energy. In this paper, the focus is mainly driven over the survey of the energy-efficient
Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) – Survey and Challenges
"... Abstract—Wireless sensor networks (WSNs) research has predominantly assumed the use of a portable and limited energy source, viz. batteries, to power sensors. Without energy, a sensor is essentially useless and cannot contribute to the utility of the network as a whole. Consequently, substantial res ..."
Abstract
-
Cited by 44 (12 self)
- Add to MetaCart
(Show Context)
Abstract—Wireless sensor networks (WSNs) research has predominantly assumed the use of a portable and limited energy source, viz. batteries, to power sensors. Without energy, a sensor is essentially useless and cannot contribute to the utility of the network as a whole. Consequently, substantial research efforts have been spent on designing energy-efficient networking protocols to maximize the lifetime of WSNs. However, there are emerging WSN applications where sensors are required to operate for much longer durations (like years or even decades) after they are deployed. Examples include in-situ environmental/habitat monitoring and structural health monitoring of critical infrastructures and buildings, where batteries are hard (or impossible) to replace/recharge. Lately, an alternative to powering WSNs is being actively studied, which is to convert the ambient energy from the environment into electricity to power the sensor nodes. While renewable energy technology is not new (e.g., solar and wind) the systems in use are far too large for WSNs. Those small enough for use in wireless sensors are most likely able to provide only enough energy to power sensors sporadically and not continuously. Sensor nodes need to exploit the sporadic availability of energy to quickly sense and transmit the data. This paper surveys related research and discusses the challenges of designing networking protocols for such WSNs powered by ambient energy harvesting. I.
Distributed Tracking for Mobile Sensor Networks with Information-Driven Mobility
"... In this paper, we address distributed target tracking for mobile sensor networks using the extension of a distributed Kalman filtering (DKF) algorithm introduced by the author in [11]. It is shown that improvement of the quality of tracking by mobile sensors (or agents) leads to the emergence of f ..."
Abstract
-
Cited by 44 (0 self)
- Add to MetaCart
(Show Context)
In this paper, we address distributed target tracking for mobile sensor networks using the extension of a distributed Kalman filtering (DKF) algorithm introduced by the author in [11]. It is shown that improvement of the quality of tracking by mobile sensors (or agents) leads to the emergence of flocking behavior. We discuss the benefits of a flocking-based mobility model for distributed Kalman filtering over mobile networks. This mobility model uses author’s flocking algorithm with a natural choice of a moving rendezvous point that is the target itself. As the agents “flock ” towards the target, the information value of their sensor measurements improves in time. During this process, smaller flocks merge and form larger flocks and eventually a single flock with a connected topology emerges. This allows the agents to perform cooperative filtering using the DKF algorithm which considerably improves their tracking performance. We show that this flocking algorithm is in fact an information-driven mobility that acts as a cooperative control strategy that enhances the aggregate information value of all sensor measurements. A metric for information value is given that has close connections to Fisher information. Simulation results are provided for a group of UAVs with embedded sensors tracking a mobile target using cooperative filtering.
Computational Intelligence in Wireless Sensor Networks: A Survey
- IEEE COMMUNICATIONS SURVEYS & TUTORIALS
, 2011
"... Wireless sensor networks (WSNs) are networks of distributed autonomous devices that can sense or monitor physical or environmental conditions cooperatively. WSNs face many challenges, mainly caused by communication failures, storage and computational constraints and limited power supply. Paradigms o ..."
Abstract
-
Cited by 41 (0 self)
- Add to MetaCart
Wireless sensor networks (WSNs) are networks of distributed autonomous devices that can sense or monitor physical or environmental conditions cooperatively. WSNs face many challenges, mainly caused by communication failures, storage and computational constraints and limited power supply. Paradigms of computational intelligence (CI) have been successfully used in recent years to address various challenges such as data aggregation and fusion, energy aware routing, task scheduling, security, optimal deployment and localization. CI provides adaptive mechanisms that exhibit intelligent behavior in complex and dynamic environments like WSNs. CI brings about flexibility, autonomous behavior, and robustness against topology changes, communication failures and scenario changes. However, WSN developers are usually not or not completely aware of the potential CI algorithms offer. On the other side, CI researchers are not familiar with all real problems and subtle requirements of WSNs. This mismatch makes collaboration and development difficult. This paper intends to close this gap and foster collaboration by offering a detailed introduction to WSNs and their properties. An extensive survey of CI applications to various problems in WSNs from various research areas and publication venues is presented in the paper. Besides, a discussion on advantages and disadvantages of CI algorithms over traditional WSN solutions is offered. In addition, a general evaluation of CI algorithms is presented, which will serve as a guide for using CI algorithms for WSNs.